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GNNShap: Scalable and Accurate GNN Explanations using
Shapley Values
Anonymous Author(s)

ABSTRACT
Graph neural networks (GNNs) are popular machine learning mod-
els for graphs with many applications across scientific domains.
However, GNNs are considered black box models, and it is chal-
lenging to understand how the model makes predictions. Game
theory-based Shapley value approaches are popular explanation
methods in other domains but are not well-studied for graphs. Some
studies have proposed Shapley value-based GNN explanations, yet
they have several limitations: they consider limited samples to ap-
proximate Shapley values; some mainly focus on small and large
coalition sizes, and they are an order of magnitude slower than other
explanation methods, making them inapplicable to even moderate-
size graphs. In this work, we propose GNNShap, which provides
explanations for edges since they provide more natural explana-
tions for graphs and more fine-grained explanations. We overcome
the limitations by sampling from all coalition sizes, parallelizing the
sampling on GPUs, and speeding up model predictions by batching.
GNNShap gives better fidelity scores and faster explanations than
baselines on real-world datasets.

CCS CONCEPTS
• Computing methodologies→ Neural networks.

KEYWORDS
GNN explainability, Shapley value, game theory
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1 INTRODUCTION
Graph Neural Networks (GNNs) are powerful models to learn rep-
resentations of graph-structured data such as social [6, 21, 39],
biological [7, 25], and chemical [4, 18, 41] networks. By capturing
graph structures and node/edge features in an embedding space,
GNNs achieved state-of-the-art performance on various tasks such
as node classification, link prediction, graph classification, and rec-
ommendation [11, 14, 37, 40]. As with most deep learning models,
a GNN represents a complex encoding function whose outputs can-
not be easily explained by its inputs (graph structure and features).
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As GNNs are widely used in scientific and business applications, un-
derstanding their predictions based on the input graph is necessary
to gain users’ trust in the model.

Like other branches of machine learning [16, 26, 31, 35], sev-
eral effective GNN explanation methods have been developed in
recent years, such as GNNExplainer [43], PGExplainer [17], PGM-
Explainer [38], SubgraphX [46], and GraphSVX [5]. These methods
often adapt explanation methods for structured data by incorporat-
ing graph topology information. For example, GraphLIME [13] is
built on a popular linear model called LIME [26] and GraphSVX [5]
is based on another popular method called SHAP [16].

Shapley’s game-theoretic approach [32] is arguably the most
widely-used explanation model where model predictions are ex-
plained by assuming that each feature is a “player” in a game where
the prediction is the payout. Although Shapley value-based meth-
ods are known to provide good explanations, their main limitation
is their computational costs. These methods require multiple per-
turbed input model predictions, which can be time-consuming. For
deeper GNNs, the computational demand is even more prohibitive
because of the rapid growth in the number of edges in the com-
putational graph (commonly known as the neighborhood explosion
problem[11]). To keep the running time reasonable, Shapley-based
methods must use sampling, but sampling can also hurt the fidelity
of the obtained explanations.

Considering this trade-off between fidelity and computational
complexity, we develop GNNShap that is computationally fast and
provides high-fidelity explanations for GNNs. GNNShap provides
importance scores for all relevant edges when performing GNN
prediction for a target node. GNNShap combines fast and effective
sampling with batched model predictions to provide high-fidelity
explanations for GNNs. We also employ parallel algorithms and
pruning strategies to find explanations faster than other state-of-
the-art (SOTA) methods.

The main contributions of the paper are as follows:

• We develop GNNShap, a Shapley-value based GNN explana-
tion model that provides importance scores for all relevant
edges for a target node.

• By improving the sampling coverage among all possible
subgraphs, GNNShap improves the fidelity of explanations.

• GNNShap is two orders of magnitude faster than other
Shapley-based explanation methods such as GraphSVX.
This performance is obtained from our pruning strategies
and parallel algorithms.

• GNNShap detects many unimportant edges that can be
removed from the graph to expedite GNN inferences.

2 BACKGROUND AND RELATEDWORK
Let 𝐺 (𝑉 , 𝐸) be a graph where 𝑉 is a set of nodes and 𝐸 is a set
of edges with |𝑉 | = 𝑁 . Let 𝐴 ∈ R𝑁×𝑁 be the sparse adjacency
matrix of the graph where 𝐴𝑖 𝑗 = 1 if {𝑣𝑖 , 𝑣 𝑗 }∈𝐸, otherwise 𝐴𝑖 𝑗 = 0.

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Additionally, 𝑋 ∈ R𝑁×𝑑 denotes the node feature matrix. Without
loss of generality, we consider node classification tasks where each
node is mapped to one of C classes. If 𝑓 is a trained GNN model,
the predicted class for a node 𝑣 is given by 𝑦 = 𝑓 (𝐴,𝑋, 𝑣).

2.1 Graph neural networks
GNNs use a message-passing scheme in which each layer 𝑙 has
three main computations [3, 49, 50]. The first step propagates
messages between the node pairs’ (𝑣𝑖 , 𝑣 𝑗 ) previous layer repre-
sentations ℎ𝑙−1

𝑖
and ℎ𝑙−1

𝑗
and relation 𝑟𝑖 𝑗 between the nodes 𝑞𝑙

𝑖 𝑗
=

MSG(ℎ𝑙−1
𝑖

, ℎ𝑙−1
𝑗

, 𝑟𝑖 𝑗 ). The second step aggregates messages for each
node 𝑣𝑖 from its neighbors N𝑣𝑖 : 𝑄𝑙

𝑖
= AGG({𝑞𝑙

𝑖 𝑗
|𝑣 𝑗 ∈ N𝑣𝑖 }). The

final step of the GNN transforms the aggregated message and 𝑣𝑖 ’s
previous representation ℎ𝑙−1

𝑖
via a non-linear transform function

and updates the representation: ℎ𝑙
𝑖
= UPD(𝑄𝑙

𝑖
, ℎ𝑙−1

𝑖
).

2.2 Formulation of GNN Explanations
A computational graph 𝐺𝑐 (𝑣) of node 𝑣 includes all information
that a GNN model 𝑓 needs to predict 𝑦 for 𝑣 . For a two-layer GNN,
a computational graph includes two-hop neighbor nodes and their
node features. Formally, 𝐺𝑐 (𝑣) computational graph with 𝐴𝑐 (𝑣) ∈
{0, 1}𝑎𝑥𝑎 binary adjacency matrix, and 𝑋𝑐 (𝑣) = {𝑥 𝑗 |𝑣 𝑗 ∈ 𝐺𝑐 (𝑣)}
node features. A GNN explainer generates a small subgraph and
subset of features (𝐺𝑆 , 𝑋𝑆 ) for node 𝑣𝑖 for the prediction 𝑦 as an
explanation. We focus on node explanations in this work.

2.3 Shapley value and kernel SHAP
Shapley’s game-theoretic approach [32] explains model predictions
by assuming that each node, edge, feature is a “player” in a game
where the prediction is the payout. A player’s Shapley value can
be computed using Eq. 1 by using weighted average of all possible
marginal contributions of the player.

𝜙𝑖 =

2𝑛−1∑︁
𝑆⊆{1,...,𝑛}\{𝑖 }

|𝑆 |!(𝑛 − |𝑆 | − 1)!
𝑛!

[𝑓 (𝑆 ∪ {𝑖}) − 𝑓 (𝑆)] (1)

Here, 𝑛 is the number of players, a coalition S is a subset of players,
|𝑆 | is the size of the coalition, and 𝑓 (𝑆 ∪ {𝑖}) − 𝑓 (𝑆) is the marginal
contribution of player 𝑖’s to coalition 𝑆 . The sum of the Shapley
values equals the model prediction. The range of Shapley values is
constrained by themodel output. If themodel output is a probability,
then the value range will be between -1 and 1. The magnitude of
Shapley values, except for their sign, indicates their importance
for the model. Positive-scored players increase the model’s output,
while negative-scored players decrease the output. While Shapley
value works well in explaining models, it needs to evaluate 2𝑛−1
coalitions of players, which is infeasible when the number of players
is large. Prior work addressed this computational challenge by
approximating Shapley values using sampling. The most notable
method is called kernel SHAP [16], which uses a surrogate linear
model to approximate Shapley values.

Kernel SHAP is an additive method where the sum of the Shapley
values gives the model prediction. The linear surrogate model 𝑔 is

defined as:

𝑓 (𝑥) = 𝑔(𝑥) = 𝜙0 +
𝑛∑︁
𝑖=1

𝜙𝑖𝑚𝑖 , (2)

where𝑚 ∈ {0, 1}1𝑥𝑛 is a binary coalition mask that makes a coali-
tion 𝑆 , and 𝜙 is the surrogate model’s parameters. The model pa-
rameters are the approximation of the Shapley values. 𝜙0 = 𝑓 (∅)
is the case when there are no players. In addition, when a player
missing (𝑚𝑖 = 0), the corresponding input of the model should be
replaced with background data (e.g., expected value for the player).
The linear model can be learned by minimizing squared loss in Eq.
3. Here, 𝜋 |𝑆 | is called kernel weight and gives individual coalition
weights for a coalition size. It gives more weight to small and large
coalition sizes since it is easier to see the individual effect. Shap-
ley values can be obtained by solving the weighted least squares
problem [16].

𝜋 |𝑆 | =
𝑛 − 1( 𝑛

|𝑆 |
)
|𝑆 | (𝑛 − |𝑆 |)

𝐿(𝑓 , 𝑔, 𝜋𝑚) =
∑︁
𝑚𝜖𝑀

[𝑓 (𝑆) − (𝑔(𝑆))]2 𝜋 |𝑆 |
(3)

2.4 Related work
GNN explainability methods can be categorized into two main cat-
egories: instance-level and model-level explanations [45]. While
instance-level explanations focus on an instance (e.g., a node ex-
planation), model-level explanations, like XGNN [44], focus on the
overall model’s behavior. However, many studies focus on instance-
level explanations. Instance-level explanation studies can be cate-
gorized into four classes:

Gradient/features works use gradients and/or features like model
weights and attention scores as explanations. Saliency (SA) [2, 24],
Guided Backpropagation [2], CAM [24], GradCAM [24], Integrated
Gradients [36] are considered as gradient/features based explana-
tions. The main limitations of gradients/features are gradients that
can be saturated in some areas [34].

Decomposition methods LRP [2, 30], Excitation BP [24], GNN-
LRP [29], and GCN-LRP [12] decompose the model prediction to the
input layer using network weights. These methods need to access
the model parameters, which makes them unsuitable for black-box
models.

Perturbationmethods, includingGNNExplainer [43], PGExplainer
[17], GraphMask [28], GrapSVX [5], SubgraphX [46], EdgeSHAPer
[19], GraphSHAP [23], GStarX [47], FlowX [10], and Zorro [8] study
prediction change when the input is perturbed. Surrogate methods
Graph-Lime [13], RelEx [48], and PGM-Explainer [38] use a simple
surrogate model to explain complex model predictions.

2.5 Shapley value-based GNN Methods
GRAPHSHAP [23] is a graph classification explainer that requires
predefinedmotifs and assigns importance scores tomotifs. However,
mining the motifs is task-specific; it requires domain expertise.

EdgeSHAPer [19] is a graph explainer that considers edges as
players. However, it’s not based on Kernel SHAP; it computes each
edge’s Shapley value by computing marginal contributions using a
certain number of samples. It needs to get two model predictions
for each marginal contribution and repeat the process for each

2
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Figure 1: GNNShap Overview: computing Shapley values for all edges in the computational graph for the target vertex 𝑣 . We
consider two-layer GNN explanations in the figure. The computational graph 𝐺𝑐 has eight directed edges (eight players). The
mask matrix represents a sampling from all possible coalitions of players. Each sampling subgraph is used to get a prediction
for 𝑣 . The Shapley computation step then computes Shapley values based on GNN predictions for sampled coalitions.

Algorithm 1: Overview of the GNNShap Algorithm
Input: 𝐺 = (𝐴,𝑋 ), 𝑓 : GNN model, 𝑛: number of players, 𝑝

number of samples, 𝑣𝑖 : the node to be explained, 𝑙 :
number of GNN layers, 𝑏: batch size.

Output: 𝜙 : Shapley values for all players
1 𝐴𝑖 , 𝑋𝑖 ← 𝑃𝑟𝑢𝑛𝑒𝐶𝑜𝑚𝑝𝐺𝑟𝑎𝑝ℎ(𝐴, 𝑣𝑖 , 𝑙) // find pruned

computational graph

2 𝑝 ← 𝑠𝑢𝑚(𝐴𝑖 ) // number of players (edges) in the 𝐺𝐶

3 𝑀,𝑊 ← 𝑆𝑎𝑚𝑝𝑙𝑒 (𝑛, 𝑝) // mask and sample weights

4 𝑦 ← 𝐺𝑁𝑁 (𝑀,𝐴𝑖 , 𝑋𝑖 , 𝑏) // masked predictions

5 𝜙 ← (𝑀𝑇𝑊𝑀)−1𝑀𝑇𝑊𝑦 // weighted least squares

6 return 𝜙

Shapley value. Hence, it is computationally expensive, which makes
it unsuitable for larger explanations.

GraphSVX [5] is another GNN explainer that can provide ex-
planations for both nodes and node features. However, it mainly
considers very small and very large coalitions. This can lead to
sub-optimal solutions. Moreover, it requires much time to generate
explanations, which makes it unsuitable for large graphs.

SubgraphX [46] targets to find the most important subgraph for
the model using Shapley values. It uses a Monte Carlo tree search
algorithm to explore subgraphs. However, SubgraphX is quite slow,
even for middle-size graphs. Therefore it’s not practical to use it
for large graph explanations.

3 METHODS
3.1 Overview of GNNShap
Shapley value-based explanations for node 𝑣 in GNNs can be de-
fined as follows: using the computational graph 𝐺𝑐 (𝑣), the pre-
diction 𝑦 for 𝑣 is distributed among players, where players can
be node features, neighbor nodes, and edges. Specifically, 𝑦 =

𝑓 (𝐴𝑐 (𝑣), 𝑋𝑐 (𝑣)) =
∑𝑛
𝑖=0 𝜙𝑖 , where 𝑛 is the number of players and

𝜙𝑖 is the Shapley value for player 𝑖 . In this paper, we aim to identify

edges that are important for the prediction of the target vertex.
In the edge-based explanations, edges in the computational graph
are considered players in our explanation model. After computing
Shapley values, we can obtain the explanation subgraph 𝐺𝑆 by
selecting edges with higher Shapley values using top-k selection
or using a threshold. Note that Shapley values can be positive or
negative. Therefore, the absolute value of the Shapley scores should
be used to determine importance.

Algorithm 1 shows an overview of GNNShap where we aim to
explain the prediction of the target vertex 𝑣𝑖 . Algorithm 1 shows
four clear steps in GNNShap:

(1) Obtaining pruned computational graph (line 1 of Al-
gorithm 1): for an 𝑙 layer GNN, we find the computational
graph and prune redundant edges. This step is discussed in
subsection 3.2.

(2) Coalition sampling (line 4): we sample subgraphs (coali-
tions) of the computational graph by increasing their cov-
erage across all possible subgraphs. At this step, we create
a 𝑘 × 𝑛 binary mask matrix 𝑀 , where 𝑘 is the number of
sampled subgraphs, 𝑛 is the number of players (edges) in
the pruned computational graph, and 𝑀 [𝑖, 𝑗]=1 if the 𝑗th
edge is present in the 𝑖th subgraph. The sampling phase also
generates a weight vector𝑊 where𝑊 [𝑖] stores the weight
of the 𝑖th sample. This step is discussed in subsection 3.3.

(3) Model prediction: after samples are generated, we predict
the class of the target node using each sample to generate
the prediction vector 𝑦 such that 𝑦 [𝑖] stores the prediction
obtained using the 𝑖th sample. We using batching and par-
allelization to make this step faster. This step is discussed
in subsection 3.4.

(4) Shapley value computation: we compute Shapley values
for all edges in the computation graph using the following
equation 𝜙 = (𝑀𝑇𝑊𝑀)−1𝑀𝑇𝑊𝑦. This step is discussed in
subsection 3.5.

Figure 1 shows an example of computing Shapley values using
four steps discussed above.

3
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Figure 2: Cora node 0’s two-hop computational graph before
and after pruning. The unpruned computational graph is
created by keeping all nodes that are two hops away from
the source node and all edges among those nodes. Dashed
edges in the unpruned graph are redundant because their
messages don’t arrive at the source for two-layer GNNs. We
prune the dashed edges in our computational graph.

3.2 Pruning computational graphs
When explaining node 𝑣 , all edges in 𝐺𝑐 (𝑣) are considered players.
Therefore, it is crucial to create 𝐺𝑐 (𝑣) from the whole graph 𝐺

in a way that reduces computational complexity. Previous work
[17, 43] considered all edges in the 𝑙-hop-induced subgraph as
the computational graph, where 𝑙 is the number of layers in the
GNN. However, such graphs may contain edges that do not carry
a message to node 𝑣 . We prune these redundant edges from the
computational graph. Fig. 2 illustrates an example of a two-hop
computational graph. While dashed edges are in the computational
graph, their messages do not arrive at 𝑣 . Hence, considering them as
players will only increase computational complexity. In GNNShap,
we prune these redundant edges, which can expedite the rest of
the computations significantly. For example, the number of players
(edges) reduces by 78 on average for a two-layer GNN on the Cora
dataset.

3.3 Fast and efficient sampling for GNNShap
3.3.1 Improving sampling coverage. Sampling plays an important
role in Shapley-based explaination methods since it is not possible
to use all possible coalitions. For example, when using a graph
with an average degree of 𝑑 on a 2-layer GNN, the computational
graph of a vertex 𝑣 may have 𝑂 (𝑑2) edges (players), which results
in 𝑂 (2𝑑2 ) possible coalitions.

Sampling used in previous Shapley-basedGNN explanationmeth-
ods such as GraphSVX only focuses on small and large coalition
sizes by ignoring many coalitions that may contain useful informa-
tion for explanations. GraphSVX includes samples from a mid-size
coalition if a user-defined maximum coalition size is reached, yet
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Figure 3: Sample distribution figure for 30 players and 25,000
samples.WhileGNNShap distributes samples proportional to
eq. 5, GraphSVX only samples from small and large coalition
sizes.

the number of samples has not been reached. These random sam-
ples are added by Bernoulli distribution without considering the
coalition size.

We argue that an effective sampling for GNNs should sample
from all possible coalitions because it can better capture the graph
structure. To this end, we used ideas from the SHAP package [16]
by distributing weights to all possible coalition sizes using eq. 4.

𝜌 |𝑆 | =
𝑛 − 1

|𝑆 | (𝑛 − |𝑆 |) , (4)

where 𝑛 is the number of players and 𝑆 is a coalition of players,
and 𝜌 |𝑆 | is the total weights for all samples of size |𝑆 |. This simple
modification of Eq. 4 helps us sample from all possible coalition
sizes. Next, our sampling approach based on kernel SHAP generates
samples such that the number of samples is proportional to the
total weight for the coalition size using eq. 5:

𝑘 |𝑆 | = 𝑘 ∗
𝜌 |𝑆 |∑𝑛−1
𝑖=1 𝜌𝑖

, (5)

where𝑘 is the total number of samples𝑘 |𝑆 | is the number of samples
containing |𝑆 | players. Fig.3 (the blue line) shows that this sampling
approach indeed samples from all possible coalition sizes.

In our sampling approach, it is possible to generate more samples
than the number of possible coalitions for very small and large
coalition sizes. In this case, we redistribute surplus samples to
the remaining coalition sizes. Finally, individual weights𝑤 |𝑆 | for
samples are computed by distributing total coalition size weight to
individual coalitions by 6.

𝑤 |𝑆 | =
𝜌 |𝑆 |
𝑘 |𝑆 |

(6)

This sample distribution strategy still gets more samples from small
and large coalitions yet includes reasonable samples from the mid-
sized coalitions. Even though individual coalitions with the same
number of players get equal individual weight, mid-size coalitions
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still contribute less in Shapley computation because of fewer sam-
ples taken from them.

We note that the original SHAP paper considered sampling with-
out replacement to maintain unique samples. However, we did not
observe a clear benefit when there are enough samples for GNN
explanations. Hence, we use sampling with potential replacement
to reduce the computational complexity of sampling. The output of
sampling is a 𝑘 ×𝑛 binary mask matrix𝑀 , where 𝑘 is the number of
sampled subgraphs, 𝑛 is the number of players (edges) in the pruned
computational graph, and𝑀 [𝑖, 𝑗]=1 if the 𝑗 th edge is present in the
𝑖th subgraph. The sampling phase also generates a weight vector
𝑊 where𝑊 [𝑖] stores the weight of the 𝑖th sample.

3.3.2 Fast sampling with parallelization. We observe that sample
generating is the slowest part of the Shapley-based explanations and
requires more time when the number of samples and the number of
players increase. Since we sample with replacement, each sample
can be generated independently. To parallelize the sampling process
on a GPU, we first distribute samples based on coalition sizes and
generate all coalitions of a given size in parallel. We use lexico-
graphical order algorithm [15, 20, 22] for fully sampled coalitions,
which gives the ith combination without knowing the previous
combination and random sampling for the other coalition sizes. We
describe the sampling process in Algorithm 2 in the Appendix.

3.4 Fast model predictions using pruning and
batching

3.4.1 Prediction pruning. At this step, we predict the class of the
target node using each sample to generate the prediction vector
𝑦 such that 𝑦 [𝑖] stores the prediction obtained using the 𝑖th sam-
ple. We observed that in some samples, the target node remains
disconnected from the rest of the nodes when there is no incoming
one-hop edge. These coalitions are still useful since the surrogate
model learns that the marginal contribution of second-hop edges
will be zero without a first-hop edge. However, it is not necessary to
obtain the model predictions when the target node is disconnected,
as they are equal to 𝑓 (∅), which represents the model prediction
without any neighbor information. In our model prediction, we
prune this type of unnecessary model predictions, which reduces
the number of required model predictions by 20%.

3.4.2 Batching and parallel model predictions. Shapley value-based
approaches require model predictions for perturbed input, which
is the most time-consuming step in the whole calculation. We ex-
pedite the model prediction step by batching samples and then
running GNN predictions in a batch in parallel. To facilitate the
batching, we create a larger block diagonal matrix by placing the
adjacency matrices of the subgraphs within a batch along the diago-
nal. We also concatenate node features of all nodes in a batch. These
enlarged feature matrix and block-diagonal adjacency matrix are
used to predict classes of the target node with respect to a batch of
samples. The main benefit of such batching is that it improves data
locality and opportunities for parallel computations. We observed
that batching made this step an order of magnitude faster than non-
batched predictions. While batching makes GNN predictions faster,
the creation of batches is itself an expensive process. To reduce the
time to create batches, we start with the full l-hop-edges subgraph

and then prune its edges using the mask matrix. This approach
made the cost of batch creation insignificant when compared to the
time needed for GNN predictions.

3.5 Efficient Shapley computations
The last step of the GNNShap is to compute𝜙 = (𝑀𝑇𝑊𝑀)−1𝑀𝑇𝑊𝑦.
Note that 𝑀 is a 𝑘 × 𝑛 matrix with 𝑘 ≫ 𝑛 (that is, the number of
samples is much larger than the number of players). Hence, the
computational complexity of computing𝑀𝑇𝑊𝑀 can be larger than
computing the inverse of 𝑀𝑇𝑊𝑀 that is an 𝑛 × 𝑛 matrix. In our
implementation, we stored𝑀 as a dense matrix and performed the
matrix multiplications in 𝑀𝑇𝑊𝑀 and 𝑀𝑇𝑊𝑦 on the GPU. This
made the multiplication part significantly faster than CPU-based
multiplication. By contrast, we observed that the matrix inversion
does not run fasted on the GPU when the number of players is large.
This is because the current PyTorch implementation requires CPU
synchronization for the inversion, which is costly 𝑛 is relatively
large. To alleviate this problem, we train a weighted linear regres-
sion model on PyTorch instead of solving the equation when the
number of players is over 5000. Note that the mask matrix𝑀 is 50%
sparse. However, our observations show that storing𝑀 as a sparse
matrix and performing sparse matrix multiplication is slower than
dense matrix multiplications [9]. Hence, we opted to use dense
computations in this step.

4 EXPERIMENTS
4.1 Datasets
We use six real-world datasets for the experiments. Cora, CiteSeer,
and PubMed [42] are citation networks where nodes are papers,
node features are bag-of-word representations of words in the paper,
and edges are the citations of papers. We use the publicly available
train, validation, and test splits. Coauthor-CS and Coauthor-Physics
[33] are co-author graphswhere nodes denote authors, edges denote
coauthorships, and node features are keywords in the papers. We
use 30 random nodes for each class for training and validation and
the rest for testing. Facebook (FacebookPagePage) [27] is a verified
page-page site graph. Nodes correspond to pages, edges are mutual
likes, and node features are site descriptions. We use 30 random
nodes for each class for training and validation and the rest for
testing. Dataset statistics can be found in table 1. Since explanation
generation for all baselines takes a lot of time, we only consider the
first 100 test nodes for explanations.

4.2 Models
We use a two-layer GCN [14] with 16 hidden dimensions for Cora,
CiteSeer, PubMed, and Facebook and 64 for Coauthor datasets. We
apply ReLU as an activation function and 0.5 dropout in the training.
We train the model for 200 epochs with a 0.01 learning rate. Model
training and test accuracies are provided in Table 2. Since GNNShap
views a GNN as a black box, it works seamlessly with other GNN
models (see the appendix for its performance with GAT).

4.3 Evalution metrics
In this work, we utilize 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− (Eq. 7) and 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+ (Eq. 8) met-
rics from [45] to evaluate the performance of our model. These
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Table 1: Dataset statistics. Players denote the number of edges for two-hop incoming edges for the first 100 test nodes.

Dataset Nodes Edges Features Classes Avg players Max players Min players
Cora 2708 10556 1433 7 159.08 298 5
CiteSeer 3327 9104 3703 6 25.17 262 2
PubMed 19717 88648 500 3 245.46 1106 4
Coauthor-CS 18333 163788 6805 15 161.61 1249 3
Coauthor-Physics 34493 495924 8415 5 428.61 10530 4
Facebook 22470 342004 128 4 858.34 7043 6

Table 2: Model training and test accuracies

Dataset Train Test
Cora 100.00 81.50
CiteSeer 99.17 71.00
PubMed 100.00 78.80
Coauthor-CS 94.44 90.22
Coauthor-Physics 100.00 95.33
Facebook 95.00 77.10

metrics measure the importance of edges in a graph, with 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+
focusing on important edges and 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− focusing on less impor-
tant edges. By removing important edges in 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+, we expect
a significant change in the model prediction. Conversely, when
dropping the least important edges in 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− , we expect only
minimal changes in the prediction. Keeping top-k edges or thresh-
olding approaches can be used to obtain the explanation 𝐺𝑆 .

Fidelity scores can be computed for the ground-truth class or
the predicted class. Since we explain the model’s behavior for a
prediction, we use the predicted class for the evaluation.

𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− =
1
𝑁

𝑁∑︁
𝑖=1

��𝑓 (𝐺𝐶 )𝑦̂𝑖 − 𝑓 (𝐺𝑆 )𝑦̂𝑖
�� (7)

𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+ =
1
𝑁

𝑁∑︁
𝑖=1

��𝑓 (𝐺𝐶 )𝑦̂𝑖 − 𝑓 (𝐺𝐶\𝑆 )𝑦̂𝑖
�� (8)

4.4 Baselines
• Saliency (SA) [2, 24]: computes gradients with respect to

node features and considers the sum of the gradients as
node explanation.

• GNNExplainer [43]: uses mutual information to learn im-
portant edges and features. We train GNNExplainer for 200
epochs with a 0.01 learning rate for explanations.

• PGExplainer [17]: also uses mutual information and trains
a neural network to provide explanations without requiring
individual training. It provides edge explanations. We train
PGExplainer for 20 epochs with a 0.05 learning rate on the
training data.

• PGM-Explainer [38]: learns node importance by using a
probabilistic graphical model. We use default settings for
PGM-Explainer.

• GraphSVX [5]: a Shapley value-based GNN explainability
method that jointly explains node and feature importance.

We use the “SmarterSeparate” algorithm with feature ex-
planation disabled and set the maximum coalition size to
three and the number of samples to 1000. Further increasing
these numbers makes GraphSVX slower.

• SVXSampler is based on GraphSVX’s "SmarterSeparate" in
our framework. We use 10,000 samples with a maximum
coalition size of three. It uses all our improvements except
parallel sampling.

4.5 Test environment
We run all experiments on Ubuntu 18.04 with Intel(R) Core(TM)
i9-7900X CPU @ 3.30GHz, 64 GB main memory, Nvidia Titan RTX
24GB (Driver Version: 460.39) and Cuda 11.7. We use Python 3.9.13,
PyTorch 2.0.1, and PyTorch Geometric 2.3.1.

4.6 Evaluation protocol
The first 100 test nodes are used for explanations. Nodes with com-
putational graph𝐺𝐶 having less than two edges are excluded. Each
experiment is repeated five times, and the average results are re-
ported. A sparsity of 30% is used for 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− scores since there
are abundant unimportant edges. Conversely, the top 10 important
edges are used for 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+ scores since critical edges for the pre-
diction are scarce. Three different sample sizes (10,000, 25,000, and
50,000) are reported for GNNShap.

GNNShap batch size varies depending on the dataset. For Cora,
CiteSeer, PubMed, and Facebook, the batch size is set to 1024. For
Coauthor-CS, it is set to 512. Finally, for Coauthor-Physics, it is
set to 128. The batch size had to be reduced for Coauthor datasets
due to GPU memory limitations since the GNN model’s hidden
layer dimension is higher, and the number of maximum edges
in 𝐺𝐶 is large. To compare our method for SA, PGM-Explainer,
and GraphSVX baselines, we convert their node explanations to
edge explanations by averaging two connecting node’s scores as
described in [1].

4.7 Fidelity Results
Table 3 presents the 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− scores when 30% least important
edges are removed from the graph. Since the explanation graph𝐺𝑆

is obtained by dropping unimportant edges, smaller values are bet-
ter in 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− score. Table 3 shows that GNNShap outperforms all
baselines for all three sample sizes by a significant margin. In most
cases, using 10,000 samples leads to high-quality results. However,
we observe a slight improvement in some cases when more samples
are used. According to 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− scores, the next best explanation
model is SA or PGMExplainer. We observed that GraphSVX and
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Table 3: 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− scores for 30% sparsity (removing 30% least important edges): the smaller, the better. Emboldened numbers
indicate the best performance while underlined numbers indicate second-best.

Methods Cora CiteSeer PubMed Coauthor-CS Coauthor-Physics Facebook
SA 0.021±0.000 0.037±0.000 0.030±0.000 0.046±0.000 0.017±0.000 0.036±0.000

GNNExplainer 0.039±0.001 0.105±0.002 0.071±0.002 0.104±0.001 0.020±0.000 0.062±0.001
PGExplainer 0.062±0.005 0.060±0.002 0.065±0.005 0.037±0.001 0.033±0.002 0.060±0.002

PGM-Explainer 0.025±0.001 0.038±0.002 0.029±0.002 0.030±0.003 0.014±0.002 0.035±0.005
GraphSVX 0.074±0.001 0.053±0.001 0.047±0.001 0.078±0.002 0.020±0.001 0.061±0.001
SVXSampler 0.062±0.000 0.045±0.001 0.093±0.000 0.097±0.001 0.040±0.000 0.130±0.001
GNNShap 10k 0.009±0.000 0.020±0.000 0.011±0.000 0.015±0.000 0.005±0.000 0.015±0.000
GNNShap 25k 0.009±0.000 0.022±0.000 0.010±0.000 0.013±0.000 0.005±0.000 0.015±0.000
GNNShap 50k 0.008±0.000 0.020±0.000 0.011±0.000 0.015±0.000 0.005±0.000 0.013±0.000

Table 4: 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+ scores for identifying top10 important edges: the higher, the better. Emboldened numbers indicate the best
performance while underlined numbers indicate second-best.

Methods Cora CiteSeer PubMed Coauthor-CS Coauthor-Physics Facebook
SA 0.108±0.000 0.128±0.001 0.086±0.000 0.123±0.000 0.057±0.000 0.062±0.000

GNNExplainer 0.036±0.002 0.111±0.002 0.047±0.000 0.053±0.000 0.024±0.000 0.039±0.001
PGExplainer 0.081±0.005 0.112±0.003 0.056±0.003 0.128±0.003 0.036±0.002 0.054±0.005

PGM-Explainer 0.133±0.013 0.134±0.007 0.073±0.007 0.141±0.011 0.059±0.003 0.065±0.004
GraphSVX 0.178±0.000 0.159±0.000 0.138±0.001 0.189±0.001 0.059±0.000 0.120±0.002
SVXSampler 0.200±0.001 0.167±0.000 0.131±0.000 0.218±0.001 0.097±0.000 0.168±0.000
GNNShap 10k 0.206±0.000 0.167±0.000 0.136±0.000 0.228±0.000 0.102±0.000 0.175±0.000
GNNShap 25k 0.204±0.000 0.167±0.000 0.134±0.000 0.227±0.000 0.103±0.000 0.173±0.000
GnnShap 50k 0.206±0.000 0.168±0.000 0.136±0.000 0.229±0.000 0.103±0.000 0.175±0.000

Table 5: Total explanation times in seconds for the first 100 test nodes. PGExplainer training time is provided in parenthesis.

Methods Cora CiteSeer PubMed Coauthor-CS Coauthor-Physics Facebook
Saliency 0.35±0.01 0.33±0.01 0.35±0.00 0.39±0.00 0.61±0.01 0.33±0.00
GNNExplainer 95.95±0.29 96.52±0.09 97.39±0.62 191.08±0.16 386.45±0.24 105.81±0.37
PGExplainer 0.40±0.00 (22.50) 0.51±0.00 (34.63) 1.55±0.01 (58.00) 6.80±0.30 (1832.40) 16.79±0.02 (1607.05) 0.47±0.00 (25.87)
PGM-Explainer 733.69±0.88 1177.79±0.98 4793.42±3.59 8118.04±23.68 16958.51±26.93 5539.50±3.18
GraphSVX 908.45±0.61 259.65±0.98 1282.08±1.27 1668.58±0.65 4056.97±1.33 3381.89±3.25
SVXSampler 24.11±0.05 12.07±0.13 26.31±0.09 32.29±0.09 68.19±0.19 100.43±0.30
GNNShap 10k 6.68±0.08 3.61±0.11 5.24±0.09 19.18±0.09 46.18±0.29 15.34±0.11
GNNShap 25k 12.65±0.11 5.52±0.23 9.09±0.18 45.16±0.09 112.58±0.28 29.26±0.07
GNNShap 50k 22.59±0.08 8.37±0.11 15.65±0.37 88.50±0.11 223.18±0.25 52.33±0.04

SVXSampler used in GNNShap perform poorly. The results show
that GNNShap is very effective in identifying unimportant edges in
a GNN explanation.We further validate the superiority of GNNShap
by showing the 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− scores at various sparsity levels in Fig. 4
for the Cora dataset. We observe that GNNShap outperforms all
baselines at all sparsity levels. We observe similar results for all
other datasets in the appendix.

Table 4 presents the 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+ scores. In 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+ scores, higher
prediction change is expected since we drop the ten most important
edges. According to the 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+ scores, GNNShap outperforms
all baselines for five out of six datasets, except for PubMed, where

GraphSVX slightly outperforms GNNShap. Fig. 11 in the Appendix
shows detailed 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+ results at various top-k level. We observe
that GNNShap is one of the best performers in identifying the most
important edges for GNN explanations.

Overall, Shapley-based methods GraphSVX, SVXSampler and
GNNShap preform much better than their competitors when iden-
tifying important edges for GNN predictions. GraphSVX is the best
method among the baselines for 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+ scores, while it under
performs for 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− . Therefore, we can conclude that Shapley-
based approaches tend to lead to better results in finding the most

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

10 20 30 40 50 60 70
Sparsity %

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Fi
de

lit
y

SA
GNNExplainer
PGExplainer
PGM-Explainer
GraphSVX
SVXSampler
GNNShap

Figure 4: 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− scores on Cora dataset for sparsities. The
lower result is desired for 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− . GNNShap gives the best
result for all sparsity levels.

important edges. However, GNNShap’s sample distribution leads
to better results in general.

4.8 Explanation Times
Table 5 shows the total explanation times for the first 100 test nodes.
GNNShap is significantly faster than GNNExplainer, PGMExplainer,
and GraphSVX. Our parallel sampling and pruning strategies re-
duce the explanation times drastically. Although Shapley-based
approaches are generally considered slow, GNNShap is still faster
even when using 50,000 samples. Most importantly, GNNShap is
up to 100× faster than GraphSVX that is the overall second best
performer according to 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− and 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+ scores. SVXSam-
pler is implemented inside GNNShap’s framework. Hence, it runs
much faster than GraphSVX.

SA is computationally efficient since it only requires a forward
pass. Similarly, PGExplainer is computationally efficient because it
can provide global explanations without individual learning after
training. However, GNNShap Fidelity results are significantly better
than those of PGExplainer and SA.

4.9 Improving prediction confidence based on
edge importance

As shown in Fig. 4, GNNShap is very effective in identifying unim-
portant edges. We expect that prediction probabilities should in-
crease when the negative contributed edges are removed from the
graph. Fig. 5 confirmed this hypothesis where removing unimpor-
tant edges improve the prediction confidence for all nodes. Thus,
GNNShap can help us sparsify the graph, which helps reduce the
computational complexity of GNN inference while improving pre-
diction confidences.

4.10 Explanation Visualization
GNNShap is able to visualize explanations. Fig. 6 shows an expla-
nation for Cora node 37. While blue edges reduce the prediction
probability, red edges reduce the probability. The visualization can
help to identify undesirable outcomes of the model.
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Figure 5: Coramodel prediction probability improvement for
nodes when edges with negative Shapley value are dropped.
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Figure 6: Explanation Graph Visualization for node 37. Node
colors show classes. While blue edges reduce the prediction
probability, red edges reduce the probability.

5 CONCLUSION
Shapley-value based explanations have been very successful in al-
most all branches of machine learning. However, their use was lim-
ited in GNN explanations because of their high computational costs
and difficulties in finding unimportant edges. This paper presents
GNNShap that addresses both problems by first using an effective
sampling strategy and then developing faster algorithms using
pruning and parallel computing. Through a comprehensive eval-
uation, we demonstrate that GNNShap achieves state-of-the-art
performance on various node classification tasks quickly and accu-
rately.
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A COMPUTATIONAL GRAPH PRUNING
Table 6 shows the reduction of players for the two-hop computa-
tional graph when pruning is applied. Our pruning strategy only
selects edges that their message reaches to the node in l-hops. The
pruning reduces the number of players on average by over 50%.
The reduction increases in larger graphs such as Coauthor-Physics
and Facebook.

B MODEL PREDICTION
B.1 The Impact of Prediction Pruning
Table 7 presents the percentage of pruned predictions. The table
indicates that for a significant number of samples, we do not need
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Table 6: Average number of players (edges) reduction for two-hop computational graphs on the test nodes of datasets.

Dataset Cora CiteSeer PubMed Coauthor-CS Coauthor-Physics Facebook
before pruning 124.11 52.4 262.66 715.71 2333.51 7373.78
after pruning 45.73 21.59 81.71 162.96 365.34 948.33
reduction 78.38 30.81 180.95 552.75 1968.17 6425.45
reduction % 63.15 58.80 68.89 77.23 84.34 87.14

to obtain the model predictions of over 20% of the samples to obtain
the prediction.

B.2 Sequential vs Batch Model Prediction
To evaluate the effect of batching on coalition predictions, we run
coalition predictions in sequential and batched. Since sequential
inference takes a lot of time, we consider 10,000 samples. Table 8
shows that we see over 100 times speed-up for some datasets. Due
to GPU memory, we had to reduce the batch sizes for Coauthor-
Physics (128) and Coauthor-CS (512). With a GPU with more mem-
ory, the speed-up can be further improved for these datasets.

C SAMPLING
C.1 Parallel Sampling
Our parallel sampling algorithm is presented in Algorithm 2 and 3.
In the first step, Algorithm 2, samples are distributed to coalition
sizes, and a cumulative sum of samples of coalition sizes is kept in
a vector. Then, the GPU kernel code is called to start the parallel
sampling; Algorithm 2. Each GPU thread first computes its chunk
range. If the range requires samples from the to-be-fully-sampled
coalition size, it creates the sample using LexicographicOrder. For
random sample cases, it only needs to know the coalition size |S| and
creates a random sample by setting |S| values to true.When a sample
is added to the mask matrix, its complementary sample is also
added to achieve symmetric sampling. Therefore, no computation
is needed for half of the samples.

C.2 GNNShap Explanation Time Breakdown
Fig. 7, illustrates an explanation time breakdown for 307 players.
The figure shows that the most time-consuming part of a GNNShap
explanation is sequential sampling. However, after parallelizing,
the sampling becomes the least time-consuming operation for an
explanation.

C.3 Effect of Unique Samples
SHAP [16] ensures that each sampled coalition is unique. Although
the uniqueness of coalitions is a desirable property, verifying unique
coalitions increases computation time. Fig. 9 shows that checking
the uniqueness increases computational time, while there is no
clear benefit on fidelity scores when there is a reasonable number
of samples. Furthermore, controlling the uniqueness of coalitions
during sampling makes parallelizing the sampling quite difficult.
Therefore, we do not control the uniqueness of coalitions during
sampling.

Algorithm 2: GNNSHAP Sampler Algorithm
Input: 𝑛: number of players, 𝑝: number of samples.
Output:𝑀 : boolean mask matrix,𝑊 : weight vector

1 𝑏𝑖𝑛𝑠 ← 𝑝 ∗ 𝑒𝑞.5 // distribute samples to coalition sizes

using eq. 5

2 𝑟 ← 0 // random sampling start index

3 𝑐𝑜𝑎𝑙𝑆𝑖𝑧𝑒𝐼𝑛𝑑𝑠 ← [] // coalition size sample start indices

4 for 𝑐 ← 1→ 𝑛/2 do
5 if more samples than possible coalitions for c then
6 redistribute extra samples to the remaining bins
7 𝑐𝑜𝑎𝑙𝑆𝑖𝑧𝑒𝐼𝑛𝑑𝑠 [𝑐] ← 𝑟

8 𝑟 ← 𝑟 +
(𝑛
𝑐

)
9 𝑊 [𝑐𝑜𝑎𝑙𝑆𝑖𝑧𝑒𝐼𝑛𝑑𝑠 [𝑐] : 𝑟 ] ← 𝑒𝑞.3

10 else
11 𝑐𝑜𝑎𝑙𝑆𝑖𝑧𝑒𝐼𝑛𝑑𝑠 [𝑐] ← 𝑐𝑜𝑎𝑙𝑆𝑖𝑧𝑒𝐼𝑛𝑑𝑠 + 𝑏𝑖𝑛𝑠 [𝑐]

12 𝑊 [𝑟 : 𝑝/2] ← (0.5 − 𝑠𝑢𝑚(𝑊 [: 𝑟 ]))/(𝑝/2 − 𝑟 ) // distribute

remaining weights to random samples

13 𝑊 [𝑝/2 :] ←𝑊 [𝑟 : 𝑝/2] // symmetric samples’ weights

14 GPUSample(M, coalSizeInds, randInd, n, p)
15 return𝑀,𝑊

Algorithm 3: GPUSample Algorithm
Input: 𝑛: number of players, 𝑝: number of samples,

coalSizeInds: coalition start indices, randInd: random
sampling start index

Output:𝑀 : boolean mask matrix,𝑊 : kernel weight vector
1 𝑠 ← compute chunk start index
2 𝑒 ← compute chunk end index
3 𝑖 ← 𝑠

4 for 𝑖 → 𝑟𝑎𝑛𝑑𝐼𝑛𝑑 do
// fully sampled coalitions

5 𝑐 ← compute coalition size using coalSizeInds
6 M[i] = LexicographicOrder(n, i - coalSizeInds[c])
7 for 𝑖 → 𝑒 do

// random sampling

8 𝑐 ← compute coalition size using coalSizeInds
9 M[i, rand(c)] = true

// set random c index as true

10 return𝑀,𝑊

D EXPLANATIONS WITH OTHER GNN TYPES
To demonstrate that GNNShap can generate fast explanations for
other GNN types, we use a two-layer GAT model with 16 hidden
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Table 7: Average percentage of pruned predictions of 100 node explanations for 25,000 samples. If a target node is disconnected
in a coalition, there is no need to get the prediction since they are equal to 𝑓 (∅).

Dataset Cora CiteSeer PubMed Coauthor-CS Coauthor-Physics Facebook
Pruned prediction % 28.89 ± 0.00 23.44 ± 0.00 22.97 ± 0.00 23.75 ± 0.00 23.71 ± 0.00 27.31 ± 0.00

Table 8: Sequential versus batched total model prediction times of 100 explanations in seconds for 10,000 samples

Methods Cora CiteSeer PubMed Coauthor-CS Coauthor-Physics Facebook
Sequential 519.29 366.29 543.35 518.58 554.45 520.5
Batched 6.68 3.61 5.24 19.18 46.18 15.34
Speedup 77.74x 101.47x 103.69x 27.04x 12.01x 33.93x
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Figure 7: Explanation Time breakdown of GNNShap compu-
tation for the increasing number of samples. Explanation
computational graph pruning is not included since its time
is negligible. The timing breakdown reveals that the most
time-consuming part was the sampling process. However, af-
ter parallelization, the sampling process became negligible.

Table 9: Total annotation generation time of GNNShap for
GCN and GAT on 100 Cora dataset nodes.

GNN GCN GAT
GNNSHAP 10k 6.68±0.08 9.09±0.09

layers of multi-head-attentions with 8 multi-head-attentions for the
Cora dataset. We train the GAT model for 200 epochs with a 0.005
learning rate. While the GAT model training accuracy is 100%, the
test accuracy is 81.4%. GCN model details can be found in section
4.2, and accuracy is in Table 2. The batch size of GNNShap is set to
1024 for the experiment. Table 9 provides GNNShap computation
times for 10,000 samples. GNNShap generates explanations faster
for GCN because the GAT model requires more computation than
GCN. Yet, GNNShap generates 100 explanations on the Cora dataset
in under 10 seconds. Quality-wise, GNNShap gets similar 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦−
scores for both models, as can be seen in Figure 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− . This
result shows that for similar accuracy models, GNNShap is able to
distinguish important and less important edges successfully.
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Figure 8: GNNShap 10,000 samples 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− scores for GCN
and GAT model. GNNShap gets similar fidelity scores for
both methods.

E FIDELITY SCORES
Fig. 10 shows 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− scores for all datasets. It is obvious that
GNNShap outperforms the baselines. However, GraphSVX and
SVXSampler used in GNNShap perform poorly. The results show
that our sampling strategy is very effective in identifying unimpor-
tant edges.

Fig. 11 shows 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+ scores for multiple top-k levels. The
results indicate that GNNShap is one of the best performers for
𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+, except for PubMed, where GraphSVX is slightly better.
Overall, Shapley value-based approaches are good at identifying im-
portant edges. However, GNNShap performs well on both 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦−
and 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+.

F REPRODUCIBILITY
We provide the necessary parameters to reproduce our experiments
for the model in Section 4.2, baselines, and their parameters in Sec-
tion 4.4. We also provide GNNShap-specific parameters in Section
4.6.
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Figure 9: Unique coalitions vs. samples with replacement effect on Cora dataset for various number of samples. (a) shows
computation time of sampling when uniqueness is checked, (b) shows 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− score for 30% sparsity, (c) shows 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+ score
for top 10.
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Figure 10: 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− scores for sparsities. The lower result is desired for 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− . GNNShap gives the best result for all sparsity
levels.
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Figure 11: 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+ scores for different top-k levels. The higher result is desired for 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+. GNNShap gives the best result for
all sparsity levels.
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