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ABSTRACT

The efficiency of multi-agent systems driven by large language models (LLMs)
largely hinges on their communication topology. However, designing an opti-
mal topology is a non-trivial challenge, as it requires balancing competing ob-
jectives such as task performance, communication cost, and robustness. Exist-
ing frameworks often rely on static or hand-crafted topologies, which inherently
fail to adapt to diverse task requirements, leading to either excessive token con-
sumption for simple problems or performance bottlenecks for complex ones. To
address this challenge, we introduce a novel generative framework called Guided
Topology Diffusion (GTD). Inspired by conditional discrete graph diffusion mod-
els, GTD formulates topology synthesis as an iterative construction process. At
each step, the generation is steered by a lightweight proxy model that predicts
multi-objective rewards (e.g., accuracy, utility, cost), enabling real-time, gradient-
free optimization towards task-adaptive topologies. This iterative, guided synthe-
sis process distinguishes GTD from single-step generative frameworks, enabling
it to better navigate complex design trade-offs. We validated GTD across multi-
ple benchmarks, and experiments show that this framework can generate highly
task-adaptive, sparse, and efficient communication topologies, significantly out-
performing existing methods in LLM agent collaboration. Our code is available at
https://anonymous.4open.science/r/diffusion_agent-953C

1 INTRODUCTION

Large language model (LLM) driven multi-agent systems (MAS) increasingly rely on structured
communication to solve complex tasks, yet a core open problem is how to dynamically design the
communication topology for a given task and team. In practice, many systems still adopt hand-
crafted or heuristic patterns (e.g., chain, star, or fully connected graphs) or workflow templates and
role play frameworks (Wu et al., 2023; Hong et al., 2023; Li et al., 2023; Chen et al., 2023b). Such
static or rule-based designs struggle to adapt to the intrinsic complexity of the task, the composition
of skills required, or real-time progress. Classical MAS theory already shows that performance and
robustness depend critically on the underlying graph (e.g., consensus rates and failure modes are
tied to connectivity and spectral properties) (Zhu, 2006; Chen et al., 2013). The mismatch manifests
in practice: a simple Q&A may need only a short linear exchange, whereas software development
benefits from a richer collaboration network with project managers, programmers, and testers (Hong
et al., 2023). Using one pattern for all tasks either inflates token/communication overhead for sim-
ple problems or creates bottlenecks for complex ones (Zhang et al., 2024). Recent efforts begin to
optimize or search topologies, but typically emphasize end utility (accuracy) while underweighting
other crucial dimensions such as communication cost (token consumption), robustness to agent fail-
ures/attacks, and sparsity/efficiency (Zhang et al., 2025a; Sun et al., 2025; Zhou et al., 2025; Hu
et al., 2024b; Shang et al., 2024). Furthermore, their reliance on single-step generation mechanisms,
such as variational auto-encoders, can limit the fine-grained exploration of the multi-objective de-
sign space. A principled topology designer should therefore seek Pareto-optimal trade-offs in a
multi-objective space (Zhang et al., 2025c).

However, while these adaptive methods represent a significant step forward, they face two funda-
mental limitations. (1) First, their generative process often relies on single-step models like varia-
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tional auto-encoders, which can struggle to capture the complex, long-range dependencies inherent
in optimal communication structures. This may constrain the search space to topologies that are
plausible but not truly Pareto-optimal. (2) Second, their optimization is often coarse-grained, ap-
plying reward signals only after a complete topology has been generated. Such post-hoc guidance
makes it difficult to navigate the intricate trade-offs between competing objectives like task utility,
token cost, and robustness in a fine-grained manner. The core research problem, therefore, is to
develop a framework that can powerfully yet precisely construct topologies by integrating multi-
objective guidance directly into each step of the generative process.

To address this challenge, we reframe topology synthesis as a guided, iterative construction process.
We introduce Guided Topology Diffusion (GTD), a framework that casts topology generation as
a conditional discrete graph diffusion process, drawing on recent advances in generative modeling
(Ho et al., 2020; Song & Ermon, 2021; Ho & Salimans, 2021; Vignac et al., 2023). By starting from
a noisy graph and progressively denoising it, GTD leverages the strong generative capabilities of
diffusion models to explore a richer design space. Crucially, we inject multi-objective guidance at
each step of this reverse process. We achieve this by coupling the generator with a lightweight proxy
reward model and performing zeroth-order (gradient-free) optimization during sampling, a scheme
inspired by reward-modeling and gradient-free optimization practice (Nesterov & Spokoiny, 2017;
Liu et al., 2018; Ouyang et al., 2022). This allows GTD to steer the generation trajectory in real-time,
effectively balancing task utility, communication cost, and robustness to produce highly optimized,
task-specific topologies.

Figure 1: Comparison of Multi-Agent System (MAS)
communication topology design workflows. (1) Static
Fixed Workflow, (2) Centralized Adaptive Work-
flow, (3) Diffusion Guided Topology Workflow
(Ours). Our proposed method provides task- and
context-adaptive topologies by using a conditional dif-
fusion process guided by a proxy model to jointly opti-
mize for utility, cost, robustness, and sparsity.

In summary, our contributions are threefold:

❶ Problem Level: We propose GTD, a novel
conditional discrete graph diffusion frame-
work for dynamically generating multi-agent
communication topologies.

❷ Algorithm Level: We design and implement
a proxy model-based zeroth-order optimiza-
tion guidance algorithm, which effectively
optimizes non-differentiable, high-cost exter-
nal objectives during the diffusion process.

❸ Framework Level: We construct a complete
end-to-end solution that integrates advanced
semantic feature encoding, conditional graph
diffusion generation, and multidimensional
protocol-based dynamic guidance, providing
a new paradigm for solving such complex
graph generation problems.

2 RELATED WORK

2.1 COMMUNICATION
TOPOLOGIES IN MULTI-AGENT SYSTEMS

Classical MAS research establishes that com-
munication topology strongly shapes global be-
havior: consensus speed and robustness de-
pend on connectivity and spectral properties,
while practical systems emphasize scalability
and modularity over automatic topology syn-
thesis (Zhu, 2006; 2003; Chen et al., 2013;
Helsinger et al., 2004; Ayal a, 2025). Anal-
yses of star-like networks quantify the trade-
off between rapid information propagation and
single-point-of-failure risk (Chowdhury & Khalil, 2017; Gong et al., 2015). Learning within fixed
or topology-constrained settings has been explored via cooperative RL (Xiao & Tan, 2013). Beyond
LLM agents, multi-objective workflow schedulers and structural/topology optimization study Pareto
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fronts (e.g., makespan, cost, reliability), motivating designs that jointly balance accuracy, sparsity,
and resilience rather than optimizing a single metric (Zhang et al., 2025c; str, 2023).

2.2 DYNAMIC TOPOLOGY GENERATION FOR LLM AGENTS

In LLM-based MAS, recent work reduces redundant exchanges and token budgets without changing
the assumed graph class, or learns path-like collaboration schedules via next-agent prediction; others
co-optimize prompts and wiring yet rely on task-agnostic heuristics (Zhang et al., 2024; Yang et al.,
2025; Zhou et al., 2025). Closest to our setting are methods that learn the communication graph:
G-Designer uses GNNs to design task-aware topologies (Zhang et al., 2025a), and Assemble-Your-
Crew performs autoregressive graph generation conditioned on task context (Sun et al., 2025). Other
approaches such as ExpoComm (Li et al., 2025), DACOM (Yuan et al., 2023), and MADRL (Zhu
et al., 2025) address scalability and latency in decentralized settings.

2.3 GRAPH DIFFUSION MODELS FOR SYNTHESIS

Recent advances in generative modeling have introduced powerful techniques for graph synthesis.
Conditional graph diffusion models, in particular, have shown promise in various domains, inspir-
ing our generative backbone (Xu et al., 2024; Vignac et al., 2023; Madeira et al., 2024). Our work
also draws inspiration from other generative approaches for graphs like GCPN (You et al., 2018)
and various communication-efficient paradigms (Lo et al., 2024; Du et al., 2024; Ding et al., 2024;
Hu et al., 2024a; Zhao et al., 2024; Ji et al., 2025). Distinctly, our GTD is the first to integrate a
fine-grained, proxy-guided zeroth-order optimization step directly into the sampling phase of a dis-
crete graph diffusion process. This allows GTD to directly steer generation toward multi-objective
optima (e.g. utility, token cost, sparsity, and robustness) without requiring differentiable or low-cost
evaluators.

3 PRELIMINARIES

In this section, we formalize the problem of topology generation and describe the underlying prin-
ciples of graph diffusion models, pinpointing the limitations that motivate our proposed method.

3.1 FORMALIZING TOPOLOGY GENERATION AS A CONDITIONAL GENERATIVE PROBLEM

The design of an optimal communication topology for a Multi-Agent System (MAS) can be framed
as a conditional graph generation problem. Given a set of N agents, their communication structure
is represented by a directed graph G = (V,E), where |V | = N . This graph is fully described by its
adjacency matrix A ∈ {0, 1}N×N , where Aij = 1 signifies that agent i can send a message to agent
j.

Optimization Objective. For a given task query q and a set of available agents, which together
form a task-specific condition vector C, the goal is to discover an optimal adjacency matrix A∗ that
maximizes a composite reward function R(A,C). This function evaluates the quality of a topology
based on multiple criteria:

max
A

R(A,C) = f(Utility(A,C),Cost(A,C),Sparsity(A), . . . ) (1)

Here, Utility measures task success (e.g., accuracy), Cost quantifies token consumption or
communication overhead, and Sparsity encourages efficiency. Evaluating R(A,C) is computa-
tionally expensive, as it requires executing a full, costly multi-agent simulation for each candidate
graph A.

3.2 DENOISING DIFFUSION MODELS FOR GRAPH GENERATION

Denoising diffusion models are a class of powerful generative models that learn to synthesize data
by reversing a gradual noising process. We adapt this paradigm for discrete graph structures.
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Forward Diffusion Process. The forward process, q(At|A0), systematically corrupts an initial
graph A0 by adding noise over T discrete timesteps. To operate in a continuous space, we first
scale the adjacency matrix entries from {0, 1} to {−1, 1}. The forward process is then defined as a
variance-preserving schedule that adds Gaussian noise:

q(At|A0) = N (At;
√
ᾱtA0, (1− ᾱt)I) (2)

where {βt}Tt=1 is a predefined noise schedule, αt = 1 − βt, and ᾱt =
∏t

s=1 αs. As t → T , the
distribution of AT converges to a standard isotropic Gaussian distribution, N (0, I).

Learned Reverse Process. The generative model learns the reverse process, pθ(At−1|At, C), to
denoise a noisy graph At and recover a cleaner version At−1, conditioned on the task context C.
This is parameterized by a denoising network Gθ(At, C, t), which is trained to predict the original
clean graph A0 from its noisy counterpart At. The training objective for Gθ is to minimize the
reconstruction error over a dataset of high-performing graphs:

Lθ = Et,A0,C,ϵ

[∥∥A0 − Gθ(
√
ᾱtA0 +

√
1− ᾱtϵ, C, t)

∥∥2] (3)

where ϵ ∼ N (0, I). Once trained, we can generate a new graph by sampling AT ∼ N (0, I) and
iteratively applying the denoising network to obtain A0.

3.3 THE CHALLENGE: GUIDING GENERATION WITH A BLACK-BOX OBJECTIVE

A standard conditional diffusion model can generate topologies that are statistically similar to those
in the training data, but it cannot explicitly optimize for the external reward function R(A,C) dur-
ing generation. Steering the denoising process toward high-reward structures presents two major
obstacles. First, the true reward function R is too slow to be used for guidance within the iterative
sampling loop, a challenge of high-cost evaluation. Second, the reward is a non-differentiable
“black-box” objective; the output of the denoising network, Gθ, is a continuous prediction that
must be converted into a discrete graph A before evaluation, and this sampling step breaks the end-
to-end differentiability, rendering gradient-based guidance techniques inapplicable. To overcome
these challenges, we reframe the problem by introducing a method for efficient, gradient-free guid-
ance. This is achieved by first training a lightweight surrogate model (or proxy) that accurately
approximates the expensive reward R and then using this proxy during inference to guide the diffu-
sion sampling process with a Zeroth-Order (ZO) optimization scheme. This approach transforms
the generation process from a simple denoising task into a guided synthesis, allowing us to directly
optimize for task-specific, multi-objective rewards without requiring differentiability.

4 METHODOLOGY

Our framework, Guided Topology Diffusion (GTD), learns to generate optimal communication
topologies for Multi-Agent System (MAS). GTD comprises two core components: (1) a surrogate
reward model, Pϕ, that approximates the expensive simulation outcomes, and (2) a conditional dif-
fusion generator, Gθ, that learns the distribution of high-performing graph structures. We first train
these components on a pre-computed dataset and then integrate them for a novel, guided synthesis
process at inference time.

4.1 SURROGATE REWARD MODEL

To circumvent the computational cost of direct simulation, we first train a surrogate model Pϕ to
predict the performance of a given topology. This model maps a graph-condition pair (A,C) to a
performance vector [û, ĉ]T , representing the predicted task utility and communication cost, respec-
tively.

Architecture. The surrogate Pϕ is implemented as a Graph Neural Network (GNN). Specifically,
we employ a series of Graph Attention (GAT) layers to learn expressive node representations. The
update rule for a node v’s hidden state hv from layer (l) to (l + 1) is given by:

h(l+1)
v = σ

 ∑
u∈N (v)∪{v}

α(l)
vuW

(l)h(l)
u

 (4)
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Figure 2: The Guided Topology Diffusion (GTD) framework workflow, divided into four main stages. 1)
Material: The process begins with task-specific inputs, including the query, available agents, and tools. 2)
Dataset Generation: A multi-agent framework simulates various baseline topologies to generate a founda-
tional dataset linking topologies to performance outcomes (e.g., utility and cost). 3) Model Training: The
generated dataset is used to train two core components: a lightweight proxy scorer (Pϕ) to predict topology
performance and a conditional graph diffusion generator (Gθ) to learn the structure of high-performing graphs.
4) Inference: For a new task, the framework uses the trained models to iteratively denoise a random graph,
with the proxy scorer guiding each step to synthesize a final, task-optimized topology.

where α(l)
vu are the learned attention coefficients between nodes v and u. The final node embeddings

are aggregated via mean pooling to produce a graph-level representation hG. This is concatenated
with the projected task condition vector C and processed by a multi-layer perceptron (MLP) to yield
the final prediction: [û, ĉ]T = MLPϕ([hG;Projϕ(C)]).

Training. We first generate a foundational dataset Dgen = {(Aj , Cj , Pj)}Mj=1 by running simula-
tions for a diverse set of baseline topologies across various tasks. The model Pϕ is then trained to
minimize the Mean Squared Error (MSE) loss between its predictions and the ground-truth perfor-
mance vectors from simulation:

Lϕ =
1

M

M∑
j=1

∥Pϕ(Aj , Cj)− Pj∥22 (5)

Model Fidelity. To ensure the surrogate provides effective guidance during the zeroth-order op-
timization step, we evaluated its performance on a held-out test split of the training dataset. The
model achieves a low Mean Squared Error (MSE) for both utility and cost objectives, indicating
it captures the underlying performance landscape accurately. Furthermore, we observed a strong
positive correlation between the predicted and ground-truth cost metrics. Most importantly, when
used to rank candidate graphs, the top-1 choice selected by the surrogate consistently coincides with
the true best candidate in the majority of cases. These results confirm that Pϕ possesses sufficient
ranking fidelity to steer the diffusion process toward Pareto-optimal regions.

4.2 CONDITIONAL GRAPH DIFFUSION GENERATOR

The core of our generative framework is a conditional diffusion model, Gθ, designed to learn the
distribution of high-quality topologies, pθ(A|C). We explicitly chose Diffusion over single-shot
approaches (e.g., VAEs or Gumbel-Softmax) to enable iterative refinement. In a discrete topology
space, a single “wrong” edge can break the communication flow; diffusion allows our proxy model
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to intervene at every step of the construction process, gently steering the graph toward high-reward
regions gradually rather than risking mode collapse typical of one-shot generators.

Here, in Figure 3, we provide a visual contrast between common static topologies and the sparse,
adaptive structures that our generator is designed to create. This distinction highlights the frame-
work’s goal: to move beyond one-size-fits-all patterns towards topologies optimized for the specific
demands of a given task. We model the adjacency matrix A ∈ {0, 1}N×N by scaling its values to
{−1, 1} and performing diffusion in a continuous space.

Diffusion Process. We utilize a variance-preserving forward process q(At|A0) that gradually adds
Gaussian noise to an initial graph A0 over T timesteps:

q(At|A0) = N (At;
√
ᾱtA0, (1− ᾱt)I) (6)

where {βt}Tt=1 is a fixed variance schedule and ᾱt =
∏t

s=1(1 − βs). The objective is to learn the
reverse process pθ(At−1|At, C) to denoise a noisy graph At back towards a clean, high-performance
graph, conditioned on the task vector C.

Denoising Network and Training. We parameterize the reverse process with a denoising network
Gθ(At, C, t), which is implemented as a Graph Transformer. This architecture’s global attention
mechanism is well-suited for capturing long-range dependencies inherent in graph topology opti-
mization. Critically, the Graph Transformer ensures that edges are not generated independently;
the prediction of any single edge (i, j) is conditioned on the global context of all other nodes via
self-attention, allowing the model to learn complex structural dependencies (e.g., cycles or hierar-
chies). The network is trained to predict the original graph A0 from its noised version At. To focus
the model on generating effective topologies, we train it exclusively on a high-performance subset
Dhq ⊂ Dgen, where graphs exceed a certain performance threshold. The training objective is to
minimize the binary cross-entropy (BCE) loss:

Lθ = Et,A0∼phq,C,ϵ

[
BCE(Gθ(

√
ᾱtA0 +

√
1− ᾱtϵ, C, t), A0)

]
(7)

where ϵ ∼ N (0, I). This objective serves as a practical surrogate for maximizing the true Evidence
Lower Bound, a connection we formalize in Appendix C (see Theorem C.3).

4.3 PROXY-GUIDED TOPOLOGY SYNTHESIS

Figure 3: An illustration of different multi-agent communica-
tion topologies. The left panel shows examples of common static
or heuristic graphs, such as Chain, Star, Complete, Layered, and
Random graphs. The right panel shows examples of Adaptive
Graphs, which represent the sparse, task-specific topologies that
the GTD framework is designed to generate dynamically.

At inference, we synthesize a topol-
ogy for a novel task condition Cnew
by steering the diffusion process with
the trained surrogate model Pϕ∗ . The
condition vector C is formed by con-
catenating the semantic embedding
of the task query q (obtained via a
pre-trained encoder) with the current
graph state embeddings. This ensures
the guidance is context-aware.

Standard guidance techniques (e.g.,
classifier-free guidance) require gra-
dients from the guiding model. How-
ever, our surrogate Pϕ∗ evaluates dis-
crete graph samples, making its out-
put non-differentiable with respect
to the generator’s continuous predic-
tions.

To overcome this, we introduce a
zero-order (ZO) optimization step
within each denoising iteration. As
detailed in Algorithm 1, at each

timestep t, we first use the generator Gθ∗ to predict the unguided clean graph, Â(t)
0 . We then sample

6
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Method GSM8K MATH MultiArith HumanEval MMLU SVAMP Avg.

Vanilla 87.45 46.29 96.85 87.08 82.14 86.67 81.75
CoT 87.10 ↓0.35 46.40 ↑0.11 96.31 ↓0.54 88.13 ↑1.05 82.65 ↑0.51 87.33 ↑0.66 81.99 ↑0.24

ComplexCoT 86.89 ↓0.56 46.53 ↑0.24 96.70 ↓0.15 87.49 ↑0.41 83.78 ↑1.64 87.67 ↑1.00 81.84 ↑0.09

SC (CoT×5) 87.57 ↑0.12 47.91 ↑1.62 96.58 ↓0.27 88.60 ↑1.52 82.66 ↑0.52 88.00 ↑1.33 81.89 ↑0.14

MultiPersona 87.50 ↑0.05 45.43 ↓0.86 97.49 ↑0.64 88.32 ↑1.24 83.65 ↑1.51 87.00 ↑0.33 81.90 ↑0.15

LLM-Debate 89.47 ↑2.02 48.54 ↑2.25 97.33 ↑0.48 88.68 ↑1.60 83.69 ↑1.55 89.00 ↑2.33 82.79 ↑1.04

LLM-Blender 88.35 ↑0.90 46.92 ↑0.63 97.29 ↑0.44 88.80 ↑1.72 81.22 ↓0.92 87.33 ↑0.66 81.65 ↓0.10

DyLAN 89.98 ↑2.53 48.63 ↑2.34 97.12 ↑0.27 90.42 ↑3.34 80.16 ↓1.98 88.67 ↑2.00 82.50 ↑0.75

AgentVerse 89.91 ↑2.46 47.35 ↑1.06 97.50 ↑0.65 89.29 ↑2.21 81.22 ↓0.92 88.33 ↑1.66 82.27 ↑0.52

MacNet 87.95 ↑0.50 45.18 ↓1.11 96.03 ↓0.82 84.57 ↓2.51 79.85 ↓2.29 86.00 ↓0.67 79.93 ↓1.82

AutoAgents 87.69 ↑0.24 45.32 ↓0.97 96.42 ↓0.43 87.64 ↑0.56 82.13 ↓0.01 86.34 ↓0.33 80.96 ↓0.79

GPTSwarm 89.14 ↑1.69 47.88 ↑1.59 96.79 ↓0.06 89.32 ↑2.24 83.98 ↑1.84 88.67 ↑2.00 82.96 ↑1.21

ADAS 86.12 ↓1.33 43.18 ↓3.11 96.02 ↓0.83 84.19 ↓2.89 77.93 ↓4.21 86.33 ↓0.34 78.96 ↓2.79

AgentSquare 87.62 ↑0.17 48.51 ↑2.22 97.77 ↑0.92 89.08 ↑2.00 79.85 ↓2.29 88.00 ↑1.33 81.81 ↑0.06

AFlow 91.16 ↑3.71 51.28 ↑4.99 96.22 ↓0.63 90.93 ↑3.85 83.28 ↑1.14 88.33 ↑1.66 83.53 ↑1.78

G-Designer 92.09 ↑4.64 51.00 ↑4.71 97.78 ↑0.93 91.11 ↑4.03 84.50 ↑2.36 90.00 ↑3.33 84.41 ↑2.66

MaAS 92.30 ↑4.85 51.82 ↑5.53 98.80 ↑1.95 90.56 ↑3.48 83.78 ↑1.64 89.67 ↑3.00 84.49 ↑2.74

GTD (Ours) 94.14 ↑6.69 54.07 ↑7.78 98.88 ↑2.03 91.46 ↑4.38 84.58 ↑2.44 91.33 ↑4.66 85.74 ↑3.99

Table 1: Performance comparison on various benchmarks. All scores are accuracy (%). Changes are reported
relative to the Vanilla baseline. The best result in each column is bolded. Baselines: CoT (Wei et al., 2022),
ComplexCoT (Fu et al., 2022), SC (CoT×5) (Wang et al., 2023a), MultiPersona (Wang et al., 2023b), LLM-
Debate (Du et al., 2023), LLM-Blender (Jiang et al., 2023), DyLAN (Liu et al., 2023), AgentVerse (Chen
et al., 2023b), MacNet (Qian et al., 2024), AutoAgents (Chen et al., 2023a), GPTSwarm (Zhuge et al., 2024),
ADAS (Hu et al., 2024b), AgentSquare (Shang et al., 2024), AFlow (Zhang et al., 2025d), G-Designer (Zhang
et al., 2025a) MaAS (Zhang et al., 2025b).

K discrete candidate graphs from this prediction. The surrogate model Pϕ∗ evaluates all candidates,
and we select the one that maximizes our composite reward objective:

A
(t)
0,best = argmax

A
(t)
0,k

(wu · ûk − wc · ĉk) s.t. [ûk, ĉk]
T = Pϕ∗(A

(t)
0,k, Cnew) (8)

This best-ranked candidate, A(t)
0,best, is then used in place of the original prediction Â

(t)
0 to com-

pute the posterior distribution q(At−1|At, A
(t)
0,best) for sampling the next state At−1. By shifting

the mean of the posterior distribution toward A
(t)
0,best, we effectively bias the sampling trajectory to-

ward high-reward regions without requiring gradients. This procedure directly injects task-specific
performance objectives into the generative trajectory.

A
(t)
0,best = argmax

A
(t)
0,k

(wu · ûk − wc · ĉk) s.t. [ûk, ĉk]
T = Pϕ∗(A

(t)
0,k, Cnew) (9)

This best-ranked candidate, A(t)
0,best, is then used in place of the original prediction Â

(t)
0 to com-

pute the posterior distribution q(At−1|At, A
(t)
0,best) for sampling the next state At−1. This procedure

directly injects task-specific performance objectives into the generative trajectory, guiding the syn-
thesis towards topologies that are optimized for the given task. The effectiveness of this guidance
is directly tied to the fidelity of the surrogate model Pϕ∗ . In Appendix C, we formally bound the
performance gap of the resulting topology as a function of the surrogate’s approximation error (The-
orem C.5).
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5 EXPERIMENTS

To validate the effectiveness of our proposed GTD framework, we conduct a comprehensive set
of experiments designed to evaluate its performance across three key dimensions: (1) task-solving
effectiveness, (2) communication cost-efficiency, and (3) robustness against agent failures.

Our experimental setup is standardized across all evaluations to enable fair comparisons. The back-
bone for all agents is GPT-4o-mini. In our primary experiments, we deploy domain-specific agent
teams: four MathSolver agents for the mathematics datasets (GSM8K, MATH, MultiArith, and
SVAMP); four CodeSolver agents for the coding dataset (HumanEval); and three Knowledge-
ableAcademic agents for the science dataset (MMLU). The surrogate reward model (Pϕ) in the
GTD framework is a Graph Neural Network with two GAT layers and a hidden dimension of 32,
trained for 10 epochs using the Adam optimizer with a learning rate of 1e-3 and a batch size of 16
to minimize mean squared error loss. The conditional diffusion generator (Gθ) is a two-layer Graph
Transformer with two attention heads optimized with a learning rate of 1e-4, and the diffusion pro-
cess runs for 50 timesteps. To demonstrate data efficiency, the training dataset for these models was
constructed by evaluating baseline topologies on datasets. During inference, proxy-guided synthesis
applies a zeroth-order optimization step, evaluating five candidate graphs (K = 5) at each timestep
to guide the generation process using an inference batch size of 2. The training dataset was con-
structed by evaluating baseline topologies on a minimal subset of only 50 samples from the training
set. Using GSM8K as an example, this approach demonstrates high data efficiency, as the initializa-
tion overhead is negligible; the one-time token cost for generating training data (≈ 4.0×105 tokens)
is rapidly amortized by the millions of tokens saved during inference on the full test set (≈ 4.4×106

tokens per run), resulting in significant net efficiency gains for the system.

During inference, proxy-guided synthesis applies a zeroth-order optimization step, evaluating five
candidate graphs at each timestep to guide the generation process.

5.1 TASK-SOLVING EFFECTIVENESS

First, we evaluated GTD’s ability to generate high-utility communication topologies by comparing
its task-solving performance against a wide range of established multi-agent methods. We used
several popular benchmarks for this comparison, including GSM8K, MATH, MultiArith for math-
ematical reasoning, and HumanEval for code generation. Baselines include canonical prompting
strategies like Chain-of-Thought (CoT) (Wei et al., 2022) as well as more recent agentic frame-
works such as AgentVerse (Chen et al., 2023b), AFlow (Zhang et al., 2025d), and MaAS (Zhang
et al., 2025b). For each task, GTD generates a bespoke communication topology conditioned on the
problem description, and the resulting multi-agent system solves the task. Performance is measured
by task-specific accuracy.

As shown in Table 1, GTD demonstrates superior performance across the majority of benchmarks.
It achieves state-of-the-art results on GSM8K (94.14), MATH (54.07), MultiArith (98.88), and
SVAMP (91.30), significantly outperforming all baselines. For instance, on the challenging MATH
dataset, GTD improves upon the strongest baseline (MaAS) by over 2 absolute percentage points.
This highlights our framework’s ability to generate highly effective, task-adaptive topologies that
facilitate better collaboration among agents compared to static or heuristically-designed commu-
nication structures. To ensure our findings are robust across different model families and task
complexities, we also validated GTD on open-source models (Qwen-3-8B) and harder benchmarks
(LiveCodeBench). Please refer to Appendix E for these additional results. These supplementary
experiments confirm that GTD’s topological optimization transfers effectively to diverse backbones
and modern coding challenges, reinforcing the method’s broad applicability beyond standard rea-
soning tasks.

5.2 COMMUNICATION COST-EFFICIENCY

A core motivation for dynamic topology generation is to reduce unnecessary communication and
minimize token consumption. Our analysis confirms that GTD generates not only effective but also
significantly sparser and more cost-efficient topologies compared to methods that rely on dense or
fully-connected graphs.
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Figure 4: Accuracy versus token consumption for various multi-agent
methods across the GSM8K, MultiArith, MMLU, and SVAMP bench-
marks. The plots illustrate that topologies generated by GTD are highly cost-
efficient, achieving strong performance while using significantly fewer tokens
than baseline methods that rely on dense communication graphs.

The results, visualized in
the scatter plots in Figure
4, show GTD’s excep-
tional efficiency. Across
all tested benchmarks:
GSM8K, MultiArith,
SVAMP, and MMLU.
GTD consistently occupies
the optimal bottom-right
position, signifying the
highest accuracy achieved
with the lowest token
consumption. For instance,
on GSM8K, GTD achieves
over 94% accuracy while
consuming only 4.8e+06
tokens; in contrast, the
next best performer, G-
Designer, requires 15%
more tokens for lower ac-

curacy, while methods like LLM-Debate use over five times the tokens. This efficiency is even more
pronounced on MultiArith, where GTD reaches nearly 99% accuracy using just 8.4e+04 tokens,
setting a new Pareto frontier that no other method approaches. Similarly, on SVAMP, GTD is the
only method to surpass 91% accuracy while keeping token usage at a minimum (1.4e+05 tokens).
These findings show that the proxy-guided generation process successfully learns to create sparse,
efficient graphs by preserving only the most critical communication links, thereby avoiding the
quadratic overhead of fully-connected approaches while still enabling complex, high-performance
interactions. Crucially, this massive reduction in operational token cost ensures that the one-time
setup cost for training the proxy is rapidly amortized, granting GTD a net efficiency advantage over
zero-shot baselines immediately upon deployment.

5.3 ROBUSTNESS AGAINST AGENT FAILURES

Figure 5: Robustness of various multi-agent systems to simulated agent failure on the GSM8K bench-
mark. The chart compares task accuracy before and after an attack, demonstrating that topologies generated
by GTD exhibit greater resilience and more graceful performance degradation compared to other methods.

The structure of a communication graph critically impacts a multi-agent system’s resilience. To eval-
uate this, we tested the robustness of GTD-generated topologies by simulating agent failures during
task execution on the GSM8K benchmark. In the experiment, a non-critical agent was randomly
selected and its failure was simulated by making it produce erroneous outputs.

The results in the Figure 9 above demonstrate that GTD-generated topologies are significantly more
robust to agent failure than those from all other compared methods.

While all systems experienced some performance degradation, GTD’s accuracy dropped by a mere
0.3 percentage points (from 94.1% to 93.8%), showcasing a remarkably graceful degradation. This
stands in stark contrast to other methods; for instance, DyLan’s accuracy plummeted by nearly 13
points, and even a Complete Graph topology dropped by over 2 points. This experiment confirms
that by jointly optimizing for multiple objectives, GTD learns to generate topologies with sufficient
redundancy to bypass failed agents, ensuring high resilience in practical, imperfect scenarios.

9
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6 ABLATION STUDIES

(a) Number of agents vs.
Accuracy

(b) Number of training
samples vs. Accuracy

(c) Number of diffusion steps
vs. Accuracy

(d) GT vs. GCN vs. GAT

Figure 6: Ablation studies on key hyperparameters and components of the GTD framework. From left
to right, the charts show the framework’s sensitivity to: (1) the number of agents, (2) the number of training
samples, (3) the number of diffusion steps, and (4) the choice of denoising network architecture. The results
consistently validate our primary design choices.

Variant GSM8K HumanEval
GTD (Ours) 94.14 91.43
– w/o Guidance 88.42 87.19
– w/ Random 89.65 88.32

Figure 7: Ablation study on the impact of the
proxy guidance mechanism.

To rigorously validate our design choices, we
conducted a series of ablation studies to iso-
late the contribution of GTD’s core components
and hyperparameters, with results summarized
in Figure 6 and Figure 7. The most critical find-
ing, shown in Figure 7, confirms the impact of
our proxy-guided synthesis; removing the guid-
ance mechanism entirely causes a performance
drop of nearly 6 percentage points on GSM8K
(from 94.14% to 88.42%). Furthermore, using
random guidance instead of the proxy model’s

intelligent selection offered only a minor improvement, proving that the targeted optimization is the
key driver of success.

Our analysis of agent team size, visualized in Figure 6 (left), revealed that performance scales ef-
fectively up to four agents but shows diminishing returns thereafter. This result validates our use
of four agents as an optimal trade-off between task performance and computational efficiency. We
also found the framework to be highly data-efficient, with the largest performance gains achieved
within the first 50 training samples (Figure 6, second from left). This demonstrates that GTD can
be trained effectively without requiring a massive, expensive dataset. Furthermore, while current
reasoning benchmarks saturate at smaller team sizes, our framework is technically capable of scal-
ing to significantly larger agent populations without hitting memory bottlenecks (see Appendix D),
ensuring its applicability to more complex future scenarios.

7 CONCLUSION

Existing Multi-Agent Systems (MAS) often rely on static, hand-crafted topologies that do not adapt
to diverse tasks, leading to either excessive token consumption for simple problems or performance
bottlenecks for complex ones. To address this, we introduce Guided Topology Diffusion (GTD), a
novel generative framework that uses conditional discrete graph diffusion models to iteratively con-
struct a communication network. Experiments show that GTD creates highly task-adaptive, sparse,
and efficient topologies that significantly outperform existing methods in LLM agent collaboration
and demonstrate superior robustness to agent failures. However, a limitation remains in the depen-
dency on the initial seed dataset for training the proxy, which, despite being small, requires domain-
specific simulation data. As for future work, we will explore online active learning mechanisms to
update the proxy in real-time, eliminating the offline warm-up phase entirely. Additionally, we plan
to extend GTD to support dynamic, time-varying topologies that evolve continuously throughout the
multi-agent conversation, rather than being fixed at the start.
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ETHICS STATEMENT

Our work aims to improve the efficiency of multi-agent systems (MAS), which can reduce com-
putational costs and accelerate progress in beneficial domains. We acknowledge, however, that the
underlying training process require computing resources and that any powerful coordination frame-
work could be potentially misused for malicious ends. The performance of our method also depends
on the initial training data, which could introduce biases if not carefully curated. We therefore ad-
vocate for the responsible development of agentic AI and encourage further research into the safety,
fairness, and transparency of dynamically structured MAS to mitigate these risks.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, this paper provides a detailed account of our method-
ology and experimental setup. The core components of our Guided Topology Diffusion (GTD)
framework, including the surrogate reward model and conditional diffusion generator, are described
in Section 4, with the generation process detailed in Algorithm 1. Our complete experimental proto-
col, including the LLM backbone, benchmarks, and agent configurations, is presented in Section 5.
All hyperparameters and architectural choices are specified within these sections, and we will make
the source code, training scripts, and trained models publicly available upon acceptance to facilitate
full verification of our results.
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A ALGORITHM

Algorithm 1 Guided Topology Diffusion (GTD) Generation

1: Input: Task condition Cnew, trained models Gθ∗ , Pϕ∗ , weights wu, wc.
2: Sample AT ∼ N (0, I).
3: for t = T, . . . , 1 do
4: Predict the unguided clean graph: Â(t)

0 = Gθ∗(At, Cnew, t).
5: Generate K candidates: {A(t)

0,k}Kk=1, where A
(t)
0,k ∼ Bernoulli(sigmoid(Â(t)

0 )).

6: Evaluate candidates: For k = 1 . . .K, compute [ûk, ĉk]
T = Pϕ∗(A

(t)
0,k, Cnew).

7: Select best candidate via ZO: A(t)
0,best = argmax

A
(t)
0,k

(wu · ûk − wc · ĉk).

8: Compute posterior mean µpost and variance Σpost for q(At−1|At, A
(t)
0,best).

9: Sample the next state: At−1 ∼ N (µpost,Σpost).
10: end for
11: Output: The final graph A0.

B DATA STATISTICS

We conclude the data statistics in the table 2.

Table 2: Dataset descriptions and statistics.

Category Dataset Answer Type Metric #Test License

General reasoning MMLU Multi-choice Acc. 1,530 MIT License

Math reasoning

GSM8K Number Acc. 1,319 MIT License
MultiArith Number Acc. 180 Unspecified
SVAMP Number Acc. 300 MIT License
Math Number Acc. 500 MIT License

Code generation HumanEval Code Pass@1 164 MIT License

C THEORETICAL JUSTIFICATION

In this section, we provide a more formal theoretical underpinning for the GTD framework. We
begin by framing the graph diffusion model within the lens of variational inference and then analyze
the convergence properties of our proxy-guided synthesis process.

C.1 VARIATIONAL PERSPECTIVE OF GRAPH DIFFUSION

The generative process of denoising diffusion models can be rigorously justified as a procedure for
optimizing the Evidence Lower Bound (ELBO) of the data’s log-likelihood.
Definition C.1 (Evidence Lower Bound (ELBO)). Given a data point A0, a joint distribution
pθ(A0:T |C), and a variational posterior q(A1:T |A0), the ELBO for the conditional log-likelihood
log pθ(A0|C) is defined as:

LELBO = Eq(A1:T |A0)

[
log

pθ(A0:T |C)

q(A1:T |A0)

]
≤ log pθ(A0|C) (10)

This lower bound can be decomposed into a series of terms that are more amenable to optimization:

LELBO = Eq [log pθ(A0|A1, C)]−DKL(q(AT |A0)||p(AT ))

−
T∑

t=2

DKL(q(At−1|At, A0)||pθ(At−1|At, C)) (11)
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Optimizing the ELBO involves minimizing the KL-divergence between the true posterior of the
forward process and the learned reverse process. The forward process posterior is known to be
tractable.

Lemma C.2 (Forward Process Posterior). The posterior distribution q(At−1|At, A0) is a Gaussian
distribution given by:

q(At−1|At, A0) = N
(
At−1; µ̃t(At, A0), β̃tI

)
(12)

where µ̃t(At, A0) =
√
ᾱt−1βt

1−ᾱt
A0 +

√
αt(1−ᾱt−1)

1−ᾱt
At and β̃t =

1−ᾱt−1

1−ᾱt
βt.

By parameterizing the reverse process pθ(At−1|At, C) as a Gaussian whose mean is predicted by
a neural network, we can connect the variational objective to a simpler, more practical training
objective.

Theorem C.3 (Optimality of the Denoising Objective). Assuming the re-
verse process pθ(At−1|At, C) is Gaussian, minimizing the KL-divergence term
DKL(q(At−1|At, A0)||pθ(At−1|At, C)) in Eq. 11 with respect to θ is equivalent to training
a denoising network Gθ(At, C, t) to predict A0 from At by minimizing the L2 loss:

Lsimple = Et,A0,C,ϵ

[∥∥A0 − Gθ(
√
ᾱtA0 +

√
1− ᾱtϵ, C, t)

∥∥2] (13)

Proof. Our goal is to minimize the KL divergence between the true posterior and the learned reverse
process:

Lt = DKL(q(At−1|At, A0)||pθ(At−1|At, C)) (14)

Both distributions are Gaussian: q(At−1|At, A0) = N (·; µ̃t(At, A0), β̃tI) and pθ(At−1|At, C) =
N (·;µθ(At, C, t), σ

2
t I). For simplicity, we fix the variance of the reverse process to match the

true posterior, σ2
t = β̃t. The KL divergence between two multivariate Gaussians N (µ1,Σ1) and

N (µ2,Σ2) simplifies when Σ1 = Σ2 = σ2I to 1
2σ2 ∥µ1 − µ2∥2. Therefore, minimizing the KL

divergence is equivalent to minimizing the squared Euclidean distance between their means:

Lt = EA0,C,ϵ

[
1

2β̃t

∥µ̃t(At, A0)− µθ(At, C, t)∥2
]

(15)

The expression for the true posterior mean is µ̃t(At, A0) =
√
ᾱt−1βt

1−ᾱt
A0 +

√
αt(1−ᾱt−1)

1−ᾱt
At. We

parameterize our model’s mean µθ to have the same functional form, but predicting A0 with our
network Gθ(At, C, t):

µθ(At, C, t) =

√
ᾱt−1βt

1− ᾱt
Gθ(At, C, t) +

√
αt(1− ᾱt−1)

1− ᾱt
At (16)

Substituting this into the loss function, the terms involving At cancel out:

Lt = EA0,C,ϵ

[
1

2β̃t

∥∥∥∥√ᾱt−1βt

1− ᾱt
A0 −

√
ᾱt−1βt

1− ᾱt
Gθ(At, C, t)

∥∥∥∥2
]

(17)

= EA0,C,ϵ

[
(
√
ᾱt−1βt)

2

2β̃t(1− ᾱt)2
∥A0 − Gθ(At, C, t)∥2

]
(18)

Since the term outside the norm is a positive constant for a given timestep t, minimizing Lt with
respect to θ is equivalent to minimizing the simpler objective:

L′
t = EA0,C,ϵ

[
∥A0 − Gθ(At, C, t)∥2

]
(19)

By substituting At =
√
ᾱtA0 +

√
1− ᾱtϵ and taking the expectation over all timesteps t, we arrive

at the simplified loss function Lsimple stated in the theorem.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C.2 ANALYSIS OF PROXY-GUIDED SYNTHESIS

We now analyze the role of the surrogate model and the ZO optimization step in guiding the synthesis
towards high-reward topologies.
Definition C.4 (ϵ-Accurate Surrogate Model). A surrogate reward model Pϕ is ϵmax-accurate with
respect to a true reward function R(A,C) if, for any valid topology A and condition C, the approx-
imation error is bounded:

|R(A,C)− Pϕ(A,C)| ≤ ϵmax (20)

The accuracy of this model directly bounds the sub-optimality of the topology generated by an ideal
proxy-guided optimizer.
Theorem C.5 (Performance Gap Bound). Let A∗ = argmaxA R(A,C) be the true optimal topol-
ogy and A∗

proxy = argmaxA Pϕ(A,C) be the topology found by an ideal optimizer using an ϵmax-
accurate proxy. The performance gap is bounded by:

R(A∗, C)−R(A∗
proxy, C) ≤ 2ϵmax (21)

Proof. By definition of A∗
proxy as the maximizer of the proxy reward function, we have

Pϕ(A
∗
proxy, C) ≥ Pϕ(A

∗, C). From the definition of an ϵmax-accurate surrogate model, we know
that for any topology A, R(A,C) ≥ Pϕ(A,C)− ϵmax. Applying this bound to A∗

proxy, we get:

R(A∗
proxy, C) ≥ Pϕ(A

∗
proxy, C)− ϵmax (22)

Combining this with the optimality condition of A∗
proxy gives:

R(A∗
proxy, C) ≥ Pϕ(A

∗, C)− ϵmax (23)

Again, from the ϵmax-accuracy definition applied to A∗, we can state that Pϕ(A
∗, C) ≥ R(A∗, C)−

ϵmax. Substituting this into the previous inequality yields:

R(A∗
proxy, C) ≥ (R(A∗, C)− ϵmax)− ϵmax (24)

= R(A∗, C)− 2ϵmax (25)

Rearranging this final expression gives the desired bound:

R(A∗, C)−R(A∗
proxy, C) ≤ 2ϵmax (26)

This completes the proof.

Corollary C.6 (Perfect Surrogate). If the surrogate model is perfect, i.e., ϵmax = 0, then any topol-
ogy A∗

proxy that maximizes the proxy reward also maximizes the true reward, yielding R(A∗
proxy, C) =

R(A∗, C).
Definition C.7 (ZO-Guided Denoising Step). At a diffusion step t, given the unguided prediction
Â

(t)
0 = Gθ∗(At, C, t), the ZO-guided denoising step replaces Â(t)

0 with A
(t)
0,best, where:

A
(t)
0,best = arg max

A∈{A(t)
0,k}

K
k=1

Pϕ(A,C) (27)

and each candidate A(t)
0,k is a discrete sample drawn from a distribution parameterized by Â(t)

0 , e.g.,

A
(t)
0,k ∼ Bernoulli(σ(Â(t)

0 )).

This ZO step can be viewed as approximating a gradient ascent step on the proxy reward land-
scape. Let J(Â0) = EA∼p(A|Â0)

[Pϕ(A,C)]. The true gradient ∇Â0
J is intractable. The ZO step

provides an update direction, ∆t = A
(t)
0,best − Â

(t)
0 , which serves as a stochastic estimate of the as-

cent direction. The use of multiple samples (K > 1) reduces the variance of this estimate. The
guided update for the next state At−1 is then computed using the posterior conditioned on A

(t)
0,best

instead of Â(t)
0 , effectively biasing the sampling trajectory towards regions of higher proxy reward.

This greedy, step-wise maximization provides a computationally efficient method for incorporating
non-differentiable objectives directly into the generative process.
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D SUPPLEMENTARY RESULTS: SCALABILITY ANALYSIS

To assess the scalability of GTD for larger multi-agent systems, we measured the GPU memory
consumption of the diffusion generator and proxy model as the number of agents (N ) increases. As
shown in Table 3, the memory requirement scales linearly and remains well within the capacity of
standard consumer hardware even for large swarms.

Table 3: The GPU cost with increasing number of agents.

#Agents 5 50 100 1000

Memory (GB) 2.8 3.4 3.9 4.9

This confirms that while our current benchmarks focus on small-team reasoning (4-5 agents), the
GTD framework is technically capable of optimizing large-scale agent organizations without hitting
hardware bottlenecks.

E SUPPLEMENTARY RESULTS: GENERALIZATION TO OPEN-SOURCE
MODELS AND HARDER BENCHMARKS

To verify that our gains are not specific to the GPT-4o-mini backbone, we extended our experiments
to the open-source Qwen-3-8B model on GSM8K. GTD achieved 93.1% accuracy, outperforming
both the base model (87.8%) and the MaAS baseline (91.8%). Furthermore, we evaluated GTD
on the challenging LiveCodeBench (Pass@1). GTD achieved 30.8%, surpassing the Base Model
(25.4%) and MaAS (29.3%), demonstrating that our topology optimization provides consistent ben-
efits across different model families and task difficulties.

F COMPUTATIONAL RESOURCES

All experiments, including the training of the surrogate and diffusion models, as well as the multi-
agent system simulations for data generation and evaluation, were conducted on a server equipped
with four NVIDIA A6000 GPUs, each with 48GB of VRAM.

G ETHICS AND SOCIETAL IMPACT

This research is focused on improving the efficiency and effectiveness of multi-agent systems
(MAS), which can lead to positive societal impacts like accelerating scientific discovery and reduc-
ing the energy consumption of large-scale AI computations. However, we recognize that a frame-
work for optimizing agent coordination is a dual-use technology. In the wrong hands, it could po-
tentially be used to orchestrate malicious activities, such as coordinating disinformation campaigns
or automated attacks. Furthermore, the performance of our system is dependent on the initial dataset
used to train our models; any biases present in this data could lead to the generation of suboptimal or
inequitable communication structures for certain tasks. Our work is intended purely for beneficial
applications, and we advocate for the establishment of strong ethical guidelines and safeguards in
the development of advanced agentic systems.

H THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) are a central component of our research methodology. The multi-
agent systems evaluated in this paper are composed of agents powered by GPT-4o-mini, which
perform the reasoning and communication necessary to solve complex tasks. The performance of
these LLM agents is fundamental to generating our training data and evaluating the effectiveness of
the communication topologies created by our GTD framework.

Separately, for the preparation of this manuscript, our use of LLMs was strictly limited to polishing
the language and generating figures. All underlying research and intellectual content, including the

18
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Figure 8: Case study of the communication topologies designed by GTD on all benchmarks.

GTD framework, its theoretical foundations, experimental design, and the analysis of results, was
completed entirely by the authors.

I PROMPTS

Figure 8 presents the topologies designed by GTD under varying query difficulties for all the bench-
marks.
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J AGENT ROLES AND DESCRIPTIONS

Figure 9 visualizes a set of specialized agents. These roles provide diverse perspectives that are
combined to produce the final answer.

Figure 9: Overview of the different roles in our multi-agent question answering framework. Each role repre-
sents a distinct perspective or expertise (e.g., knowledge extraction, searching, critique, mathematics, psychol-
ogy, history, medicine, economics, programming, law, or deliberate deception).
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