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Abstract

We present a new set of empirical properties of interpolating classifiers, includ-1

ing neural networks, kernel machines and decision trees. Informally, the output2

distribution of an interpolating classifier matches the distribution of true labels,3

when conditioned on certain subgroups of the input space. For example, if we4

mislabel 30% of dogs as cats in the train set of CIFAR-10, then a ResNet trained5

to interpolation will in fact mislabel roughly 30% of dogs as cats on the test set6

as well, while leaving other classes unaffected. These behaviors are not captured7

by classical generalization, which would only consider the average error over8

the inputs, and not where these errors occur. We introduce and experimentally9

validate a formal conjecture that specifies the subgroups for which we expect this10

distributional closeness. Further, we show that these properties can be seen as a11

new form of generalization, which advances our understanding of the implicit bias12

of interpolating methods.13

1 Introduction14

In learning theory, when we study how well a classifier “generalizes”, we usually consider a single15

metric – its test error [59]. However, there could be many different classifiers with the same test error16

that differ substantially in, say, the subgroups of inputs on which they make errors or in the features17

they use to attain this performance. Reducing classifiers to a single number misses these rich aspects18

of their behavior. In this work, we propose formally studying the entire joint distribution of classifier19

inputs and outputs. That is, the distribution (x, f(x)) for samples from the distribution x ⇠ D for a20

classifier f(x). This distribution reveals many structural properties of the classifier beyond test error21

(such as where the errors occur). In fact, we discover new behaviors of modern classifiers that can22

only be understood in this framework. As an example, consider the following experiment (Figure 1).23

Experiment 1. Consider a binary classification version of CIFAR-10, where CIFAR-10 images x24

have binary labels Animal/Object. Take 50K samples from this distribution as a train set, but25

apply the following label noise: flip the label of cats to Object with probability 30%. Now train26

a WideResNet f to 0 train error on this train set. How does the trained classifier behave on test27

samples? Options below:28

(1) The test error is low across all classes, since there is only 3% overall label noise in the train set.29

(2) Test error is “spread” across the animal class. After all, the classifier is not explicitly told what a30

cat or a dog is, just that they are all animals.31

(3) The classifier misclassifies roughly 30% of test cats as “objects”, but all other animals are largely32

unaffected.33

The reality is closest to option (3) as shown in Figure 1. The left panel shows the joint density of34

train inputs x with train labels Object/Animal. Since the classifier is interpolating, the classifier35
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outputs on the train set are identical to the left panel. The right panel shows the classifier predictions36

f(x) on test inputs x.37

Figure 1: The setup and result of Experiment 1. The CIFAR-10 train set is labeled as either Animals
or Objects, with label noise affecting only cats. A WideResNet-28-10 is then trained to 0 train error
on this train set, and evaluated on the test set. Full experimental details in Appendix C.2

There are several notable things about this experiment. First, the error is localized to cats in the test38

set as it was in the train set, even though no explicit cat labels were provided. The interpolating39

model is thus sensitive to subgroup-structures in the distribution. Second, the amount of error on40

the cat class is close to the noise applied on the train set. Thus, the behavior of the classifier on the41

train set generalizes to the test set in a stronger sense than just average error. Specifically, when42

conditioned on a subgroup (cat), the distribution of the true labels is close to that of the classifier43

outputs. Third, this is not the behavior of the Bayes-optimal classifier, which would always output44

the maximum-likelihood label instead of reproducing the noise in the distribution. The network45

is thus behaving poorly from the perspective of Bayes-optimality, but behaving well in a certain46

distributional sense (which we will formalize soon).47

Now, consider a seemingly unrelated experimental observation. Take an AlexNet trained on ImageNet,48

a 1000-way classification problem with 116 varieties of dogs. AlexNet only achieves 56.5% test49

accuracy on ImageNet. However, it at least classifies most dogs as some variety of dog (with 98.4%50

accuracy), though it may mistake the exact breed. In this work, we show that both of these experiments51

are examples of the same underlying phenomenon. We empirically show that for an interpolating52

classifier, its classification outputs are close in distribution to the true labels — even when conditioned53

on many subsets of the domain. For example, in Figure 1, the distribution of p(f(x)|x = cat) is close54

to the true label distribution of p(y|x = cat). We propose a formal conjecture (Feature Calibration),55

that predicts which subgroups of the domain can be conditioned on for the above distributional56

closeness to hold.57

These experimental behaviors could not have been captured solely by looking at average test error,58

as is done in the classical theory of generalization. In fact, they are special cases of a new kind of59

generalization, which we call “Distributional Generalization”.60

1.1 Distributional Generalization61

Informally, Distributional Generalization states that the outputs of classifiers f on their train sets62

and test sets are close as distributions (as opposed to close in just error). That is, the following joint63

distributions1 are close:64

(x, f(x))x⇠TestSet ⇡ (x, f(x))x⇠TrainSet (1)

The remainder of this paper is devoted to making the above statement precise, and empirically65

checking its validity on real-world tasks. Specifically, we want to formally define the notion of66

approximation (⇡), and understand how it depends on the problem parameters (the type of classifier,67

number of train samples, etc). We focus primarily on interpolating methods, where we formalize68

Equation (1) through our Feature Calibration Conjecture.69

1.2 Our Contributions and Organization70

In this work, we discover new empirical properties of interpolating classifiers, which are not captured71

in the classical framework of generalization. We then propose formal conjectures to characterize72

these behaviors.73

1These distributions also include the randomness in sampling the train and test sets, and in training the
classifier, as we define more precisely in Section 3.
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• In Section 3, we introduce a formal “Feature Calibration” conjecture, which unifies our74

experimental observations. Roughly, Feature Calibration says that the outputs of classifiers75

match the statistics of their training distribution when conditioned on certain subgroups.76

• In Section 4, we experimentally stress test our Feature Calibration conjecture across various77

settings in machine learning, including neural networks, kernel machines, and decision trees.78

This highlights the universality of our results across machine learning.79

• In Section 5, we relate our results to classical generalization, by defining a new notion of80

Distributional Generalization which subsumes both classical generalization and our new81

conjectures.82

• Finally, in Section 5.2 we informally discuss how Distributional Generalization can be83

applied even for non-interpolating methods.84

Our results, thus, extend our understanding of the implicit bias of interpolating methods, and introduce85

a new type of generalization exhibited across many methods in machine learning.86

1.3 Related Work and Significance87

Our work has connections to, and implications for many existing research programs in deep learning.88

Implicit Bias and Overparameterization. There has been a long line of recent work towards89

understanding overparameterized and interpolating methods, since these pose challenges for classical90

theories of generalization (e.g. Belkin et al. [8, 9, 10], Breiman [11], Gunasekar et al. [25], Liang91

and Rakhlin [36], Nakkiran et al. [43], Schapire et al. [58], Soudry et al. [62], Zhang et al. [71]). The92

“implicit bias” program here aims to answer: Among all models with 0 train error, which model is93

actually produced by SGD? Most existing work seeks to characterize the exact implicit bias of models94

under certain (sometimes strong) assumptions on the model, training method or the data distribution.95

In contrast, our conjecture applies across many different interpolating models (from neural nets to96

decision trees) as they would be used in practice, and thus form a sort of “universal implicit bias” of97

these methods. Moreover, our results place constraints on potential future theories of implicit bias,98

and guide us towards theories that better capture practice.99

Benign Overfitting. Most prior works on interpolating classifiers attempt to explain why training100

to interpolation “does not harm” the the model. This has been dubbed “benign overfitting” [7] and101

“harmless interpolation” [40], reflecting the widely-held belief that interpolation does not harm the102

decision boundary of classifiers. In contrast, we find that interpolation actually does “harm” classifiers,103

in predictable ways: fitting the label noise on the train set causes similar noise to be reproduced at104

test time. Our results thus indicate that interpolation can significantly affect the decision boundary of105

classifiers, and should not be considered a purely “benign” effect.106

Classical Generalization and Scaling Limits. Our framework of Distributional Generalization is107

insightful even to study classical generalization, since it reveals much more about models than just108

their test error. For example, statistical learning theory attempts to understand if and when models109

will asymptotically converge to Bayes optimal classifiers, in the limit of large data (“asymptotic110

consistency” [59, 65]). In deep learning, there are at least two distinct ways to scale model and data111

to infinity together: the underparameterized scaling limit, where data-size� model-size always, and112

the overparameterized scaling limit, where data-size⌧ model-size always. The underparameterized113

scaling limit is well-understood: when data is essentially infinite, neural networks will converge to114

the Bayes-optimal classifier (provided the model-size is large enough, and the optimization is run115

for long enough, with enough noise to escape local minima). On the other hand, our work suggests116

that in the overparameterized scaling limit, models will not converge to the Bayes-optimal classifier.117

Specifically, our Feature Calibration Conjecture implies that in the limit of large data, interpolating118

models will approach a sampler from the distribution. That is, the limiting model f will be such that119

the output f(x) is a sample from p(y|x), as opposed to the Bayes-optimal f⇤(x) = argmax
y
p(y|x).120

This claim— that overparameterized models do not converge to Bayes-optimal classifiers— is unique121

to our work as far as we know, and highlights the broad implications of our results.122

Locality and Manifold Learning. Our intuition for the behaviors in this work is that they arise due to123

some form of “locality” of the trained classifiers, in an appropriate embedding space. For example, the124

behavior observed in Experiment 1 would be consistent with that of a 1-Nearest-Neighbor classifier125

in a embedding that separates the CIFAR-10 classes well. This intuition that classifiers learn good126
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embeddings is present in various forms in the literature, for example: the so-called called “manifold127

hypothesis,” that natural data lie on a low-dimensional manifold [44, 61], as well as works on local128

stiffness of the loss landscape [19], and works showing that overparameterized neural networks can129

learn hidden low-dimensional structure in high-dimensional settings [6, 15, 21]. It is open to more130

formally understand connections between our work and the above.131

Other Related Works. Our conjectures also describe neural networks under label noise, which has132

been empirically and theoretically studied in the past [9, 14, 45, 54, 63, 71, 72], though not formally133

characterized. A full discussion of related works is in Appendix A.134

2 Preliminaries135

Notation. We consider joint distributions D on x 2 X and discrete y 2 Y = [k]. Let S =136

{(xi, yi)}ni=1 ⇠ Dn denote a train set of n iid samples from D. Let A denote the training procedure137

(including architecture and training algorithm for neural networks), and let f  TrainA(S) denote138

training a classifier f on train-set S using procedure A. We consider classifiers which output hard139

decisions f : X ! Y . Let NNS(x) = xi denote the nearest-neighbor to x in train-set S, with140

respect to a distance metric d. Our theorems will apply to any distance metric, and so we leave141

this unspecified. Let NN(y)
S

(x) denote the nearest-neighbor estimator itself, that is, NN(y)
S

(x) := yi142

where xi = NNS(x).143

Experimental Setup. Briefly, we train all classifiers to interpolation (to 0 train error). Neural144

networks (MLPs and ResNets [29]) are trained with SGD. Interpolating decision trees are trained145

using the growth rule from Random Forests [12]. For kernel classification, we consider kernel146

regression on one-hot labels and kernel SVM, with small or 0 of regularization (which is often147

optimal [60]). Full experimental details are provided in Appendix B.148

Distributional Closeness. We consider the following notion of closeness for two probability dis-149

tributions: For two distributions P,Q over X ⇥ Y , let a “test” (or “distinguisher”) be a function150

T : X ⇥ Y ! [0, 1] which accepts a sample from either distribution, and is intended to classify the151

sample as either from distribution P or Q. For any set C ✓ {T : X ⇥ Y ! [0, 1]} of tests, we say152

distributions P and Q are “"-indistinguishable up to C-tests” if they are close with respect to all tests153

in class C. That is,154

P ⇡C
"
Q () sup

T2C

���� E
(x,y)⇠P

[T (x, y)]� E
(x,y)⇠Q

[T (x, y)]

����  " (2)

Total-Variation distance is equivalent to closeness in all tests, i.e. C = {T : X ⇥ Y ! [0, 1]}, but we155

consider closeness for restricted families of tests C. P ⇡" Q denotes "-closeness in TV-distance.156

3 Feature Calibration Conjecture157

3.1 Distributions of Interest158

We first define three key distributions that we will use in stating our formal conjecture. For a given159

data distribution D over X ⇥ Y and training procedure TrainA, we consider the following three160

distributions over X ⇥ Y:161

1. Source D: (x, y) where x, y ⇠ D.162

2. Train Dtr: (xtr, f(xtr)) where S ⇠ Dn, f  TrainA(S), (xtr, ytr) ⇠ S163

3. Test Dte: (x, f(x)) where S ⇠ Dn, f  TrainA(S), x, y ⇠ D164

The source distribution D is simply the original distribution. To sample once from the Train Dis-165

tribution Dtr, we first sample a train set S ⇠ Dn, train a classifier f on it, then output (xtr, f(xtr))166

for a random train point xtr 2 S. That is, Dtr is the distribution of input and outputs of a trained167

classifier f on its train set. To sample once from the Test Distribution Dte, we do this same proce-168

dure, but output (x, f(x)) for a random test point x. That is, the Dte is the distribution of input and169

outputs of a trained classifier f at test time. The only difference between the Train Distribution and170
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Test Distribution is that the point x is sampled from the train set or the test set, respectively.2 For171

interpolating classifiers, f(xtr) = ytr on the train set, and so the Source and Train distributions are172

equivalent: D ⌘ Dtr. (Note that these definitions, crucially, involve randomness from sampling the173

train set, training the classifier, and sampling a test point).174

3.2 Feature Calibration175

We now formally describe the Feature Calibration Conjecture. At a high level, we argue that the
distributions Dte and D are statistically close for interpolating classifiers if we first “coarsen” the
domain of x by some partition L : X ! [M ] in to M parts. That is, for certain partitions L, the
following distributions are statistically close:

(L(x), f(x))x⇠D ⇡" (L(x), y)x⇠D
We think of L as defining subgroups over the domain— for example, L(x) 2 {dog, cat, horse. . .}.176

Then, the above statistical closeness is essentially equivalent to requiring that for all subgroups177

` 2 [M ], the conditional distribution of classifier output on the subgroup—p(f(x)|L(x) = `) — is178

close to the true conditional distribution: p(y|L(x) = `).179

The crux of our conjecture lies in defining exactly which subgroups L satisfy this distributional180

closeness, and quantifying the " approximation. This is subtle, since it must depend on almost all181

parameters of the problem. For example, consider a modification to Experiment 1, where we use182

a fully-connected network (MLP) instead of a ResNet. An MLP cannot properly distinguish cats183

even when it is actually provided the real CIFAR-10 labels, and so (informally) it has no hope of184

behaving differently on cats in the setting of Experiment 1, where the cats are not labeled explicitly185

(See Figure C.2 for results with MLPs). Similarly, if we train the ResNet with very few samples from186

the distribution, the network will be unable to recognize cats. Thus, the allowable partitions must187

depend on the classifier family and the training method, including the number of samples.188

We conjecture that allowable partitions are those which can themselves be learnt to good test189

performance with an identical training procedure, but trained with the labels of the partition L instead190

of y. To formalize this, we define a distinguishable feature: a partition of the domain X that is191

learnable for a given training procedure. Thus, in Experiment 1, the partition into CIFAR-10 classes192

would be a distinguishable feature for ResNets (trained with SGD with 50K or more samples), but193

not for MLPs. The definition below depends on the training procedure A, the data distribution D,194

number of train samples n, and an approximation parameter " (which we think of as " ⇡ 0).195

Definition 1 ((",A,D, n)-Distinguishable Feature). For a distribution D over X ⇥ Y , number of
samples n, training procedure A, and small " � 0, an (",A,D, n)-distinguishable feature is a
partition L : X ! [M ] of the domain X into M parts, such that training a model using A on n
samples labeled by L works to classify L with high test accuracy. Precisely, L is a (",A,D, n)-
distinguishable feature if:

Pr
S={(xi,L(xi)}x1,...,xn⇠D

f TrainA(S); x⇠D

[f(x) = L(x)] � 1� "

This definition depends only on the marginal distribution of D on x, and not on the label distribution196

pD(y|x). To recap, this definition is meant to capture a labeling of the domain X that is learnable for197

a given training procedure A. It must depend on the architecture used by A and number of samples198

n, since more powerful classifiers can distinguish more features. Note that there could be many199

distinguishable features for a given setting (",A,D, n) — including features not implied by the class200

label such as the presence of grass in a CIFAR-10 image. Our main conjecture follows.201

Conjecture 1 (Feature Calibration). For all natural distributions D, number of samples n, interpo-202

lating training procedures A, and " � 0, the following distributions are statistically close for all203

(",A,D, n)-distinguishable features L:204

(L(x), f(x))
f TrainA(Dn); x,y⇠D

⇡" (L(x), y)
x,y⇠D

(3)

or equivalently:205

(L(x), by)
x,by⇠Dte

⇡" (L(x), y)
x,y⇠D

(4)

2Technically, these definitions require training a fresh classifier for each sample, using independent train sets.
For practical reasons most of our experiments train a single classifier f and evaluate it on the entire train/test set.
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This claims that the TV distance between the LHS and RHS of Equation (4) is at most ", where " is the206

error of the distinguishable feature (in Definition 1). We claim that this holds for all distinguishable207

features L “automatically” – we simply train a classifier, without specifying any particular partition.208

The formal statements of Definition 1 and Conjecture 1 may seem somewhat arbitrary, involving209

many quantifiers over (",A,D, n). However, we believe these statements are natural: In addition210

to extensive experimental evidence in Section 4, we also prove that Conjecture 1 is formally true as211

stated for 1-Nearest-Neighbor classifiers in Theorem 1.212

3.3 Feature Calibration for 1-Nearest-Neighbors213

Here we prove that the 1-Nearest-Neighbor classifier formally satisfies Conjecture 1, under mild214

assumptions. We view this theorem as support for our (somewhat involved) formalism of Conjecture 1.215

Indeed, without Theorem 1 below, it is unclear if our statement of Conjecture 1 can ever be satisfied by216

any classifier, or if it is simply too strong to be true. This theorem applies generically to a wide class217

of distributions; the only assumption is a weak regularity condition: sampling the nearest-neighbor218

train point to a random test point should yield (close to) a uniformly random test point.219

Theorem 1. Let D be a distribution over X ⇥ Y , and let n 2 N be the number of train samples.220

Assume the following regularity condition holds: Sampling the nearest-neighbor train point to a221

random test point yields (close to) a uniformly random test point. That is, suppose that for some222

small � � 0, the distributions: {NNS(x)}S⇠Dn

x⇠D
⇡� {x}x⇠D. Then, Conjecture 1 holds. That is,223

for all (",NN,D, n)-distinguishable partitions L, the following distributions are statistically close:224

{(y, L(x))}x,y⇠D ⇡"+� {(NN(y)
S

(x), L(x)}S⇠Dn

x,y⇠D
(5)

The proof of Theorem 1 is straightforward, and provided in Appendix D – but this strong property of225

nearest-neighbors was not know before, to our knowledge.226

3.4 Limitations: Natural Distributions227

Technically, Conjecture 1 is not fully specified, since it does not specify exactly which classifiers or228

distributions obey the conjecture. We do not claim that all classifiers and distributions satisfy our229

conjectures. Nevertheless, we claim our conjectures hold in all “natural” settings, which informally230

means settings with real data and classifiers that are actually used in practice. The problem of231

understanding what separates “natural distributions” from artificial ones is not unique to our work,232

and lies at the heart of deep learning theory. Many theoretical works handle this by considering233

simplified distributional assumptions (e.g. smoothness, well-separatedness, gaussianity), which are234

mathematically tractable, but untested in practice [2, 4, 35]. In contrast, we do not make untestable235

mathematical assumptions. This benefit of realism comes at the cost of mathematical formalism.236

We hope that as the theory of deep learning evolves, we will better understand how to formalize the237

notion of “natural” in our conjectures.238

4 Experiments: Feature Calibration239

We now give empirical evidence for our conjecture in a variety of settings in machine learning,240

including neural networks, kernel machines, and decision trees. In each experiment, we consider241

a feature that is (verifiably) distinguishable, and then test our Feature Calibration conjecture for242

this feature. Each of the experimental settings below highlights a different aspect of interpolating243

classifiers, which may be of independent interest. Selected experiments are summarized here, with244

full details and further experiments in Appendix C.245

Constant Partition: Consider the trivially-distinguishable constant feature: L(x) = 0 everywhere.246

For this feature, Conjecture 1 reduces to the statement that the marginal distribution of class labels for247

any interpolating classifier is close to the true marginals p(y). To test this, we construct a variant of248

CIFAR-10 with class-imbalance and train classifiers with varying levels of test errors to interpolation249

on it. As shown in Figure 2B, the marginals of the classifier outputs are close to the true marginals,250

even for a classifier that only achieves 37% test error.251

Coarse Partition: Consider AlexNet trained on ILSVRC-2012 ImageNet [56], a 1000-class image252

classification problem with 116 varieties of dogs. The network achieves only 56.5% accuracy253
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Figure 2: Feature Calibration. (A) Random confusion matrix on CIFAR-10, with a WideResNet28-
10 trained to interpolation. Left: Joint density of labels y and original class L on the train set. Right:
Joint density of classifier predictions f(x) and original class L on the test set. These two joint
densities are close, as predicted by Conjecture 1. (B) Constant partition: The CIFAR-10 train set is
class-rebalanced according to the left panel distribution. The center and right panels show that both
ResNets and MLPs have the correct marginal distribution of outputs, even though the MLP has high
test error.

Figure 3: Feature Calibration. (A) CIFAR-10 with p fraction of class 0 ! 1 mislabeled on the
train set. Plotting observed noise on classifier outputs vs. applied noise on the train set. (B) Multiple
feature calibration on CelebA. (C) TV-distance between (L(x), f(x)) and (L(x), y) for a variant of
Experiment 1 with error on the distinguishable partitions ("). The error was changed by changing the
number of samples n.

on the test set. But it will at least classify most dogs as dogs (with 98.4% accuracy), making254

L(x) 2 {dog, not-dog} a distinguishable feature. Moreover, as predicted by Conjecture 1, the255

network is calibrated with respect to dogs: 22.4% of all dogs in ImageNet are Terriers, and indeed256

the network classifies 20.9% of all dogs as Terriers (though it has 9% error on which specific dogs257

it classifies as Terriers). See Appendix Table 2 for details, and related experiments on ResNets and258

kernels in Appendix C.259

Class Partition: We now consider settings where the class labels are themselves distinguishable260

features (eg: CIFAR-10 classes are distinguishable by ResNets). Here our conjecture predicts the261

behavior of interpolating classifiers under structured label noise. As an example, we generate a262

random spare confusion matrix and apply this to the labels of CIFAR-10 as shown in Figure 2A.263

We find that a WideResNet trained to interpolation outputs the same confusion matrix on the test264

set as well (Figure 2B). Now, to test that this phenomenon is indeed robust to the level of noise, we265

mislabel class 0! 1 with probability p in the CIFAR-10 train set for varying levels of p. We then266

observe bp, the fraction of samples mislabeled by this network from 0! 1 in the test set (Figure 3A267

shows p versus bp). The Bayes optimal classifier for this distribution behaves as a step function (in268

red), and a classifier that obeys Conjecture 1 exactly would follow the diagonal (in green). The actual269

experiment (in blue) is close to the behavior predicted by Conjecture 1. This experiment shows a270

contrast with classical learning theory. While most existing theory focuses on whether classifiers271

converge to the Bayes optimal solution, we show that interpolating classifiers behave “optimally” in a272

different sense: they match the distribution of their train set. We discuss this further in Section 5. See273

Appendix C.4 for more experiments, including other classifiers such as Decisions Trees.274

Multiple features: Conjecture 1 states that the network should be automatically calibrated for275

all distinguishable features, without any explicit labels for them. To do this, we use the CelebA276

dataset [37], containing images with many binary attributes per image. (“male”, “blond hair”, etc).277
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We train a ResNet-50 to classify one of the hard attributes (accuracy 80%) and confirm that the278

Feature Calibration holds for all the other attributes (Figure 3) that are themselves distinguishable.279

Quantitative predictions: We now test the quantitative predictions made by Conjecture 1. This280

conjecture states that the TV-distance between the joint distributions (L(x), f(x)) and (L(x), y)281

is at most ", where " is the error of the training procedure in learning L (see Definition 1). To282

test this, we consider binary task similar to Experiment 1 where (Ship, Plane) are labeled as283

class 0 and (Cat, Dog) are labeled as class 1, with p = 0.3 fraction of cats mislabeled to class 0.284

Then, we train a convolutional network to interpolation on this task. To vary the error " on these285

distinguishable features systematically, we train networks with varying number of train samples.286

Networks with fewer samples have larger " since they are worse at classifying the distinguishable287

features of (Ship,Plane,Cat,Dog). Then, we use the same setup to train networks on the binary288

task and measure the TV-distance between (L(x), f(x)) and (L(x), y) in this task. The results are289

shown in Figure 3C. As predicted, the TV distance on the binary task is upper bounded by " error on290

the 4-way classification task.291

5 Distributional Generalization292

In order to relate our results to the classical theory of generalization, we now propose a formal293

notion of “Distributional Generalization”, which subsumes both Feature Calibration and classical294

generalization. In fact, we will also give preliminary evidence that this new notion can apply even for295

non-interpolating methods, unlike Feature Calibration.296

A trained model f obeys classical generalization (with respect to test error) if its error on the train set297

is close to its error on the test distribution. We first rewrite this using our definitions below.298

Classical Generalization (informal): Let f be a trained classifier. Then f generalizes if:299

E
x⇠TrainSet
by f(x)

[ {by 6= y(x)}] ⇡ E
x⇠TestSet
by f(x)

[ {by 6= y(x)}] (6)

Above, y(x) is the true class of x and by is the predicted class. The LHS of Equation 6 is the train300

error of f , and the RHS is the test error. Using our definitions of Dtr,Dte from Section 3.1, and301

defining Terr(x, by) := {by 6= y(x)}, we can write Equation 6 equivalently:302

E
x,by⇠Dtr

[Terr(x, by)] ⇡ E
x,by⇠Dte

[Terr(x, by)] (7)

That is, classical generalization states that a certain function (Terr) has similar expectations on both the303

Train Distribution Dtr and Test Distribution Dte. We can now introduce Distributional Generalization,304

which is a property of trained classifiers. It is parameterized by a set of bounded functions (“tests”):305

T ✓ {T : X ⇥ Y ! [0, 1]}.306

Distributional Generalization: Let f be a trained classifier. Then f satisfies Distributional Gener-307

alization with respect to tests T if:308

8T 2 T : E
x,by⇠Dtr

[T (x, by)] ⇡ E
x,by⇠Dte

[T (x, by)] (8)
309

This states that the train and test distribution have similar expectations for all functions in the family310

T , which we can write as: Dtr ⇡T Dte. For the singleton set T = {Terr}, this is equivalent to311

classical generalization, but it may hold for much larger sets T . This definition of Distributional312

Generalization, like the definition of classical generalization, is just defining an object— not stating313

when or how it is satisfied. Feature Calibration turns this into a concrete conjecture.314

5.1 Feature Calibration as Distributional Generalization315

We can write our Feature Calibration Conjecture as a special case of Distributional Generalization,316

for a certain family of tests T . Informally, for a given setting, the family T is all tests which take317

input (x, y), but only depend on x via a distinguishable feature (Definition 1). For example, a test318

of the form T (x, y) = g(L(x), y) where L is a distinguishable feature, and g is arbitrary. Formally,319

for a given problem setting, suppose L is the set of (",A,D, n)-distinguishable features. Then320

Conjecture 1 states that 8L 2 L : (L(x), f(x)) ⇡" (L(x), y). This is equivalent to the statement321

Dte ⇡T
"
D (9)
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Figure 4: Distributional Generalization for WideResNet on CIFAR-10. The confusion matrices
on the train set (top row) and test set (bottom row) remain close throughout training.

where T is the set of functions T := {T : T (x, y) = g(L(x), y), L 2 L, g : X ⇥ Y ! [0, 1]}.322

For interpolating classifiers, we have D ⌘ Dtr, and so Equation (9) is equivalent to Dte ⇡T
"

Dtr,323

which is a statement of Distributional Generalization. Since any classifier family will contain a large324

number of distinguishable features, the set L may be very large. Hence, the distributions Dtr and Dte325

can be thought of as being close as distributions.326

5.2 Beyond Interpolating Methods327

The previous sections have focused on interpolating classifiers, which fit their train sets exactly. Here328

we informally discuss how to extend our results beyond interpolating methods. The discussion in this329

section is not as precise as in previous sections, and is only meant to suggest that our abstraction of330

Distributional Generalization can be useful in other settings.331

For non-interpolating classifiers, we may still expect that they behave similarly on their test and332

train sets – that is, Dte ⇡T Dtr for some family of tests T . For example, the following is a possible333

generalization of Feature Calibration to non-interpolating methods.334

Conjecture 2 (Generalized Feature Calibration, informal). For trained classifiers f , the following335

distributions are statistically close for many partitions L of the domain:336

(L(x), by)
x,by⇠Dte

⇡ (L(x), by)
x,by⇠Dtr

(10)

We leave unspecified the exact set of partitions L for which this holds, since we do not yet understand337

the appropriate notion of “distinguishable feature” in this setting. However, we give experimental338

evidence suggesting some refinement of Conjecture 2 is true. In Figure 4, we apply label noise from339

a random sparse confusion to the CIFAR-10 train set. We then train a single WideResNet28-10, and340

measure its predictions on the train and test sets over increasing train time (SGD steps). The top row341

shows the confusion matrix of predictions f(x) vs true labels L(x) on the train set, and the bottom342

row shows the corresponding confusion matrix on the test set. As the network is trained for longer, it343

fits more of the noise on the train set, and this noise is mirrored almost identically on the test set. Full344

experimental details, and an analogous experiment for kernels, are given in Appendix B.345

6 Conclusion346

This work initiates the study of a new kind of generalization— Distributional Generalization— which347

considers the entire input-output behavior of classifiers, instead of just their test error. We presented348

both new empirical behaviors, and new formal conjectures which characterize these behaviors.349

Roughly, our conjecture states that the outputs of classifiers on the test set are “close in distribution”350

to their outputs on the train set. These results build a deeper understanding of models used in practice,351

and we hope our results inspire further work on distributional generalization in machine learning.352
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