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Abstract
Diffusion models approximate the denoising dis-
tribution as a Gaussian and predict its mean,
whereas flow matching models reparameterize
the Gaussian mean as flow velocity. However,
they underperform in few-step sampling due to
discretization error and tend to produce over-
saturated colors under classifier-free guidance
(CFG). To address these limitations, we propose
a novel Gaussian mixture flow matching (GM-
Flow) model: instead of predicting the mean, GM-
Flow predicts dynamic Gaussian mixture (GM)
parameters to capture a multi-modal flow veloc-
ity distribution, which can be learned with a KL
divergence loss. We demonstrate that GMFlow
generalizes previous diffusion and flow match-
ing models where a single Gaussian is learned
with an L2 denoising loss. For inference, we
derive GM-SDE/ODE solvers that leverage ana-
lytic denoising distributions and velocity fields for
precise few-step sampling. Furthermore, we intro-
duce a novel probabilistic guidance scheme that
mitigates the over-saturation issues of CFG and
improves image generation quality. Extensive ex-
periments demonstrate that GMFlow consistently
outperforms flow matching baselines in genera-
tion quality, achieving a Precision of 0.942 with
only 6 sampling steps on ImageNet 256×256.

1. Introduction
Diffusion probabilistic models (Sohl-Dickstein et al., 2015;
Ho et al., 2020), score-based models (Song & Ermon, 2019;
Song et al., 2021b), and flow matching models (Lipman
et al., 2023; Liu et al., 2022) form a family of generative
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Figure 1. Comparison between vanilla diffusion (with flow velocity
parameterization) and GMFlow on a 2D checkerboard distribution.
(a) The vanilla diffusion model predicts mean velocity, modeling
the denoising distribution qθ(x0|xt) as a single Gaussian, and then
samples from a Gaussian transition distribution qθ(xt−∆t|xt). (b)
GMFlow predicts a GM for velocity and yields a multi-modal GM
denoising distribution, from which the transition distribution can
be analytically derived for precise next-step sampling, allowing
more accurate few-step sampling (4 steps in this case).

models that share an underlying theoretical framework and
have made significant advances in image and video gener-
ation (Yang et al., 2023; Po et al., 2024; Rombach et al.,
2022; Saharia et al., 2022b; Podell et al., 2024; Chen et al.,
2024; Esser et al., 2024; Blattmann et al., 2023; Hong et al.,
2023; HaCohen et al., 2024; Kong et al., 2025). Standard
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diffusion models approximate the denoising distribution as
a Gaussian and train neural networks to predict its mean,
and optionally its variance (Nichol & Dhariwal, 2021; Bao
et al., 2022b;a). Flow matching models reparameterize the
Gaussian mean as flow velocity, formulating an ordinary
differential equation (ODE) that maps noise to data. These
formulations remain dominant in image generation as per
user studies (Artificial Analysis, 2025; Jiang et al., 2024).

However, vanilla diffusion and flow models require tens of
sampling steps for high-quality generation, since Gaussian
approximations hold only for small step sizes, and numeric
ODE integration introduces discretization errors. In addi-
tion, high quality generation requires a higher classifier-free
guidance (CFG) scale (Ho & Salimans, 2021), yet stronger
CFG often leads to over-saturated colors (Saharia et al.,
2022a; Kynkäänniemi et al., 2024) due to out-of-distribution
(OOD) extrapolation (Bradley & Nakkiran, 2024), thus lim-
iting overall image quality even with hundreds of steps.

To address these limitations, we deviate from previous
single-Gaussian assumption and introduce Gaussian mix-
ture flow matching (GMFlow). Unlike vanilla flow models,
which predict the mean of flow velocity u, GMFlow predicts
the parameters of a Gaussian mixture (GM) distribution, rep-
resenting the probability density function (PDF) of u. This
provides two key benefits: (a) our GM formulation captures
more intricate denoising distributions, enabling more accu-
rate transition estimates at larger step sizes and thus requir-
ing fewer steps for high-quality generation (Fig. 1); (b) CFG
can be reformulated by reweighting the GM probabilities
rather than extrapolation, thus bounding the samples within
the conditional distribution and avoiding over-saturation,
thereby improving overall image quality.

We train GMFlow by minimizing the KL divergence be-
tween the predicted velocity distribution and the ground
truth distribution, which we show is a generalization of
previous diffusion and flow matching models (§ 3.1). For
inference, we introduce novel SDE and ODE solvers that
analytically derive the reverse transition distribution and
flow velocity field from the predicted GM, enabling fast and
precise few-step sampling (§ 3.3). Meanwhile, we develop a
probabilistic guidance approach for conditional generation,
which reweights the GM PDF using a Gaussian mask to
enhance condition alignment (§ 3.2).

For evaluation, we compare GMFlow against vanilla flow
matching baselines on both 2D toy dataset and ImageNet
(Deng et al., 2009). Extensive experiments reveal that GM-
Flow consistently outperforms baselines equipped with ad-
vanced solvers (Lu et al., 2022; 2023; Zhao et al., 2023;
Karras et al., 2022). Notably, on ImageNet 256×256, GM-
Flow excels in both Precision and FID metrics with fewer
than 8 sampling steps; with 32 sampling steps, GMFlow
achieves a state-of-the-art Precision of 0.950 (Fig. 6).

The main contributions of this paper are as follows:

• We propose GMFlow, a generalized formulation of diffu-
sion models based on GM denoising distributions.

• We introduce a GM-based sampling framework consisting
of novel SDE/ODE solvers and probabilistic guidance.

• We empirically validate that GMFlow outperforms flow
matching baselines in both few- and many-step settings.

2. Diffusion and Flow Matching Models
In this section, we provide background on diffusion and
flow matching models as the basis for GMFlow. Note that
we introduce flow matching as a special diffusion parame-
terization since they largely overlap in practice (Albergo &
Vanden-Eijnden, 2023; Gao et al., 2024).

Forward diffusion process. Let x ∈ RD be a data point
sampled from a distribution with its PDF denoted by p(x).
A typical diffusion model defines a time-dependent interpo-
lation between the data point and a random Gaussian noise
ϵ ∼ N (0, I), yielding the noisy data xt = αtx + σtϵ,
where t ∈ [0, T ] denotes the diffusion time, and αt, σt

are the predefined time-dependent monotonic coefficients
(noise schedule) that satisfy the boundary condition x0 = x,
xT ≈ ϵ. Apparently, the marginal PDF of the noisy data
p(xt) can be written as the data distribution p(x) convolved
by a Gaussian kernel p(xt|x0) = N (xt;αtx0, σ

2
t I), i.e.,

p(xt) =
∫
RD p(xt|x0)p(x0) dx0. Alternatively, p(xt) can

be expressed as a previous PDF p(xt−∆t) convolved by a
transition Gaussian kernel p(xt|xt−∆t), given by:

p(xt|xt−∆t)

= N
(
xt;

αt

αt−∆t
xt−∆t,

( βt,∆t︷ ︸︸ ︷
σ2
t −

α2
t

α2
t−∆t

σ2
t−∆t

)
I

)
, (1)

where the transition variance is denoted by βt,∆t for brevity.
A series of convolutions from 0 to T constructs a diffusion
process over time. With infinitesimal step size ∆t, this
process can be continuously modeled by the forward-time
SDE (Song et al., 2021b).

Reverse denoising process. Diffusion models generate
samples by first sampling the noise xT ← ϵ and then revers-
ing the diffusion process to obtain x0. This can be achieved
by recursively sampling from the reverse transition distribu-
tion p(xt−∆t|xt) =

p(xt−∆t)p(xt|xt−∆t)
p(xt)

. DDPM (Ho et al.,
2020) approximate p(xt−∆t|xt) with a Gaussian and repa-
rameterize its mean in terms of residual noise, which is then
learned by a neural network. Its sampling process is equiv-
alent to a first-order solver of a reverse-time SDE. Song et
al. (2021b) reveal that the time evolution of the marginal
distribution p(xt) described by the SDE is the same as that
described by a flow ODE, which maps the noise xT to data
x0 deterministically. In particular, flow matching models
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train a neural network to directly predict the ODE veloc-
ity field dxt

dt . They typically adopt a linear noise schedule,
which defines T := 1, αt := 1 − t, σt := t, thus yielding
a simplified velocity formulation dxt

dt = Ex0∼p(x0|xt)[u],
with the random flow velocity u defined as:

u :=
xt − x0

σt
. (2)

This reveals that the velocity field dxt

dt represents the mean
of the random velocity u over the denoising distribution
p(x0|xt) =

p(x0)p(xt|x0)
p(xt)

.

Flow matching loss. Flow models stochastically regress
dxt

dt using randomly paired samples of x0 and xt. Let
µθ(xt) denote a flow velocity neural network with learnable
parameters θ, the L2 flow matching loss is given by:

L = Et,x0,xt

[
1

2
∥u− µθ(xt)∥2

]
. (3)

In practice, additional condition signals c (e.g., class label
or text prompt) can be fed to the network µθ(xt, c), making
it a conditioned diffusion model that learns p(x0|c).

Limitations. Sampling errors in flow models can arise
from two sources: (a) discretization errors in SDE/ODE
solvers, and (b) inaccurate flow prediction µθ(xt, c) due
to underfitting (Karras et al., 2024). While discretization
errors can be reduced by reducing step size, it increases the
number of function evaluations (NFE), causing significant
computational overhead. To mitigate prediction inaccura-
cies, CFG (Ho & Salimans, 2021) performs an extrapola-
tion of conditional and unconditional predictions, given by
wµθ(xt, c) + (1 − w)µθ(xt), where w ∈ [1,+∞) is the
guidance scale. Such a method improves image quality and
condition alignment at the expense of diversity. However,
higher w may lead to OOD samples and cause image over-
saturation, which is often mitigated with heuristics such as
thresholding (Saharia et al., 2022a; Sadat et al., 2025).

3. Gaussian Mixture Flow Matching Models
In this section, we introduce our GMFlow models, covering
its parameterization and loss function (§ 3.1), probabilistic
guidance mechanism (§ 3.2), GM-SDE/ODE solvers (§ 3.3),
and other practical designs for image generation (§ 3.4).
Table 1 summarizes the key differences between GMFlow
and vanilla flow models. Algorithms 1 and 2 present the
outlines of training and sampling schemes, respectively.

3.1. Parameterization and Loss Function

Different from vanilla flow models that regress mean veloc-
ity, we model the velocity distribution p(u|xt) as a Gaussian

Table 1. Comparison between vanilla flow models and GMFlow.

Vanilla diffusion flow GMFlow

Transition
assumption

∆t is small→ p(xt−∆t|xt)
is approximately a Gaussian

Derive p(xt−∆t|xt)
from the predicted GM

Network
output

Mean of flow velocity
µθ(xt)

GM params in qθ(u|xt)

=
∑K

k=1 AkN (u;µk, s
2I)

Training
loss Et,x0,xt

[
1
2∥u− µθ(xt)∥2

]
Et,x0,xt

[− log qθ(u|xt)]

Sampling
methods

1st-ord: Euler, DDPM. . .
2nd-ord: DPM++, UniPC. . .

1st-ord: GM-SDE/ODE
2nd-ord: GM-SDE/ODE 2

Guidance Mean extrapolation
wµθ(xt, c) + (1− w)µθ(xt)

GM reweighting
w(u)
Z

qθ(u|xt, c)

mixture (GM):

qθ(u|xt) =

K∑
k=1

AkN (u;µk,Σk), (4)

where {Ak,µk,Σk} are dynamic GM parameters predicted
by a network with parameters θ, and K is a hyperparameter
specifying the number of mixture components. To enforce∑

k Ak = 1 with Ak ≥ 0, we employ a softmax activation
Ak = exp ak∑

k exp ak
, where {ak ∈ R} are pre-activation logits.

We train GMFlow by matching the predicted distri-
bution qθ(u|xt) with the ground truth velocity distri-
bution p(u|xt). Specifically, we minimize the Kull-
back–Leibler (KL) divergence (Kullback & Leibler, 1951)
Eu∼p(u|xt)[log p(u|xt)−log qθ(u|xt)], where log p(u|xt)
does not affect backpropagation and can be omitted. Dur-
ing training, we sample u ∼ p(u|xt) by drawing a pair of
x0, xt, and then calculate the velocity using Eq. (2). The
resulting loss function is therefore reformulated as:

L = Et,x0,xt
[− log qθ(u|xt)]. (5)

In Eq. (6), we present an expanded form of this loss function.

Why choosing Gaussian mixture? While there are a large
family of parameterized distributions, we choose Gaussian
mixture for its following desired properties:

• Mean alignment. The mean of the ground truth distribu-
tion p(u|xt) is crucial since it decides the velocity term
in the flow ODE and the drift term in the reverse-time
SDE (§ C.1). When the loss in Eq. (5) is minimized
(assuming sufficient network capacity), the GM distribu-
tion qθ(u|xt) guarantees that its mean aligns with that of
p(u|xt).

Theorem 3.1. Given any distribution p(u) and any sym-
metric positive definite matrices {Σk}, if {a∗k,µ∗

k} are
the optimal GM parameters w.r.t. with the objective
min{ak,µk} Eu∼p(u)[− log

∑
k AkN (u;µk,Σk)], then

the GM mean satisfies
∑

k A
∗
kµ

∗
k = Eu∼p(u)[u].

We provide the proof of the theorem in § C.2. It’s worth
pointing out that not all distributions satisfy this property
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(e.g. the mean of Laplace distribution aligns to the median
instead of the mean).

• Analytic calculation. GM enables necessary calculations
to be approached analytically (e.g., for deriving the mean
and the transition distribution), as detailed in § D.

• Expressiveness. GMs can approximate intricate mul-
timodal distributions. With sufficient number of com-
ponents, GMs are theoretically universal approximators
(Huix et al., 2024).

Simplified covariances. The expansion of Eq. (5) involves
the inverse covariance matrix Σ−1

k , which can lead to train-
ing instability. To mitigate this, we simplify each covariance
to a scaled identity matrix, i.e., Σk = s2I , where s ∈ R+

is the predicted standard deviation shared by all mixture
components. It’s worth pointing out that this simplification
does not limit the GM’s expressiveness, which is mainly
dominated by K. Moreover, Theorem 3.1 implies that the
structure of the covariance matrix is irrelevant to the accu-
racy of the mean velocity, mitigating the need for intricate
covariances. Under this simplification, the expanded GM
KL loss is reduced to:

L = Et,x0,xt

[
− log

K∑
k=1

exp

(
− 1

2s2
∥u− µk∥2 −D log s+ logAk

)]
, (6)

which can be interpreted as a hybrid of regression loss to
the centroids and classification loss to the components.

Special cases of GMFlow. GMFlow generalizes several
formulations of previous diffusion and flow models. In a
special case where K = 1, s = 1, Eq. (6) is identical to
the L2 loss in Eq. (3). Therefore, GMFlow is a generaliza-
tion of vanilla diffusion and flow models. In another case
where {µk} are velocities towards predefined tokens and
s ≈ 0, then {Ak} represent token probabilities, making
Eq. (6) analogous to categorical diffusion objectives (Gu
et al., 2022; Dieleman et al., 2022; Campbell et al., 2022).

u-to-x0 reparameterization. While the neural net-
work directly outputs the u distribution, we can flexi-
bly reparameterize it into an x0 distribution by substi-
tuting u = xt−x0

σt
into Eq. (4), yielding qθ(x0|xt) =∑

k AkN (x0;µxk, s
2
xI), with the new parameters µxk =

xt − σtµk and sx = σts. The velocity KL loss
is thus equivalent to an x0 likelihood loss L =
Et,x0,xt

[− log qθ(x0|xt)].

3.2. Probabilistic Guidance via GM Reweighting

Vanilla CFG suffers from over-saturation due to unbounded
extrapolation, which overshoots samples beyond the valid
data distribution. In contrast, GMFlow can provide a well-

defined conditional distribution qθ(u|xt, c). This allows us
to formulate probabilistic guidance, a principled approach
that reweights the predicted distribution while preserving its
intrinsic bounds and structure.

To reweight the GM PDF qθ(u|xt, c) analytically, we mul-
tiply it by a Gaussian mask w(u):

qw(u|xt, c) :=
w(u)

Z
qθ(u|xt, c), (7)

where Z is a normalization factor. The reweighted
qw(u|xt, c) remains a GM with analytically derived pa-
rameters (see § D.2 for derivation), and is treated as the
model output for sampling.

Then, our goal is to design w(u) so that it enhances con-
dition alignment without inducing OOD samples. To this
end, we approximate the conditional and unconditional GM
predictions qθ(u|xt, c) and qθ(u|xt) as isotropic Gaussian
surrogates N (u;µc, s

2
cI) and N (u;µu, s

2
uI) by matching

the mean and total variance of the GM (see § A.1 for details).
Using these approximations, we define the unnormalized
Gaussian mask as:

w(u) :=
N
(
u;µc + w̃sc∆µn,

(
1− w̃2

)
s2cI
)

N (u;µc, s2cI)
, (8)

where w̃ ∈ [0, 1) is the probabilistic guidance scale, and
∆µn := µc−µu

∥µc−µu∥/
√
D

is the normalized mean difference.

Intuitively, the numerator in Eq. (8) shifts the conditional
mean by the bias w̃sc∆µn to enhance conditioning, while re-
ducing the conditional variance according to bias–variance
decomposition. Notably, for any w̃, a sample u from the nu-
merator Gaussian satisfies Eu

[
∥u− µc∥2/D

]
≡ s2c . This

ensures that the original bounds of the conditional distribu-
tion are preserved.

Meanwhile, the denominator in Eq. (8) cancels out the orig-
inal mean and variance of the conditional GM, so that the
reweighted GM qw(u|xt, c) approximately inherits the ad-
justed mean and variance of the numerator. Since the “mask-
ing” operation retains the original GM components, the
fine-grained structure of the conditional GM is preserved.

With preserved bounds and structure, probabilistic guidance
reduces the risk of OOD samples compared to vanilla CFG,
effectively preventing over-saturation and enhancing overall
image quality.

3.3. GM-SDE and GM-ODE Solvers

In this subsection, we show that GMFlow enables unique
SDE and ODE solvers that greatly reduce discretization
errors by analytically deriving the reverse transition distri-
bution and flow velocity field.

GM-SDE solver. Given the predicted x0-based GM
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qθ(x0|xt) =
∑

k AkN (x0;µxk, s
2
xI), the reverse transi-

tion distribution qθ(xt−∆t|xt) can be analytically derived
(see § C.3 for derivation):

qθ(xt−∆t|xt)

=

K∑
k=1

AkN
(
xt−∆t; c1xt + c2µxk,

(
c3 + c22s

2
x

)
I
)
, (9)

with the coefficients c1 =
σ2
t−∆t

σ2
t

αt

αt−∆t
, c2 =

βt,∆t

σ2
t

αt−∆t,

c3 =
βt,∆t

σ2
t

σ2
t−∆t. By recursively sampling from

qθ(xt−∆t|xt), we obtain a GM approximation to the
reverse-time SDE solution. Alternatively, we can imple-
ment the solver by first sampling x̂0 ∼ qθ(x0|xt) and then
sampling p(xt−∆t|xt, x̂0) = N (xt−∆t; c1xt + c2x̂0, c3I)
(Song et al., 2021a) (see § C.3 for details). Theoretically, if
qθ(x0|xt) is accurate, the GM-SDE solution incurs no error
even in a single step. In practice, a smaller step size ∆t
increases reliance on the mean (see § C.4 for details) over
the shape of the distribution, which can be more accurate as
per Theorem 3.1.

GM-ODE solver. While GMFlow supports standard ODE
integration by converting its GM prediction into the current
mean velocity, it also enables a unique sampling scheme
with reduced discretization errors by analytically deriving
the flow velocity field for any time τ < t, thereby facilitat-
ing sub-step integration without additional neural network
evaluations. Specifically, given the x0-based GM qθ(x0|xt)
at xt, we show in § C.5 that the denoising distribution at xτ

can be derived as:

q̂(x0|xτ ) =
p(xτ |x0)

Z · p(xt|x0)
qθ(x0|xt), (10)

where Z is a normalization factor, and q̂(x0|xτ ) is also a
GM with analytically derived parameters. This allows us
to instantly estimate GMFlow’s next-step prediction at xτ

from its current prediction at xt, without re-evaluating the
neural network. The velocity can therefore be derived by
reparameterizing q̂(x0|xτ ) in terms of u and computing its
mean. This enables the GM-ODE solver, which integrates a
curved trajectory along the analytic velocity field via multi-
ple Euler sub-steps between t and t−∆t (Algorithm 2 line
18–22). Theoretically, if qθ(x0|xt) is accurate, the GM-
ODE solution also incurs no error. In practice, the velocity
field is only locally accurate as τ → t and xτ → xt, thus
multiple network evaluations are still required.

Second-order multistep GM solvers. Vanilla diffusion
models often use Adams–Bashforth-like second-order mul-
tistep solvers (Lu et al., 2023), which extrapolate the mean
x0 predictions of the last two steps to estimate the next
midpoint, and then apply an Euler update. Analogously,
we extend this approach to GMs. Given GM predictions at
times t and t+∆t, we first convert the latter to time t via

Eq. (10), yielding q̂(x0|xt). In an ideal scenario where both
GMs are accurate, q̂(x0|xt) perfectly matches qθ(x0|xt);
otherwise, their discrepancy is extrapolated following the
Adams–Bashforth scheme. To perform GM extrapolation,
we adopt a GM reweighting scheme similar to that in § 3.2.
More details are provided in § A.2.

3.4. Practical Designs

Pixel-wise factorization. For high-dimensional data such
as images, Gaussian mixture models often suffer from mode
collapse. To address this, we treat each pixel (in the latent
grid for latent diffusion (Rombach et al., 2022)) as an inde-
pendent low-dimensional GM, making the training loss the
sum of per-pixel GM KL terms.

Spectral sampling. Due to the factorization, image gener-
ation under GM-SDE solvers performs the sampling step
x̂0 ∼ qθ(x0|xt) independently for each pixel, neglecting
spatial correlations. To address this, we adopt a spectral
sampling technique that imposes correlations through the
frequency domain. Specifically, we generate a spatially
correlated Gaussian random field from a learnable power
spectrum. The per-pixel Gaussian samples are then mapped
to GM samples via Knothe–Rosenblatt transport (Knothe,
1957; Rosenblatt, 1952). More details are provided in § A.3.

Transition loss. Empirically, we observe that the GM KL
loss may still induce minor gradient spikes when s be-
comes small. To stabilize training, we adopt a modified
loss based on the transition distributions (Eq. (9)), formu-
lated as Ltrans = Et,xt−∆t,xt

[− log qθ(xt−∆t|xt)], where
we define ∆t := λt with the transition ratio hyperparam-
eter λ ∈ (0, 1]. When λ = 1, the loss is equivalent to the
original; when λ < 1, the transition distribution has a lower
bound of variance c3, which improves training stability. The
modified training scheme is described in Algorithm 1.

4. Experiments
To evaluate the effectiveness of GMFlow, we compare it
against vanilla flow matching baselines on two datasets: (a)
a simple 2D checkerboard distribution, which facilitates vi-
sualization of sample histograms and analysis of underlying
mechanisms; (b) the class-conditioned ImageNet dataset
(Deng et al., 2009), a challenging benchmark that demon-
strates the practical advantages of GMFlow for large-scale
image generation.

4.1. Sampling a 2D Checkerboard Distribution

In this subsection, we compare GMFlow with the vanilla
flow model on a simple 2D checkerboard distribution, fol-
lowing the experimental settings of Lipman et al. (2023).
All configurations adopt the same 5-layer MLP architecture
for denoising 2D coordinates, differing only in their output
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Figure 2. Comparison among vanilla flow models with different
solvers and GMFlow. For both SDE and ODE, our method
achieves higher quality in few-step sampling.

channels. For GMFlow, we train multiple models with dif-
ferent numbers of GM components K (with λ = 0.9); for
GM-ODE sampling, we use n = ⌈128/NFE⌉ sub-steps.

Comparison against flow model baseline. In Fig. 2,
we compare the 2D sample histograms of GMFlow us-
ing second-order GM solvers (GM-SDE/ODE 2) against
the vanilla flow matching baseline using established SDE
and ODE solvers (Lu et al., 2023; Zhao et al., 2023; Ho
et al., 2020; Song et al., 2021a). Notably, vanilla flow mod-
els require approximately 8 steps to achieve a reasonable
histogram and 16–32 steps for high-quality sampling. In
contrast, GMFlow (K = 64) can approximate the checker-
board in a single step and achieve high-quality sampling in 4
steps. Moreover, for vanilla flow models, samples generated
by first-order solvers (DDPM, Euler) tend to concentrate
toward the center, whereas those from second-order solvers
(DPM++, UniPC) concentrate near the outer edges. In con-
trast, GMFlow samples are highly uniform. This validates
GMFlow’s advantage in few-step sampling and multi-modal
distribution modeling.

Impact of the GM component count K. Fig. 3 (a) demon-
strates that increasing K significantly improves few-step
sampling results, leading to sharper histograms. Notably,
GM-SDE sampling with K = 1 is theoretically equivalent
to DDPM with learned variance (Nichol & Dhariwal, 2021),
which produces a blurrier histogram. This further highlights
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Figure 3. (a) Comparison of first- and second-order GM-SDE and
GM-ODE solvers with varying NFE and GM components K.
Increasing K improves few-step sampling results. Second-order
solvers produce sharper histograms with fewer outliers than first-
order solvers. (b) Ablation study on the q̂(x0|xt) conversion in
second-order solvers. Removing this conversion causes samples to
overshoot and concentrate at the edges.

DiT

𝒄𝒄, 𝑡𝑡
Stop grad Exp

𝑠𝑠

Soft
max

𝒙𝒙𝑡𝑡
𝐶𝐶 × 𝐻𝐻 × 𝑊𝑊

Pixel-wise {𝝁𝝁𝑘𝑘}
𝐾𝐾 × 𝐶𝐶 × 𝐻𝐻 × 𝑊𝑊

Pixel-wise {𝐴𝐴𝑘𝑘}
𝐾𝐾 × 1 × 𝐻𝐻 × 𝑊𝑊

Embedding 2-Layer MLP

Figure 4. Architecture of GMFlow-DiT. The original DiT (Peebles
& Xie, 2023) is shown in blue, and the modified output layers are
shown in purple.

the expressiveness of GMFlow.

Second-order GM solvers. Fig. 3 (a) also compares our
first- and second-order GM solvers across various NFEs
and GM component counts. Comparing the left (first-order)
and right (second-order) columns, we observe that second-
order solvers produce sharper histograms and better sup-
press outliers, particularly when NFE and K are small.
With K = 8, the GM probabilities are sufficiently accu-
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𝑁𝑁𝑁𝑁𝑁𝑁 = 4
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Figure 5. Qualitative comparisons (at best Precision) among GMFlow (GM-ODE 2) and vanilla flow model baselines (UniPC and Euler).
GMFlow produces consistent results across various NFEs, whereas baselines struggle in few-step sampling, exhibiting distorted structures.

rate that the second-order solvers do not make a difference,
aligning with our theoretical analysis.

Ablation studies. To validate the importance of the
q̂(x0|xt) conversion in second-order GM solvers, we con-
duct an ablation study by removing the conversion and di-
rectly extrapolating the x0 distributions of the last two steps,
similar to DPM++ (Lu et al., 2023). As shown in Fig. 3 (b),
removing this conversion introduces an overshooting bias,
similar to DPM++ 2M SDE (NFE = 8), underscoring its
importance in maintaining sample uniformity.

4.2. ImageNet Generation

For image generation evaluation, we benchmark GMFlow
against vanilla flow baselines on class-conditioned Ima-
geNet 256×256. We train a Diffusion Transformer (DiT-
XL/2) (Peebles & Xie, 2023; Vaswani et al., 2017) using the
flow matching objective (Eq. (3)) as the baseline, and then
adapt it into GMFlow-DiT by expanding its output channels
and training it with the transition loss (λ = 0.5). As illus-
trated in Fig. 4, GMFlow-DiT produces K weight maps and
mean maps as the pixel-wise parameters {Ak,µk}. Mean-
while, a tiny two-layer MLP separately predicts s using only
the time t and condition c as inputs. Empirically, we find
this design to be more stable than predicting s using the
main DiT. The adaptation results in only a 0.2% increase in
network parameters for K = 8. During inference, we apply
the orthogonal projection technique by Sadat et al. (2025)
to both the baseline and GMFlow since it universally im-
proves Precision. Additional training and inference details
are provided in § A.4.

Evaluation protocol. For quantitative evaluation, we adopt
the standard metrics used in ADM (Dhariwal & Nichol,
2021), including Fréchet Inception Distance (FID) (Heusel
et al., 2017), Inception Score (IS), and Precision–Recall
(Kynkäänniemi et al., 2019). These metrics are highly sen-
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Figure 6. (a) Comparison of the best Precision and best FID among
GMFlow and vanilla flow model baselines using different solvers
across varying NFEs on ImageNet. For best FID, GMFlow signif-
icantly outperforms the baselines in few-step sampling; for best
Precision, GMFlow consistently excels across different NFEs. (b)
Precision-Recall curves of different methods at NFE = 8. Points
corresponding to the best FID and best Precision are marked on
the curves. GMFlow achieves superior Precision and Recall.

sitive to the classifier-free guidance (CFG) scale: while
smaller CFG scales (w ≈ 1.4) often yield the best FID by
balancing diversity and quality, human users generally favor
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higher CFG scales (w > 3.0) for the best perceptual quality,
which also leads to the best Precision. The best Recall and
IS values typically occur outside these CFG ranges and are
less representative of typical usage. Therefore, for a fair
and complete evaluation, we sweep over the CFG scale w
or the probabilistic guidance scale w̃ for each model, and
report the best FID and best Precision. We also present
Precision–Recall curves, illustrating the quality–diversity
trade-off more comprehensively. Additionally, following
Sadat et al. (2025), we report the Saturation metric at the
best Precision setting to assess over-saturation.

Comparison against flow model baselines. For baselines,
we test the vanilla flow model using various first-order
solvers (DDPM (Ho et al., 2020), Euler (DDIM) (Song
et al., 2021a)) and advanced second-order solvers (DPM++
(Lu et al., 2023), DEIS (Zhang & Chen, 2023), UniPC (Zhao
et al., 2023), SA-Solver (Xue et al., 2023)). Details on adapt-
ing these solvers for flow matching are presented in § A.5.
In Fig. 6 (a), we compare these baselines with our GMFlow
(K = 8) model equipped with second-order GM solvers
(GM-SDE/ODE 2). GMFlow consistently achieves superior
Precision in both SDE and ODE sampling across various
NFEs. Notably, GM-ODE 2 reaches a Precision of 0.942 in
just 6 steps, while GM-SDE 2 attains a state-of-the-art Pre-
cision of 0.950 in 32 steps. For FID, GMFlow outperforms
baselines in few-step settings (NFE ≤ 8) and remains
competitive in many-step settings (NFE ≥ 32). Fig. 6 (b)
further illustrates that the Precision-Recall curves of first-
and second-order GM solvers consistently outperform those
of their baseline counterparts. Qualitative comparisons are
presented in Fig. 5.

Saturation assessment. Table 2 compares the Saturation
metrics of different methods at their best Precision. GM-
Flow (K = 8) effectively reduces over-saturation, achieving
Saturation levels closest to real data. Visual comparisons in
Fig. 5 further support this finding. Additionally, ablating the
orthogonal projection technique results in the same trend:
GMFlow consistently achieves the best Saturation, while
baseline methods perform even worse without orthogonal
projection.

Impact of the GM component count K. In Fig. 7, we
analyze the impact of the number of GM components on the
metrics. Few-step sampling (NFE = 8) benefits the most
from increasing GM components, particularly with the GM-
SDE 2 solver. The metrics generally saturate at K = 8. Be-
yond this point, the GM-SDE 2 Precisions decline because
spectral sampling introduces larger numerical errors when
more Gaussian components are used. Additionally, Table 3
presents the time-averaged negative log-likelihood (NLL)
values of data under the predicted distribution qθ(x0|xt, c),
showing that increasing the number of Gaussians signifi-
cantly reduces NLL, suggesting its potential benefits for

Table 2. ImageNet evaluation results at best Precision (NFE =
32). The reported Saturation values (Sadat et al., 2025) are relative
to the real data statistics (Saturation=0.318).

Method Orthogonal
projection Guidance Precision↑ Saturation

DDPM small ✓ w = 3.3 0.944 +0.032
DPM++ 2M SDE ✓ w = 2.9 0.938 +0.032
GM-SDE ✓ w̃ = 0.47 0.950 −0.019
GM-SDE 2 ✓ w̃ = 0.39 0.950 −0.019

Euler ✓ w = 3.3 0.934 +0.052
UniPC ✓ w = 3.3 0.931 +0.048
GM-ODE ✓ w̃ = 0.47 0.947 −0.024
GM-ODE 2 ✓ w̃ = 0.47 0.947 −0.024

DDPM small w = 3.3 0.939 +0.056
DPM++ 2M SDE w = 2.9 0.933 +0.054
GM-SDE w̃ = 0.27 0.943 +0.023

Euler w = 3.3 0.931 +0.064
UniPC w = 3.3 0.929 +0.060
GM-ODE w̃ = 0.27 0.933 +0.016
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Figure 7. Best FIDs and best Precisions of GMFlow models with
varying numbers of GM components K.

Table 3. Validation NLL of ImageNet training images (latents)
under different GMFlow configurations.

Method K = 1 K = 4 K = 8 K = 16
K = 16
+spectral

NLL (bits/dim) 0.346 0.263 0.242 0.224 0.173

posterior sampling applications.

Ablation studies. Table 4 presents ablation study results
evaluating the impact of various design choices in our
method. For GM-SDE, removing spectrum sampling (A2)
leads to a noticeable degradation in FID. Replacing our
probabilistic guidance with vanilla CFG (A3)—i.e., naively
shifting the mean of the predicted GM—results in severe
quality degradation (lower Precision) and over-saturation,
which is also evident in Fig. 8. Replacing GM-SDE 2 with
the second-order DPM++ SDE solver (A4) worsens both
FID and Precision. Reducing the transition loss to the orig-
inal KL loss (A5) degrades FID. Finally, for GM-ODE 2,
directly applying ODE integration without taking sub-steps
(B1) leads to significantly worse FID.

Inference time. GMFlow only alters the output layer and
uses solvers based on simple arithmetic operations. As a
result, it adds only 0.005 sec of overhead per step (batch size
125, A100 GPU) compared to its flow-matching counterpart,
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which is minimal compared to the total inference time of
0.39 sec per step—most of which is spent on DiT.

5. Related Work
Prior works (Nichol & Dhariwal, 2021; Bao et al., 2022b;a)
extend standard diffusion models by learning the variance of
denoising distributions, which is effectively a special case
of GMFlow with K = 1 and learnable s. GMS (Guo et al.,
2023) further extends this approach to third-order moments
and fits a bimodal GM to the moments during inference. In
§ B.3, we present a comparison between GMFlow (K = 2)
and GMS. Conversely, Xiao et al. (2022) employ a genera-
tive adversarial network (Goodfellow et al., 2014) to capture
a more expressive distribution, though adversarial diffusion
typically relies on additional objectives for better quality and
stability (Jolicoeur-Martineau et al., 2021; Kim et al., 2024).
However, none of these methods address deterministic ODE
sampling.

A growing line of work trains networks to directly predict
ODE integrals or denoised samples, enabling extremely few-
step sampling (Salimans & Ho, 2022; Song et al., 2023; Yin
et al., 2024b; Sauer et al., 2024). These approaches fall
under the category of distillation methods, whose quality
typically remains bounded by the many-step performance
of standard diffusion models, unless supplemented by ad-
ditional adversarial training (Kim et al., 2024; Yin et al.,
2024a).

Efforts to refine CFG beyond thresholding (Saharia et al.,
2022a) and orthogonal projection (Sadat et al., 2025) in-
clude disabling CFG in early steps (Kynkäänniemi et al.,
2024), which compromises Precision, and adding Langevin
corrections (Bradley & Nakkiran, 2024), which reduces
efficiency.

Beyond diffusion models, Gaussian mixtures have also been
employed in other generative models. DeLiGAN (Guru-
murthy et al., 2017) and GM-GAN (Ben-Yosef & Weinshall,
2018) enhance the latent expressiveness of GANs through
the introduction of mixture priors. GIVT (Tschannen et al.,
2024) models the output of an autoregressive Transformer
as a Gaussian mixture distribution, enabling continuous data
sampling and outperforming its quantization-based counter-
part.

6. Conclusion
In this work, we introduced GMFlow, a generalization of
diffusion and flow models that represents flow velocity as a
Gaussian mixture, offering greater expressiveness for cap-
turing complex multi-modal structures. We derived prin-
cipled SDE/ODE solvers unique to this approach and pro-
posed a novel probabilistic guidance technique to eliminate

Table 4. Ablation studies on GMFlow (K = 8, NFE = 8) using
ImageNet evaluation.

ID Method Best FID↓ Best
Precision↑ Saturation

@Best Prec.

A0 Full model (GM-SDE 2) 3.43 0.939 −0.003
A1 A0 → GM-SDE 6.96 (+3.53) 0.938 (−0.001) +0.009
A2 A1 w/o spec. sampling 8.98 (+2.02) 0.940 (+0.002) −0.022
A3 A2 → Vanilla CFG 9.02 (+0.04) 0.917 (−0.023) +0.049
A4 A0 → DPM++ 2M SDE 4.59 (+1.16) 0.912 (−0.027) −0.062
A5 A0 → λ = 1.0 4.49 (+1.06) 0.941 (+0.002) −0.019

B0 Full model (GM-ODE 2) 2.77 0.946 −0.028
B1 B0 w/o sub-steps 7.47 (+4.70) 0.947 (+0.001) −0.031

A2: Prob. 
guidance
�𝑤𝑤 = 0.55

A3: Vanilla 
CFG

𝑤𝑤 = 4.90

Figure 8. Ablation study on probabilistic guidance, comparing
samples from Table 4 A2 and A3.

over-saturation. Extensive experiments demonstrated that
GMFlow significantly improves few-step generation while
enhancing overall sample quality. This framework lays the
foundation for potential future research in both theoreti-
cal and practical directions, including applications such as
posterior sampling with GMFlow priors.

Limitations
To apply Gaussian mixture to high-dimensional data, we
adopted pixel-wise factorization for image generation,
which may not fully exploit the potential of GMFlow, leav-
ing rooms for further development.
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A. Additional Technical Details
A.1. Details on Gaussian Surrogates

For a GM distribution of the form
∑K

k=1 AkN (µk, s
2I),

we approximate it with an isotropic Gaussian surrogate
N (µ′, s′

2
I) by matching the first two moments. The surro-

gate mean is computed as:

µ′ =

K∑
k=1

Akµk. (11)

To determine the surrogate variance, we equate the trace of
the GM’s covariance matrix (i.e., the GM’s total variance)
with the trace of the surrogate covariance, which yields:

s′
2
=

1

D

K∑
k=1

Ak∥µk − µ′∥2 + s2. (12)

A.2. Details on Second-Order GM Solvers

For GM extrapolation, we follow the method in § 3.2 and
fit the isotropic Gaussian surrogates N (x0;µ+, s

2
+I) :≈

qθ(x0|xt), N (x0;µ−, s
2
−I) :≈ q̂(x0|xt). We then define

a Gaussian mask:

ρ(x0) =
N
(
x0;µ+ +∆µ,

(
s2+ −

∥∆µ∥2

D

)
I
)

N (x0;µ+, s2+I)
, (13)

where ∆µ = µ+−µ−
2 , so that µ+ +∆µ represents the ex-

trapolated mean at the next midpoint. The final extrapolated
GM is obtained via the reweighting formulation:

qext(x0|xt) =
ρ(x0)

Z
qθ(x0|xt). (14)

We then feed qext(x0|xt) to the first-order GM-SDE or ODE
solver as a substitution for qθ(x0|xt).

Empirically, we observe that second-order GM solvers using
the above formulation slightly underperform with higher
guidance scales, which is a common issue with multistep
solvers (Lu et al., 2023; Zhao et al., 2023). To address
this, we rescale the mean difference ∆µ by an empirical

factor
√
max(0, 1− (w̃2+ca)s2c

∆t2
) (with the hyperparameter

ca = 0.005), so that a high w̃ practically disables multistep
extrapolation.

A.3. Details on Spectral Sampling

Due to pixel-wise factorization, image generation un-
der GM-SDE solvers performs the sampling step x̂0 ∼
qθ(x0|xt) independently for each pixel, neglecting spatial
correlations. Spectral sampling addresses this by estab-
lishing an invertible mapping between a frequency-space

Algorithm 1: Complete GMFlow training scheme.
Input: Data distribution p(x0, c), transition ratio λ
Output: Network params θ

1 Initialize network params θ
2 for sample {x0, c} ∼ p(x0, c) do
3 if use logit-normal then
4 Sample t ∼ LogitNormal(0, 1)

5 else
6 Sample t ∼ U(0, 1)

7 ∆t← λt
8 Sample xt−∆t ∼ p(xt−∆t|x0)
9 Sample xt ∼ p(xt|xt−∆t)

10 Predict GM params in qθ(xt−∆t|xt, c) // Eq. (9)
11 Ltrans ← − log qθ(xt−∆t|xt, c)
12 Predict magnitude spectrum sF

13 Lspec ← − logN
(
vec(zr);0, diag(sF)

2
)

// Eq. (20)
14 Backpropagate and update θ

Algorithm 2: Complete GMFlow sampling scheme.
Input: Steps NFE , sub-steps n, guidance scale w̃,

condition c, network params θ
Output: x0

1 t← 1, ∆t = 1
NFE

, x1 ∼ N (0, I), Cache ← {}
2 while t > 0 do
3 Predict GM params in qθ(x0|xt, c)
4 if w̃ > 0 then
5 Predict GM params in qθ(x0|xt)
6 Compute qw(x0|xt, c) // Eq. (7)
7 qθ(x0|xt, c)

param← qw(x0|xt, c)

8 if use 2nd-order then
9 if Cache ̸= {} then

10 Compute q̂(x0|xt, c) from Cache // Eq. (10)
11 Cache ← {xt, qθ(x0|xt, c)}
12 Compute qext(x0|xt, c) // Eq. (14)
13 qθ(x0|xt, c)

param← qext(x0|xt, c)

14 else
15 Cache ← {xt, qθ(x0|xt, c)}

16 if use GM-SDE then
17 if use spectral sampling then
18 Predict magnitude spectrum sF

19 Sample x̂0 ∼ qS
θ(x0|xt, c) // Eq. (19)

20 else
21 Sample x̂0 ∼ qθ(x0|xt, c)

22 Sample xt−∆t ∼ N (xt−∆t; c1xt + c2x̂0, c3I)

23 else if use GM-ODE then
24 τ ← t, h = ∆t/n
25 while τ > t−∆t do
26 Compute q̂(x0|xτ , c) // Eq. (10)
27 xτ−h = xτ − hEx0∼q̂(x0|xτ ,c)[

xτ−x0
στ

]

28 τ ← τ − h

29 t← t−∆t

distribution (power spectrum) and the pixel-space GM distri-
bution. During training, the power spectrum is optimized via
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Figure 9. The optional spectral sampling pipeline used during inference. The spectrum MLP takes the statistics of pixel-wise GMs as input,
and predicts the power spectrum s◦2

F . Alternatively, if probabilistic guidance or second-order GM solvers are employed, one can re-use
the mean and variance from the numerator in the Gaussian mask to compute the input statistics, which serves as a good approximation.

a likelihood loss, while during inference, frequency-space
samples are transformed back into pixel space to introduce
spatial correlation.

We establish an invertible mapping using two building
blocks: the fast Fourier transform (FFT) and Knothe–
Rosenblatt (KR) transport (Knothe, 1957; Rosenblatt, 1952).
The FFT bridges a frequency-space Gaussian distribution
and a pixel-space Gaussian distribution, while KR trans-
port bridges each per-pixel Gaussian to its corresponding
Gaussian mixture (GM) distribution.

During training, given a real image x0 ∈ RC×H×W

and the factorized denoising distribution qθ(x0|xt) =∏H,W
i=1,j=1

∑K
k=1 Ak,ijN (x0,ij |µk,ij , s

2I), KR transport
defines an invertible mapping for each pixel:

Tij : x0,ij 7→ ζij , (15)

such that each ζij can be viewed as a standard Gaussian sam-
ple. We then assemble all ζij into a tensor ζ ∈ RC×H×W

and apply a forward 2D FFT with orthogonal normaliza-
tion, yielding the complex frequency representation z =
FFT (ζ) ∈ CC×H×W . Since z is Hermitian symmetric, we
can derive a real-valued representation zr while preserving
invertibility:

zr = Re[z] + Im[z]. (16)

Finally, we impose a zero-mean Gaussian prior on zr, given
by N

(
vec(zr);0,diag(sF)

2
)
, where sF ∈ RD

+ represents
the magnitude spectrum. To dynamically model sF ∈ RD

+ ,
we use a tiny two-layer MLP, which takes the mean of per-
pixel GM variances and the variance of per-pixel GM means
as input, and outputs the power spectrum s◦2F with a softmax
activation, where (·)◦2 stands for element-wise square. With
this invertible mapping and the spectral Gaussian prior, we
can derive the model’s spectrum-enhanced denoising PDF
using the change of variables technique in a similar way
to normalizing flow models (Rezende & Mohamed, 2015),

which can be expressed as:

qS
θ(x0|xt) =

∣∣∣∣det(∂vec(zr)

∂x0

)∣∣∣∣N (vec(zr);0,diag(sF)
2
)
,

(17)
where the absolute determinant can be easily derived using
the properties of FFT and KR transport:∣∣∣∣det(∂vec(zr)

∂x0

)∣∣∣∣ = ∣∣∣∣det(∂vec(zr)

∂vec(ζ)

)∣∣∣∣ · ∣∣∣∣det(∂vec(ζ)

∂x0

)∣∣∣∣
= 1 · qθ(x0|xt)

N (vec(ζ);0, I)

=
qθ(x0|xt)

N (vec(zr);0, I)
. (18)

Substituting Eq. (18) into Eq. (17), we obtain:

qS
θ(x0|xt) = qθ(x0|xt)

N
(
vec(zr);0,diag(sF)

2
)

N (vec(zr);0, I)
. (19)

With the derived PDF, the entire model can be trained by
minimizing the negative log-likelihood (NLL) of data sam-
ples under the PDF, which inherently includes the GM KL
loss (Eq. (5) and (6)) as one of its terms. Therefore, the total
loss consists of the GM KL loss (replaced with the transition
loss in practice) and an additional spectral loss, defined as:

Lspec = Et,x0,xt

[
− log

N
(
vec(zr);0,diag(sF)

2
)

N (vec(zr);0, I)

]

= Et,x0,xt

[
1

2

∥∥(diag(sF)
−1 − I

)
vec(zr)

∥∥2
+ log det(diag(sF))

]
. (20)

In practice, we stop the gradient flow through KR trans-
port to prevent spectral learning from influencing the main
GMFlow model.

During inference, we employ the spectral sampling pipeline
illustrated in Fig. 9.
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A.4. ImageNet Experiment Details.

We train both the baseline and GMFlow-DiT on ImageNet
256×256 with a batch size of 4096 images across 16 A100
GPUs, using a total training schedule of 200K iterations. We
adopt the 8-bit AdamW (Dettmers et al., 2022; Loshchilov &
Hutter, 2019) optimizer with a fixed learning rate of 0.0002.
Following Stable Diffusion 3 (Esser et al., 2024), both mod-
els sample t from a logit-normal distribution during training
(Algorithm 1), which accelerates convergence.

While we set the transition ratio to λ = 0.5 in the main
experiments, the results in Fig. 7 and Table 3 are based on
an earlier design iteration that uses randomly sampled tran-
sition ratios λ ∼ LogitNormal(0, 1). This setting slightly
increases Precision and decreases Recall, though the overall
differences remain minor.

We densely evaluate the models across different guidance
scales to identify the optimal FID and Precision. For vanilla
CFG, we use guidance scales w from the set {1.2, 1.3, 1.4,
1.5, 1.6, 1.7, 1.8, 1.9, 2.1, 2.3, 2.6, 2.9, 3.3, 3.7, 4.3, 4.9,
5.7, 6.5}; for probabilistic guidance, we use probabilistic
guidance scales w̃ from the set {0.02, 0.03, 0.04, 0.05, 0.06,
0.07, 0.08, 0.09, 0.11, 0.13, 0.16, 0.19, 0.23, 0.27, 0.33,
0.39, 0.47, 0.55, 0.65, 0.75}. In practice (Algorithm 2), we
implement probabilistic guidance on x0-based GMs, which
is equivalent to guidance on u.

For inference with GM-ODE solvers, we generally set the
number of sub-steps to n = max

(
128
NFE , 2

)
, which performs

well when NFE ≥ 8. For the exception when NFE = 4 or
6, we observe that reducing n to 8 yields better performance.

In Table 3, the time-averaged NLL values are computed on
50K samples from the training dataset using the following
equation:

NLL =
1

D
Et,x0,xt [− log2 qθ(x0|xt)], (21)

where t ∼ U(0, 1) and D = C × H ×W . This is equiv-
alent to the original training loss (λ = 1) with a uniform
time sampling scheme. When spectral prior is enabled, we
replace qθ(x0|xt) with qS

θ(x0|xt) (Eq. (19)).

A.5. Adapting Diffusion Solvers for Flow Matching

For DDPM solvers (Ho et al., 2020), we implement them as
special cases of GM-SDE solver with K = 1. The original
DDPM solvers include a large variance variant (β) and a
small variance variant (β̃). These are equivalent to setting
s = 1√

α2
t+σ2

t

and s = 0, respectively.

For DDIM solvers (Song et al., 2021a), its stochastic variant
(η = 1) is equivalent to DDPM with small variance, whereas
its deterministic variant (η = 0) is equivalent to Euler solver
in flow matching models.

𝑁𝑁𝑁𝑁𝑁𝑁 = 4

𝑁𝑁𝑁𝑁𝑁𝑁 = 6

𝑁𝑁𝑁𝑁𝑁𝑁 = 8

𝑁𝑁𝑁𝑁𝑁𝑁 = 32

w/ 
sub-steps

w/o 
sub-steps

w/ 
sub-steps

w/o 
sub-steps

Figure 10. Qualitative comparison (at best Precision) from the ab-
lation study on GM-ODE sub-steps. Without sub-steps (forcing
n = 1), few-step sampling tends to produce over-smoothed tex-
tures and poor detail.

For DPM++ (Lu et al., 2023), DEIS (Zhang & Chen,
2023), UniPC (Zhao et al., 2023), and SA-Solver (Xue
et al., 2023), we use their Diffusers implementations (von
Platen et al., 2022) and rescale their noise schedules to
match the flow matching noise schedule. This approach
is similar to how the EDM Euler solver (Karras et al.,
2022) rescales a variance-preserving diffusion model into a
variance-exploding one at test time.

B. Additional Experiment Results
B.1. Ablation Study on GM-ODE Sub-Steps

In addition to the results in Table 4 (B0 and B1), Fig. 10
presents additional qualitative results from the ablation study
on GM-ODE sub-steps, using K = 8 and the GM-ODE 2
solver. As shown in the figure, sub-steps are essential for
producing detailed textures when NFE < 8.

B.2. Additional Qualitative Comparison

Fig. 11 presents a comparison among uncurated random
samples (conditioned on random class labels) from GM-
Flow and vanilla flow matching baselines, showcasing their
respective best results under the many-step setting. Overall,
the images generated by GMFlow exhibit more natural color
saturation and, in some cases, improved structural coher-
ence. These observations are consistent with the quantitative
results shown in Fig. 6 and Table 2.
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Table 5. FIDs on CIFAR-10 unconditional image generation. Com-
petitor results are sourced from Guo et al. (2023).

NFE 10 25 50 100

DDPM large 205.31 84.71 37.35 14.81
DDPM small 34.76 16.18 11.11 8.38
SN-DDPM 16.33 6.05 4.19 3.83
GMS 13.80 5.48 4.00 3.46
GM-SDE 2 9.11 4.16 3.79 3.76

B.3. Comparison with Moment Matching Methods

Table 5 presents a quantitative comparison among GM-
Flow (K = 2), GMS (Guo et al., 2023), SN-DDPM (Bao
et al., 2022a), and DDPM (Ho et al., 2020) for CIFAR-10
(Krizhevsky et al., 2009) unconditional image generation
using SDE sampling. The GMFlow model is trained from
scratch using the same U-Net architecture (Ronneberger
et al., 2015; Ho et al., 2020) as its competitors, but with mod-
ified output layers as in GM-DiT. The results demonstrate
that GMFlow significantly outperforms its competitors in
few-step sampling.

C. Additional Theoretical Analysis
C.1. Details on the SDE and ODE Background

For notation references, this subsection briefly recaps the
SDE and ODE formulation of diffusion models by Song et
al. (2021b).

The forward-time SDE of the diffusion process can be de-
rived by taking an infinitesimal step size ∆t when applying
the transition Gaussian kernel in Eq. (1), which yields:

dx = ftxt dt+ gt dwt (22)

where ft = 1
αt

dαt

dt , gt =
√

dβt,∆t

d∆t

∣∣
∆t=0

, and wt is the
standard Wiener process. The corresponding reverse-time
SDE is:

dxt =
(
ftxt − g2t st(xt)

)
dt+ gt dw̄t, (23)

with the score function st(xt) := ∇xt
log p(xt) =

Ex0∼p(x0|xt)

[
−αtx0−xt

σ2
t

]
and the reverse-time standard

Wiener process w̄. Using the Fokker–Planck equation, we
can prove that the time evolution of the PDF p(xt) described
by the SDEs is equivalent to that described by an ODE:

dxt =

(
ftxt −

1

2
g2t st(xt)

)
dt, (24)

which maps the noise xt to a deterministic data point x0.

C.2. Proof of Theorem 3.1

Proof. Let p(u) be the PDF of an arbitrary distribution on
RD, and {Σk}Kk=1 be a set of arbitrary D ×D symmetric

positive definite matrices. We aim to show that if

{a∗k,µ∗
k} = argmin

{ak,µk}
Eu∼p(u)

[
− log

K∑
k=1

AkN (u;µk,Σk)

]
,

(25)
with ak ∈ R, µk ∈ RD, Ak = exp ak∑K

k=1 exp ak
, then the mean

alignment property holds:

K∑
k=1

A∗
kµ

∗
k = Eu∼p(u)[u], (26)

with A∗
k =

exp a∗
k∑K

k=1 exp a∗
k

.

For brevity, we define

qk(u) := A∗
kN (u;µ∗

k,Σk), (27)

q(u) :=

K∑
k=1

qk(u). (28)

Since {a∗k,µ∗
k} minimizes the objective, the first-order opti-

mality conditions imply

∂Eu∼p(u)[− log q(u)]

∂a∗k

= Eu∼p(u)

[
∂ − log q(u)

∂a∗k

]
= Eu∼p(u)

[
A∗

k −
qk(u)

q(u)

]
= A∗

k − Eu∼p(u)

[
qk(u)

q(u)

]
= 0, (29)

and

∂Eu∼p(u)[− log q(u)]

∂µ∗
k

= Eu∼p(u)

[
∂ − log q(u)

∂µ∗
k

]
= Eu∼p(u)

[
qk(u)

q(u)
Σ

− 1
2

k (µ∗
k − u)

]
= Σ

− 1
2

k

(
µ∗

kEu∼p(u)

[
qk(u)

q(u)

]
− Eu∼p(u)

[
qk(u)

q(u)
u

])
= 0. (30)

From the above, it follows that

A∗
k = Eu∼p(u)

[
qk(u)

q(u)

]
, (31)

µ∗
kEu∼p(u)

[
qk(u)

q(u)

]
= Eu∼p(u)

[
qk(u)

q(u)
u

]
. (32)
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Substituting Eq. (31) into Eq. (32), we have

A∗
kµ

∗
k = Eu∼p(u)

[
qk(u)

q(u)
u

]
. (33)

Summing over all k, we conclude that

K∑
k=1

A∗
kµ

∗
k = Eu∼p(u)

[∑K
k=1 qk(u)

q(u)
u

]
= Eu∼p(u)[u].

(34)

C.3. Derivation of the Reverse Transition Distribution

Given the ground truth data distribution p(x0) and the for-
ward diffusion Gaussian p(xt|x0) = N (xt;αtx0, σ

2
t I),

the ground truth denoising distribution p(x0|xt) can be de-
rived using Bayes’ theorem:

p(x0|xt) =
p(x0)p(xt|x0)

p(xt)
. (35)

Conversely, let us assume that we know the ground truth
denoising distribution p(x0|xt). By rearranging Eq. (35),
we can derive the data distribution as:

p(x0) =
p(xt)p(x0|xt)

p(xt|x0)
. (36)

With the data distribution, we can apply the forward diffu-
sion process and derive the noisy data distribution at t−∆t:

p(xt−∆t) =

∫
RD

p(xt−∆t|x0)p(x0) dx0

=

∫
RD

p(xt−∆t|x0)
p(xt)p(x0|xt)

p(xt|x0)
dx0. (37)

Finally, the reverse transition distribution p(xt−∆t|xt) can
be derived using Bayes’ theorem:

p(xt−∆t|xt)

=
p(xt−∆t)p(xt|xt−∆t)

p(xt)

=

∫
RD

p(xt|xt−∆t)p(xt−∆t|x0)

p(xt|x0)
p(x0|xt) dx0, (38)

where p(xt|xt−∆t) is the forward transition Gaussian de-
fined in Eq. (1). The term p(xt|xt−∆t)p(xt−∆t|x0)

p(xt|x0)
can be

fused into one Gaussian PDF using the conflation operation
described in § D.1, which yields:

p(xt−∆t|xt,x0) = N (xt−∆t; c1xt + c2x0, c3I), (39)

with the coefficients c1, c2, c3 defined in § 3.3. Therefore,
Eq. (38) can be simplified into:

p(xt−∆t|xt) =

∫
RD

p(xt−∆t|xt,x0)p(x0|xt) dx0, (40)

which is a convolution between p(xt−∆t|xt,x0) and
p(x0|xt). Sampling from p(xt−∆t|xt) can therefore be
simulated by first sampling x0 ∼ p(x0|xt) and then sam-
pling xt−∆t ∼ p(xt−∆t|xt,x0).

In general, given any empirical denoising distribution
qθ(x0|xt), we can perform stochastic denoising sampling
by substituting p(x0|xt) ≈ qθ(x0|xt) into the above sam-
pling process. Specifically for GMFlow, qθ(x0|xt) is a
GM PDF. § D.3 shows that the convolution of a GM and
a Gaussian is also a GM with analytically derived param-
eters. Therefore, GMFlow models the reverse transition
distribution as a GM qθ(xt−∆t|xt), given by Eq. (9).

C.4. Additional Analysis of the Reverse Transition GM

By computing the first-order Taylor approximation of Eq. (9)
w.r.t. ∆t, we can re-write the GM reverse transition distri-
bution as:

qθ(xt−∆t|xt)

=

K∑
k=1

AkN
(
xt−∆t;xt −

(
ftxt − g2tµsk

)
∆t, g2t∆tI

)
+O(∆t)

= N

(
xt−∆t;xt −

(
ftxt − g2t

K∑
k=1

Akµsk

)
∆t, g2t∆tI

)
+O(∆t), (41)

where µsk := − 1
σt
(xt + αtµk). The term

∑K
k=1 Akµsk

represents the model’s prediction of the score function
st(xt), and is a linear transformation of the predicted mean
velocity

∑K
k=1 Akµk. Recursively sampling xt−∆t using

the first-order approximation in Eq. (41) is equivalent to
solving the reverse-time SDE in Eq. (23) (with predicted
score) using the Euler–Maruyama method, a simple first-
order SDE solver.

Eq. (41) is consistent with the standard diffusion model
assumption that the reverse transition distribution is approx-
imately Gaussian for small ∆t. Even with GM parameteri-
zation, SDE sampling is primarily influenced by the mean
prediction when ∆t is sufficiently small. This underscores
the significance of mean alignment not only for ODE solv-
ing but also for SDE solving.

C.5. Derivation of q̂(x0|xτ )

Let us assume that we know the ground truth denoising
distribution at xt, i.e., p(x0|xt). Eq. (36) shows us how
to derive the data distribution p(x0) from p(x0|xt). From
p(x0), the denoising distribution at xτ can be derived using
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Bayes’ theorem:

p(x0|xτ ) =
p(x0)p(xτ |x0)

p(xτ )

=
p(xt)p(x0|xt)p(xτ |x0)

p(xt|x0)p(xτ )

=
p(xτ |x0)

Z · p(xt|x0)
p(x0|xt), (42)

where Z = p(xτ )
p(xt)

is a normalization factor. Substituting
p(x0|xt) ≈ qθ(x0|xt) into the above equation yields the
denoising distribution conversion rule in Eq. (10). The
conversion involves conflations of Gaussians and a GM,
which can be approached analytically as shown in § D.

D. Gaussian Mixture Math References
D.1. Conflation of Two Gaussians

Let p1(x) = N (x;µ1,Σ1), p2(x) = N (x;µ2,Σ2) be
two multivariate Gaussian PDFs, their powered conflation
is defined as:

p′(x) =
pγ1

1 (x)pγ2

2 (x)

Z
, (43)

where γ1, γ2 ∈ R, assuming γ1Σ
−1
1 + γ2Σ

−1
2 is positive

definite, and Z =
∫
RD pγ1

1 (x)pγ2

2 (x) dx is a normalization
factor. It’s easy to prove that, p′(x) can also be expressed
as a Gaussian N (x;µ′,Σ′), with the new parameters:

Σ′ =
(
γ1Σ

−1
1 + γ2Σ

−1
2

)−1
, (44)

µ′ = Σ′(γ1Σ
−1
1 µ1 + γ2Σ

−1
2 µ2). (45)

D.2. Conflation of a Gaussian and a GM

Let p1(x) = N (x;µ,Σ) be a Gaussian PDF, and p2(x) =∑K
k=1 AkN (x;µk,Σk) be a GM PDF, where Ak =
exp ak∑K

k=1 exp ak
with logit ak. Their conflation is defined as:

p′(x) =
p1(x)p2(x)

Z
, (46)

where Z =
∫
RD p1(x)p2(x) dx is a normalization fac-

tor. Since the GM PDF is a sum of Gaussians, the con-
flation of a Gaussian and a GM expands to a sum of con-
flations of Gaussians, which simplifies to a sum of Gaus-
sians. Therefore, p′(x) can also be expressed as a GM∑K

k=1 A
′
kN (x;µ′

k,Σ
′
k), with the new parameters:

Σ′
k = (Σ−1 +Σ−1

k )−1, (47)

µ′
k = Σ′

k(Σ
−1µ+Σ−1

k µk), (48)

A′
k =

exp a′k∑K
k=1 exp a

′
k

, (49)

where the new logit a′k is given by:

a′k = ak −
1

2
(µ− µk)

T(Σ+Σk)
−1(µ− µk). (50)

D.3. Convolution of a Gaussian and a GM

Let p(x1|x2) = N (x1;µ + cx2,Σ) be a conditional
Gaussian PDF, where c ∈ R is a linear coefficient, and
p(x2) =

∑K
k=1 AkN (x2;µk,Σk) be a GM PDF, where

Ak = exp ak∑K
k=1 exp ak

with logit ak. Their convolution yields
the marginal PDF of x1:

p(x1) =

∫
RD

p(x1|x2)p(x2) dx2. (51)

Since the GM PDF is a sum of Gaussians, the convolu-
tion of a Gaussian and a GM expands to a sum of convo-
lution of Gaussians, which simplifies to a sum of Gaus-
sians. Therefore p(x1) can also be expressed as a GM∑K

k=1 AkN (x;µ′
k,Σ

′
k), with the new parameters:

Σ′
k = Σ+ c2Σk, (52)

µ′
k = µ+ cµk. (53)

18



Gaussian Mixture Flow Matching Models

E. Notation

Table 6. A summary of frequently used notations.

Notation Description

D Data dimension.

t ∈ [0, T ] Diffusion time. Flow matching models define T := 1.

αt Noise schedule coefficient. Flow matching models define αt := 1− t.

σt Noise schedule coefficient. Flow matching models define σt := t.

ϵ Standard Gaussian noise.

x,x0 ∈ RD Data.

xt := αtx+ σtϵ Noisy data.

p(x), p(x0) PDF of data (ground truth).

p(xt) PDF of noisy data (ground truth).

p(xt|x0) = N (xt;αtx0, σ
2
t I) PDF of forward diffusion distribution.

p(xt|xt−∆t) = N (xt;
αt

αt−∆t
x0, βt,∆tI) PDF of forward transition distribution.

βt,∆t = σ2
t −

α2
t

α2
t−∆t

σ2
t−∆t Variance of forward transition distribution.

p(x0|xt) = p(x0)p(xt|x0)
p(xt)

PDF of reverse denoising distribution (ground truth).

p(xt−∆t|xt) = p(xt−∆t)p(xt|xt−∆t)
p(xt)

PDF of reverse transition distribution (ground truth).

θ Neural network parameters.

qθ(x0|xt) PDF of reverse denoising distribution, predicted by a network.

qθ(xt−∆t|xt) PDF of reverse transition distribution, predicted by a network.

u := xt−x0

σt
Random flow velocity.

Ex0∼p(x0|xt)[u] Mean flow velocity at xt (ground truth).

p(u|xt) PDF of velocity distribution at xt (ground truth), derived from p(x0|xt).

qθ(u|xt) PDF of velocity distribution at xt, predicted by a network.

µθ(xt) Mean flow velocity at xt, predicted by a network.

K Number of Gaussian components.

k Index of Gaussian components.

Ak := exp ak∑K
k=1 exp ak

. Mixture weight of the k-th Gaussian component.

µk Mean of the k-th Gaussian component.

Σk Covariance of the k-th Gaussian component. GMFlow defines Σk := s2I .

ak Pre-activation logit.

s Shared standard deviation.

µxk := xt − σtµk Mean of the k-th Gaussian component after u-to-x0 conversion.

sx := σts Shared standard deviation after u-to-x0 conversion.

c Condition.

w ∈ [1,+∞) CFG scale.

w̃ ∈ [0, 1) Probabilistic guidance scale.

x̂ Intermediate sample of denoised data.

NFE Number of function (network) evaluations, a.k.a. sampling steps.

n Number of sub-steps in GM-ODE solvers.

τ Sub-step diffusion time in GM-ODE solvers.

q̂(x0|xτ ) PDF of reverse denoising distribution, derived from qθ(x0|xt) (Eq. (10)).

q̂(x0|xt) PDF of reverse denoising distribution, derived from qθ(x0|xt+∆t).

λ ∈ (0, 1] Transition ratio.
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GM-ODE 2 UniPC DPM++ 2M DEIS EulerGM-SDE 2 DPM++ 2M SDE SA-Solver DDPM small DDPM large

Figure 11. Uncurated samples (at best Precision, NFE = 32) from GMFlow and vanilla flow matching baselines using different solvers.
The images generated by GMFlow exhibit more natural color saturation and, in some cases, improved structural coherence.
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