InsBank: Evolving Instruction Subset for Ongoing Alignment

Anonymous ACL submission

Abstract

Large language models (LLMs) typically un-
dergo instruction tuning to enhance alignment.
Recent studies emphasize that quality and di-
versity of instruction data are more crucial than
quantity, highlighting the need to select diverse,
high-quality subsets to reduce training costs.
However, how to evolve these selected sub-
sets alongside the development of new instruc-
tion data remains insufficiently explored. To
achieve LLMs’ ongoing alignment, we intro-
duce Instruction Bank (InsBank), a continu-
ously updated repository that integrates the lat-
est valuable instruction data. We further pro-
pose Progressive Instruction Bank Evolution
(PIBE), a novel framework designed to evolve
InsBank effectively and efficiently over time.
PIBE employs a gradual data selection strategy
to maintain long-term efficiency, leveraging a
representation-based diversity score to capture
relationships between data points and retain his-
torical information for comprehensive diversity
evaluation. This also allows for flexible com-
bination of diversity and quality scores during
data selection and ranking. Extensive experi-
ments demonstrate that PIBE significantly out-
performs baselines in InsBank evolution and is
able to extract budget-specific subsets, demon-
strating its effectiveness and adaptability.

1 Introduction

Instruction fine-tuning is widely adopted to re-
fine pre-trained LLMs to accurately understand hu-
man instructions and provide precise, pertinent and
harmless responses (Longpre et al., 2023; Qin et al.,
2024a). LIMA (Zhou et al., 2023a) has proved that
the quality and diversity of instruction data are sig-
nificantly more critical than its sheer quantity for
training, motivating recent efforts in instruction
data selection to reduce unnecessary training costs
by eliminating low-quality and redundant data (Qin
et al., 2024a). However, how to evolve the selected
instruction subset in parallel with the development
of the instruction data remains underexplored.
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Figure 1: Illustration of InsBank evolution. It is initial-
ized by data selection on all current available instruction
data, and it will evolve itself as long as new instruction
data are proposed. A smaller training subset can be ob-
tained from InsBank according to user training budget.

Specifically, with the continuous emergence of
instruction datasets (The timeline of part instruc-
tion datasets is shown in Appendix A), it becomes
necessary to regularly update the instruction subset
to incorporate the latest advanced instruction data
in order to ensure ongoing improvements in the
alignment capabilities of LLMs. Simultaneously,
the subset size must be controlled to avoid exces-
sive growth that could lead to increased training
costs. To address these practical challenges, we
propose a novel concept termed InsBank (Instruc-
tion Bank). As shown in Figure 1, it is initially
built by selecting current available instruction data.
When new datasets are proposed, the bank evolves
by selecting new data while phasing out an equiva-
lent amount of older data, thereby maintaining an
optimized instruction subset. The data in InsBank
is also ranked, enabling users to extract smaller sub-
sets tailored to specific training budgets efficiently.

The orderliness of InsBank is achieved through
an overall score that combines individual quality
and diversity scores. Quality scores can be obtained
through manual or model annotation, but measur-
ing diversity requires a global comparison between
data, leading to significant storage and computa-



tional costs. During InsBank evolution, the impact
of new data on the overall distribution necessitates
continuous adjustment of each sample’s diversity
score. A straightforward approach would be to
re-select data from all available instruction data
during each evolution iteration. However, the mas-
sive volume of instruction data (Qin et al., 2024a)
and its rapid growth (Longpre et al., 2023; Wang
et al., 2023; Xu et al., 2023) make this approach
prohibitively expensive. Moreover, existing meth-
ods struggle to effectively represent and combine
diversity and quality scores for ranking purposes.

To address these challenges, we propose Pro-
gressive Instruction Bank Evolution (PIBE) for
continuous and efficient selection of the optimal
instruction subset. PIBE employs a gradual man-
ner of selection to evolve InsBank, ensuring long-
term efficiency. Unlike the naive approach, PIBE
significantly reduces evolution costs by excluding
previously filtered-out data and focusing only on
newly proposed and current InsBank data. How-
ever, the absence of past data changes the distri-
bution of candidates, making it critical to preserve
historical distribution information during evolution.
Existing diversity-driven data selection methods
(Liu et al., 2024; Wu et al., 2023) fall into two
main categories: k-nearest neighbor (k-NN) (Dong
etal., 2011) and geometry-based coreset sampling
(Guo et al., 2022). However, both of them rely
solely on local information from a few neighbor-
ing points, making it difficult to record and utilize
the rich information of previously eliminated data.
Consequently, they cannot capture global relation-
ships between points or provide robust individual
diversity scores for effective ranking. Inspired by
Affinity Propagation (Frey and Dueck, 2007), we
frame InsBank data selection as an exemplar elec-
tion process, where the representativeness of each
data point is quantified through an iterative voting
mechanism. The representativeness further serves
as the individual diversity score, and the voting re-
sults are passed to the next iteration as historical in-
formation to preserve the distribution of absent data.
Moreover, existing data selection methods either
prioritize quality or diversity (Chen et al., 2024),
or address them sequentially (Liu et al., 2024), fail-
ing to consider both aspects equally. In contrast,
our diversity score integrates seamlessly with the
quality score, enabling comprehensive and flexible
instruction selection and InsBank ranking.

We simulate the process of instruction set devel-
opment with five datasets and perform InsBank evo-

lution on them with PIBE. We evaluate the general
instruction following capability of fine-tuned mod-
els on AlpacaEval (Li et al., 2023b), MT-Bench
(Zheng et al., 2023) and IFEval (Zhou et al., 2023b).
Experimental results show that PIBE outperforms
the baselines and successfully evolves the instruc-
tion bank in parallel with the development of in-
struction sets. Besides, analysis on orderliness of
InsBank indicates that users can flexibly select a
smaller subset based on their budget. Ours contri-
butions can be summarized as follows:

* We propose InsBank, a dynamic framework
for evolving instruction subsets alongside the
development of instruction data, enabling con-
tinuous alignment improvements.

* We develop Progressive Instruction Bank Evo-
lution (PIBE), an efficient approach that lever-
ages a memory-enhanced diversity score and
seamlessly integrates it with quality scores for
optimal subset selection.

* We introduce a unified scoring system for
individual samples, ensuring an ordered Ins-
Bank and enabling flexible extraction of high-
quality subsets tailored to user budgets.

* Extensive experiments demonstrate that PIBE
not only outperforms baseline methods in
evolving InsBank but also provides flexible,
budget-aware data selection, highlighting its
effectiveness and adaptability.

2 Preliminaries

2.1 Instruction Data Selection Problem

Following Liu et al. (2024), given a collection of in-
struction data X' = {z1, z2, ..., z, } where x; is an
individual instruction-response pair, data selection
selects an instruction subset P* of size m from X',
where 7 is the data selection strategy. Denote the
performance evaluation function for 7 as (), the
optimal data selection strategy 7* with subset size
m satisfies:

" = arg max Q(Py") (D

2.2 Selection Metrics

Previous research (Liu et al., 2024; Qin et al.,
2024a) highlight that the effectiveness of instruc-
tion set selection depends on both quality and diver-
sity. In line with this, we focus on the two aspects
in this paper:

Quality of instruction data primarily refers to
the accuracy and rationality which estimate the con-
sistency and coherence of the instruction context,



as well as whether the response accurately corre-
sponds to the instructions (Qin et al., 2024a). In
this work, we adopt the quality evaluation model
of DEITA (Liu et al., 2024) for quality annotation.

Diversity of instruction data is critical to the gen-
eralization ability of the trained model (Qin et al.,
2024a). There are currently two major approaches
to measure diversity: k-nearest neighbor (k-NN)
(Dong et al., 2011) and geometry-based coreset
sampling (Guo et al., 2022). The kNN approach
measures sample’s diversity by its distance to its
j-th k-nearest neighbor (k-NN) with the help of
text embeddings as shown in Eq. 2:

kNN = d(e(x:), e(Nj(x:))) @)

where N;(z;) denotes the j-th closest neighbor
of z; in the embedding space projected by e(-),
and d(-, -) calculates the distance between z; and
Nj(z;). The geometry-based coreset sampling ap-
proach is to find the most informative-and-diverse
subset that represents the entire dataset the most
through controlling the minimum distance between
any two samples for subset selection (Guo et al.,
2022; Sener and Savarese, 2018). However, both
methods rely solely on local information from
nearby points, making it difficult to capture the
global distribution relationships or utilize histor-
ically eliminated points, resulting in inadequate
individual diversity scores for subset evaluation.

2.3 Affinity Propagation

Affinity Propagation (AP) (Frey and Dueck, 2007)
is a clustering algorithm that leverages message-
passing to uncover the global distribution of data.
It identifies exemplars by iteratively transmitting
two kinds of messages between data points:

* Responsibility (R[i, k]) This message sent
from point ¢ to point k represents how suitable
point k is to serve as the exemplar for point <.

* Availability (A[i, k]) This message sent from
point k to point ¢ represents how appropriate
it would be for point ¢ to choose point k as
its exemplar, taking into account the current
responsibilities sent from other points to k.

The messages are updated iteratively based on
the rules as shown in Eq. 3. Here, S[i, k| represents
the similarity between point ¢ and point k£ where
i # k. And Sk, k] is filled by the predefined
preference value which represents the preference
for sample ¢ as an exemplar.

R[i, k] « S[i, k] — max {A[i, K]+ S[i, K]},

Ali, k] + min {O,R[k,k:} + > max{O,R[i/,k]}} ,

i/ ¢{i,k}

Alk, K] + > max{0, R[i', k]},

ik
3)

At any given moment, the clustering result can
be determined by summing R and A. For z;, let &’
be the index that maximizes A[i, k] + R]i, k], the
conclusion are as follows: (1) if 7 = &/, then z; isa
cluster center, (2) if 7 # &/, then x; belongs to the
cluster center ;. That is, for R + A, the i-th row
represents the votes cast by z; for different points
to represent itself, while the j-th column represents
the votes received by x;. Based on this, we obtain
the representativeness of x; according to the voting
results by subtracting the votes cast by x; for other
samples from the votes received by x;. This result
serves as individual diversity score.

3 Progressive Instruction Bank Evolution

In this section, we provide a detailed explanation
of PIBE, whose pipeline is depicted in Figure 2.

3.1 Gradual Evolution Formulation

In this work, we propose the instruction subset
evolution task to build the InsBank. Denoting cur-
rent available instruction data as Ay, the instruc-
tion bank BY™ of size m is initialized through
data selection which can be presented as BY™ =
m(Xp). Then, when new instruction dataset X
is proposed, B2™ should evolve itself to adapt
to changes in data distribution. The naive man-
ner of InsBank evolution can be represented as

Br™ = m(Xp,X;) which can be extended to
ptm — (X, ..., Xy, Xi1) for future evolu-

tion. However, this manner requires substantial
storage and computational resources to calculate
diversity scores as t continues to increase. To im-
prove the long-term evolution efficiency, we pro-
pose a gradual manner where only the newly pro-
posed instruction data A}, along with the data
participated in last round of evolution X; + B tm
are involved into the current round of evolution,
and the evolution can be represented as BffLm =
W(XtJrl, Xt + Bﬁl)

In addition to the update of InsBank, we evaluate
the diversity and quality of each sample x; and
provide an overall individual score for data ranking.
Users can quickly select a smaller subset according
to the data ranking to suit their own training budget.
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Figure 2: The detailed pipeline of PIBE. It consists of four core elements: the gradual manner of evolution, the flow
of historical information across evolution rounds, individual representation scoring for diversity evaluation, and the
integration of quality and diversity scores for data selection and ranking

3.2 Historical Information Flowing

Although a large amount of data is eliminated dur-
ing InsBank evolution for efficiency, preserving
their distribution information is crucial for main-
taining InsBank’s global representativeness. To ad-
dress this, we introduce a momentum matrix based
on historical voting results to retain the distribution
information of excluded data, which flows across
iterations, allowing filtered-out data to re-engage
in future exemplar selection and preventing subop-
timal global representativeness.

As described in Section 2.3, we evaluate indi-
vidual diversity through AP. By analyzing the simi-
larity between previously selected data and newly
proposed candidates, we estimate the suitability of
new data as exemplars for the existing data and vice
versa, represented by the responsibility matrix.

Formally, let X/ = A; U Bﬁfl’m denote the
full candidate data set from the previous round
of InsBank evolution, and X/ ; = Xy U By™
denote the full candidate data set of the (¢ + 1)-
th evolution round, Then, the matrix Sim1 of
size |X{| x |X;41| represents the cosine similarity
between X/ and X;;1. Given the historical infor-
mation matrix H; of size |X/| x |X}|,
the responsibility matrix stored from the ¢-th round
of InsBank evolution, we derive the momentum

responsibility matrix M; using H; and Simyq:

Sim|j, k]
Wik = X ao 1 10’
dost Simll, K
1X/] “)
= > wji * Reli, j]
j=1
x|
k] =) wij * Re[j, k] )
j=1

This allows the filtered-out data to participate in
exemplar election during future history-aware AP
processes.

The structure of M; is depicted in Appendix E.
The top-left part of M; contains responsibility val-
ues between data in B2, taken directly from
H;. The top-right part represents the suitability
of newly proposed candidate data as exemplars
for previously selected data, estimated using Eq. 4.
Similarly, the bottom-left part represents the suit-
ability of previously selected data as exemplars for
newly proposed candidate data, estimated using
Eq. 5. The bottom-right section is filled with the
median values of the other three sections.

We regard M; as a continuously decaying mo-
mentum term for historical information preserving.
Specifically, we first calculate 1! t+1 by Eq. 3. Then,
we apply a weighted sum of M; and Rj, ; to recall

the historical information as shown in Eq. 6,
Rip1 = ai M+ (=) (B-Riza+(1=6)-Ri31) (6)

where o; = A - a;;—1 1S the momentum coefficient
with a decay rate of A, and S is the official AP



damping rate (Frey and Dueck, 2007). Finally,
Aj,, is calculated by Eq. 3. All o, A and 3 are
predefined hyperparameters.

3.3 Representativeness Scoring

The individual representativeness score encapsu-
lates the results of the exemplar election, reflecting
both how willing other samples are to be repre-
sented by a specific sample and how unwilling the
specific sample is to be represented by others. As
explained earlier, the responsibility value R][i, k]
indicates the suitability of xj to serve as the ex-
emplar for z;, while the availability value A[i, k|
reflects the appropriateness of x; selecting xj, as
its exemplar. The combined value (A + R)[i, k]
represents the total evidence supporting x;’s selec-
tion of zj, as its exemplar (Frey and Dueck, 2007).
Thus, the sum of the k-th column of A + R can be
interpreted as the total votes received by xj, and
the sum of the i-th row of A + R represents the to-
tal votes cast by x; for different samples. Defining
Z = A + R, the representativeness score of xy, is
then computed using Eq. 7.

’ ’
1Xiqal 1Xeqal

shp= > ZliK — Y Zlkil+ Z[k k] (D)

=1 i=1

3.4 Integration of Diversity and Quality

Both data quality and data diversity are crucial for
instruction tuning, yet existing methods often focus
on one or address them sequentially. We combine
quality and diversity scores in three ways, both pre-
ceded by min-max normalization (Eq. 8) to ensure

scale consistency, where s]; refers to the quality

k
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score of x;, and s
diversity score.
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s = (1487) x (1+54) (10)

Eq. 9 and Eq. 10 illustrate the calculation of
the individual overall score using the additive and
multiplicative approaches, respectively, where y
is the weighting coefficient that controls the focus
between diversity and quality.

In practice, we observe that further improving
quality beyond a certain level can reduce the fine-
tuned model’s performance. Additionally, when
combining quality and diversity using linear meth-
ods, diversity scores often dominate the selection
process. This occurs because quality, as a linear
score, increases at a constant rate, even when ex-
cessively large values provide diminishing benefits.
More details can be found in our experimental anal-
ysis of score combination (Section 4.4).

To address this, we design a nonlinear mapping
function for quality scores, shown in Eq. 11. Here,
@, denotes the p-th percentile, r; and r, represent
the lower and upper percentiles, S; refers to the
scaled quality scores, and o (-) is the sigmoid func-
tion. The function, illustrated in Figure 7, leverages
the sigmoid’s steepness in (—2, 2) to enhance the
distinguishability of scores within [, 7], while
flattening growth for scores above 73,. Data below
7; are less considered, as such low-quality data are
rarely selected into InsBank. Finally, we combine
diversity with the nonlinear-mapped quality scores.

T = QM (St/z)

Th = th (Stlz)
Cmul = 4/(Th — T1) an
Coub = TL + 2/ Cmui

k k
s"q = U((s/q — Csub) * Cmul)

After getting the overall scores, in addition to
serving as the criterion for InsBank data selection,
users can quickly select a smaller subset accord-
ing to the data ranking to suit their own training
budget.

4 Experiment

4.1 Experimental Setup

Candidate Instruction Data We aggregate five in-
struction datasets for general instruction following
capability: Self-Instruct (Wang et al., 2023), Al-
paca (GPT-4) (Peng et al., 2023), Dolly (Conover
et al., 2023), ShareGPT! (Chiang et al., 2023) and
WilzardLM (alpaca) (Xu et al., 2023), resulting in
a mixed dataset of 278k samples. The statistics of
each dataset is presented in Table 6.

Training and Evaluation In this work, we fine-
tune the Llama3-8B model (AI@Meta, 2024) on
the selected InsBank unless otherwise specified.
Following DEITA (Liu et al., 2024), we set the
size of InsBank to 6k for the convenience of sub-
set evolution. During training, we further restrict

'We filter out incomplete conversations.



Method | Llama3-8B \ Qwen2.5-7B \ Mistral-7B

| AlpacaEval MT-Bench IFEval | AlpacaEval MT-Bench IFEval | AlpacaEval MT-Bench IFEval
Full 19.07 5.88 40.29 20.37 6.11 41.37 13.12 498 35.25
Random 17.93 5.13 38.13 22.80 6.00 43.53 11.93 4.39 9.95
kCenter 15.28 4.99 37.29 27.39 6.12 46.40 9.20 3.97 1.92
DEITA 43.60 6.03 38.25 50.43 6.86 45.44 28.82 4.93 33.57
kNN, 40.62 6.04 38.49 46.96 6.62 45.56 26.62 491 33.81
PIBE (ours) 44.84 6.23 40.89 51.55 6.88 46.76 29.48 5.03 29.38

Table 1: Comparison between different methods. For AlpacaEval and MT-Bench, we employ gpt-4o0 as annotator.
The bold text indicates the best results, and the underlined text represents the second-best results.

the trainable tokens and the number of conversa-
tion turns. We adopt AlpacaEval (Li et al., 2023b),
MT-Bench (Zheng et al., 2023) and IFEval (Zhou
et al., 2023b) for automatic model alignment per-
formance evaluation. More details about training
and evaluation can be found in Appendix B.

Baselines We compare proposed PIBE with the
following baselines:

¢ Full Train model on all candidate data.

* Random Randomly select m samples from
all candidate data.

* kNN; Measure the diversity of one sample by
its euclidean distance to the nearest neighbor
(Eq. 2). The diversity score is first normalized
and then combine with the normalized quality
score by s; = (1 4+ kNNY) = (1 + ;)7 for
data selection.

e kCenter Greedy (Sener and Savarese,
2018) The original kCenter Greedy algo-
rithm is shown in Alg. 1. We take
ming, es, d(e(x;), e(;)) as the individual di-
versity score and combine it with quality score
in the same manner of kNN .

* DEITA Traverse the instruction pool in de-
scending order of quality scores and involve
the current sample to the selected subset if the
largest cosine similarity between the current
sample and the samples in the selected subset
is less than the threshold (i.e. 0.9 following
the raw setting of DEITA (Liu et al., 2024)).

4.2 Performance of SFT with InsBank

Table 1 compares the performance of LLM trained
on subsets selected by different approaches. PIBE
consistently outperforms the baselines on such
benchmarks, showing the superiority of our data
selection method. We further fine-tune Qwen2.5
7B (Qwen Team, 2024) and Mistral 7B (Jiang
et al., 2023) for robustness analysis, and the re-
sults exhibit the same trends, demonstrating that
our method is effective across different models. We

also report the quality and diversity of subsets se-
lected by different methods in Table 2. From the
results of data selection, PIBE and DEITA demon-
strate higher quality and diversity compared to
kCenter and kNN. DEITA produces subsets with
the highest quality, primarily because it prioritizes
quality during the data selection process by travers-
ing candidates in descending order of quality. In
contrast, PIBE treats quality and diversity equally,
enabling the subset to achieve the highest diversity
while maintaining decent quality. From the perspec-
tive of downstream task performance, models fine-
tuned with high-quality data (DEITA, PIBE) gen-
erally outperform those fine-tuned on low-quality
data (kCenter, kKNN). However, despite achieving
the highest quality, DEITA’s downstream perfor-
mance falls short of the more diverse PIBE, vali-
dating the importance of data diversity when the
quality level is acceptable.

4.3 Orderliness of InsBank

Each sample in the InsBank selected by PIBE is
provided with an overall individual score reflects
both the diversity and quality which shows the pri-
ority of each sample to be used to fine-tune models.
We sort the InsBank in descending order based
on the overall individual score, and compare the
performance of models fine-tuned with the “top2k,
mid2k, bottom2k” samples in InsBank. Here, we
use the instruction subset obtained from the final
evolution round, and restrict the trainable tokens
to 0.9M and turns to 2.3k. The results are illus-
trated in Fig 3, showing that the top-ranked data
generally achieved better performance, proving the
orderliness of InsBank.

4.4 Analysis

In this section, we analyze the effectiveness of di-
versity and quality. We also experiment PIBE with
different score combination methods. More analy-
sis about overlap between progressive evolving and
full data selection, InsBank evolution, PIBE hyper-



Metric kCenter DEITA kNN; PIBE
Quality 4.37 519 4.82 5.13
Diversity 62.26 86.94 7724 91.84

Table 2: The quality and diversity of subsets selected
by different methods. The diversity here is measured by
euclidean distance between data.

AlpacaEval o MT-Bench

Figure 3: Results of orderliness experiment.

parameters, time costs and selected data quality
distribution can be found in Appendix J.

Effectiveness of Diversity and Quality To vali-
date the role of diversity in instruction data selec-
tion, we first construct a quality-controlled subset
where all data have quality scores within the range
of 4.5 to 5.0 (details in Appendix F). Using PIBE,
we compute individual diversity scores for the sub-
set, sort the data in descending order, and select the
top 6k samples as the most diverse subset and the
bottom 6k as the least diverse subset. The distribu-
tions of the two subsets are shown in Fig. 6. Before
fine-tuning, we restrict the total trainable tokens to
2M. Results in Table 3 indicate that, with compa-
rable quality, models trained on more diverse data
achieve better performance.

Method | Qua  Div | AlpacaEval MT-Bench
Top 4.84 81.14 27.70 5.52
Bottom | 4.86 68.55 27.33 543

Table 3: The results of quality-controlled diversity ef-
fectiveness experiment. Here, Qua refers to the average
quality score, and Div refers to the average diversity
score.

When it comes to quality, the improvement from
extremely low to high quality is clearly benefi-
cial, as extremely low-quality subsets often con-
tain noisy data, such as irrelevant or incomplete
responses. However, is continuously improving
quality always effective in the data selection pro-
cess? To address this, we compare model perfor-
mance fine-tuned on data selected by the following
strategies in the final evolution iteration: (1) Di-
versity Greedy: selecting data with the highest
diversity scores; (2) Quality Greedy: selecting

data with the highest quality scores; and (3) PIBE.
The results shown in Table 4 reveal a clear trade-
off between diversity and quality. A purely greedy
approach focusing on either aspect leads to sub-
optimal outcomes, while a balanced consideration
of both proves more effective. This finding aligns
with the main experiment results and suggests the
existence of a balance point between diversity and
quality, which we further investigate through com-
bination methods in Section 4.4.

Method | Qua  Div | AlpacaEval MT-Bench
DG 5.02 93.06 41.93 6.09
QG 5.20 83.70 40.86 5.86
PIBE 5.13 91.84 44.84 6.23

Table 4: Analysis of diversity and quality contribution.
Here, DG refers to diversity greedy, and QG refers to
quality greedy

Analysis of Score Combination We experiment
with the different combination methods to explore
the contribution of quality and diversity in PIBE.

Param | AlpacaEval MT-Bench|SP-Qua SP-Div Diff
Multiplication

y=1 44.84 6.23 036 0.74 0.38

y=2 46.77 6.15 0.51 0.70 0.19

vy=3 42.98 6.17 0.54 0.67 0.13
Addition

y=1 44.84 6.13 0.44 0.72 0.28

y=2 47.08 6.10 0.54 0.68 0.14

=3 44.53 6.09 0.56 0.64 0.08
Nonlinear

rp, =0.80| 44.41 5.98 0.58 0.72 0.14

rn = 0.90 44.84 6.19 0.62 0.70 0.08

rp, =0.95| 47.58 6.36 0.63 0.69 0.06

Table 5: The results of different combination methods.
Here, SP- refers to Spearman Correlation Coefficient,
Diff refers to the difference value between SP-Qua and
SP-Div.

We first explore the basic multiplication man-
ner and the addition manner, and the results are
reported in Table 5. Overall, regardless of whether
addition or multiplication is used as the combi-
nation method, the experimental results exhibit a
distinct trend of initially increasing and then de-
creasing as the influence of quality grows (i.e., with
the increase of the ~y value). This finding supports
the hypothesis that a balance point exists between
diversity and quality.

We analyze the correlation between quality and
selection flags, as well as diversity and selection



flags, for the top 12k data sorted by overall score
(details in Appendix D). As shown in Table 5,
Spearman for diversity consistently surpass those
for quality, indicating diversity’s priority during
selection. While increasing -y reduces the gap, this
approach presents limitations: (1) Even at v = 3,
a notable gap remains between SP-Qua and SP-
Div, particularly with the multiplication method;
(2) Increasing vy further improves downstream per-
formance initially but leads to declines afterward.
Examining the quality distribution of selected
data (Figure 11), we observe that v = 1 includes
some low-quality data, while v = 3 selects exces-
sive high-quality data. As discussed in Section 3.4,
this stems from quality’s linear nature. To address
this, we use a nonlinear quality mapping function.
Fixing r; = 0.3, we compare different r;, values,
with results shown in Table 5. Nonlinear map-
ping significantly mitigates diversity’s dominance
and improves fine-tuned model performance, par-
ticularly at r, = 0.95. Unlike linear methods,
which improve subset quality by selecting extreme
high-quality values, the nonlinear approach raises
overall quality by incorporating more moderately
high-quality data, aligning with its design goals.

5 Related Work

Instruction fine-tuning is widely used to refine
LLMs. Early methods focused on fine-tuning with
large-scale instruction datasets (Wei et al., 2022;
Wang et al., 2022) manually aggregated from ex-
tensive NLP task collections (Longpre et al., 2023).
With advancements in generative models, Wang
et al. (2023) has led the trend of synthetic data gen-
eration (Taori et al., 2023; Ding et al., 2023; Xu
et al., 2023). As Zhou et al. (2023a) found, quality
and diversity are more important than quantity, driv-
ing recent efforts to cut training costs by removing
low-quality and redundant data. Existing selection
methods can be broadly categorized into three types
(Qin et al., 2024a): quality-based, diversity-based,
and model-specific importance-based selection.

Quality-based Selection Humpback (Li et al.,
2023a) selects high-quality samples through an it-
erative self-curation process where quality predic-
tions are produced by the fine-tuned model of each
turn. Recent works typically employ a GPT-model
to annotate the data quality. For example, ALPA-
GASUS Chen et al. (2024) employs ChatGPT to
score the accuracy of instruction data and select
data according to a threshold.

Diversity-based Selection The diversity-based

selection aims to deduplicate the instruction data
and maximize the coverage of selected data. Re-
cent methods typically achieve this purpose by
control the nearest neighbor distance (Liu et al.,
2024) or maximize the average distance between
the selected data through text embedding (Wu et al.,
2023). INSTAG (Lu et al., 2024) identifies seman-
tics and intentions of instructions by tags and it
assumes that a dataset is considered more diverse
if it covers more individual tags.

Model-specific Importance-based Selection
Importance refers to the necessity of adding one
sample into training set (Liu et al., 2024) whose
indicator are typically model-specific (Xia et al.,
2024; Li et al., 2024a). However, this work focuses
on the general data selection and emphasizes the
quality and diversity of selected data.

InfoGrowth (Qin et al., 2024b) also aims to ad-
dress the continuous expansion of datasets, but it
primarily focuses on image data and relabeling
noisy samples, making it less relevant to this pa-
per. While InfoGrowth and DEITA consider both
quality and diversity, they handle them sequentially,
without combining them into a unified score. Be-
sides, previous efforts primarily aggregate all can-
didate data before data selection and are not ex-
perimented under the progressive instruction bank
evolution task. In this paper, we propose PIBE to
efficiently obtain the optimal current instruction
subset with comprehensive characterization and
integration of diversity and quality scores.

6 Conclusion

In this paper, we propose InsBank to address the
ongoing challenge of evolving instruction datasets.
PIBE integrates high-quality and representative
data into InsBank, striking a balance between en-
hancing data diversity and quality, while maintain-
ing long-term scalability and efficiency. By lever-
aging a representation-based diversity score with
historical information, PIBE flexibly combines di-
versity and quality for data selection and ranking.
Experimental results show PIBE outperforms base-
lines, providing more optimal and adaptable in-
struction subsets. The orderliness of InsBank also
allows users to extract tailored subsets within bud-
get constraints, supporting cost-effective training
and the ongoing refinement of LLMs. This work
paves the way for more dynamic and adaptable
instruction tuning strategies, enhancing both the
efficiency and effectiveness of LLM development
over time.



Limitations

In this work, we focus on evaluating the diversity of
individual instruction data and exploring the com-
bination of diversity and quality scores. However,
achieving a more precise assessment of data qual-
ity remains a valuable direction for future research.
Additionally, due to the high memory cost of the
Affinity Propagation algorithm, PIBE must process
candidate data in batches to prevent memory over-
flow. Nevertheless, since the data selection time for
each batch is short (typically around 60 seconds,
depending on the number of convergence steps),
such batch processing does not lead to a significant
increase in PIBE’s time cost.

Ethics Statement

All of the datasets used in this study were publicly
available, and no annotators were employed for our
data collection. We confirm that the datasets we
used did not contain any harmful content and was
consistent with their intended use (research). We
have cited the datasets and relevant works used in
this study.
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A Timeline of Instruction Datasets

Release Dataset Scale

2021.04 CrossFit 71IM
2021.04 Natural Inst v1.0 620k
2021.09 Flan 2021 4.4M
2021.10 P3 12M
2022.04 Super-Natural Inst M
2022.10 FLAN 2022 15M
2022.10 MetalCL 3.5M
2022.11 xP3 81IM
2022.12 Unnatural Inst 64K
2022.12 OPT-IML Bench 18M
2022.12 Self-Instruct 82K
2023.03 Alpaca 52K
2023.04 Dolly 15K
2023.04 ShareGPT 94K
2023.05 UltraChat 1.47TM
2023.06 WizardLM (alpaca) 70K

2023.07 WizardLM (sharegpt) 143K

Figure 4: Timeline of instruction datasets (part) since
2021.04 to 2023.07.

B Details of Implementation

Fine-grained Quality Scoring We adopt the qual-
ity annotator > provided by Liu et al. (2024) to
score the instructions.

Representation-based Progressive Data Selec-
tion: During the PIBE data selection process, we
set the momentum coefficient & = 0.3, the mo-
mentum decaying rate A = 0.9, the damping rate
B = 0.5 and the weighting coefficient v = 1. Be-
sides, we adopt instruction embedding (Li et al.,
2024b) to encode the instructions. As for affinity
propagation, we use negative euclidean distance to
initialize the similarity matrix and fill the diago-
nal of similarity matrix with 0. Moreover, due to
the high memory overhead of Affinity Propagation
(O(n?)), we further divided the complete set of
candidates in each evolution iteration into smaller
evolution batches with a batch size of 27,000 to
perform PIBE. For data selection, all baselines em-
ploy the full-scale selection manner rather than the
gradual selection manner to get their global optimal
performance. For PIBE, we perform progressive
InsBank evolution following the temporal order of
dataset appearance (i.e. Self-Instruct — Alpaca —
Dolly — ShareGPT — WizardLM), and take the
final selected subset for model fine-tuning.

Instruction Fine-Tuning: We utilize § NVIDIA
A100 SXM4 40GB GPUs to fine-tune LLMs. We
employ LlamaFactory (Zheng et al., 2024), Deep-

2https://huggingface.co/hkust—nlp/
deita-quality-scorer
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Speed Zero-Stage 3 (Ren et al., 2021) and fp16 pre-
cision to facilitate the training process. We adopt
the Llama3-style template for Llama3-8B, Qwen-
style template for Qwen2.5-7B and Mistral-style
template for Mistral-7B, corresponding to "llama3"
"gwen," and "mistral”" template in LlamaFactory
respectively. We set the effective batch size to 128
(per device train batch size=1 and gradient accumu-
lation steps=16), training epochs to 6, learning rate
to le-5, warmup ratio to 0.1 and maximum input
length to 2048.

For trainable tokens and turns restriction, we set
max tokens to 3M and max turns to 7k unless other-
wise specified. For quality-controlled experiments,
since all data are single-turn conversations, we set
max tokens to 2M and max turns to 6k. For orderli-
ness analysis, we set max tokens to 0.9M and max
turns to 2.3k.

For AlpacaEval inference, we set tempera-
ture=0.7, top_p=0.9, top_k=40, num beams=1 and
max length=512. For MT-Bench inference, we fol-
low the default setting of FastChat® except for that
max length is set to 512. All models adopt tem-
plates consistent with those in the training process
during evaluation.

For AlpacaEval evaluation, we compare each
model output with GPT-3.5 Turbo (gpt-3.5-turbo-
1106) (OpenAl, 2022), because we find that when
compared to text-davinci-003 (Brown et al., 2020)
or GPT-4 Turbo (OpenAl, 2023), the benchmark
was either too simple or too challenging, making it
difficult to differentiate between models. For both
AlpacaEval and MT-Bench, we employ GPT-40
(OpenAl, 2024) as annotator.

C Statics of Candidate Instruction

Datasets
Dataset Scale  Quality
Self-Instruct 82k 2.29
Alpaca 52k 3.59
Dolly 15k 2.76
ShareGPT (cleaned) 58k 4.03
WizardLM 70k 4.16

Table 6: Statistics of instruction datasets.

D Description Correlation Analysis

We first sort the data in descending order based on
the overall score and select the top 12k samples.
For each sample, we assign a flag: if the sample
is selected into InsBank, the flag is set to 1; other-

Shttps://github.com/1lm-sys/FastChat/tree/main
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wise, it is set to 0. We then calculate the Spearman
correlation coefficients between diversity and flags,
as well as between quality and flags, to investigate
the contributions of diversity and quality to data
selection. We restrict our analysis to the top 12k
data sorted in descending order by the overall score,
as we aim to focus on high-quality candidates with
relatively high quality and diversity. Lower-quality
candidates are excluded from the analysis since
their likelihood of being selected into InsBank is
inherently low.

E Momentum Responsibility Matrix

Figure 5: The structure of momentum responsibility
matrix.

F Quality-Controlled Subset
Construction

To avoid mixing single-turn and multi-turn conver-
sations data, as well as biases introduced by dif-
ferent data distributions across dataset, we sample
data with quality ranging from 4.5 to 5.0 from Wiz-
ardLM (alpaca), resulting in a quality-controlled
subset with 19805 samples.

G Selected Data Visualization from
QC-Subset


https://github.com/lm-sys/FastChat/tree/main

Figure 6: Selected data visualization based on quality
controlled subset. The blue stars represent the most
diverse data, while the orange triangles represent the
least diverse data.

H K-Center Greedy Algorithm

Algorithm 1 K-Center Greedy

Require: data z; € S and a budget m

1: Initialize .S,, = xg

2: repeat

3: U = argmaXg; cs\ S,

ming,es,, d(g(a), 9(x;))
Sm = Sm U{u}

until |S,,| =m
return S,

AN

I Nonlinear Quality Mapping Function
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Figure 7: Visualization of nonlinear quality mapping
function.

J Additional Analysis

J.1 Overlap Between Progressive Evolving
and Full Data Selection

In this section, we aim to compare the overlap rates
between the subsets selected by different methods
from the gradual manner and those from the full-
scale selection manner 4.

We randomly select 40k data from the full data

to obtain a subset that closely resembles the distri-

*Aggregate all available candidates first and perform data
selection on the full data directly.
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bution of real data. We set the InsBank size here to
1k, and divided the data into four candidate subsets
of 10k each to simulate the gradual manner. We
compared PIBE with kNN; and k-Center Greedy,
and perform an ablation analysis on the historical
information used in PIBE. We set v = 1, and for
PIBE, we set & = 0.3 and A = 0.9 which aligns
with the main experiment. The results are reported
in Table 7. It shows that the overlap rate of PIBE
exceeds that of the kNN, and kCenter Greedy, and
the historical information also helps improve the
overlap rate.

Method k-NN  kCenter
131 747

PIBE w/o hst
390

PIBE
864

Num

Table 7: The overlap sample number between subset se-
lected in full-scale manner and in gradual manner. Here,
PIBE w/o hst is the ablation on history information of
PIBE.

J.2 Instruction Bank Evolution
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Figure 8: Evolution

In this experiment, we investigate the perfor-
mance of subsets selected by different data selec-
tion methods for model training. Following the tem-
poral order of dataset appearance (i.e. Self-Instruct
— Alpaca — Dolly — ShareGPT — WizardLM),
we performed progressive InsBank evolution using
PIBE and take the selected subset for model fine-
tuning. The performance of the fine-tuned model
across different benchmarks is shown in Figure 8.

J.3 PIBE Hyper-Parameter Analysis

The damping rate S is a hyperparameter inher-
ent to Affinity Propagation, typically set to 0.5,
and we have adhered to this default setting. For
the analysis of hyperparameters, we focus on ex-
amining the quality and diversity of the selected
data. We compared different combinations of
A [0.9,0.93,0.95], « [0.3,0.5,0.8], and
~v = [1,2] in selecting InsBank. The results are
shown in Figure 9. Overall, v determines the influ-
ence of quality on data selection. As <y increases,
the average quality of the selected data improves,
but diversity decreases. Both A and « determine
the impact of historical information on the com-



position of selected data. We find that higher A
and « values generally result in lower quality but
higher diversity in InsBank. This is because, ac-
cording to the evolution sequence of InsBank, the
quality of the data improves progressively. When
the influence of historical information increases,
more older data is retained in InsBank, leading to
relatively lower quality and higher diversity.

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

Figure 9: InsBank statistics of different hyper-
parameters.

We further compare the overlap between the final
InsBanks obtained with different hyperparameter.
From 0 to 17, the corresponding [« A, ] combi-
nations are as follows: [0.3, 0.90, 1], [0.3, 0.93,
1], [0.3,0.95, 1], [0.5, 0.90, 1], [0.5, 0.93, 1], [0.5,
0.95, 1], [0.8, 0.90, 1], [0.8, 0.93, 1], [0.8, 0.95,
1], [0.3, 0.90, 2], [0.3, 0.93, 2], [0.3, 0.95, 2], [0.5,
0.90, 2], [0.5, 0.93, 2], [0.5, 0.95, 2], [0.8, 0.90,
2], [0.8, 0.93, 2], [0.8, 0.95, 2]. We observe that
when v = 2, the overlap between InsBanks is gen-
erally higher compared to when v = 1, due to the
increased influence of quality. This observation is
reasonable, particularly as  continues to grows,
the results increasingly resemble those of a quality-
greedy data selection strategy, where the selection
outcomes become fixed regardless of whether his-
torical information is considered. When v = 1,
the influence of historical information is relatively
more pronounced, resulting in significantly lower
overlap rates between different InsBanks compared
to when v = 2. Additionally, we observed that
when ~ and A are equal, the overlap rates of Ins-
Banks obtained with different « values are signifi-
cantly higher than those obtained when v and « are
equal but with different A values. This indicates
that A has a greater impact on altering the influence
of historical information.
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Subset Overlap Analysis

Figure 10: Overlap of InsBank selected with different
hyperparameters.

J.4 Time Costs Analysis

We adhered to the data selection settings of the
main experiment to compare the actual time costs
of data selection between DEITA and PIBE. In
this experiment, we ensure that both methods are
tested under identical hardware environments. The
results are shown in Table 8. It is worth noting
that DEITA (full) refers to full-scale data selection,
while DEITA (progressive) represents the progres-
sive InsBank Evolution process. Additionally, the
time spent loading data is also included in the total
time consumption. PIBE achieves higher efficiency
compared to DEITA because PIBE’s data selection
process is parallelized, whereas DEITA requires a
sequential traversal of data to perform selection.

In practice, DEITA’s data selection efficiency is
primarily influenced by the number of evolution
iterations and the size of InsBank. The selection
time for DEITA (progressive) grows almost linearly
with the number of iterations, while the total data
volume has minimal impact. Additionally, as more
data is selected into InsBank, the time required to
select a new sample increases, as it becomes harder
to find a candidate that meets the nearest neighbor
similarity constraint. This implies that as the size
of InsBank grows, DEITA’s efficiency will further
decline.

In contrast, PIBE’s efficiency is unaffected by
the size of InsBank due to its parallelized oper-
ations. Instead, the primary factor influencing
PIBE’s time consumption is the total data volume.
An increase in the total data volume leads to a
higher number of evolution batches, with each
batch requiring approximately 1 minute to process.
As aresult, PIBE’s total data selection time scales
linearly with the number of evolution batches.

Method Time (hrs)
DEITA (full) 0.68
DEITA (progressive) 2.28
PIBE 0.21

Table 8: Time costs of DEITA and PIBE.



K Selected Data Quality Distribution
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Figure 11: Selected data quality distribution of different combination approaches.
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