
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

GNNShap: Scalable and Accurate GNN Explanations using
Shapley Values
Anonymous Author(s)

ABSTRACT
Graph neural networks (GNNs) are popular machine learning mod-
els for graphs with many applications across scientific domains.
However, GNNs are considered black box models, and it is chal-
lenging to understand how the model makes predictions. Game
theory-based Shapley value approaches are popular explanation
methods in other domains but are not well-studied for graphs. Some
studies have proposed Shapley value-based GNN explanations, yet
they have several limitations: they consider limited samples to ap-
proximate Shapley values; some mainly focus on small and large
coalition sizes, and they are an order of magnitude slower than other
explanation methods, making them inapplicable to even moderate-
size graphs. In this work, we propose GNNShap, which provides
explanations for edges since they provide more natural explana-
tions for graphs and more fine-grained explanations. We overcome
the limitations by sampling from all coalition sizes, parallelizing the
sampling on GPUs, and speeding up model predictions by batching.
GNNShap gives better fidelity scores and faster explanations than
baselines on real-world datasets.

CCS CONCEPTS
• Computing methodologies→ Neural networks.

KEYWORDS
GNN explainability, Shapley value, game theory
ACM Reference Format:
Anonymous Author(s). 2018. GNNShap: Scalable and Accurate GNN Expla-
nations using Shapley Values. In Proceedings of Make sure to enter the correct
conference title from your rights confirmation emai (Conference acronym ’XX).
ACM, New York, NY, USA, 13 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Graph Neural Networks (GNNs) are powerful models to learn rep-
resentations of graph-structured data such as social [6, 21, 39],
biological [7, 25], and chemical [4, 18, 41] networks. By capturing
graph structures and node/edge features in an embedding space,
GNNs achieved state-of-the-art performance on various tasks such
as node classification, link prediction, graph classification, and rec-
ommendation [11, 14, 37, 40]. As with most deep learning models,
a GNN represents a complex encoding function whose outputs can-
not be easily explained by its inputs (graph structure and features).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

As GNNs are widely used in scientific and business applications, un-
derstanding their predictions based on the input graph is necessary
to gain users’ trust in the model.

Like other branches of machine learning [16, 26, 31, 35], sev-
eral effective GNN explanation methods have been developed in
recent years, such as GNNExplainer [43], PGExplainer [17], PGM-
Explainer [38], SubgraphX [46], and GraphSVX [5]. These methods
often adapt explanation methods for structured data by incorporat-
ing graph topology information. For example, GraphLIME [13] is
built on a popular linear model called LIME [26] and GraphSVX [5]
is based on another popular method called SHAP [16].

Shapley’s game-theoretic approach [32] is arguably the most
widely-used explanation model where model predictions are ex-
plained by assuming that each feature is a “player” in a game where
the prediction is the payout. Although Shapley value-based meth-
ods are known to provide good explanations, their main limitation
is their computational costs. These methods require multiple per-
turbed input model predictions, which can be time-consuming. For
deeper GNNs, the computational demand is even more prohibitive
because of the rapid growth in the number of edges in the com-
putational graph (commonly known as the neighborhood explosion
problem[11]). To keep the running time reasonable, Shapley-based
methods must use sampling, but sampling can also hurt the fidelity
of the obtained explanations.

Considering this trade-off between fidelity and computational
complexity, we develop GNNShap that is computationally fast and
provides high-fidelity explanations for GNNs. GNNShap provides
importance scores for all relevant edges when performing GNN
prediction for a target node. GNNShap combines fast and effective
sampling with batched model predictions to provide high-fidelity
explanations for GNNs. We also employ parallel algorithms and
pruning strategies to find explanations faster than other state-of-
the-art (SOTA) methods.

The main contributions of the paper are as follows:

• We develop GNNShap, a Shapley-value based GNN explana-
tion model that provides importance scores for all relevant
edges for a target node.

• By improving the sampling coverage among all possible
subgraphs, GNNShap improves the fidelity of explanations.

• GNNShap is two orders of magnitude faster than other
Shapley-based explanation methods such as GraphSVX.
This performance is obtained from our pruning strategies
and parallel algorithms.

• GNNShap detects many unimportant edges that can be
removed from the graph to expedite GNN inferences.

2 BACKGROUND AND RELATEDWORK
Let 𝐺 (𝑉 , 𝐸) be a graph where 𝑉 is a set of nodes and 𝐸 is a set
of edges with |𝑉 | = 𝑁 . Let 𝐴 ∈ R𝑁×𝑁 be the sparse adjacency
matrix of the graph where 𝐴𝑖 𝑗 = 1 if {𝑣𝑖 , 𝑣 𝑗 }∈𝐸, otherwise 𝐴𝑖 𝑗 = 0.

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Additionally, 𝑋 ∈ R𝑁×𝑑 denotes the node feature matrix. Without
loss of generality, we consider node classification tasks where each
node is mapped to one of C classes. If 𝑓 is a trained GNN model,
the predicted class for a node 𝑣 is given by 𝑦 = 𝑓 (𝐴,𝑋, 𝑣).

2.1 Graph neural networks
GNNs use a message-passing scheme in which each layer 𝑙 has
three main computations [3, 49, 50]. The first step propagates
messages between the node pairs’ (𝑣𝑖 , 𝑣 𝑗) previous layer repre-
sentations ℎ𝑙−1

𝑖
and ℎ𝑙−1

𝑗
and relation 𝑟𝑖 𝑗 between the nodes 𝑞𝑙

𝑖 𝑗
=

MSG(ℎ𝑙−1
𝑖

, ℎ𝑙−1
𝑗

, 𝑟𝑖 𝑗). The second step aggregates messages for each
node 𝑣𝑖 from its neighbors N𝑣𝑖 : 𝑄𝑙

𝑖
= AGG({𝑞𝑙

𝑖 𝑗
|𝑣 𝑗 ∈ N𝑣𝑖 }). The

final step of the GNN transforms the aggregated message and 𝑣𝑖 ’s
previous representation ℎ𝑙−1

𝑖
via a non-linear transform function

and updates the representation: ℎ𝑙
𝑖
= UPD(𝑄𝑙

𝑖
, ℎ𝑙−1

𝑖
).

2.2 Formulation of GNN Explanations
A computational graph 𝐺𝑐 (𝑣) of node 𝑣 includes all information
that a GNN model 𝑓 needs to predict 𝑦 for 𝑣 . For a two-layer GNN,
a computational graph includes two-hop neighbor nodes and their
node features. Formally, 𝐺𝑐 (𝑣) computational graph with 𝐴𝑐 (𝑣) ∈
{0, 1}𝑎𝑥𝑎 binary adjacency matrix, and 𝑋𝑐 (𝑣) = {𝑥 𝑗 |𝑣 𝑗 ∈ 𝐺𝑐 (𝑣)}
node features. A GNN explainer generates a small subgraph and
subset of features (𝐺𝑆 , 𝑋𝑆) for node 𝑣𝑖 for the prediction 𝑦 as an
explanation. We focus on node explanations in this work.

2.3 Shapley value and kernel SHAP
Shapley’s game-theoretic approach [32] explains model predictions
by assuming that each node, edge, feature is a “player” in a game
where the prediction is the payout. A player’s Shapley value can
be computed using Eq. 1 by using weighted average of all possible
marginal contributions of the player.

𝜙𝑖 =

2𝑛−1∑︁
𝑆⊆{1,...,𝑛}\{𝑖 }

|𝑆 |!(𝑛 − |𝑆 | − 1)!
𝑛!

[𝑓 (𝑆 ∪ {𝑖}) − 𝑓 (𝑆)] (1)

Here, 𝑛 is the number of players, a coalition S is a subset of players,
|𝑆 | is the size of the coalition, and 𝑓 (𝑆 ∪ {𝑖}) − 𝑓 (𝑆) is the marginal
contribution of player 𝑖’s to coalition 𝑆 . The sum of the Shapley
values equals the model prediction. The range of Shapley values is
constrained by themodel output. If themodel output is a probability,
then the value range will be between -1 and 1. The magnitude of
Shapley values, except for their sign, indicates their importance
for the model. Positive-scored players increase the model’s output,
while negative-scored players decrease the output. While Shapley
value works well in explaining models, it needs to evaluate 2𝑛−1
coalitions of players, which is infeasible when the number of players
is large. Prior work addressed this computational challenge by
approximating Shapley values using sampling. The most notable
method is called kernel SHAP [16], which uses a surrogate linear
model to approximate Shapley values.

Kernel SHAP is an additive method where the sum of the Shapley
values gives the model prediction. The linear surrogate model 𝑔 is

defined as:

𝑓 (𝑥) = 𝑔(𝑥) = 𝜙0 +
𝑛∑︁
𝑖=1

𝜙𝑖𝑚𝑖 , (2)

where𝑚 ∈ {0, 1}1𝑥𝑛 is a binary coalition mask that makes a coali-
tion 𝑆 , and 𝜙 is the surrogate model’s parameters. The model pa-
rameters are the approximation of the Shapley values. 𝜙0 = 𝑓 (∅)
is the case when there are no players. In addition, when a player
missing (𝑚𝑖 = 0), the corresponding input of the model should be
replaced with background data (e.g., expected value for the player).
The linear model can be learned by minimizing squared loss in Eq.
3. Here, 𝜋 |𝑆 | is called kernel weight and gives individual coalition
weights for a coalition size. It gives more weight to small and large
coalition sizes since it is easier to see the individual effect. Shap-
ley values can be obtained by solving the weighted least squares
problem [16].

𝜋 |𝑆 | =
𝑛 − 1(𝑛

|𝑆 |
)
|𝑆 | (𝑛 − |𝑆 |)

𝐿(𝑓 , 𝑔, 𝜋𝑚) =
∑︁
𝑚𝜖𝑀

[𝑓 (𝑆) − (𝑔(𝑆))]2 𝜋 |𝑆 |
(3)

2.4 Related work
GNN explainability methods can be categorized into two main cat-
egories: instance-level and model-level explanations [45]. While
instance-level explanations focus on an instance (e.g., a node ex-
planation), model-level explanations, like XGNN [44], focus on the
overall model’s behavior. However, many studies focus on instance-
level explanations. Instance-level explanation studies can be cate-
gorized into four classes:

Gradient/features works use gradients and/or features like model
weights and attention scores as explanations. Saliency (SA) [2, 24],
Guided Backpropagation [2], CAM [24], GradCAM [24], Integrated
Gradients [36] are considered as gradient/features based explana-
tions. The main limitations of gradients/features are gradients that
can be saturated in some areas [34].

Decomposition methods LRP [2, 30], Excitation BP [24], GNN-
LRP [29], and GCN-LRP [12] decompose the model prediction to the
input layer using network weights. These methods need to access
the model parameters, which makes them unsuitable for black-box
models.

Perturbationmethods, includingGNNExplainer [43], PGExplainer
[17], GraphMask [28], GrapSVX [5], SubgraphX [46], EdgeSHAPer
[19], GraphSHAP [23], GStarX [47], FlowX [10], and Zorro [8] study
prediction change when the input is perturbed. Surrogate methods
Graph-Lime [13], RelEx [48], and PGM-Explainer [38] use a simple
surrogate model to explain complex model predictions.

2.5 Shapley value-based GNN Methods
GRAPHSHAP [23] is a graph classification explainer that requires
predefinedmotifs and assigns importance scores tomotifs. However,
mining the motifs is task-specific; it requires domain expertise.

EdgeSHAPer [19] is a graph explainer that considers edges as
players. However, it’s not based on Kernel SHAP; it computes each
edge’s Shapley value by computing marginal contributions using a
certain number of samples. It needs to get two model predictions
for each marginal contribution and repeat the process for each

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

GNNShap: Scalable and Accurate GNN Explanations using Shapley Values Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

V

Graph: Pruned computational
subgraph:

Sampling

Mask
M

weight
W

1 0 0 1 1 0 0 1
0 0 1 1 0 0 1 1
1 1 1 1 1 1 1 0
0 1 0 1 1 0 1 0
1 0 1 0 1 0 1 0
0 0 1 0 1 1 0 0

w1
w2
w3
w4
w5
w6

V

8

7

4
3

V6 5

4
3

1
27

V

Edge importance

GNN

0.2

0.8

0.5

0.9

0.6

0.4

Model predictions Explanation: Shapley
Computation

V

8

4

1

5

21 7653 84
8

4
3

1

V

8

6

2

1

7

4
3

5

Figure 1: GNNShap Overview: computing Shapley values for all edges in the computational graph for the target vertex 𝑣 . We
consider two-layer GNN explanations in the figure. The computational graph 𝐺𝑐 has eight directed edges (eight players). The
mask matrix represents a sampling from all possible coalitions of players. Each sampling subgraph is used to get a prediction
for 𝑣 . The Shapley computation step then computes Shapley values based on GNN predictions for sampled coalitions.

Algorithm 1: Overview of the GNNShap Algorithm
Input: 𝐺 = (𝐴,𝑋), 𝑓 : GNN model, 𝑛: number of players, 𝑝

number of samples, 𝑣𝑖 : the node to be explained, 𝑙 :
number of GNN layers, 𝑏: batch size.

Output: 𝜙 : Shapley values for all players
1 𝐴𝑖 , 𝑋𝑖 ← 𝑃𝑟𝑢𝑛𝑒𝐶𝑜𝑚𝑝𝐺𝑟𝑎𝑝ℎ(𝐴, 𝑣𝑖 , 𝑙) // find pruned

computational graph

2 𝑝 ← 𝑠𝑢𝑚(𝐴𝑖) // number of players (edges) in the 𝐺𝐶

3 𝑀,𝑊 ← 𝑆𝑎𝑚𝑝𝑙𝑒 (𝑛, 𝑝) // mask and sample weights

4 𝑦 ← 𝐺𝑁𝑁 (𝑀,𝐴𝑖 , 𝑋𝑖 , 𝑏) // masked predictions

5 𝜙 ← (𝑀𝑇𝑊𝑀)−1𝑀𝑇𝑊𝑦 // weighted least squares

6 return 𝜙

Shapley value. Hence, it is computationally expensive, which makes
it unsuitable for larger explanations.

GraphSVX [5] is another GNN explainer that can provide ex-
planations for both nodes and node features. However, it mainly
considers very small and very large coalitions. This can lead to
sub-optimal solutions. Moreover, it requires much time to generate
explanations, which makes it unsuitable for large graphs.

SubgraphX [46] targets to find the most important subgraph for
the model using Shapley values. It uses a Monte Carlo tree search
algorithm to explore subgraphs. However, SubgraphX is quite slow,
even for middle-size graphs. Therefore it’s not practical to use it
for large graph explanations.

3 METHODS
3.1 Overview of GNNShap
Shapley value-based explanations for node 𝑣 in GNNs can be de-
fined as follows: using the computational graph 𝐺𝑐 (𝑣), the pre-
diction 𝑦 for 𝑣 is distributed among players, where players can
be node features, neighbor nodes, and edges. Specifically, 𝑦 =

𝑓 (𝐴𝑐 (𝑣), 𝑋𝑐 (𝑣)) =
∑𝑛
𝑖=0 𝜙𝑖 , where 𝑛 is the number of players and

𝜙𝑖 is the Shapley value for player 𝑖 . In this paper, we aim to identify

edges that are important for the prediction of the target vertex.
In the edge-based explanations, edges in the computational graph
are considered players in our explanation model. After computing
Shapley values, we can obtain the explanation subgraph 𝐺𝑆 by
selecting edges with higher Shapley values using top-k selection
or using a threshold. Note that Shapley values can be positive or
negative. Therefore, the absolute value of the Shapley scores should
be used to determine importance.

Algorithm 1 shows an overview of GNNShap where we aim to
explain the prediction of the target vertex 𝑣𝑖 . Algorithm 1 shows
four clear steps in GNNShap:

(1) Obtaining pruned computational graph (line 1 of Al-
gorithm 1): for an 𝑙 layer GNN, we find the computational
graph and prune redundant edges. This step is discussed in
subsection 3.2.

(2) Coalition sampling (line 4): we sample subgraphs (coali-
tions) of the computational graph by increasing their cov-
erage across all possible subgraphs. At this step, we create
a 𝑘 × 𝑛 binary mask matrix 𝑀 , where 𝑘 is the number of
sampled subgraphs, 𝑛 is the number of players (edges) in
the pruned computational graph, and 𝑀 [𝑖, 𝑗]=1 if the 𝑗th
edge is present in the 𝑖th subgraph. The sampling phase also
generates a weight vector𝑊 where𝑊 [𝑖] stores the weight
of the 𝑖th sample. This step is discussed in subsection 3.3.

(3) Model prediction: after samples are generated, we predict
the class of the target node using each sample to generate
the prediction vector 𝑦 such that 𝑦 [𝑖] stores the prediction
obtained using the 𝑖th sample. We using batching and par-
allelization to make this step faster. This step is discussed
in subsection 3.4.

(4) Shapley value computation: we compute Shapley values
for all edges in the computation graph using the following
equation 𝜙 = (𝑀𝑇𝑊𝑀)−1𝑀𝑇𝑊𝑦. This step is discussed in
subsection 3.5.

Figure 1 shows an example of computing Shapley values using
four steps discussed above.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

0

633

926 11661701

1862

1866

2582

Figure 2: Cora node 0’s two-hop computational graph before
and after pruning. The unpruned computational graph is
created by keeping all nodes that are two hops away from
the source node and all edges among those nodes. Dashed
edges in the unpruned graph are redundant because their
messages don’t arrive at the source for two-layer GNNs. We
prune the dashed edges in our computational graph.

3.2 Pruning computational graphs
When explaining node 𝑣 , all edges in 𝐺𝑐 (𝑣) are considered players.
Therefore, it is crucial to create 𝐺𝑐 (𝑣) from the whole graph 𝐺

in a way that reduces computational complexity. Previous work
[17, 43] considered all edges in the 𝑙-hop-induced subgraph as
the computational graph, where 𝑙 is the number of layers in the
GNN. However, such graphs may contain edges that do not carry
a message to node 𝑣 . We prune these redundant edges from the
computational graph. Fig. 2 illustrates an example of a two-hop
computational graph. While dashed edges are in the computational
graph, their messages do not arrive at 𝑣 . Hence, considering them as
players will only increase computational complexity. In GNNShap,
we prune these redundant edges, which can expedite the rest of
the computations significantly. For example, the number of players
(edges) reduces by 78 on average for a two-layer GNN on the Cora
dataset.

3.3 Fast and efficient sampling for GNNShap
3.3.1 Improving sampling coverage. Sampling plays an important
role in Shapley-based explaination methods since it is not possible
to use all possible coalitions. For example, when using a graph
with an average degree of 𝑑 on a 2-layer GNN, the computational
graph of a vertex 𝑣 may have 𝑂 (𝑑2) edges (players), which results
in 𝑂 (2𝑑2) possible coalitions.

Sampling used in previous Shapley-basedGNN explanationmeth-
ods such as GraphSVX only focuses on small and large coalition
sizes by ignoring many coalitions that may contain useful informa-
tion for explanations. GraphSVX includes samples from a mid-size
coalition if a user-defined maximum coalition size is reached, yet

0 5 10 15 20 25 30
Coalition Size

0

1000

2000

3000

4000

5000

6000

7000

8000

Nu
m

be
r o

f s
am

pl
es

GraphSVX
GNNShap

Figure 3: Sample distribution figure for 30 players and 25,000
samples.WhileGNNShap distributes samples proportional to
eq. 5, GraphSVX only samples from small and large coalition
sizes.

the number of samples has not been reached. These random sam-
ples are added by Bernoulli distribution without considering the
coalition size.

We argue that an effective sampling for GNNs should sample
from all possible coalitions because it can better capture the graph
structure. To this end, we used ideas from the SHAP package [16]
by distributing weights to all possible coalition sizes using eq. 4.

𝜌 |𝑆 | =
𝑛 − 1

|𝑆 | (𝑛 − |𝑆 |) , (4)

where 𝑛 is the number of players and 𝑆 is a coalition of players,
and 𝜌 |𝑆 | is the total weights for all samples of size |𝑆 |. This simple
modification of Eq. 4 helps us sample from all possible coalition
sizes. Next, our sampling approach based on kernel SHAP generates
samples such that the number of samples is proportional to the
total weight for the coalition size using eq. 5:

𝑘 |𝑆 | = 𝑘 ∗
𝜌 |𝑆 |∑𝑛−1
𝑖=1 𝜌𝑖

, (5)

where𝑘 is the total number of samples𝑘 |𝑆 | is the number of samples
containing |𝑆 | players. Fig.3 (the blue line) shows that this sampling
approach indeed samples from all possible coalition sizes.

In our sampling approach, it is possible to generate more samples
than the number of possible coalitions for very small and large
coalition sizes. In this case, we redistribute surplus samples to
the remaining coalition sizes. Finally, individual weights𝑤 |𝑆 | for
samples are computed by distributing total coalition size weight to
individual coalitions by 6.

𝑤 |𝑆 | =
𝜌 |𝑆 |
𝑘 |𝑆 |

(6)

This sample distribution strategy still gets more samples from small
and large coalitions yet includes reasonable samples from the mid-
sized coalitions. Even though individual coalitions with the same
number of players get equal individual weight, mid-size coalitions

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

GNNShap: Scalable and Accurate GNN Explanations using Shapley Values Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

still contribute less in Shapley computation because of fewer sam-
ples taken from them.

We note that the original SHAP paper considered sampling with-
out replacement to maintain unique samples. However, we did not
observe a clear benefit when there are enough samples for GNN
explanations. Hence, we use sampling with potential replacement
to reduce the computational complexity of sampling. The output of
sampling is a 𝑘 ×𝑛 binary mask matrix𝑀 , where 𝑘 is the number of
sampled subgraphs, 𝑛 is the number of players (edges) in the pruned
computational graph, and𝑀 [𝑖, 𝑗]=1 if the 𝑗 th edge is present in the
𝑖th subgraph. The sampling phase also generates a weight vector
𝑊 where𝑊 [𝑖] stores the weight of the 𝑖th sample.

3.3.2 Fast sampling with parallelization. We observe that sample
generating is the slowest part of the Shapley-based explanations and
requires more time when the number of samples and the number of
players increase. Since we sample with replacement, each sample
can be generated independently. To parallelize the sampling process
on a GPU, we first distribute samples based on coalition sizes and
generate all coalitions of a given size in parallel. We use lexico-
graphical order algorithm [15, 20, 22] for fully sampled coalitions,
which gives the ith combination without knowing the previous
combination and random sampling for the other coalition sizes. We
describe the sampling process in Algorithm 2 in the Appendix.

3.4 Fast model predictions using pruning and
batching

3.4.1 Prediction pruning. At this step, we predict the class of the
target node using each sample to generate the prediction vector
𝑦 such that 𝑦 [𝑖] stores the prediction obtained using the 𝑖th sam-
ple. We observed that in some samples, the target node remains
disconnected from the rest of the nodes when there is no incoming
one-hop edge. These coalitions are still useful since the surrogate
model learns that the marginal contribution of second-hop edges
will be zero without a first-hop edge. However, it is not necessary to
obtain the model predictions when the target node is disconnected,
as they are equal to 𝑓 (∅), which represents the model prediction
without any neighbor information. In our model prediction, we
prune this type of unnecessary model predictions, which reduces
the number of required model predictions by 20%.

3.4.2 Batching and parallel model predictions. Shapley value-based
approaches require model predictions for perturbed input, which
is the most time-consuming step in the whole calculation. We ex-
pedite the model prediction step by batching samples and then
running GNN predictions in a batch in parallel. To facilitate the
batching, we create a larger block diagonal matrix by placing the
adjacency matrices of the subgraphs within a batch along the diago-
nal. We also concatenate node features of all nodes in a batch. These
enlarged feature matrix and block-diagonal adjacency matrix are
used to predict classes of the target node with respect to a batch of
samples. The main benefit of such batching is that it improves data
locality and opportunities for parallel computations. We observed
that batching made this step an order of magnitude faster than non-
batched predictions. While batching makes GNN predictions faster,
the creation of batches is itself an expensive process. To reduce the
time to create batches, we start with the full l-hop-edges subgraph

and then prune its edges using the mask matrix. This approach
made the cost of batch creation insignificant when compared to the
time needed for GNN predictions.

3.5 Efficient Shapley computations
The last step of the GNNShap is to compute𝜙 = (𝑀𝑇𝑊𝑀)−1𝑀𝑇𝑊𝑦.
Note that 𝑀 is a 𝑘 × 𝑛 matrix with 𝑘 ≫ 𝑛 (that is, the number of
samples is much larger than the number of players). Hence, the
computational complexity of computing𝑀𝑇𝑊𝑀 can be larger than
computing the inverse of 𝑀𝑇𝑊𝑀 that is an 𝑛 × 𝑛 matrix. In our
implementation, we stored𝑀 as a dense matrix and performed the
matrix multiplications in 𝑀𝑇𝑊𝑀 and 𝑀𝑇𝑊𝑦 on the GPU. This
made the multiplication part significantly faster than CPU-based
multiplication. By contrast, we observed that the matrix inversion
does not run fasted on the GPU when the number of players is large.
This is because the current PyTorch implementation requires CPU
synchronization for the inversion, which is costly 𝑛 is relatively
large. To alleviate this problem, we train a weighted linear regres-
sion model on PyTorch instead of solving the equation when the
number of players is over 5000. Note that the mask matrix𝑀 is 50%
sparse. However, our observations show that storing𝑀 as a sparse
matrix and performing sparse matrix multiplication is slower than
dense matrix multiplications [9]. Hence, we opted to use dense
computations in this step.

4 EXPERIMENTS
4.1 Datasets
We use six real-world datasets for the experiments. Cora, CiteSeer,
and PubMed [42] are citation networks where nodes are papers,
node features are bag-of-word representations of words in the paper,
and edges are the citations of papers. We use the publicly available
train, validation, and test splits. Coauthor-CS and Coauthor-Physics
[33] are co-author graphswhere nodes denote authors, edges denote
coauthorships, and node features are keywords in the papers. We
use 30 random nodes for each class for training and validation and
the rest for testing. Facebook (FacebookPagePage) [27] is a verified
page-page site graph. Nodes correspond to pages, edges are mutual
likes, and node features are site descriptions. We use 30 random
nodes for each class for training and validation and the rest for
testing. Dataset statistics can be found in table 1. Since explanation
generation for all baselines takes a lot of time, we only consider the
first 100 test nodes for explanations.

4.2 Models
We use a two-layer GCN [14] with 16 hidden dimensions for Cora,
CiteSeer, PubMed, and Facebook and 64 for Coauthor datasets. We
apply ReLU as an activation function and 0.5 dropout in the training.
We train the model for 200 epochs with a 0.01 learning rate. Model
training and test accuracies are provided in Table 2. Since GNNShap
views a GNN as a black box, it works seamlessly with other GNN
models (see the appendix for its performance with GAT).

4.3 Evalution metrics
In this work, we utilize 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− (Eq. 7) and 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+ (Eq. 8) met-
rics from [45] to evaluate the performance of our model. These

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Dataset statistics. Players denote the number of edges for two-hop incoming edges for the first 100 test nodes.

Dataset Nodes Edges Features Classes Avg players Max players Min players
Cora 2708 10556 1433 7 159.08 298 5
CiteSeer 3327 9104 3703 6 25.17 262 2
PubMed 19717 88648 500 3 245.46 1106 4
Coauthor-CS 18333 163788 6805 15 161.61 1249 3
Coauthor-Physics 34493 495924 8415 5 428.61 10530 4
Facebook 22470 342004 128 4 858.34 7043 6

Table 2: Model training and test accuracies

Dataset Train Test
Cora 100.00 81.50
CiteSeer 99.17 71.00
PubMed 100.00 78.80
Coauthor-CS 94.44 90.22
Coauthor-Physics 100.00 95.33
Facebook 95.00 77.10

metrics measure the importance of edges in a graph, with 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+
focusing on important edges and 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− focusing on less impor-
tant edges. By removing important edges in 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+, we expect
a significant change in the model prediction. Conversely, when
dropping the least important edges in 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− , we expect only
minimal changes in the prediction. Keeping top-k edges or thresh-
olding approaches can be used to obtain the explanation 𝐺𝑆 .

Fidelity scores can be computed for the ground-truth class or
the predicted class. Since we explain the model’s behavior for a
prediction, we use the predicted class for the evaluation.

𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− =
1
𝑁

𝑁∑︁
𝑖=1

��𝑓 (𝐺𝐶)�̂�𝑖 − 𝑓 (𝐺𝑆)�̂�𝑖
�� (7)

𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+ =
1
𝑁

𝑁∑︁
𝑖=1

��𝑓 (𝐺𝐶)�̂�𝑖 − 𝑓 (𝐺𝐶\𝑆)�̂�𝑖
�� (8)

4.4 Baselines
• Saliency (SA) [2, 24]: computes gradients with respect to

node features and considers the sum of the gradients as
node explanation.

• GNNExplainer [43]: uses mutual information to learn im-
portant edges and features. We train GNNExplainer for 200
epochs with a 0.01 learning rate for explanations.

• PGExplainer [17]: also uses mutual information and trains
a neural network to provide explanations without requiring
individual training. It provides edge explanations. We train
PGExplainer for 20 epochs with a 0.05 learning rate on the
training data.

• PGM-Explainer [38]: learns node importance by using a
probabilistic graphical model. We use default settings for
PGM-Explainer.

• GraphSVX [5]: a Shapley value-based GNN explainability
method that jointly explains node and feature importance.

We use the “SmarterSeparate” algorithm with feature ex-
planation disabled and set the maximum coalition size to
three and the number of samples to 1000. Further increasing
these numbers makes GraphSVX slower.

• SVXSampler is based on GraphSVX’s "SmarterSeparate" in
our framework. We use 10,000 samples with a maximum
coalition size of three. It uses all our improvements except
parallel sampling.

4.5 Test environment
We run all experiments on Ubuntu 18.04 with Intel(R) Core(TM)
i9-7900X CPU @ 3.30GHz, 64 GB main memory, Nvidia Titan RTX
24GB (Driver Version: 460.39) and Cuda 11.7. We use Python 3.9.13,
PyTorch 2.0.1, and PyTorch Geometric 2.3.1.

4.6 Evaluation protocol
The first 100 test nodes are used for explanations. Nodes with com-
putational graph𝐺𝐶 having less than two edges are excluded. Each
experiment is repeated five times, and the average results are re-
ported. A sparsity of 30% is used for 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− scores since there
are abundant unimportant edges. Conversely, the top 10 important
edges are used for 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+ scores since critical edges for the pre-
diction are scarce. Three different sample sizes (10,000, 25,000, and
50,000) are reported for GNNShap.

GNNShap batch size varies depending on the dataset. For Cora,
CiteSeer, PubMed, and Facebook, the batch size is set to 1024. For
Coauthor-CS, it is set to 512. Finally, for Coauthor-Physics, it is
set to 128. The batch size had to be reduced for Coauthor datasets
due to GPU memory limitations since the GNN model’s hidden
layer dimension is higher, and the number of maximum edges
in 𝐺𝐶 is large. To compare our method for SA, PGM-Explainer,
and GraphSVX baselines, we convert their node explanations to
edge explanations by averaging two connecting node’s scores as
described in [1].

4.7 Fidelity Results
Table 3 presents the 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− scores when 30% least important
edges are removed from the graph. Since the explanation graph𝐺𝑆

is obtained by dropping unimportant edges, smaller values are bet-
ter in 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− score. Table 3 shows that GNNShap outperforms all
baselines for all three sample sizes by a significant margin. In most
cases, using 10,000 samples leads to high-quality results. However,
we observe a slight improvement in some cases when more samples
are used. According to 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− scores, the next best explanation
model is SA or PGMExplainer. We observed that GraphSVX and

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

GNNShap: Scalable and Accurate GNN Explanations using Shapley Values Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 3: 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− scores for 30% sparsity (removing 30% least important edges): the smaller, the better. Emboldened numbers
indicate the best performance while underlined numbers indicate second-best.

Methods Cora CiteSeer PubMed Coauthor-CS Coauthor-Physics Facebook
SA 0.021±0.000 0.037±0.000 0.030±0.000 0.046±0.000 0.017±0.000 0.036±0.000

GNNExplainer 0.039±0.001 0.105±0.002 0.071±0.002 0.104±0.001 0.020±0.000 0.062±0.001
PGExplainer 0.062±0.005 0.060±0.002 0.065±0.005 0.037±0.001 0.033±0.002 0.060±0.002

PGM-Explainer 0.025±0.001 0.038±0.002 0.029±0.002 0.030±0.003 0.014±0.002 0.035±0.005
GraphSVX 0.074±0.001 0.053±0.001 0.047±0.001 0.078±0.002 0.020±0.001 0.061±0.001
SVXSampler 0.062±0.000 0.045±0.001 0.093±0.000 0.097±0.001 0.040±0.000 0.130±0.001
GNNShap 10k 0.009±0.000 0.020±0.000 0.011±0.000 0.015±0.000 0.005±0.000 0.015±0.000
GNNShap 25k 0.009±0.000 0.022±0.000 0.010±0.000 0.013±0.000 0.005±0.000 0.015±0.000
GNNShap 50k 0.008±0.000 0.020±0.000 0.011±0.000 0.015±0.000 0.005±0.000 0.013±0.000

Table 4: 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+ scores for identifying top10 important edges: the higher, the better. Emboldened numbers indicate the best
performance while underlined numbers indicate second-best.

Methods Cora CiteSeer PubMed Coauthor-CS Coauthor-Physics Facebook
SA 0.108±0.000 0.128±0.001 0.086±0.000 0.123±0.000 0.057±0.000 0.062±0.000

GNNExplainer 0.036±0.002 0.111±0.002 0.047±0.000 0.053±0.000 0.024±0.000 0.039±0.001
PGExplainer 0.081±0.005 0.112±0.003 0.056±0.003 0.128±0.003 0.036±0.002 0.054±0.005

PGM-Explainer 0.133±0.013 0.134±0.007 0.073±0.007 0.141±0.011 0.059±0.003 0.065±0.004
GraphSVX 0.178±0.000 0.159±0.000 0.138±0.001 0.189±0.001 0.059±0.000 0.120±0.002
SVXSampler 0.200±0.001 0.167±0.000 0.131±0.000 0.218±0.001 0.097±0.000 0.168±0.000
GNNShap 10k 0.206±0.000 0.167±0.000 0.136±0.000 0.228±0.000 0.102±0.000 0.175±0.000
GNNShap 25k 0.204±0.000 0.167±0.000 0.134±0.000 0.227±0.000 0.103±0.000 0.173±0.000
GnnShap 50k 0.206±0.000 0.168±0.000 0.136±0.000 0.229±0.000 0.103±0.000 0.175±0.000

Table 5: Total explanation times in seconds for the first 100 test nodes. PGExplainer training time is provided in parenthesis.

Methods Cora CiteSeer PubMed Coauthor-CS Coauthor-Physics Facebook
Saliency 0.35±0.01 0.33±0.01 0.35±0.00 0.39±0.00 0.61±0.01 0.33±0.00
GNNExplainer 95.95±0.29 96.52±0.09 97.39±0.62 191.08±0.16 386.45±0.24 105.81±0.37
PGExplainer 0.40±0.00 (22.50) 0.51±0.00 (34.63) 1.55±0.01 (58.00) 6.80±0.30 (1832.40) 16.79±0.02 (1607.05) 0.47±0.00 (25.87)
PGM-Explainer 733.69±0.88 1177.79±0.98 4793.42±3.59 8118.04±23.68 16958.51±26.93 5539.50±3.18
GraphSVX 908.45±0.61 259.65±0.98 1282.08±1.27 1668.58±0.65 4056.97±1.33 3381.89±3.25
SVXSampler 24.11±0.05 12.07±0.13 26.31±0.09 32.29±0.09 68.19±0.19 100.43±0.30
GNNShap 10k 6.68±0.08 3.61±0.11 5.24±0.09 19.18±0.09 46.18±0.29 15.34±0.11
GNNShap 25k 12.65±0.11 5.52±0.23 9.09±0.18 45.16±0.09 112.58±0.28 29.26±0.07
GNNShap 50k 22.59±0.08 8.37±0.11 15.65±0.37 88.50±0.11 223.18±0.25 52.33±0.04

SVXSampler used in GNNShap perform poorly. The results show
that GNNShap is very effective in identifying unimportant edges in
a GNN explanation.We further validate the superiority of GNNShap
by showing the 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− scores at various sparsity levels in Fig. 4
for the Cora dataset. We observe that GNNShap outperforms all
baselines at all sparsity levels. We observe similar results for all
other datasets in the appendix.

Table 4 presents the 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+ scores. In 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+ scores, higher
prediction change is expected since we drop the ten most important
edges. According to the 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+ scores, GNNShap outperforms
all baselines for five out of six datasets, except for PubMed, where

GraphSVX slightly outperforms GNNShap. Fig. 11 in the Appendix
shows detailed 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+ results at various top-k level. We observe
that GNNShap is one of the best performers in identifying the most
important edges for GNN explanations.

Overall, Shapley-based methods GraphSVX, SVXSampler and
GNNShap preform much better than their competitors when iden-
tifying important edges for GNN predictions. GraphSVX is the best
method among the baselines for 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+ scores, while it under
performs for 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− . Therefore, we can conclude that Shapley-
based approaches tend to lead to better results in finding the most

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

10 20 30 40 50 60 70
Sparsity %

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Fi
de

lit
y

SA
GNNExplainer
PGExplainer
PGM-Explainer
GraphSVX
SVXSampler
GNNShap

Figure 4: 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− scores on Cora dataset for sparsities. The
lower result is desired for 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− . GNNShap gives the best
result for all sparsity levels.

important edges. However, GNNShap’s sample distribution leads
to better results in general.

4.8 Explanation Times
Table 5 shows the total explanation times for the first 100 test nodes.
GNNShap is significantly faster than GNNExplainer, PGMExplainer,
and GraphSVX. Our parallel sampling and pruning strategies re-
duce the explanation times drastically. Although Shapley-based
approaches are generally considered slow, GNNShap is still faster
even when using 50,000 samples. Most importantly, GNNShap is
up to 100× faster than GraphSVX that is the overall second best
performer according to 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− and 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+ scores. SVXSam-
pler is implemented inside GNNShap’s framework. Hence, it runs
much faster than GraphSVX.

SA is computationally efficient since it only requires a forward
pass. Similarly, PGExplainer is computationally efficient because it
can provide global explanations without individual learning after
training. However, GNNShap Fidelity results are significantly better
than those of PGExplainer and SA.

4.9 Improving prediction confidence based on
edge importance

As shown in Fig. 4, GNNShap is very effective in identifying unim-
portant edges. We expect that prediction probabilities should in-
crease when the negative contributed edges are removed from the
graph. Fig. 5 confirmed this hypothesis where removing unimpor-
tant edges improve the prediction confidence for all nodes. Thus,
GNNShap can help us sparsify the graph, which helps reduce the
computational complexity of GNN inference while improving pre-
diction confidences.

4.10 Explanation Visualization
GNNShap is able to visualize explanations. Fig. 6 shows an expla-
nation for Cora node 37. While blue edges reduce the prediction
probability, red edges reduce the probability. The visualization can
help to identify undesirable outcomes of the model.

0 20 40 60 80
Nodes

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ed

ict
io

n
sc

or
e

Initial probability
Sparse probability

Figure 5: Coramodel prediction probability improvement for
nodes when edges with negative Shapley value are dropped.

1190

37

60

2428

2427

1387

1527
55

1184

349

lower
higher

Figure 6: Explanation Graph Visualization for node 37. Node
colors show classes. While blue edges reduce the prediction
probability, red edges reduce the probability.

5 CONCLUSION
Shapley-value based explanations have been very successful in al-
most all branches of machine learning. However, their use was lim-
ited in GNN explanations because of their high computational costs
and difficulties in finding unimportant edges. This paper presents
GNNShap that addresses both problems by first using an effective
sampling strategy and then developing faster algorithms using
pruning and parallel computing. Through a comprehensive eval-
uation, we demonstrate that GNNShap achieves state-of-the-art
performance on various node classification tasks quickly and accu-
rately.

REFERENCES
[1] Amara, K., Ying, R., Zhang, Z., Han, Z., Shan, Y., Brandes, U., Schemm, S., Zhang,

C., 2022. Graphframex: Towards systematic evaluation of explainability methods

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

GNNShap: Scalable and Accurate GNN Explanations using Shapley Values Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

for graph neural networks. arXiv preprint arXiv:2206.09677 .
[2] Baldassarre, F., Azizpour, H., 2019. Explainability techniques for graph convolu-

tional networks. arXiv preprint arXiv:1905.13686 .
[3] Battaglia, P.W., Hamrick, J.B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V.,

Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., et al., 2018.
Relational inductive biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261 .

[4] Chereda, H., Bleckmann, A., Kramer, F., Leha, A., Beissbarth, T., 2019. Utilizing
molecular network information via graph convolutional neural networks to
predict metastatic event in breast cancer., in: GMDS, pp. 181–186.

[5] Duval, A., Malliaros, F.D., 2021. Graphsvx: Shapley value explanations for graph
neural networks, in: Machine Learning and Knowledge Discovery in Databases.
Research Track: European Conference, ECML PKDD 2021, Bilbao, Spain, Sep-
tember 13–17, 2021, Proceedings, Part II 21, Springer. pp. 302–318.

[6] Feng, Z., Qi, K., Shi, B., Mei, H., Zheng, Q., Wei, H., 2023. Deep evidential learning
in diffusion convolutional recurrent neural network. Electronic Research Archive
31, 2252–2264.

[7] Fout, A., Byrd, J., Shariat, B., Ben-Hur, A., 2017. Protein interface prediction
using graph convolutional networks. Advances in neural information processing
systems 30.

[8] Funke, T., Khosla, M., Rathee, M., Anand, A., 2022. Z orro: Valid, sparse, and
stable explanations in graph neural networks. IEEE Transactions on Knowledge
and Data Engineering .

[9] Gale, T., Zaharia, M., Young, C., Elsen, E., 2020. Sparse gpu kernels for deep
learning, in: SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis, IEEE. pp. 1–14.

[10] Gui, S., Yuan, H., Wang, J., Lao, Q., Li, K., Ji, S., 2022. Flowx: Towards explainable
graph neural networks via message flows. arXiv preprint arXiv:2206.12987 .

[11] Hamilton, W., Ying, Z., Leskovec, J., 2017. Inductive representation learning on
large graphs. Advances in neural information processing systems 30.

[12] Hu, J., Li, T., Dong, S., 2020. Gcn-lrp explanation: exploring latent attention of
graph convolutional networks, in: 2020 International Joint Conference on Neural
Networks (IJCNN), IEEE. pp. 1–8.

[13] Huang, Q., Yamada, M., Tian, Y., Singh, D., Chang, Y., 2022. Graphlime: Local
interpretable model explanations for graph neural networks. IEEE Transactions
on Knowledge and Data Engineering .

[14] Kipf, T.N., Welling, M., 2016. Semi-supervised classification with graph convolu-
tional networks. arXiv preprint arXiv:1609.02907 .

[15] Kreher, D.L., Stinson, D.R., 1999. Combinatorial algorithms: generation, enumer-
ation, and search. ACM SIGACT News 30, 33–35.

[16] Lundberg, S.M., Lee, S.I., 2017. A unified approach to interpreting model predic-
tions. Advances in neural information processing systems 30.

[17] Luo, D., Cheng, W., Xu, D., Yu, W., Zong, B., Chen, H., Zhang, X., 2020. Param-
eterized explainer for graph neural network. Advances in neural information
processing systems 33, 19620–19631.

[18] Mansimov, E., Mahmood, O., Kang, S., Cho, K., 2019. Molecular geometry pre-
diction using a deep generative graph neural network. Scientific reports 9,
20381.

[19] Mastropietro, A., Pasculli, G., Feldmann, C., Rodríguez-Pérez, R., Bajorath, J.,
2022. Edgeshaper: Bond-centric shapley value-based explanation method for
graph neural networks. Iscience 25.

[20] McCaffrey, J., 2004. Generating the mth lexicographical element of a mathemati-
cal combination. MSDN Library 7.

[21] Min, S., Gao, Z., Peng, J., Wang, L., Qin, K., Fang, B., 2021. Stgsn—a spatial–
temporal graph neural network framework for time-evolving social networks.
Knowledge-Based Systems 214, 106746.

[22] Mirko, 2010. Enumerating combinations. URL: https://forums.developer.nvidia.
com/t/enumerating-combinations/19980. retrieved October 10, 2023.

[23] Perotti, A., Bajardi, P., Bonchi, F., Panisson, A., 2023. Explaining identity-aware
graph classifiers through the language of motifs, in: 2023 International Joint
Conference on Neural Networks (IJCNN), IEEE. pp. 1–8.

[24] Pope, P.E., Kolouri, S., Rostami, M., Martin, C.E., Hoffmann, H., 2019. Explain-
ability methods for graph convolutional neural networks, in: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 10772–
10781.

[25] Réau, M., Renaud, N., Xue, L.C., Bonvin, A.M., 2023. Deeprank-gnn: a graph
neural network framework to learn patterns in protein–protein interfaces. Bioin-
formatics 39, btac759.

[26] Ribeiro, M.T., Singh, S., Guestrin, C., 2016. " why should i trust you?" explaining
the predictions of any classifier, in: Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining, pp. 1135–
1144.

[27] Rozemberczki, B., Allen, C., Sarkar, R., 2021. Multi-scale attributed node embed-
ding. Journal of Complex Networks 9, cnab014.

[28] Schlichtkrull, M.S., De Cao, N., Titov, I., 2020. Interpreting graph neural networks
for nlp with differentiable edge masking. arXiv preprint arXiv:2010.00577 .

[29] Schnake, T., Eberle, O., Lederer, J., Nakajima, S., Schütt, K.T., Müller, K.R., Mon-
tavon, G., 2021. Higher-order explanations of graph neural networks via relevant

walks. IEEE transactions on pattern analysis and machine intelligence 44, 7581–
7596.

[30] Schwarzenberg, R., Hübner, M., Harbecke, D., Alt, C., Hennig, L., 2019. Layerwise
relevance visualization in convolutional text graph classifiers. arXiv preprint
arXiv:1909.10911 .

[31] Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D., 2017.
Grad-cam: Visual explanations from deep networks via gradient-based localiza-
tion, in: Proceedings of the IEEE international conference on computer vision,
pp. 618–626.

[32] Shapley, L.S., 1951. Notes on the n-person game—ii: The value of an n-person
game .

[33] Shchur, O., Mumme, M., Bojchevski, A., Günnemann, S., 2018. Pitfalls of graph
neural network evaluation. arXiv preprint arXiv:1811.05868 .

[34] Shrikumar, A., Greenside, P., Kundaje, A., 2017. Learning important features
through propagating activation differences, in: International conference on ma-
chine learning, PMLR. pp. 3145–3153.

[35] Sundararajan, M., Taly, A., Yan, Q., 2017a. Axiomatic attribution for deep net-
works, in: International conference on machine learning, PMLR. pp. 3319–3328.

[36] Sundararajan, M., Taly, A., Yan, Q., 2017b. Axiomatic attribution for deep net-
works, in: International conference on machine learning, PMLR. pp. 3319–3328.

[37] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y., 2017.
Graph attention networks. arXiv preprint arXiv:1710.10903 .

[38] Vu, M., Thai, M.T., 2020. Pgm-explainer: Probabilistic graphical model explana-
tions for graph neural networks. Advances in neural information processing
systems 33, 12225–12235.

[39] Wu, Y., Lian, D., Xu, Y.,Wu, L., Chen, E., 2020. Graph convolutional networks with
markov random field reasoning for social spammer detection, in: Proceedings of
the AAAI conference on artificial intelligence, pp. 1054–1061.

[40] Xu, K., Hu, W., Leskovec, J., Jegelka, S., 2018. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826 .

[41] Yang, Z., Chakraborty, M., White, A.D., 2021. Predicting chemical shifts with
graph neural networks. Chemical science 12, 10802–10809.

[42] Yang, Z., Cohen, W., Salakhudinov, R., 2016. Revisiting semi-supervised learning
with graph embeddings, in: International conference on machine learning, PMLR.
pp. 40–48.

[43] Ying, Z., Bourgeois, D., You, J., Zitnik, M., Leskovec, J., 2019. Gnnexplainer: Gen-
erating explanations for graph neural networks. Advances in neural information
processing systems 32.

[44] Yuan, H., Tang, J., Hu, X., Ji, S., 2020. Xgnn: Towards model-level explanations of
graph neural networks, in: Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 430–438.

[45] Yuan, H., Yu, H., Gui, S., Ji, S., 2023. Explainability in graph neural networks:
A taxonomic survey. IEEE Transactions on Pattern Analysis amp; Machine
Intelligence 45, 5782–5799. doi:10.1109/TPAMI.2022.3204236.

[46] Yuan, H., Yu, H., Wang, J., Li, K., Ji, S., 2021. On explainability of graph neural
networks via subgraph explorations, in: International conference on machine
learning, PMLR. pp. 12241–12252.

[47] Zhang, S., Liu, Y., Shah, N., Sun, Y., 2022. Gstarx: Explaining graph neural net-
works with structure-aware cooperative games. Advances in Neural Information
Processing Systems 35, 19810–19823.

[48] Zhang, Y., Defazio, D., Ramesh, A., 2021. Relex: A model-agnostic relational
model explainer, in: Proceedings of the 2021 AAAI/ACM Conference on AI,
Ethics, and Society, pp. 1042–1049.

[49] Zhang, Z., Cui, P., Zhu, W., 2020. Deep learning on graphs: A survey. IEEE
Transactions on Knowledge and Data Engineering 34, 249–270.

[50] Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., Sun, M.,
2020. Graph neural networks: A review of methods and applications. AI open 1,
57–81.

A COMPUTATIONAL GRAPH PRUNING
Table 6 shows the reduction of players for the two-hop computa-
tional graph when pruning is applied. Our pruning strategy only
selects edges that their message reaches to the node in l-hops. The
pruning reduces the number of players on average by over 50%.
The reduction increases in larger graphs such as Coauthor-Physics
and Facebook.

B MODEL PREDICTION
B.1 The Impact of Prediction Pruning
Table 7 presents the percentage of pruned predictions. The table
indicates that for a significant number of samples, we do not need

9

https://forums.developer.nvidia.com/t/enumerating-combinations/19980
https://forums.developer.nvidia.com/t/enumerating-combinations/19980
http://dx.doi.org/10.1109/TPAMI.2022.3204236

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Table 6: Average number of players (edges) reduction for two-hop computational graphs on the test nodes of datasets.

Dataset Cora CiteSeer PubMed Coauthor-CS Coauthor-Physics Facebook
before pruning 124.11 52.4 262.66 715.71 2333.51 7373.78
after pruning 45.73 21.59 81.71 162.96 365.34 948.33
reduction 78.38 30.81 180.95 552.75 1968.17 6425.45
reduction % 63.15 58.80 68.89 77.23 84.34 87.14

to obtain the model predictions of over 20% of the samples to obtain
the prediction.

B.2 Sequential vs Batch Model Prediction
To evaluate the effect of batching on coalition predictions, we run
coalition predictions in sequential and batched. Since sequential
inference takes a lot of time, we consider 10,000 samples. Table 8
shows that we see over 100 times speed-up for some datasets. Due
to GPU memory, we had to reduce the batch sizes for Coauthor-
Physics (128) and Coauthor-CS (512). With a GPU with more mem-
ory, the speed-up can be further improved for these datasets.

C SAMPLING
C.1 Parallel Sampling
Our parallel sampling algorithm is presented in Algorithm 2 and 3.
In the first step, Algorithm 2, samples are distributed to coalition
sizes, and a cumulative sum of samples of coalition sizes is kept in
a vector. Then, the GPU kernel code is called to start the parallel
sampling; Algorithm 2. Each GPU thread first computes its chunk
range. If the range requires samples from the to-be-fully-sampled
coalition size, it creates the sample using LexicographicOrder. For
random sample cases, it only needs to know the coalition size |S| and
creates a random sample by setting |S| values to true.When a sample
is added to the mask matrix, its complementary sample is also
added to achieve symmetric sampling. Therefore, no computation
is needed for half of the samples.

C.2 GNNShap Explanation Time Breakdown
Fig. 7, illustrates an explanation time breakdown for 307 players.
The figure shows that the most time-consuming part of a GNNShap
explanation is sequential sampling. However, after parallelizing,
the sampling becomes the least time-consuming operation for an
explanation.

C.3 Effect of Unique Samples
SHAP [16] ensures that each sampled coalition is unique. Although
the uniqueness of coalitions is a desirable property, verifying unique
coalitions increases computation time. Fig. 9 shows that checking
the uniqueness increases computational time, while there is no
clear benefit on fidelity scores when there is a reasonable number
of samples. Furthermore, controlling the uniqueness of coalitions
during sampling makes parallelizing the sampling quite difficult.
Therefore, we do not control the uniqueness of coalitions during
sampling.

Algorithm 2: GNNSHAP Sampler Algorithm
Input: 𝑛: number of players, 𝑝: number of samples.
Output:𝑀 : boolean mask matrix,𝑊 : weight vector

1 𝑏𝑖𝑛𝑠 ← 𝑝 ∗ 𝑒𝑞.5 // distribute samples to coalition sizes

using eq. 5

2 𝑟 ← 0 // random sampling start index

3 𝑐𝑜𝑎𝑙𝑆𝑖𝑧𝑒𝐼𝑛𝑑𝑠 ← [] // coalition size sample start indices

4 for 𝑐 ← 1→ 𝑛/2 do
5 if more samples than possible coalitions for c then
6 redistribute extra samples to the remaining bins
7 𝑐𝑜𝑎𝑙𝑆𝑖𝑧𝑒𝐼𝑛𝑑𝑠 [𝑐] ← 𝑟

8 𝑟 ← 𝑟 +
(𝑛
𝑐

)
9 𝑊 [𝑐𝑜𝑎𝑙𝑆𝑖𝑧𝑒𝐼𝑛𝑑𝑠 [𝑐] : 𝑟] ← 𝑒𝑞.3

10 else
11 𝑐𝑜𝑎𝑙𝑆𝑖𝑧𝑒𝐼𝑛𝑑𝑠 [𝑐] ← 𝑐𝑜𝑎𝑙𝑆𝑖𝑧𝑒𝐼𝑛𝑑𝑠 + 𝑏𝑖𝑛𝑠 [𝑐]

12 𝑊 [𝑟 : 𝑝/2] ← (0.5 − 𝑠𝑢𝑚(𝑊 [: 𝑟]))/(𝑝/2 − 𝑟) // distribute

remaining weights to random samples

13 𝑊 [𝑝/2 :] ←𝑊 [𝑟 : 𝑝/2] // symmetric samples’ weights

14 GPUSample(M, coalSizeInds, randInd, n, p)
15 return𝑀,𝑊

Algorithm 3: GPUSample Algorithm
Input: 𝑛: number of players, 𝑝: number of samples,

coalSizeInds: coalition start indices, randInd: random
sampling start index

Output:𝑀 : boolean mask matrix,𝑊 : kernel weight vector
1 𝑠 ← compute chunk start index
2 𝑒 ← compute chunk end index
3 𝑖 ← 𝑠

4 for 𝑖 → 𝑟𝑎𝑛𝑑𝐼𝑛𝑑 do
// fully sampled coalitions

5 𝑐 ← compute coalition size using coalSizeInds
6 M[i] = LexicographicOrder(n, i - coalSizeInds[c])
7 for 𝑖 → 𝑒 do

// random sampling

8 𝑐 ← compute coalition size using coalSizeInds
9 M[i, rand(c)] = true

// set random c index as true

10 return𝑀,𝑊

D EXPLANATIONS WITH OTHER GNN TYPES
To demonstrate that GNNShap can generate fast explanations for
other GNN types, we use a two-layer GAT model with 16 hidden

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

GNNShap: Scalable and Accurate GNN Explanations using Shapley Values Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Table 7: Average percentage of pruned predictions of 100 node explanations for 25,000 samples. If a target node is disconnected
in a coalition, there is no need to get the prediction since they are equal to 𝑓 (∅).

Dataset Cora CiteSeer PubMed Coauthor-CS Coauthor-Physics Facebook
Pruned prediction % 28.89 ± 0.00 23.44 ± 0.00 22.97 ± 0.00 23.75 ± 0.00 23.71 ± 0.00 27.31 ± 0.00

Table 8: Sequential versus batched total model prediction times of 100 explanations in seconds for 10,000 samples

Methods Cora CiteSeer PubMed Coauthor-CS Coauthor-Physics Facebook
Sequential 519.29 366.29 543.35 518.58 554.45 520.5
Batched 6.68 3.61 5.24 19.18 46.18 15.34
Speedup 77.74x 101.47x 103.69x 27.04x 12.01x 33.93x

0 50000 100000 150000 200000 250000
Number of samples

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ti
m

e
(s

)

GPU Sampling
Batch Inference
Weighted Least Squares
Sequential Sampling

Figure 7: Explanation Time breakdown of GNNShap compu-
tation for the increasing number of samples. Explanation
computational graph pruning is not included since its time
is negligible. The timing breakdown reveals that the most
time-consuming part was the sampling process. However, af-
ter parallelization, the sampling process became negligible.

Table 9: Total annotation generation time of GNNShap for
GCN and GAT on 100 Cora dataset nodes.

GNN GCN GAT
GNNSHAP 10k 6.68±0.08 9.09±0.09

layers of multi-head-attentions with 8 multi-head-attentions for the
Cora dataset. We train the GAT model for 200 epochs with a 0.005
learning rate. While the GAT model training accuracy is 100%, the
test accuracy is 81.4%. GCN model details can be found in section
4.2, and accuracy is in Table 2. The batch size of GNNShap is set to
1024 for the experiment. Table 9 provides GNNShap computation
times for 10,000 samples. GNNShap generates explanations faster
for GCN because the GAT model requires more computation than
GCN. Yet, GNNShap generates 100 explanations on the Cora dataset
in under 10 seconds. Quality-wise, GNNShap gets similar 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦−
scores for both models, as can be seen in Figure 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− . This
result shows that for similar accuracy models, GNNShap is able to
distinguish important and less important edges successfully.

10 20 30 40 50 60 70
Sparsity %

0.01

0.02

0.03

0.04

Fi
de

lit
y

GCN
GAT

Figure 8: GNNShap 10,000 samples 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− scores for GCN
and GAT model. GNNShap gets similar fidelity scores for
both methods.

E FIDELITY SCORES
Fig. 10 shows 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− scores for all datasets. It is obvious that
GNNShap outperforms the baselines. However, GraphSVX and
SVXSampler used in GNNShap perform poorly. The results show
that our sampling strategy is very effective in identifying unimpor-
tant edges.

Fig. 11 shows 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+ scores for multiple top-k levels. The
results indicate that GNNShap is one of the best performers for
𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+, except for PubMed, where GraphSVX is slightly better.
Overall, Shapley value-based approaches are good at identifying im-
portant edges. However, GNNShap performs well on both 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦−
and 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+.

F REPRODUCIBILITY
We provide the necessary parameters to reproduce our experiments
for the model in Section 4.2, baselines, and their parameters in Sec-
tion 4.4. We also provide GNNShap-specific parameters in Section
4.6.

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

0 10000 20000 30000 40000 50000
Number of Samples

0

10

20

30

40

50

60

70

Ti
m

e
(s

)

Unique Samples
With Replacement

(a) Computation time

0 10000 20000 30000 40000 50000
Number of Samples

0.007

0.008

0.009

0.010

0.011

0.012

0.013

0.014

Fi
de

lit
y

 sc
or

e

Unique Samples
With Replacement

(b) 0.3 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− score

0 10000 20000 30000 40000 50000
Number of Samples

0.1925

0.1950

0.1975

0.2000

0.2025

0.2050

0.2075

0.2100

Fi
de

lit
y +

 sc
or

e

Unique Samples
With Replacement

(c) 0.3 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+ score

Figure 9: Unique coalitions vs. samples with replacement effect on Cora dataset for various number of samples. (a) shows
computation time of sampling when uniqueness is checked, (b) shows 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− score for 30% sparsity, (c) shows 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+ score
for top 10.

10 20 30 40 50 60 70
0.00

0.02

0.04

0.06

0.08

0.10

0.12

Cora

10 20 30 40 50 60 70
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
CiteSeer

10 20 30 40 50 60 70
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

PubMed

10 20 30 40 50 60 70
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Coauthor-CS

10 20 30 40 50 60 70
0.00

0.02

0.04

0.06

0.08

0.10

Coauthor-Physics

10 20 30 40 50 60 70
0.00

0.05

0.10

0.15

0.20

Facebook

Sparsity %

Fi
de

lit
y

SA GNNExplainer PGExplainer PGM-Explainer GraphSVX SVXSampler GNNShap

Figure 10: 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− scores for sparsities. The lower result is desired for 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− . GNNShap gives the best result for all sparsity
levels.

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

GNNShap: Scalable and Accurate GNN Explanations using Shapley Values Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

10 20 30 40 50

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Cora

10 20 30 40 50

0.08

0.10

0.12

0.14

0.16

CiteSeer

10 20 30 40 50

0.05

0.10

0.15

0.20

PubMed

10 20 30 40 50

0.05

0.10

0.15

0.20

0.25

Coauthor-CS

10 20 30 40 50

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Coauthor-Physics

10 20 30 40 50

0.05

0.10

0.15

0.20

0.25

Facebook

top-k edges dropped

Fi
de

lit
y +

SA GNNExplainer PGExplainer PGM-Explainer GraphSVX SVXSampler GNNShap

Figure 11: 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+ scores for different top-k levels. The higher result is desired for 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+. GNNShap gives the best result for
all sparsity levels.

13

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Graph neural networks
	2.2 Formulation of GNN Explanations
	2.3 Shapley value and kernel SHAP
	2.4 Related work
	2.5 Shapley value-based GNN Methods

	3 Methods
	3.1 Overview of GNNShap
	3.2 Pruning computational graphs
	3.3 Fast and efficient sampling for GNNShap
	3.4 Fast model predictions using pruning and batching
	3.5 Efficient Shapley computations

	4 Experiments
	4.1 Datasets
	4.2 Models
	4.3 Evalution metrics
	4.4 Baselines
	4.5 Test environment
	4.6 Evaluation protocol
	4.7 Fidelity Results
	4.8 Explanation Times
	4.9 Improving prediction confidence based on edge importance
	4.10 Explanation Visualization

	5 Conclusion
	References
	A COMPUTATIONAL GRAPH PRUNING
	B MODEL PREDICTION
	B.1 The Impact of Prediction Pruning
	B.2 Sequential vs Batch Model Prediction

	C SAMPLING
	C.1 Parallel Sampling
	C.2 GNNShap Explanation Time Breakdown
	C.3 Effect of Unique Samples

	D Explanations with Other GNN types
	E FIDELITY SCORES
	F Reproducibility

