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ABSTRACT

In light of recent privacy regulations, machine unlearning has attracted significant
attention in the research community. However, current studies predominantly as-
sess the overall success of unlearning approaches, overlooking the varying dif-
ficulty of unlearning individual training samples. As a result, the broader feasi-
bility of machine unlearning remains under-explored. This paper presents a set of
novel metrics for quantifying the difficulty of unlearning by jointly considering the
properties of target model and data distribution. Specifically, we propose several
heuristics to assess the conditions necessary for a successful unlearning operation,
examine the variations in unlearning difficulty across different training samples,
and present a ranking mechanism to identify the most challenging samples to un-
learn. We highlight the effectiveness of the Kernelized Stein Discrepancy (KSD),
a parameterized kernel function tailored to each model and dataset, as a heuristic
for evaluating unlearning difficulty. Our approach is validated through multiple
classification tasks and established machine unlearning algorithms, demonstrat-
ing the practical feasibility of unlearning operations across diverse scenarios.

1 INTRODUCTION

Machine Unlearning (MU) (Cao & Yang, 2015) refers to a process that enables machine learning
(ML) models to remove specific training data and revert corresponding data influence on the trained
models while preserving the models’ generalization. As many countries and territories have promul-
gated their Right to be Forgotten regulations 1, entitling individuals to revoke their authorization to
use their data for machine learning (ML) model training, the demand of MU raised significant inter-
est in the machine learning research community, leading to various types of unlearning approaches,
often achieved by either data reorganization (Graves et al., 2021; Gupta et al., 2021; Tarun et al.,
2023) or model manipulation (Guo et al., 2020; Warnecke et al., 2021).

Although existing machine unlearning studies vary based on diverse theoretical foundations, their
performance evaluation metrics used are generally common, including 1) Data Erasure Complete-
ness, 2) Unlearning Time Efficiency, 3) Resource Consumption, and 4) Privacy Preservation (Xu
et al., 2024; Yang & Zhao, 2023; Shaik et al., 2023). While such quantitative evaluations may suf-
fice for comparing MU methods from various perspectives, they often fall short in assessing the
effectiveness of data removal requests for individual data points, resulting in a discrepancy between
actual unlearning outcomes and expectations in real-world applications. In practice, some data
points are inherently harder to unlearn than others, where such variability may stem from intrinsic
factors, such as the augmented data distribution under a trained machine learning model, regardless
of the specific unlearning algorithm applied.

While quantifying the difficulty of unlearning operations (Marchant et al., 2022; Pawelczyk et al.,
2024) is underexplored, one may come up with a handy metric constructed on top of several obvious
factors, such as model complexity, prediction confidence, and the nature of input data features.
Indeed, the most straightforward criterion of success of unlearning is to measure the distance of the
data sample from the model’s decision boundaries (Liu et al., 2023b; Chen et al., 2023); data points
closer to the decision boundary are more likely to be forget-able. Unfortunately, we show in this
paper that although the factors above have a certain degree of positive correlation with the difficulty
of unlearning, they are often accompanied by noise, leaving them lacking credibility.

1CCPA in California, GDPR in Europe, PIPEDA in Canada, LGPD in Brazil, and NDBS in Australia.
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This paper paves the first step on understanding the feasibility of machine unlearning (regardless of
specific unlearning approaches) by analyzing and quantifying the difficulty of unlearning the training
data points on a trained model, such that identifying the criteria contributing to this process. Instead
of falling back to predictive confidence-based approaches (Liu et al., 2023b; Chen et al., 2023), we
propose to measure the difficulty of unlearning through model-augmented data distribution. Specif-
ically, we show that trained ML models can uniquely define parameterized kernel functions kθ(·, ·)
over training data points, which allow to express the distribution of training samples conditioned on
trained model fθ in the form of a correlation graph. Due to the generalization of machine learning
models, training samples that have strong connections with other samples may face the challenge
of unlearning. While there are many choices of parameterized kernel functions, we show that the
kernel defined on Kernelized Stein Discrepancy (KSD) (Liu et al., 2016; Chwialkowski et al., 2016)
shows a unique advantage in terms of accurately reflecting a trained model’s characteristics given its
training samples. By analyzing the property of KSD, we show that there is a set of reliable scoring
metrics based on KSD that can efficiently measure the difficulty of unlearning. With the proposed
evaluation metrics, one may reduce unnecessary machine unlearning operations when data points
are determined to be infeasible to unlearn.

2 PRELIMINARIES

2.1 MACHINE UNLEARNING DEFINITION

Machine Unlearning (MU) is a process of removing specific subsets of training data (along with
their influence) from a trained model (Cao & Yang, 2015; Bourtoule et al., 2021).

Formally, consider a training dataset Dt = {(xi, yi)} (t is refering to training data) comprising
n samples, where xi and yi represent the ith data’s features and corresponding label respectively.
We define two subsets of the dataset for clarity as follows: Let Df ⊆ Dt denote the subset of data
designated to be forgotten (a.k.a forget set), and Dr ⊆ Dt denote the remaining data (a.k.a remaining
set), such that Df ∪ Dr = Dt and Df ∩ Dr = ∅.

Given an target predictive model fθ with parameters θ, the common expectation of machine unlearn-
ing operation are of adjusting θ to a modified parameter set ϑ such that:

• Increasing of model’s error on the forget set Lϑ(Df ).

• Maintaining original model’s error on the remaining set Dr such that

∥Lθ(Dr)− Lϑ(Dr)∥ < ϵ, (1)

where ϵ denotes a tolerable performance degradation threshold and L denotes the loss.

2.2 RESEARCH TRACK OF MACHINE UNLEARNING

The simplest solution for unlearning is to retrain the model from scratch with the remaining data
after removing the forget data. However, even with tricks such as partial retraining (Bourtoule
et al., 2021), that works on decomposible, partial model components, retraining remained resource-
intensive. To mitigate the computational overhead of retraining, unlearning operations are often
approximated. In particular, Fine-Tuning based approaches (Warnecke et al., 2021; Golatkar et al.,
2020) suggest to continue training the model on the remaining data such that forget data can be
naturally flashed out. Alternatively, Gradient Ascent approach (Graves et al., 2021) (referred as
NegGrad in (Kurmanji et al., 2024)) adjust the model’s weights in the direction of the gradient to
increase the model’s error on the data intended for forgetting.

Recent studies have frequently utilized the Newton update as a fundamental step for removing data
influence (Guo et al., 2020; Golatkar et al., 2020; Peste et al., 2021; Sekhari et al., 2021). These
methods typically leverage the Fisher Information Matrix (FIM) to gauge the sensitivity of the
model’s output to perturbations in its parameters. For example, Fisher Forgetting (Golatkar et al.,
2020) employs a scrubbing approach where noise is added to parameters based on their relative im-
portance in distinguishing the forget set from the remaining data set. Mehta et al. (Mehta et al.,
2022) employs conditional independence coefficient to identify sufficient sets of parameters for tar-
geted unlearning.
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As machine unlearning often involve privacy protection regulations, some methods also incorporated
the principles of differential privacy (DP) (Abadi et al., 2016) to ensure the unlearning outcome does
not inadvertently reveal information about the data that has been removed. Izzo (Izzo et al., 2021;
Zhang et al., 2024) adhere to the DP framework to ensure a high probabilistic similarity between
models before and after unlearning. Golatkar et al. (2020) introduced the concept of certified un-
learning, grounded in information theory and specifically tailored to the Fisher Information Matrix.
Certified Minimax Unlearning (Liu et al., 2023a) has developed an algorithm specifically for mini-
max models. This method removes data influences through a total Hessian update and incorporates
the Gaussian Mechanism to achieve (ϵ, δ)-minimax unlearning certification, ensuring a balance be-
tween data removal and model integrity. (Chourasia & Shah, 2023) propose a data deletion technique
that ensures the privacy of deleted records. (Ullah et al., 2021) investigated the machine unlearning
in the context of SGD and streaming removal requests, but ensured that their method is differentially
private. DP algorithms provide the upper bound for the unlearning scheme, but they don’t guarantee
the full unlearning of requested data(Nguyen et al., 2022).

Other research efforts extend into various domains of unlearning, such as knowledge distillation
(Chundawat et al., 2023), selective forgetting for lifelong learning (Shibata et al., 2021), federated
unlearning (Che et al., 2023), online unlearning (Li et al., 2021; Chen et al., 2019), and exploring
adversarial attacks using machine unlearning methods (Wei et al., 2023; Di et al., 2022). Instead of
aiming to follow privacy protection regulation, those approaches focus on reducing the vulnerability
of models to adversarial attacks by forgetting training examples (Jagielski et al., 2023).

The majority of the literature on machine unlearning primarily concentrates on the development of
unlearning algorithms or unlearning approximation techniques for selectively forgetting data from a
trained model. As such, the corresponding evaluation metrics are designed to favor the performance
difference between algorithms on highly aggregated level (e.g. success rate). In fact, a common
assumption underlying much of this research is that unlearning operations are universally feasible
for all data points within a dataset, where effectiveness of unlearning will behave consistently across
different datasets. This assumption often overlooks the potential variability in unlearning efficacy
due to differences in data characteristics or model dependencies, suggesting a need for more nu-
anced studies that evaluate the specific conditions under which MU can be effectively implemented.
Recently, one line work (Thudi et al., 2022) has questioned the performance of unlearning approx-
imation algorithms w.r.t the exact unlearning and whether or not these methods can successfully
prove the absence of certain data points during training. From this recent research, we can observe
that absence of a comprehensive study that comprehensively investigates the feasibility of unlearning
was present.

3 FACTORS THAT AFFECT DIFFICULTY OF UNLEARNING

In this section, we summarize the main factors that impact effectiveness of machine unlearning with
corresponding data analysis and intuition justifications.

Intuitively, to quantify success of unlearning operation, one may evaluate the quality of the unlearned
model ϑ with respect to the common expectation mentioned in previous section. Particularly, when
the forget set contains a single sample (xf , yf ), we expect the prediction of the unlearned model
on that data point to be same as of a model trained without the data point (a.k.a Certified Unlearn-
ing (Guo et al., 2020)), reflecting the model’s ignorance to forgotten example. However, it is often
impractical to verify the success of unlearning by comparing to a re-trained model; such comparison
lose the practical value of unlearning. Hence, evaluation criteria of successful unlearning operation
in practice often falls back to measuring 1) the shift of prediction (e.g. altering predicted classifica-
tion label) along with 2) the model performance preservation criterion (See Eq. 1). Unfortunately,
the two criteria mentioned above are often a pair of trade-off, resulting the following factors that
jointly pose challenges for defining the difficulty of unlearning.

1. Size of Unlearning Expansion: Altering prediction outcome of target sample may negatively
impact model prediction on similar samples. When a guaranteed unlearning is desired, one might
need to expand unlearning operation to a broader training sample set (the similar data samples)
such that unlearning of target sample with respect to decision shift can be successful (Chen et al.,
2023). While selection of unlearning algorithm may vary the size of the expansion, the need of
expanding forget set for guaranteed unlearning remains consistent.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2. Resistance to Membership Inference Attack (MIA): In MIA (Chen et al., 2021; Golatkar
et al., 2021; Song et al., 2019), adversaries use the model’s outputs, such as confidence scores,
to ascertain if a specific data point was part of the training set, without needing direct access to
the model’s internal parameters. With identical unlearning operations (e.g. number of unlearn-
ing step, learning rate, and other hyper-parameters), data points often show different level of
resistance to the MIA, which is an alternative factor of measuring the difficulty of unlearning.

3. Geometric Distance to Decision Boundary: The distance of a data point to the decision
boundary of a model often closely associated with the predictive confidence. A data point with
lower predictive confidence (larger uncertainty) is closer to the decision boundary (Nguyen &
Smeulders, 2004; Li et al., 2023). A data with higher uncertainty might be easier to unlearn
compared to those with high predictive confidence (Chen et al., 2023). However, predictive
confidence does not account for the relationships among similar examples. A data point with
low predictive confidence might be deeply embedded within a complex region of the decision
boundary (Kienitz et al., 2022), requiring significant modifications to unlearn. Hence, it remains
to be a noisy index.

4. Tolerance of Performance Shift: For an easily unlearn-able data point, guaranteed unlearning
is achievable with minimal impact on the model’s predictive performance (Liu et al., 2024a).
Here the model performance measurement is on remaining, and test dataset rather than remain-
ing training dataset (as given in Equation 1). Conversely, an data point that is hard to unlearn
would require significant changes to the model parameters, leading to a substantial deviation in
performance metrics.

5. Number of Unlearning Steps: Number of Unlearning Steps evaluates the computational effi-
ciency of the unlearning operations, indicating how quickly the model can be updated to forget
a specified data. For a given unlearning algorithm, the metric can be approximated through wall
clock duration (Nguyen et al., 2022).

6. Distance of Parameter Shift (DPS): Instead of using model performance changes as heuristic,
DPS directly probe the layer-wise and activation-wise parameter shift distances. Layer-wise
distance measures the weight differences between the unlearned and original models, while
activation-wise distance assesses their activation differences given the same input (Golatkar
et al., 2020; Tarun et al., 2023).

With the identified unlearning feasibility factors that affect difficulty of unlearning, one may seek
for a coherent scoring systems that can rank training data points from the most easy to the most
challenging for unlearning operations, as we will discuss in the next section.

4 SCORING UNLEARNING DIFFICULTY

We summerize the unlearning difficulty factors into two major groups namely 1) data points
with/without strong ties (factor 1, 4-6) and 2) predictive confidence (factor 2-3). Our aim is to
develop a unlearning difficulty scoring metric that jointly considers these two classes of factors.

Before moving forward, we briefly describe the Kernelized Stein Discrepancy (KSD) (Liu et al.,
2016; Chwialkowski et al., 2016) to facilitate the later discription.

4.1 KERNEL STEIN DISCREPANCY (KSD)

The KSD provides a robust measure to evaluate the goodness-of-fit between a machine learning
model and its training dataset. KSD originates from a mathematical theorem known as Stein’s
Identity (Kattumannil, 2009), which posits that for a smooth distribution p(x) and a function ϕ(x)
satisfying the condition lim||x||→∞ p(x)ϕ(x) = 0, the following equation holds for any function ϕ:

Ex∼p

[
ϕ(x)∇x log p(x) +∇xϕ(x)

]
= Ex∼p

[
Apϕ(x)

]
= 0, ∀ϕ (2)

where Ap denotes the Stein operator, encapsulating the distribution p(x) in terms of derivatives.

Kernelized Stein Discrepancy, derived from Stein’s Identity, quantifies the difference between two
distributions by defining the search for an optimal function ϕ in F through an appropriate kernel
function κ. Concretely, KSD is defined as:

4
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S(q, p) = Ex,x′∼q[κp(x, x
′)] (3)

where κp(x, x
′) = Ax

pAx′

p k(x, x′) and can operate with any arbitrary kernel function k(x, x′). This
formulation allows for a more feasible application in various practical scenarios, making KSD a
valuable tool for assessing model-data compatibility. Indeed, in the goodness-of-fitness context,
the p distribution often represent predictive distribution of model parameterized with θ, while q
distribution denotes the data distribution (Yang et al., 2018; Jitkrittum et al., 2020).

By examining the parameterized kernel defined on pairs of training data points as follows

κθ((xa, ya), (xb, yb)) = Aa
θAb

θk(a, b)

= ∇a∇bk(a, b) ⇒ Raw Feature Similarity
+ k(a, b)∇a logPθ(a)∇b logPθ(b) ⇒ Score Similarity

+∇ak(a, b)∇b logPθ(b) +∇bk(a, b)∇a logPθ(a), ⇒
{

Mutual Influence of
Prediction Shifts

(4)

we note it can serve as base of evaluating the difficulty of machine unlearning well given it mea-
sures both model augmented data similarity (tie) and hypothetical predictive confidence shifts (as
gradient/score).

4.2 UNLEARNING DIFFICULTY SCORING WITH KSD

While the parameterized kernel defined by KSD has potential to distinguish data points with respect
to the difficulty of unlearning, KSD itself is not sufficient to be a scoring function since it is defined
on a pair of data points. To corporate Stein Kennel to rank datapoints’ unlearning difficulty, we need
to aggregate pair-wise kernel values for each data point such that

Agg({κθ((xi, yi), (xj , yj))| ∀j s.t. (xj , yj) ∈ Dt}), (5)

which requires examining the distribution of Stein Kernel values for targeted removal data point i.

We analyzed several variations of scoring metrics based on the Kernelized Stein Discrepancy (KSD)
measure, as outlined below. The evaluation of each training data point yields a scalar value, which
enables the ranking of unlearning difficulty across samples.

• Marginalized KSD (MKSD): The MKSD scoring comes from a simple idea of aggregation
over the KSD kernel values between a data point and all others in the dataset in an computation-
ally easy way

AggMKSD((xi, yi)) = Σn
j=1κθ((xi, yi), (xj , yj)) (6)

A higher MKSD score suggests greater tie of a sample and a larger “resistance set”, implying
that more extensive sets of the training samples need to be unlearned alongside the target data
point to guarantee the success of unlearning.

• Marginalized Standardized KSD (MSKSD): Intuitively, a data point surrounded by a large
number of similar points poses more challenges in unlearning due to its strong connections within
the dataset. To effectively highlight such data points, we define the MSKSD which aggregates
these standardized exponential values. Similar to MKSD, a higher MSKSD value suggesting a
higher challenge in unlearning these particular instances.

AggMSKSD((xi, yi)) =

n∑
j=1

eκ̂θ((xi,yi),(xj ,yj)), (7)

where we denote standardized Stein values as κ̂. The standardization operation, that re-assigning
kernel values into standard Guassian N (0, 1), can reduce the influence of magnitude of kernel
values such that the aggregation will be influenced by the skewness of smoothed values (κ̂).

• Stein Score Norm (SSN): Data points that are proximate to the decision boundary exhibit higher
gradient magnitudes, making it easier to adjust the boundary in response to these points com-
pared to those located deeper within each class. We propose that data points with high SSN
(see Equation 8) are positioned away from the dense centers of their classes, making them prime

5
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(a) Samples are easy to be unlearned (b) Samples are hard to be unlearned

Figure 1: Top-2 most easy and hard training samples for machine unlearning flagged by the four
proposed unlearning difficulty scoring functions. While the samples flagged varies based on the
different scoring function, we note the easily unlearnable samples are often less representative to the
class label, while hardly unlearnable samples are often typical.

candidates for unlearning. By identifying and ranking data points with the highest Stein Score
Norms, we can effectively pinpoint those that are closer to the decision boundary.

AggSSN((xi, yi)) = ||∇θ logPθ(xi, yi)|| (8)

• Entropy Marginalized Standardized KSD (EMSKSD): Uncertainty in the predictive confi-
dence of a datapoint can be an indication of its’ closeness to decision boundary. In EMSKSD,
we incorporating datapoints predictive uncertainty with the similarity scoring:

AggEMSKSD((xi, yi)) =
AggMSKSD((xi, yi))

H(ŷi)

H(ŷi) = −
n∑

l=1

ŷi,l log(ŷi,l) ŷi,l = fθ(xi)

(9)

Here, H(ŷi) is the entropy of the predicted probabilities. EMSKSD can obtain points close to
the decision boundary with small number of correlated samples.

The scoring metrics above are not comparable based on our analysis as shown in Figure 1; they flag
different types of difficulty of unlearning. MKSD and MSKSD tends to flag apparent outliers in the
training samples as easily unlearnable training samples, whereas EMSKSD flags less obvious but
abnormal training samples, such as truck on paper, fake horse or wrongly labeled numbers.

5 EVALUATION AND ANALYSIS

In this section, we assess the effectiveness of various unlearning approximation methods on data
points ranked from easy to hard for unlearning against the scoring metrics proposed. Specifically,
we want to answer the following questions through the experiments:

• Q1: Given easily and hardly unlearnable data points flagged out by the scoring metrics, does the
resulting unlearned model show different predictive performance?

• Q2: Which of the proposed scoring metrics show better predictive alignment with actual un-
learning outcome?

• Q3: Which unlearning algorithm show better performance when facing hardly unlearnable data
points?

5.1 EXPERIMENTAL SETUPS

Datasets and models We conducted evaluation using three datasets: MNIST(Deng, 2012), CIFAR-
10(Krizhevsky et al., 2009), and SVHN (Netzer et al., 2011). We consider a two-layer CNN classifier

6
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Table 1: Average accuracy of the forget set, and test data for the top five easiest (Easy) and five most
difficult-to-unlearn samples (Difficult), as recommended by each scoring metric, after unlearning.
For the forget set, a lower value shows a better unlearning outcome, whereas, for the test set, a higher
value shows a better unlearning outcome. Statistics are given in the Appendix 8.

Forget Test

Dataset Method GradAsct FineTune Retrain GradAsct FineTune Retrain
Easy Difficult Easy Difficult Easy Difficult Easy Difficult Easy Difficult Easy Difficult

MNIST

PC 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99
MKSD 0.60 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99

MSKSD 0.00 1.00 0.60 1.00 0.40 1.00 0.99 0.99 0.99 0.99 0.99 0.99
SSN 0.40 1.00 0.40 1.00 0.60 1.00 0.99 0.99 0.99 0.99 0.99 0.99

EMSKSD 0.00 1.00 0.60 1.00 0.60 1.00 0.99 0.99 0.99 0.99 0.99 0.99

CIFAR10

PC 0.00 0.00 1.00 1.00 1.00 1.00 0.59 0.62 0.86 0.85 0.99 0.86
MKSD 0.00 0.80 1.00 1.00 1.00 1.00 0.37 0.48 0.85 0.83 0.86 0.86

MSKSD 0.00 0.20 1.00 1.00 0.60 1.00 0.70 0.49 0.86 0.86 0.86 0.86
SSN 0.00 0.00 0.80 1.00 0.80 1.00 0.71 0.54 0.85 0.84 0.86 0.86

EMSKSD 0.00 0.00 0.80 1.00 0.60 1.00 0.73 0.53 0.85 0.83 0.86 0.86

SVHN

PC 0.20 0.00 1.00 1.00 1.00 1.00 0.82 0.76 0.96 0.95 0.96 0.96
MKSD 0.00 0.20 1.00 1.00 1.00 1.00 0.45 0.74 0.96 0.96 0.96 0.96

MSKSD 0.00 0.00 1.00 1.00 0.40 1.00 0.81 0.75 0.96 0.96 0.96 0.96
SSN 0.00 0.00 0.80 1.00 0.20 1.00 0.78 0.84 0.96 0.96 0.96 0.96

EMSKSD 0.00 0.00 0.20 1.00 0.00 1.00 0.89 0.81 0.96 0.96 0.96 0.96

for MNIST, and ResNet18 for the CIFAR-10 and SVHN datasets. Details of datasets and models
are presented in Appendix Table 4.

Unlearning methods We used three primary unlearning baselines i.e. GradAsc, FineTune , and
Fisher. Additionally, we retrain the model, a.k.a Retraining, without the forgetting set. Although
the interest in guaranteed unlearning initially stemmed from the challenges associated with access-
ing retrained models, achieving guaranteed unlearning for feasible datapoints by retraining presents
an intriguing opportunity to explore the characteristics of data points that can be unlearned more
readily. If we can achieve guaranteed unlearning for a single data point through retraining, it vali-
dates our assumption regarding the varying levels of unlearning feasibility, as it has been shown that
generalization ability of ML model (Xu et al., 2024) prevents unlearning single samples.

Evaluation Criteria To assess the effectiveness of unlearning, we measured the accuracy of un-
learned model on the remaining, forget and test subsets. Additionally, we calculated the layer-wise
distance between unlearned and original models. We conducted a MIA on the unlearned model
(MIA-Correctness) to ascertain how many samples from the forgetting set were correctly classified
as non-training samples. We assessed the MIA-efficacy using a confidence-based attack method
(Song et al., 2019). The efficacy of MIA is quantified by the ratio of samples predicted as ”forgotten
samples” (True Negatives TN) to the total number of samples in the forgetting set |Df |. Ideally, post-
unlearning, the model θu should have effectively ”forgotten” the information related to the samples
in forgetting set.

Additional information about experimental setup and hyper-parameter configurations are given in
Appendix (see Table 5).

5.2 SCORING DIFFICULTY OF UNLEARNING IN TERMS OF PREDICT PERFORMANCE SHIFT

To quantify the effectiveness of the scoring metrics proposed (described in Section 4.2), we selected
the top five easiest and the five most difficult samples to unlearn based on the ranking from each of
the scoring metrics. In addition, to show the scoring metrics are not unlearning algorithm dependent,
we included four well-known unlearning methods to show the alignment of outcomes. Ideally,
proposed scoring metrics should identify “easy” and “hard” samples correctly from the training
dataset such that ”easy” samples are indeed likely to be successfully unlearned, while the ”hard”
samples may cause either 1) negative impact on models’ performance on test set or 2) failure in
terms of removing influence of the removal samples.

Table 1 shows the quantitative experimental results, where in addition to the proposed scoring func-
tions, we included “Predictive Confidence” (PC) as a handy baseline scoring method (Liu et al.,
2023b; Chen et al., 2023). We note that the most successful unlearning method for ensuring guaran-
teed unlearning is Grad Ascent (GA) in our experiment. The best scoring metric for detecting both
easy and difficult datapoints to be unlearned is EMSKSD, which incorporates both the closeness to
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Figure 2: Unlearning accuracy of the remaining, forget, and test subsets for the top 5 easiest and most
difficult-to-unlearn datapoints, as recommended by ”EMSKSD,” including [0, 100, 700] similar
samples, evaluated across GradAscent, FineTuning, and Retraining methods.

the decision boundary and the strength of similarity in ranking datapoints. When zooming in the
unlearning results on the forget set, it is clear that unlearning the easy datapoints results in large
predictive error on them. In contrast, unlearning difficult datapoints either jeopardizes the models’
performance or results in unsuccessful unlearning (no predictive difference). When zooming in the
unlearning results on the test set, we note there is no distinguishable difference between easy and
hard samples in terms of impacting models’ generalization, indicating that measuring the models’
generalization on a test set will not directly reflecting the effectiveness of unlearning. Indeed, we
note the test set can contain data points that are similar to the targeted forget data points such that
failing to make correct prediction on them will also reduce the overall accuracy.

5.3 SCORING DIFFICULTY OF UNLEARNING IN TERMS OF REMOVAL EXPANSION

To further validate the effectiveness of the difficulty scoring metrics, we conducted experiments to
demonstrate the differences between unlearning easy and difficult samples in the context of guaran-
teed unlearning. Specifically, in these experiments, we extended the unlearning operation to similar
samples (based on the Stein kernel value) such that the sample have higher chance to be successfully
unlearned. Intuitively, a data sample that requires fewer similar samples (smaller expanded removal
set) to be successfully unlearned is considered easier to unlearn, which serves as ground-truth (re-
flecting feasibility factor described in Section 3: Size of Unlearning Expansion). Figure 2 shows the
results; The left-hand side of the figures show the results of “easy” samples ranked by EMSKSD,
whereas the right-hand side highlights ”difficult” samples ranked by the same scoring metric. From
the figure, we observed that the “easy” samples can often be successfully unlearned without much
removal set expansion. In contrast, the “difficult” samples are either requiring larger removal set
expansion or destroying model’s generalization (as shown in green bar). The observation reflects
our intuition of unlearning “easy” and “difficult” samples in practice, further showing the scoring
metrics proposed providing correct guidance on distinguishing samples’ difficulty of unlearning.

A side knowledge we learned from this experiment is that monotonically expanding the removal set
is not necessarily helpful in terms of increasing the chance of successful unlearning; the operation
may break the model with larger set size more than needed.

5.4 SCORING DIFFICULTY OF UNLEARNING IN CONTEXT OF MEMBERSHIP ATTACK

Table 3 presents the MIA-efficacy (Liu et al., 2024b) of unlearning for each of the sorting metrics.
The MIA-efficacy reflect the effectiveness of unlearning, where higher MIA-efficiency implies less
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Table 2: Average loss of the forget set, and test data for the top five easiest (Easy) and five most
difficult-to-unlearn samples (Difficult), as recommended by each scoring metric, after unlearning.
For the forget set, a higher value shows a better unlearning outcome, whereas, for the test set, a
lower value shows a better unlearning outcome. Statistics are given in the Appendix 9

Forget Test

Dataset Method GradAsct FineTune Retrain GradAsct FineTune Retrain
Easy Difficult Easy Difficult Easy Easy Difficult Easy Difficult Easy Difficult

MNIST

PC 0.00 0.00 0.00 0.00 0.00 0.03 0.03 0.00 0.04 0.03 0.03
MKSD 1.37 0.00 0.07 0.00 0.08 0.03 0.03 0.04 0.04 0.03 0.03

MSKSD 4.64 0.01 1.08 0.10 1.10 0.04 0.03 0.04 0.04 0.03 0.03
SSN 4.73 0.00 1.68 0.00 1.09 0.04 0.03 0.04 0.04 0.03 0.03

EMSKSD 3.05 0.00 2.20 0.00 2.13 0.04 0.03 0.04 0.04 0.03 0.03

CIFAR10

PC 5.13 5.22 0.00 0.00 0.00 5.99 5.19 0.49 0.52 0.48 0.46
MKSD 4.80 1.40 0.04 0.01 0.06 11.10 6.13 0.53 0.61 0.46 0.48

MSKSD 5.64 4.07 0.01 0.00 1.27 3.69 7.69 0.49 0.49 0.49 0.47
SSN 5.51 5.21 0.34 0.00 0.46 3.47 6.49 0.54 0.55 0.49 0.48

EMSKSD 5.48 5.79 1.10 0.00 0.57 2.89 8.06 0.53 0.55 0.48 0.47

SVHN

PC 3.75 3.92 0.00 0.00 0.19 2.15 3.06 0.18 0.18 0.18 0.18
MKSD 5.12 1.71 0.00 0.00 0.00 9.36 2.81 0.17 0.18 0.18 0.18

MSKSD 4.51 2.33 0.05 0.00 1.53 1.74 2.39 0.18 0.17 0.18 0.18
SSN 3.80 4.66 1.59 0.00 5.41 2.25 2.18 0.18 0.18 0.17 0.18

EMSKSD 3.41 4.25 2.70 0.00 11.07 1.31 2.22 0.18 0.18 0.18 0.18

Table 3: Average Memebrship Inference Attack Efficacy (MIA-efficacy) for top five easiest and five
most difficult to unlearn recommended by each scoring metric. Higher MIA shows better unlearning
outcome.

Dataset Method Easy Difficult
GradAsct FineTune Retrain GradAsct FineTune Retrain

MNIST

PC 0.00 0.00 0.00 0.00 0.00 0.00
MKSD 0.40 0.00 0.00 0.00 0.00 0.00
MSKSD 1.00 0.40 0.60 0.00 0.00 0.00
SSN 0.60 0.60 0.40 0.00 0.00 0.00
EMSKSD 1.00 0.40 0.40 0.00 0.00 0.00

CIFAR10

PC 1.00 0.00 0.00 1.00 0.00 0.00
MKSD 0.80 0.00 0.00 0.20 0.00 0.20
MSKSD 1.00 0.00 0.40 0.80 0.00 0.00
SSN 1.00 0.20 0.20 1.00 0.00 0.00
EMSKSD 1.00 0.20 0.40 1.00 0.00 0.20

SVHN

PC 0.80 0.00 0.00 0.80 0.00 0.00
MKSD 0.00 0.00 0.20 0.80 0.00 0.00
MSKSD 1.00 0.00 0.60 1.00 0.00 0.00
SSN 1.00 0.20 0.80 1.00 0.00 0.00
EMSKSD 1.00 0.80 1.00 1.00 0.00 0.00

information about samples unlearned Df , indicating more successful unlearning outcome. It worth
noting that using MIA as evaluation metric in the machine (un)learning literature is still controversial
given the subtle metric designs (see (Kong et al., 2023; Murakonda et al., 2021)). We conduct
this experiment only to see if there is a rough positive alignment between MIA-efficiency score
and the unlearning difficulty score we proposed. From the MIA results, we note that EMSKSD
provides better guidance on identifying “easy” and ”hard” samples for unlearning in the context
of membership attack. Specifically, the “easy” samples identified by EMSKSD consistently show
higher MIA-efficacy, whereas “difficulty” samples often with lower MIE-efficacy.

5.5 EXPERIMENTAL RESULTS REVISIT

Now, we revisit the research questions that we aimed to answer in our empirical study and evaluate
if KSD-based scoring metrics can provide guidance on the difficulty of machine unlearning.

Q1:The accuracy on the forget set reveal that, for certain unlearning algorithms, the model still
correctly predicts the class label of unlearned datapoints, despite that the model’s error on those
particular datapoints has increased. The comparison between the unlearned model’s error between
difficult and easy datapoints shows a significant gap, indicating that the model struggles more with
difficult-to-unlearn samples.

Q2: EMSKSD demonstrates stronger predictive alignment with the actual unlearning outcome, as
evidenced by its higher error on the forget set for easy-to-unlearn samples. The key strength of this

9
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sorting heuristic is its ability to combine “predictive confidence” with the “strength of correlation to
similar samples” based on the model’s estimated distribution. This combination allows EMSKSD
to more accurately identify samples that can be effectively unlearned.

Q3: GradAscent proved to be the most effective algorithm for tackling difficult data points, yet it
faced challenges in fully dissociating the influence of these points, even when large numbers of simi-
lar data points were also unlearned. This method often either compromised the model’s performance
or failed to significantly improve key unlearning metrics, such as predictive confidence, as shown
in Figure 2 and Tables 3. A critical factor is determining the threshold of tolerable performance
degradation. If the user can tolerate a certain level of reduction in model performance, it may still
be possible to unlearn difficult data points.

5.6 UNLEARNING FEASIBILITY: INSIGHTS FROM EXPERIMENTS AND KSD SCORING

The systematic evaluation of unlearning performance for ”easy” and ”difficult” samples (recom-
mended by each KSD-based scores 4.2) are tied to the six unlearning difficulty factors 3. For each
significant factor affecting the feasibility of unlearning, we establish its relationship with the exper-
imental results.

To evaluate the ”Performance Shift”, we examined the impact of unlearning on the predictive accu-
racy and loss of the unlearned models. For an easy sample, most unlearning algorithms achieved
zero accuracy on the forget set SF (Figure 2). For easy sample the predictive accuracy of the model
on the remaining and test subsets remained close to that of the original model (Table 1); and sur-
prisingly unlearning by retraining could achieve 0% accuracy on the forget set. For difficult data,
the performance of the models was significantly compromised. This was evident from a nearly 50%
reduction in accuracy on the test data for CIFAR10. Additionally, unlearning was often unsuccess-
ful, as there was no observable change in the model’s accuracy on the forget set, indicating that the
unlearning process had no measurable effect. We also have provided ”Unlearning Loss” in Table
2. The unlearned models exhibited a significant increase on forget error’s which in combination
with achieving 0% accuracy on the unlearned sampled, signifies the unlearning was successful and
effective for removing the information of ”easy” samples from unlearned model. In contrast, the
unlearning of ”Difficult” datapoints had minimal to no impact on the model’s error on the forget
set, indicating that these datapoints were more resistant to unlearning. Furthermore, the “Resistance
to Membership Inference Attack (MIA)” for ”easy” samples identified by ”EMSKSD” consistently
show higher MIA-efficacy, whereas ”difficult” samples often with lower MIA-efficacy. This obser-
vation suggests the algorithm could still identify the unlearned samples as part of the training set,
highlighting the failure of the unlearning process for ”Difficult” points. The analysis of the rest of
the factors is given in Appendix A.4, A.5.

6 CONCLUSION

In this paper, we examined the difficulty of machine unlearning in response to the increasing demand
for this process. We summarized the six unlearning feasibility factors that can assess the difficulty
of unlearning individual data points, including as size of unlearning expansion, tolerance of per-
formance shift, resistance to membership attack, etc. With the summarized unlearning feasibility
factors, we proposed a set of scoring metrics to measure the unlearning difficulty based on Kernel-
ized Stein Discrepancy. Our empirical evaluation shows the proposed scoring metrics can provide
guidance on correctly identifying easy and difficult samples ahead of unlearning operation, which is
potentially useful in practice for supporting decision making.
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Table 4: This table details the datasets and models used in evaluating unlearning algorithms, spec-
ifying the models applied to each dataset, including the number of layers, batch sizes, number of
classes, learning rates, and sample sizes. The information presented provides insight into the com-
putational frameworks employed to analyze MNIST, CIFAR-10, and SVHN datasets, demonstrating
the diversity of approaches used in the study.

Dataset Model Layers Batch Size Number of Classes Learning Rate Samples

MNIST 2-layer CNN 2 150 10 0.001 54000
CIFAR10 ResNet18 18 150 10 0.01 45000
SVHN ResNet18 18 64 10 0.001 58000

A APPENDIX

A.1 DATASETS AND UNLEARNING ALGORITHM PARAMETERS

The summary of each model, training parameters and dataset associated for to that model is given
in this table.

For the unlearning processes conducted by GradAsct we have introduced a controlling factor a.k.a
”Overfitting Threshold” (See Table. 5). The overfitting threshold is a mechanism is only applied
on GradAsct during the unlearning process. Without this control, GradAsct can lead to a significant
increase in the error rate, rendering the results invalid. To address this issue, we define a cap on the
model’s error for the forget set, referred to as the ”overfitting threshold”. This threshold prevents the
unlearning loss from becoming excessively high, which mitigates the risk of distorting the unlearned
model. In particular, unlearning a single data point with GradAsct requires careful control to ensure
the process is effective. By applying this threshold cap, we aim to prevent excessive error growth
while preserving the overall quality of the model.

Table 5: Reporting the parameters of each unlearning approximation algorithm for each dataset.

Dataset Algorithm Parameters

MNIST

Fine Tuning LR=0.1, Epochs=10
Gradient Ascent overfit threshold=5.0, LR=1e-4, Epochs=50
Fisher Forgetting alpha=1e-5
Retraining LR=0.1, Epochs=10

CIFAR10

Fine Tuning LR=0.01, Epochs=15
Gradient Ascent overfit threshold=5.0, LR=1e-4, Epochs=50
Fisher Forgetting alpha=6e-8
Retraining LR=0.01, Epochs=100

SVHN

Fine Tuning LR=0.01, Epochs=15
Gradient Ascent overfit threshold=5.0, LR=1e-4, Epochs=50
Fisher Forgetting alpha=6e-8
Retraining LR=0.01, Epochs=100

A.2 COMPUTATION EFFICIENCY

To ensure the computational efficiency of KSD-based scoring metrics, we performed both a detailed
analytical evaluation of their computational complexity and experimental assessments through wall-
clock time measurements. The analytical evaluation focuses on the time complexity of the KSD
score. For each datapoint, metrics such as MKSD, MSKSD, and EMSKSD are computed over all
training data n and rely on the Stein Kernel function (Equation 4). The computation of the Stein
Kernel is bounded by the term (k(a, b) · ∇a logPθ(a) · ∇b logPθ(b). A separate analysis of these
components reveals the following complexities:

1. The computation of k(a, b) has a constant time complexity of O(C).
2. The computation of ∇a logPθ(a) is influenced by the data dimension (d) and the network

depth (h), resulting in a complexity of O(d× h).
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As a result, the Stein Kernel function has a complexity of O(C × (d × h)2). Since the MKSD,
MSKSD, and EMSKSD metrics iterate over all data points (n), the overall time complexity of these
metrics is bounded by O(n× C × (d× h)2). For the SSN metric, the complexity is determined by
the computation of ∇aPθ, which is bounded by O(g), where g = O(d × h). Later, to empirically
evaluate computational efficiency, we conducted wall-clock time measurements on a subset of the
training data (n′ < n) and reported the results in Table 6. This empirical assessment provides
practical insights into the real-time performance of these metrics.

Table 6: Empirical evaluation of computational efficiency for KSD-based scoring metrics across
different datasets and network architectures.

Dataset Network Network Depth (h) Data Dimension (d) Instances (n’) Time (n’ × g2)
MNIST CNN 4 1× 28× 28 100 33.20
CIFAR10 ResNet18 18 3× 32× 32 128 102.81
SVHN ResNet18 18 3× 32× 32 150 152.84

Additionally the KSD scoring metrics can be efficiently calculated on a personal computer and
do not require expensive hardware resources. Details of the system on which we computed all
of our scoring metrics are given below. Operating system: Ubuntu 22.04 LTS, Hardware Model:
ASUSTeK COMPUTER INC. PRIME Z390-A, CPU: Intel® Core™ i7-9700K × 8, Memory: 16
GB, GPU: NVIDIA TITAN Xp.

A.3 EASY VS. DIFFICULT STEIN KERNEL

Investigating the stein kernel similarity help us to understand the difference of stein kernel correla-
tion for a simple versus difficult to unlearn sample. For easy samples, the Stein Kernel reflects the
idea of each scoring metric, for example, MKSD averages the stein kernel of each datapoint with the
rest of training samples, therefore there are a sharp decline in the stein kernel. MSKSD values the
strength of similarity rather the number of similar samples, therefore the most difficult sample has
a very strong correlation to small number of training data and then a very sparse and sharp decline
in the stein kernel values. SSN has a high similarity to very limited samples and then a large and
sharp gap in similarity. Finally the EMSKSD combines the predictive confidence and the similarity
strength to rest of data. as the predictive confidence is involved it makes it harder to interpret the
Stein Kernels, but it is obvious that the difficult sample has a sharper decline in the Stein Kernel

From comparing the images shown in Figure 1 and the 3, the most difficult samples from CIFAR10
and SVHN selected by every scoring metric have a strong with gradual decline in Stein Kernel
Similarity to their corresponding class’s data and then a sudden large gap with the rest of the classes,
this can help us to understand that the most difficult samples are are strongly similar with the samples
within their class, but farther from the other classes. Also this can indicate that both of these datasets,
the shape of samples from different classes can be very distinctive. However, For MNIST, even the
most difficult the stein kernel similarity reduces but still it includes samples from the same or other
classes that can potentially resemble the data. From this figure, the most difficutl to unlearn sample
is from class ”5”. For this sample as the Stein kernel reduces it includes samples from the class ”5,
9, 6” which can give us the intuition that these are samples was either closely resembles ”5” and
could be misclassied.

This comparison also shows the diversity of classes in the most similar samples for an easy vs
difficult. Larger diversity in similar sample indicate the higher uncertainly in the prediction of that
sample / or closeness to the decision boundaries of other samles / misclassification of that sample. As
the SSN and EMSKSD consider consider the deicison boundary in theri ranking, the easies samples
shows more diversity in the most similar samples -

-

A.4 FURTHER DISCUSSION

Among the unlearning algorithms, FineTuning and Retraining are heavily influenced by the remain-
ing data, making the unlearning of a single data point particularly challenging. This challenge is
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(a) Samples are easy to be unlearned (b) Samples are difficult to be unlearned

Figure 3: The stein kernel of easiest / most difficult samples recommended by scoring metrics
with the rest of training data. The colors indicate the class label of each training data. The stein
kernel indicates how strongly each two data are correlated conditioned on the approximated data
distribution by model.

especially pronounced in FineTuning, as it requires adjusting the model’s parameters and decision
boundaries by removing a data point whose influence is still embedded in the model’s weights. Sig-
nificantly shifting the decision boundary to change a sample’s class label often requires multiple
unlearning steps. In contrast, retraining begins with a model that has no prior knowledge of the
data point (particularly those near the decision boundary and less correlated with similar samples),
leading to a learned decision boundary that differs from the original model. This distinction can
be validated by comparing the error values of the forget set for easily unlearned data points across
the FineTune and Retrain algorithms. In nearly all datasets, retraining results in higher error values
compared to fine-tuning, further highlighting the greater difficulty of unlearning in the fine-tuning
process.

One notable observation is that the accuracy of models in estimating the training data distribution
influences the scoring metric and the selection of data points for unlearning. The scoring metric,
which is based on the Stein Kernel, is significantly shaped by the model’s estimation of the data
distribution. For example, the ResNet-18 model achieves 86% predictive accuracy on the CIFAR-10
test set, which is relatively lower compared to models trained on datasets such as SVHN and MNIST,
both of which reach 99% training accuracy. Consequently, when the scoring metric suggests data
points for unlearning in datasets like CIFAR-10, the model demonstrates better unlearning capacity.
This improvement can be attributed to the model’s more accurate learning of the data distribution
and the decision boundaries between classes

A.5 LAYERWISE DISTANCE BETWEEN UNLEARNED AND ORIGINAL MODELS

The layer-wise distance between the original model and the unlearned model is shown in Table 7
. When evaluating the impact of unlearning on model performance, GradAscent demonstrates the
smallest distance in relation to the unlearned model, despite being the most effective approach for
unlearning. This suggests that although it alters the model’s parameters minimally, it still achieves
significant unlearning success.

Among the scoring metrics, EMSKSD exhibits the smallest distance on the model’s parameters,
indicating that it causes less disruption during unlearning. On the other hand, SSN produces the
largest gap, as anticipated. This is because SSN tends to select data points near the decision bound-
ary, which typically have larger gradient magnitudes, thereby increasing the distance between the
original and unlearned models.
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Table 7: Average LayerWise distance between between the original and unlearned model for the top
five easiest-to-unlearn and most difficult-to-unlearn samples recommended by each scoring metric.

Dataset Sorting Algorithm Easy Difficult
GradAsct Fisher Retrain FineTune GradAsct Fisher Retrain FineTune

MNIST

PC 0.00026 0.70335 0.80291 1.03954 0.00002 0.72223 0.80508 1.06149
MKSD 0.02693 0.72219 0.80590 1.03740 0.00013 0.70335 0.81196 1.07146

MSKSD 0.00931 0.70330 0.80968 1.04996 0.00110 0.70335 0.80522 1.05247
SSN 0.01703 0.72222 0.80066 1.07861 0.00102 0.72015 0.80234 1.08161

EMSKSD 0.00973 0.72219 0.80945 1.05923 0.00007 0.70333 0.81635 1.06973

CIFAR10

PC 0.01598 0.21185 3.95690 0.39535 0.01161 0.21377 3.76575 0.39579
MKSD 0.01691 0.21433 3.86180 0.39578 0.01532 0.21177 3.82455 0.39600

MSKSD 0.01816 0.21177 3.93015 0.39559 0.01592 0.21378 3.64952 0.39546
SSN 0.01513 0.21378 3.91489 0.39546 0.01214 0.21185 4.19025 0.39547

EMSKSD 0.01513 0.21432 3.95492 0.39484 0.01561 0.21176 3.88614 0.38209

SVHN

PC 0.00313 0.36909 5.3614 0.51370 0.00335 0.36857 4.40210 0.51758
MKSD 0.00332 0.27947 4.56369 0.51639 0.00298 0.28300 4.62549 0.51768

MSKSD 0.00328 0.28304 4.78339 0.51309 0.00296 0.28299 4.43382 0.51392
SSN 0.00346 0.27953 4.60636 0.51685 0.00326 0.27947 4.22545 0.51624

EMSKSD 0.00270 0.27947 4.43430 0.50881 0.00347 0.28299 4.41264 0.51472

A.6 UNLEARNING ACCURACY

The table presents a comprehensive statistical analysis of unlearning accuracy. It highlights how
the unlearning accuracy of the remaining subset is influenced by whether a simple or difficult sam-
ple is being unlearned. When comparing the Gradient Ascent (GradAsct) for the easiest samples
to unlearn, the remaining accuracy remains close to the model’s original performance. However,
unlearning more challenging samples significantly compromises the model’s performance.

Table 8: Average unlearning accuracy and standard deviation of the forget, and test subsets for the
top five easiest and five most difficult-to-unlearn datapoints, as recommended by each scoring metric
evaluated across GradAscent, FineTuning, Fisher Forgetting (Fisher), and Retraining methods.

Easy
GradAsct FineTune Fisher Retrain

Retain Forget Test Retain Forget Test Retain Forget Test Retain Forget Test

MNIST (Easy)

MKSD 1.00 ± 0.00 0.60 ± 0.55 0.99 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.94 ± 0.02 0.60 ± 0.55 0.93 ± 0.02 0.99 ± 0.00 1.00 ± 0.00 0.99 ± 0.00
MSKSD 1.00 ± 0.00 0.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.60 ± 0.55 0.99 ± 0.00 0.94 ± 0.02 0.40 ± 0.55 0.93 ± 0.02 0.99 ± 0.00 0.40 ± 0.55 0.99 ± 0.00
SSN 0.99 ± 0.01 0.40 ± 0.55 0.99 ± 0.01 0.99 ± 0.00 0.40 ± 0.55 0.99 ± 0.00 0.94 ± 0.02 0.40 ± 0.55 0.93 ± 0.02 0.99 ± 0.00 0.60 ± 0.55 0.99 ± 0.00
EMSKSD 0.99 ± 0.00 0.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.60 ± 0.55 0.99 ± 0.00 0.94 ± 0.02 0.40 ± 0.55 0.93 ± 0.02 0.99 ± 0.00 0.60 ± 0.55 0.99 ± 0.00
PC 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.96 ± 0.01 1.00 ± 0.00 0.95 ± 0.01 0.99 ± 0.00 1.00 ± 0.00 0.99 ± 0.00

CIFAR10 (Easy)

MKSD 0.43 ± 0.27 0.00 ± 0.00 0.37 ± 0.22 1.00 ± 0.00 1.00 ± 0.00 0.85 ± 0.02 0.97 ± 0.02 1.00 ± 0.00 0.78 ± 0.02 1.00 ± 0.00 1.00 ± 0.00 0.86 ± 0.00
MSKSD 0.88 ± 0.10 0.00 ± 0.00 0.70 ± 0.07 1.00 ± 0.00 1.00 ± 0.00 0.86 ± 0.00 0.97 ± 0.02 1.00 ± 0.00 0.78 ± 0.02 1.00 ± 0.00 0.60 ± 0.55 0.86 ± 0.01
SSN 0.89 ± 0.10 0.00 ± 0.00 0.71 ± 0.08 1.00 ± 0.00 0.80 ± 0.45 0.85 ± 0.02 0.97 ± 0.02 1.00 ± 0.00 0.78 ± 0.02 1.00 ± 0.00 0.80 ± 0.45 0.86 ± 0.00
EMSKSD 0.91 ± 0.11 0.00 ± 0.00 0.73 ± 0.08 1.00 ± 0.00 0.80 ± 0.45 0.85 ± 0.01 0.97 ± 0.02 1.00 ± 0.00 0.78 ± 0.02 1.00 ± 0.00 0.60 ± 0.55 0.86 ± 0.00
PC 0.71 ± 0.12 0.00 ± 0.00 0.59 ± 0.09 1.00 ± 0.00 1.00 ± 0.00 0.86 ± 0.00 0.98 ± 0.01 1.00 ± 0.00 0.79 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 0.86 ± 0.01

SVHN (Easy)

MKSD 0.42 ± 0.09 0.00 ± 0.00 0.45 ± 0.08 1.00 ± 0.00 1.00 ± 0.00 0.96 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.95 ± 0.00 1.00 ± 0.00 0.80 ± 0.45 0.96 ± 0.00
MSKSD 0.85 ± 0.08 0.00 ± 0.00 0.81 ± 0.07 1.00 ± 0.00 1.00 ± 0.00 0.96 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.95 ± 0.00 1.00 ± 0.00 0.40 ± 0.55 0.96 ± 0.00
SSN 0.83 ± 0.13 0.00 ± 0.00 0.78 ± 0.11 1.00 ± 0.00 0.80 ± 0.45 0.96 ± 0.00 1.00 ± 0.00 0.80 ± 0.45 0.95 ± 0.00 1.00 ± 0.00 0.20 ± 0.45 0.96 ± 0.00
EMSKSD 0.94 ± 0.03 0.00 ± 0.00 0.89 ± 0.04 1.00 ± 0.00 0.20 ± 0.45 0.96 ± 0.00 1.00 ± 0.00 0.80 ± 0.45 0.95 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 0.96 ± 0.00
PC 0.86 ± 0.04 0.20 ± 0.45 0.82 ± 0.04 1.00 ± 0.00 1.00 ± 0.00 0.96 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.95 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.95 ± 0.00

Difficult

MNIST (Difficult)

MKSD 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.94 ± 0.02 1.00 ± 0.00 0.93 ± 0.02 0.99 ± 0.00 1.00 ± 0.00 0.99 ± 0.00
MSKSD 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.94 ± 0.02 1.00 ± 0.00 0.93 ± 0.02 0.99 ± 0.00 1.00 ± 0.00 0.99 ± 0.00
SSN 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.94 ± 0.02 1.00 ± 0.00 0.93 ± 0.02 0.99 ± 0.00 1.00 ± 0.00 0.99 ± 0.00
EMSKSD 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.94 ± 0.02 1.00 ± 0.00 0.93 ± 0.02 0.99 ± 0.00 1.00 ± 0.00 0.99 ± 0.00
PC 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.96 ± 0.01 1.00 ± 0.00 0.95 ± 0.01 0.99 ± 0.00 1.00 ± 0.00 0.99 ± 0.00

CIFAR10 (Difficult)

MKSD 0.58 ± 0.11 0.80 ± 0.45 0.48 ± 0.08 0.98 ± 0.03 1.00 ± 0.00 0.83 ± 0.03 0.97 ± 0.02 1.00 ± 0.00 0.78 ± 0.02 1.00 ± 0.00 0.80 ± 0.45 0.86 ± 0.00
MSKSD 0.58 ± 0.10 0.20 ± 0.45 0.49 ± 0.08 1.00 ± 0.00 1.00 ± 0.00 0.86 ± 0.00 0.97 ± 0.02 0.80 ± 0.45 0.78 ± 0.02 1.00 ± 0.00 1.00 ± 0.00 0.86 ± 0.00
SSN 0.68 ± 0.14 0.00 ± 0.00 0.54 ± 0.10 0.99 ± 0.02 1.00 ± 0.00 0.84 ± 0.03 0.97 ± 0.02 1.00 ± 0.00 0.78 ± 0.02 1.00 ± 0.00 1.00 ± 0.00 0.86 ± 0.01
EMSKSD 0.64 ± 0.24 0.00 ± 0.00 0.53 ± 0.18 0.97 ± 0.07 1.00 ± 0.00 0.83 ± 0.05 0.97 ± 0.02 1.00 ± 0.00 0.78 ± 0.02 1.00 ± 0.00 0.80 ± 0.45 0.86 ± 0.00
PC 0.77 ± 0.10 0.00 ± 0.00 0.62 ± 0.08 1.00 ± 0.00 1.00 ± 0.00 0.85 ± 0.01 0.98 ± 0.01 1.00 ± 0.00 0.79 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 0.86 ± 0.00

SVHN (Difficult)

MKSD 0.79 ± 0.07 0.20 ± 0.45 0.74 ± 0.07 1.00 ± 0.00 1.00 ± 0.00 0.96 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.95 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.96 ± 0.00
MSKSD 0.81 ± 0.10 0.00 ± 0.00 0.75 ± 0.10 1.00 ± 0.00 1.00 ± 0.00 0.96 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.95 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.96 ± 0.00
SSN 0.88 ± 0.03 0.00 ± 0.00 0.84 ± 0.04 1.00 ± 0.00 1.00 ± 0.00 0.96 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.95 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.96 ± 0.00
EMSKSD 0.86 ± 0.04 0.00 ± 0.00 0.81 ± 0.04 1.00 ± 0.00 1.00 ± 0.00 0.96 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.95 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.96 ± 0.00
PC 0.79 ± 0.10 0.00 ± 0.00 0.76 ± 0.09 1.00 ± 0.00 1.00 ± 0.00 0.95 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.95 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.96 ± 0.00

A.7 UNLEARNING LOSS

The unlearned models loss on the forget and test subsets are presented in Table 9), where EMSKSD
consistently identifies datapoints with the highest unlearning error. A noteworthy observation from
comparing accuracy and loss is that for the easy-to-unlearn cases, the unlearning process appears
to have minimal impact on the model’s accuracy on the forget set 8. However, including unlearned
models’ loss analysis of the loss table reveals that, despite the sustained accuracy, the unlearning
process increases the models’ loss on the forget set for easy-to-unlearn datapoints. This suggests
that while the model can still predict the forget datapoints, the error threshold for flipping a data-
point’s label remains high. In contrast, for difficult-to-unlearn samples, unlearning has minimal to
no impact on the model’s error on the forget set, indicating that these datapoints are more resistant
to unlearning.
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Figure 4: Averaged unlearning accuracy of the remaining, forget, and test subsets for the top five
easiest and five most difficult-to-unlearn datapoints, as recommended by ”MKSD,” including [0,
100, 700] similar samples, evaluated across GradAscent, FineTuning, Fisher Forgetting (Fisher),
and Retraining methods.
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Figure 5: Averaged unlearning accuracy of the remaining, forget, and test subsets for the top 5
easiest and most difficult-to-unlearn datapoints, as recommended by ”MSKSD,” including [0, 100,
700] similar samples, evaluated across GradAscent, FineTuning, Fisher Forgetting (Fisher), and
Retraining methods.

A.8 MEMBERSHIP INFERENCE ATTACK
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Figure 6: Averaged unlearning accuracy of the remaining, forget, and test subsets for the top 5 eas-
iest and most difficult-to-unlearn datapoints, as recommended by ”SSN,” including [0, 100, 700]
similar samples, evaluated across GradAscent, FineTuning, Fisher Forgetting (Fisher), and Retrain-
ing methods.

Table 9: Averaged unlearned model loss of the forget, and test subsets for the top five easiest and
five most difficult-to-unlearn datapoints, as recommended by each scoring metric evaluated across
GradAscent, FineTuning, Fisher Forgetting (Fisher), and Retraining methods.

Easy
GradAsct FineTune Fisher Retrain

Retain Forget Test Retain Forget Test Retain Forget Test Retain Forget Test

Blob

MKSD 0.03 ± 0.01 1.44 ± 0.39 0.04 ± 0.01 0.01 ± 0.00 0.29 ± 0.12 0.01 ± 0.00 0.09 ± 0.05 1.20 ± 0.87 0.08 ± 0.05 0.01 ± 0.00 0.37 ± 0.14 0.01 ± 0.00
MSKSD 0.02 ± 0.00 1.34 ± 0.22 0.02 ± 0.00 0.01 ± 0.00 0.59 ± 0.07 0.01 ± 0.00 0.08 ± 0.05 1.24 ± 0.76 0.08 ± 0.05 0.01 ± 0.00 0.70 ± 0.11 0.01 ± 0.00
SSN 0.02 ± 0.00 1.34 ± 0.22 0.02 ± 0.00 0.01 ± 0.00 0.59 ± 0.07 0.01 ± 0.00 0.08 ± 0.05 1.24 ± 0.76 0.08 ± 0.05 0.01 ± 0.00 0.70 ± 0.11 0.01 ± 0.00
EMSKSD 0.02 ± 0.01 1.36 ± 0.33 0.03 ± 0.01 0.01 ± 0.00 0.44 ± 0.10 0.01 ± 0.00 0.09 ± 0.05 1.20 ± 0.67 0.08 ± 0.05 0.01 ± 0.00 0.53 ± 0.11 0.01 ± 0.00
PC 0.02 ± 0.01 1.36 ± 0.33 0.03 ± 0.01 0.01 ± 0.00 0.44 ± 0.08 0.01 ± 0.00 0.08 ± 0.06 1.69 ± 2.24 0.08 ± 0.07 0.01 ± 0.00 0.50 ± 0.09 0.01 ± 0.00

MNIST

MKSD 0.01 ± 0.00 1.37 ± 1.92 0.03 ± 0.00 0.02 ± 0.01 0.07 ± 0.16 0.04 ± 0.01 0.21 ± 0.07 1.37 ± 1.89 0.23 ± 0.06 0.02 ± 0.00 0.08 ± 0.14 0.03 ± 0.00
MSKSD 0.02 ± 0.00 4.64 ± 2.32 0.04 ± 0.01 0.03 ± 0.00 1.08 ± 0.97 0.04 ± 0.01 0.21 ± 0.07 5.95 ± 6.77 0.23 ± 0.06 0.02 ± 0.00 1.10 ± 1.00 0.03 ± 0.00
SSN 0.02 ± 0.02 4.73 ± 4.84 0.04 ± 0.02 0.02 ± 0.00 1.68 ± 1.69 0.04 ± 0.00 0.21 ± 0.07 3.60 ± 3.44 0.23 ± 0.06 0.02 ± 0.00 1.09 ± 1.45 0.03 ± 0.00
EMSKSD 0.02 ± 0.01 3.05 ± 1.09 0.04 ± 0.01 0.03 ± 0.00 2.20 ± 3.26 0.04 ± 0.00 0.21 ± 0.07 2.77 ± 4.27 0.23 ± 0.06 0.02 ± 0.00 2.13 ± 2.98 0.03 ± 0.00
PC 0.01 ± 0.00 0.00 ± 0.00 0.03 ± 0.00 0.03 ± 0.00 0.00 ± 0.00 0.04 ± 0.00 0.16 ± 0.06 0.00 ± 0.00 0.19 ± 0.06 0.02 ± 0.00 0.00 ± 0.00 0.03 ± 0.00

CIFAR10

MKSD 9.96 ± 8.52 4.80 ± 1.92 11.10 ± 7.79 0.01 ± 0.02 0.04 ± 0.08 0.53 ± 0.10 0.15 ± 0.04 0.02 ± 0.02 0.68 ± 0.07 0.00 ± 0.00 0.06 ± 0.11 0.46 ± 0.01
MSKSD 1.08 ± 1.22 5.64 ± 0.19 3.69 ± 1.57 0.00 ± 0.00 0.01 ± 0.01 0.49 ± 0.00 0.15 ± 0.04 0.29 ± 0.26 0.68 ± 0.07 0.00 ± 0.00 1.27 ± 1.42 0.49 ± 0.03
SSN 0.98 ± 1.26 5.51 ± 0.24 3.47 ± 1.60 0.01 ± 0.02 0.34 ± 0.76 0.54 ± 0.12 0.15 ± 0.04 0.23 ± 0.14 0.68 ± 0.07 0.00 ± 0.00 0.46 ± 0.57 0.49 ± 0.04
EMSKSD 0.75 ± 1.08 5.48 ± 0.28 2.89 ± 1.37 0.00 ± 0.01 1.10 ± 2.45 0.53 ± 0.08 0.15 ± 0.04 0.12 ± 0.06 0.68 ± 0.07 0.00 ± 0.00 0.57 ± 0.80 0.48 ± 0.04
PC 3.38 ± 2.09 5.13 ± 1.89 5.99 ± 2.10 0.00 ± 0.00 0.00 ± 0.00 0.49 ± 0.00 0.13 ± 0.02 0.04 ± 0.04 0.66 ± 0.02 0.00 ± 0.00 0.00 ± 0.00 0.48 ± 0.02

SVHN

MKSD 10.29 ± 1.96 5.12 ± 0.14 9.36 ± 1.77 0.00 ± 0.00 0.00 ± 0.01 0.17 ± 0.00 0.02 ± 0.00 0.02 ± 0.02 0.19 ± 0.00 0.00 ± 0.00 0.20 ± 0.44 0.18 ± 0.00
MSKSD 1.04 ± 0.81 4.51 ± 0.32 1.74 ± 0.84 0.00 ± 0.00 0.05 ± 0.05 0.18 ± 0.01 0.02 ± 0.00 0.17 ± 0.14 0.19 ± 0.00 0.00 ± 0.00 1.55 ± 1.51 0.18 ± 0.00
SSN 1.53 ± 1.40 3.80 ± 0.79 2.25 ± 1.30 0.00 ± 0.00 1.59 ± 3.20 0.18 ± 0.00 0.02 ± 0.00 0.76 ± 1.08 0.19 ± 0.00 0.00 ± 0.00 5.63 ± 6.38 0.18 ± 0.00
EMSKSD 0.42 ± 0.17 3.41 ± 0.61 1.31 ± 0.23 0.00 ± 0.00 2.70 ± 2.64 0.18 ± 0.01 0.02 ± 0.00 1.12 ± 0.75 0.19 ± 0.00 0.00 ± 0.00 11.14 ± 1.85 0.18 ± 0.00
PC 1.41 ± 0.52 3.75 ± 1.24 2.15 ± 0.55 0.00 ± 0.00 0.00 ± 0.00 0.18 ± 0.01 0.02 ± 0.00 0.01 ± 0.01 0.19 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.18 ± 0.00

Difficult

Blob

MKSD 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.09 ± 0.04 0.02 ± 0.03 0.08 ± 0.04 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.00
MSKSD 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.09 ± 0.04 0.02 ± 0.03 0.08 ± 0.04 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.00
SSN 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.09 ± 0.04 0.00 ± 0.00 0.08 ± 0.04 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.00
EMSKSD 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.09 ± 0.04 0.00 ± 0.00 0.08 ± 0.04 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.00
PC 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.08 ± 0.06 0.01 ± 0.02 0.08 ± 0.07 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.00

MNIST

MKSD 0.01 ± 0.00 0.00 ± 0.00 0.03 ± 0.00 0.02 ± 0.00 0.00 ± 0.00 0.04 ± 0.00 0.21 ± 0.07 0.03 ± 0.05 0.23 ± 0.06 0.02 ± 0.00 0.00 ± 0.00 0.03 ± 0.00
MSKSD 0.01 ± 0.00 0.01 ± 0.01 0.03 ± 0.00 0.02 ± 0.00 0.10 ± 0.17 0.04 ± 0.00 0.21 ± 0.07 0.24 ± 0.33 0.23 ± 0.06 0.02 ± 0.00 0.02 ± 0.02 0.03 ± 0.00
SSN 0.01 ± 0.00 0.00 ± 0.00 0.03 ± 0.00 0.02 ± 0.00 0.00 ± 0.00 0.04 ± 0.00 0.21 ± 0.07 0.00 ± 0.00 0.23 ± 0.06 0.02 ± 0.00 0.00 ± 0.00 0.03 ± 0.00
EMSKSD 0.01 ± 0.00 0.00 ± 0.00 0.03 ± 0.00 0.02 ± 0.00 0.00 ± 0.00 0.04 ± 0.01 0.21 ± 0.07 0.00 ± 0.00 0.23 ± 0.06 0.02 ± 0.00 0.00 ± 0.00 0.03 ± 0.00
PC 0.01 ± 0.00 0.00 ± 0.00 0.03 ± 0.00 0.03 ± 0.00 0.00 ± 0.00 0.04 ± 0.00 0.16 ± 0.06 0.00 ± 0.00 0.19 ± 0.06 0.02 ± 0.00 0.00 ± 0.00 0.03 ± 0.00

CIFAR10

MKSD 4.32 ± 1.79 1.40 ± 2.86 6.13 ± 1.59 0.06 ± 0.09 0.01 ± 0.01 0.61 ± 0.12 0.15 ± 0.04 0.05 ± 0.05 0.68 ± 0.07 0.00 ± 0.00 0.79 ± 1.70 0.48 ± 0.02
MSKSD 5.20 ± 2.09 4.07 ± 2.44 7.69 ± 1.85 0.00 ± 0.00 0.00 ± 0.00 0.49 ± 0.00 0.15 ± 0.04 0.28 ± 0.60 0.68 ± 0.07 0.00 ± 0.00 0.02 ± 0.04 0.47 ± 0.01
SSN 4.03 ± 2.12 5.21 ± 2.07 6.49 ± 1.99 0.04 ± 0.06 0.00 ± 0.00 0.55 ± 0.09 0.15 ± 0.04 0.02 ± 0.04 0.68 ± 0.07 0.00 ± 0.00 0.00 ± 0.00 0.48 ± 0.03
EMSKSD 5.71 ± 5.27 5.79 ± 0.76 8.06 ± 4.69 0.10 ± 0.21 0.00 ± 0.00 0.55 ± 0.15 0.15 ± 0.04 0.00 ± 0.00 0.68 ± 0.07 0.00 ± 0.00 0.36 ± 0.78 0.47 ± 0.01
PC 2.44 ± 1.64 5.22 ± 1.28 5.19 ± 2.06 0.00 ± 0.00 0.00 ± 0.00 0.52 ± 0.06 0.13 ± 0.02 0.04 ± 0.08 0.66 ± 0.02 0.00 ± 0.00 0.02 ± 0.04 0.46 ± 0.01

SVHN

MKSD 1.91 ± 0.89 1.71 ± 0.40 2.81 ± 1.16 0.00 ± 0.00 0.00 ± 0.00 0.18 ± 0.00 0.02 ± 0.00 0.01 ± 0.02 0.19 ± 0.00 0.00 ± 0.00 0.00 ± 0.01 0.18 ± 0.00
MSKSD 1.49 ± 1.10 2.33 ± 0.31 2.39 ± 1.21 0.00 ± 0.00 0.00 ± 0.00 0.17 ± 0.00 0.02 ± 0.00 0.01 ± 0.01 0.19 ± 0.00 0.00 ± 0.00 0.07 ± 0.08 0.18 ± 0.00
SSN 1.41 ± 0.38 4.66 ± 0.70 2.18 ± 0.46 0.00 ± 0.00 0.00 ± 0.00 0.18 ± 0.01 0.02 ± 0.00 0.00 ± 0.00 0.19 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.18 ± 0.00
EMSKSD 1.53 ± 0.57 4.25 ± 0.86 2.22 ± 0.66 0.00 ± 0.00 0.00 ± 0.00 0.18 ± 0.01 0.02 ± 0.00 0.00 ± 0.00 0.19 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.18 ± 0.00
PC 2.39 ± 1.74 3.92 ± 1.04 3.06 ± 1.46 0.00 ± 0.00 0.00 ± 0.00 0.18 ± 0.01 0.02 ± 0.00 0.00 ± 0.00 0.19 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.18 ± 0.01

Table 10: Average Memebrship Inference Attack Efficacy (MIA-efficacy) for top five easiest and five
most difficult to unlearn recommended by each scoring metric. Higher MIA shows better unlearning
outcome.

Dataset Method Easy Difficult
GradAsct FineTune Fisher Retrain GradAsct FineTune Fisher Retrain

MNIST

MKSD 0.40 ± 0.55 0.00 ± 0.00 0.20 ± 0.45 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.20 ± 0.45 0.00 ± 0.00
MSKSD 1.00 ± 0.00 0.40 ± 0.55 0.40 ± 0.55 0.60 ± 0.55 0.00 ± 0.00 0.00 ± 0.00 0.20 ± 0.45 0.00 ± 0.00
SSN 0.60 ± 0.55 0.60 ± 0.55 0.40 ± 0.55 0.40 ± 0.55 0.00 ± 0.00 0.00 ± 0.00 0.20 ± 0.45 0.00 ± 0.00
EMSKSD 1.00 ± 0.00 0.40 ± 0.55 0.40 ± 0.55 0.40 ± 0.55 0.00 ± 0.00 0.00 ± 0.00 0.20 ± 0.45 0.00 ± 0.00
PC 0.00 ± 0.00 0.00 ± 0.00 0.20 ± 0.45 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.20 ± 0.45 0.00 ± 0.00

CIFAR10

MKSD 0.80 ± 0.45 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.20 ± 0.45 0.00 ± 0.00 0.00 ± 0.00 0.20 ± 0.45
MSKSD 1.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.40 ± 0.55 0.80 ± 0.45 0.00 ± 0.00 0.20 ± 0.45 0.00 ± 0.00
SSN 1.00 ± 0.00 0.20 ± 0.45 0.00 ± 0.00 0.20 ± 0.45 1.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
EMSKSD 1.00 ± 0.00 0.20 ± 0.45 0.00 ± 0.00 0.40 ± 0.55 1.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.20 ± 0.45
PC 1.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

SVHN

MKSD 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.20 ± 0.45 0.80 ± 0.45 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
MSKSD 1.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.60 ± 0.55 1.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
SSN 1.00 ± 0.00 0.20 ± 0.45 0.20 ± 0.45 0.80 ± 0.45 1.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
EMSKSD 1.00 ± 0.00 0.80 ± 0.45 0.20 ± 0.45 1.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
PC 0.80 ± 0.45 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.80 ± 0.45 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
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