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Abstract

Systematic compositionality – the ability to combine learned knowledge and skills1

to solve novel tasks – is a key aspect of generalization in humans that allows us2

to understand and perform tasks described by novel language utterances. While3

progress has been made in supervised learning settings, no work has yet studied4

compositional generalization of a reinforcement learning agent following natural5

language instructions in an embodied environment. We develop a set of tasks in a6

photo-realistic simulated kitchen environment that allow us to study the degree to7

which a behavioral policy captures the systematicity in language by studying its8

zero-shot generalization performance on held out natural language instructions. We9

show that our agent which leverages a novel additive action-value decomposition10

in tandem with attention-based subgoal prediction is able to exploit composition in11

text instructions to generalize to unseen tasks.12

1 Introduction13

Pick up the knife and use it to chop the bread on 
the counter. 

Pick up the butter knife near the sink and cut the 
yellow apple on the white table. 

Move the knife near the table and slice the apple. 

Training

Test

Move the knife near the 
table and slice the apple. 

Move the knife near the 
table and slice the apple. 

… …

look down pickup knife turn left slice apple

Figure 1: Zero-shot generalization to an un-
seen task of slicing an apple. The test task is
composed of known primitive subtasks – pick-
ing up a knife and slicing the apple – each of
which were encountered in training tasks. Our
agent learns to decompose a natural language
task description into subtasks using attention
and executes them using low-level actions.

Human language is characterized by systematic com-14

positionality: one can combine known components15

– such as words or phrases – to produce novel lin-16

guistic combinations (Chomsky, 2009). This is a key17

aspect of generalization in humans and enables us18

to understand and perform tasks specified by novel19

language utterances over familiar words or phrases.20

If you know what a “laptop” and a “fridge” are, you21

can easily understand how to perform the task “place22

the laptop in the fridge” even if you have never placed23

a laptop in a fridge.24

Prior work studying the linguistic “systematicity” of25

neural networks have focused on sequence mapping26

tasks in a supervised learning setting (Lake and Ba-27

roni, 2018; Lake, 2019; Andreas, 2019). In this work,28

we are interested in compositional generalization of29

a reinforcement learning agent following natural lan-30

guage instructions in an embodied environment. In31

particular, we explore the hypothesis that a language-32

conditioned reinforcement learning agent with a com-33

positional inductive bias in its behavioral policy will34

exhibit systematic generalization to unobserved natu-35

ral language instructions.36
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There has been a flurry of recent work on embodied learning tasks such as question answering (Gupta37

et al., 2017), navigation (Anderson et al., 2018) and object interaction (Shridhar et al., 2020; Carvalho38

et al., 2020) in embodied settings. In particular, the ALFRED task (Shridhar et al., 2020) studies39

agents that exploit detailed natural language instructions to generalize to novel instructions in novel40

environments at test time. Such existing benchmarks offer limited flexibility to study systematic41

generalization since (i) the benchmarks were not built for this purpose and it is unclear to what extent42

systematic generalization skills are required to solve the tasks and (ii) the tasks demand challenging43

reasoning skills such as visual recognition and planning over large number of time-steps which makes44

it difficult to study compositional generalization ability in isolation.45

In this work we develop a set of tasks in the AI2Thor virtual home environment (Kolve et al., 2017)46

which test the compositionality of embodied agents. In order to make progress in systematic gener-47

alization, we make two simplifying assumptions: we assume access to an oracle object recognizer48

and we study generalization in a single kitchen layout. This allows us to study the degree to which a49

policy captures the systematicity in language by studying its zero-shot generalization performance on50

held out natural language instructions.51

Despite these simplifications, agents still need to understand the instruction to figure out the sequence52

of object interactions that need to be performed and act over many time-steps with limited guidance.53

In order to succesfully generalize at test time, an agent needs to learn to ground natural language54

instructions to temporally extended goal-oriented behaviors or “skills” in a compositional manner55

to perform novel tasks that are compositions of the tasks presented at train time. We leverage this56

setting to develop and study a policy with an inductive bias for compositionality and show that this57

enables systematic generalization in the context of combining behavioral skills learned purely from58

reward without expert demonstrations.59

We present an attention-based agent that learns to predict subgoals from language instructions via60

a learned attention mechanism. Our agent uses these subgoals with a novel policy parametrization61

which decomposes the action-value function in an additive fashion that enables estimating the62

action-value for novel object-interactions composed of objects and interactions experienced during63

training.64

We show evidence that this parametrization facilitates exploiting the compositional nature of text65

instructions by showing systematic generalization to both unseek task descriptions and unseen tasks.66

We present an example in Fig. 1, where the agent is able to systematically generalize the behavior67

“pickup up the knife” to “move the knife” and “cut the yellow apple” to “slice the apple”. Thanks to68

the additive inductive bias afforded by our action-value parametrization, it is able to compose these69

behaviors to perform the novel task “move the knife near the table and slice the apple” at test time.70

2 Related work71

Compositional generalization Prior work has studied compositional generalization in sequence72

mapping tasks. Benchmarks such as SCAN (Lake and Baroni, 2018) and gSCAN (Ruis et al., 2020)73

study translating synthetic text descriptions to an action sequence (e.g. jump twice ! JUMP JUMP).74

gSCAN couples SCAN instances with entities in a grid environment and solving a task requires75

grounding the text and entities similar to our work. Prior approaches for these benchmarks impose76

compositional inductive biases in models by augmenting models with memory (Lake, 2019) and77

data augmentation (Andreas, 2019). In this work we use attention mechanisms and introduce a novel78

poilcy parameterization to impose compositional inductive biases.79

Text based embodied control Advances in photo-realistic simulation environments such as Deep-80

Mind Lab (Beattie et al., 2016) and AI2Thor (Kolve et al., 2017) have driven recent progress in81

embodied agents that learn from text instructions. Chaplot et al. (2018) consider a simple navigation82

task where an agent has to move to an object specified by a set of attributes such as shape and83

color. They propose the gated attention model to generalize compositionally in the attribute space.84

Hill et al. (2019) consider systematic generalization in 2D and 3D environments with synthetic85

text instructions. Compared to these work, we consider object interaction tasks in a photo realistic86

simulated environment with human-authored language instructions.87

ALFRED (Shridhar et al., 2020) couples tasks in the AI2Thor environment with detailed text88

descriptions of tasks. In contrast, we consider a simplified setup of learning compositional skills from89

2



…

Get spoon on counter 
near salt shaker and put it 
away in pan near stove 
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Figure 2: Approach Overview: We perform attention over the text instruction to construct an
embedding tsg that represents the current subgoal. The text embedding subgoal tsg attends to scene
object embeddings to construct an object subgoal representation vsg. An MLP takes tsg, vsg and
observation features eobs as input and predicts state-action values Q(s, a). The entire model is trained
end-to-end using Q-learning. See text for details.

high-level task descriptions. We further do not assume access to expert task demonstrations. These90

assumptions allows us to focus on compositional generalization to zero-shot tasks, which is not the91

main goal of the ALFRED benchmark. However, the approach presented here can potentially be92

applicable to ALFRED when combined with learning from demonstrations.93

Hierarchical Reinforcement Learning Learning to directly map percepts to low-level action94

sequences can be challenging. An alternative hierarchical approach is to first come up with a95

sequence of subtasks, which can be considered as high-level actions (Andreas et al., 2017; Zhu96

et al., 2017). Each of those subtasks can then be realized using low-level actions. Our policy has97

an implicit hierarchical structure where latent subgoals are represented as text embeddings using98

attention. Language was used as an abstraction for the high-level policy in Jiang et al. (2019a) for99

object rearrangement tasks based on the CLEVR engine (Johnson et al., 2017).100

Finally, generalization to unseen instructions has been considered in prior work such as Oh et al.101

(2017); Lynch and Sermanet (2020), although compositional generalization is not their main focus.102

3 Problem103

We consider an embodied agent acting in a kitchen environment to solve basic tasks from language104

instructions (See Fig. 4 for an example task). At the beginning of an episode the agent receives a text105

instruction ⌧ . Our goal is to learn a policy ⇡(a|s, ⌧); a 2 A, s 2 S that predicts actions in order to106

complete tasks. The agent state s is partially observable – it receives an egocentric observation obs107

of the scene. We further assume that an oracle object recognition model provides the object ids for108

objects in the egocentric observation.109

The action space consists of navigation and object interaction actions A = Anav [Aint. There are110

8 navigation actions Anav = {move forward, move back, move left, move right, turn left, turn right,111

look up, look down}. Interaction actions Aint = B ⇥ I are specified using an interaction b 2 B and112

an object id o 2 I where B = {pickup, place, slice, toggle on, toggle off, turn on, turn off } and I is a113

pre-defined set of identifiers of objects that are available to the agent for interaction in the current114

observation.115

The agent receives a positive reward for successfully completing a task. It also receives a small116

negative reward for every time-step. In addition, we also assume that every correct object interaction117

receives a positive reward. In addition to providing a denser learning signal, the rewards are also used118

to identify subgoals as described in section 4.1. In practice such dense rewards may be unavailable,119

but this is outside the scope of our study and left as future work.120
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4 Approach121

We approach the problem by considering a task ⌧ to be composed of subgoals g1, ..., gn, where each122

subgoal gi involves navigating to a particular object an interacting with it. For example, the task123

place an apple on the table involves finding the apple and picking it up, followed by navigating to the124

table and putting down the apple, which can be considered to be the two subgoals for executing the125

task. Each object interaction required to complete the task thus corresponds to a subgoal. Since every126

subgoal completion receives a positive reward, the number of subgoals completed at every time-step127

Nsg is known to the agent. The subgoals themselves are not known to the agent – we use attention on128

the text instruction to compute a latent subgoal representation.129

4.1 Text subgoal inference130

Given instruction ⌧ composed of the tokens (w1, ..., wn), we obtain the corresponding token em-131

beddings E = (e1, ..., en) and use an RNN to encode the instruction to obtain a sequence of132

contextualized token representations H = (h1, ..., hn). We compute a text subgoal tsg for a given133

time-step by computing attention on the instruction using Ne
sg as query where Ne

sg is a vector134

representation of Nsg . This is shown in Eq. (1) (Q,K, V are learnable parameter matrices).135

tsg = Attention(query = Ne
sg, keys = values = H) =

X

h2H

exp((Qs)>(Kh))P
h02H

exp((Qs)>(Kh0))
V h (1)

We expect the attention to focus on words in the instruction relevant to executing the current subgoal.136

For instance, if the agent is expected to interact with an apple, the attention module could learn to137

focus on the word ‘apple’.138

4.2 Cross-modal reasoning139

Given the text subgoal tsg, we use an attention mechanism to reason about objects in the scene140

within some distance to the agent. This helps the agent understand if objects of interest relevant141

to the subgoal are present nearby. Let the set of nearby scene objects be O = {o1, ..., on}, where142

the oi 2 I are object ids provided by an oracle. The oi’s can thus be treated as indexes into an143

embedding table that produces object embeddings Oe = {o1e, ..., one }. The cross-modal attention144

is given by Eq. (2) where the text subgoal attends to the scene object embeddings (Q0,K 0, V 0 are145

learnable parameter matrices). We augment the scene objects embeddings Oe with an additional146

learned embedding ono�obj
e which is expected to absorb any probability mass not assigned to scene147

objects O0
e = Oe [ ono�obj

e . The attention produces an object subgoal embedding vsg .148

vsg = Attention(query = tsg, keys = values = O0
e) =

X

oe2O0
e

exp((Q0tsg)>(K 0oe))P
o0e2O0

e

exp((Q0tsg)>(K 0o0e))
V 0oe (2)

4.3 Policy learning149

We use a deep Q-learning algorithm to train a policy (Mnih et al., 2013), where a neural network150

is trained to approximate the state-action value function Q(s, a). Given the current observation,151

text subgoal and object subgoal, the state-action value for a navigation action a 2 Anav is given by152

Eq. (3), where fnav is an MLP (multi-layer perceptron) and eobs = fCNN(obs) is a feature vector of153

the observation image computed using a CNN encoder.154

Qnav(s, a) = fnav(a|eobs, tsg, vsg) (3)

The state-action values for interaction actions a = (b, o) 2 B ⇥ I can be analogously modeled as in155

Eq. (4). We found it helpful to decompose the state-action value in an additive fashion over an action156

score fa
int and an object score fo

int as in Eq. (5). Intuitively, fa
int learns to model action preferences,157

whereas fo
int learns to ground text goals to physical objects. In addition to sharing parameters across158

actions and objects, this decomposition allows us to model state-action values of object interactions159

not experienced during training, as long as the specific interaction and the object were encountered.160

4



Task type Task descriptions

pick up pot
Go to the stove and pick up the pot.
Pick up the pot on the bottom right burner on the stove.
Take the cooking pot from the stove.

place spoon in pan

get spoon on counter near salt shaker and put it away in pan near stove.
Pick up the spoon from the table near the salt shaker and move it to the pan
on the counter by the sink.
Move spoon from the counter and into the pan.

slice bread with knife

Pick the knife and slice the bread.
Take the knife with the yellow handle from the counter by the sink and use
it to cut horizontal slices out of the loaf of bread on the white table.
Pick up the sharp knife with a yellow handle, and slice the bread on the
white table.

Table 1: Example task types and corresponding task descriptions. Note that the task descriptions are
used for training and testing agents. The task types are not known to the agents.

Unless specified otherwise we use the decomposed value function Qadd
int in our experiments.161

Qfull
int (s, a) = fint(a|eobs, tsg, vsg) (4)

Qadd
int (s, a) = fa

int(b|eobs, tsg, vsg) + fo
int(o|tsg) where a = (b, o) 2 B ⇥ I (5)

In summary, the state-action value function is modeled as in Eq. (6).162

Q(s, a) =

⇢
Qnav(s, a); a 2 Anav

Qadd
int (s, a); a 2 Aint

(6)

The overall model (see Fig. 2 for an illustration) including parameters of the subgoal inference (Eq.163

1) and cross-modal reasoning (Eq. 2) components, as well as the MLPs in Eqs. (3) and (5) are trained164

end-to-end using a double-DQN algorithm (Van Hasselt et al., 2016). Once the model has been165

trained we construct a greedy policy by choosing actions with the highest state-action values for166

inference.167

5 Experiments168

5.1 Tasks169

We use the AI2Thor (Kolve et al., 2017) environment as a testbed for our experiments. While170

there exist prior benchmarks that couple language instructions with embodied environments such171

as ALFRED Shridhar et al. (2020), they were not designed to study compositional generalization.172

We thus construct a new task setup that allows us to flexibly vary tasks and object arguments. We173

consider the following task types in our experiments,174

• pickup x: Find and pick up object x175

• place x in y: Find and pick up object x, followed by navigating towards y and placing it.176

• slice x with y: Secure cutting instrument y, find object x and perform the slice action on it.177

We use Amazon Mechanical Turk to collect natural language descriptions of tasks for training and178

evaluation. A turker is shown key observation frames during the execution of a particular task and is179

asked to describe in a sentence how they would describe the task to a robot. Turkers were instructed180

to do their best to correctly identify task relevant objects. But often descriptions from the turkers181

incorrectly identify objects such as identifying a potato as an avocado. Such descriptions were182

manually fixed so that the correct object identities are mentioned in the instructions. We collected183

5 natural language descriptions each for 35 tasks that include pickup, place and slice tasks. The184

descriptions consist of 170 unique tokens and have an average length of 12 tokens. Table 1 shows185

example descriptions collected for some tasks. See appendix B for instructions given to Turkers in186

the data collection process.187

The pickup tasks are used for evaluating multi-task and zero-shot generalization with seen and unseen188

descriptions of tasks. We use 10 pickup tasks - pickup X where X 2 {apple, bread, tomato, potato,189
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place tasks slice tasks

Training tasks

place apple in plate slice apple with knife
place butterknife in plate slice tomato with knife
place spoon in plate slice bread with knife
place butterknife in pan slice apple with butterknife
place potato in pan slice potato with butterknife
place spoon in pan slice bread with butterknife
place apple in pot
place butterknife in pot
place potato in pot

Test tasks (obj-obj setting)
place potato in plate slice potato with knife
place apple in pan slice tomato with butterknife
place spoon in pot

Test tasks (task-obj setting)
place knife in plate slice lettuce with knife
place knife in pan slice lettuce with butterknife
place knife in pot

Table 2: Task types used for training and testing on place and slice tasks. The obj-obj setting considers
test tasks composed of unseen combinations of objects. The task-obj setting considers generalization
to unseen combinations of tasks and objects (e.g. learning to slice lettuce when taught how to slice
objects and how to pickup lettuce).

lettuce, spoon, bread, butter knife, plate, pot}. These tasks are used for evaluating generalization to190

seen and unseen descriptions of known short-horizon tasks. They are also used in generalization to191

longer horizon tasks as described later in this section.192

The place and slice tasks are used for evaluating generalization to longer-horizon unseen tasks.193

Table 2 shows tasks used for training and evaluation. In addition to multitask generalization, we use194

these tasks to study zero-shot compositional generalization to unseen task descriptions. The unseen195

descriptions can correspond to tasks that were encountered during training, similar to the pickup tasks.196

A more challenging generalization scenario is to generalize to text descriptions of unseen tasks.197

We consider two types of tasks in the latter scenario. The obj-obj setting examines the ability of the198

agent to generalize to tasks composed of unseen combinations of objects. For instance, in the test199

task place potato in plate, the relevant objects potato, plate were encountered during training in tasks200

such as place potato in pan and place apple in plate.201

The task-obj setting is a harder generalization problem where the agent is expected to generalize to202

unseen combinations of tasks and objects. For the test task slice lettuce with knife, the object lettuce203

was never observed in the context of a slice task during training. However, the agent has access to204

pickup tasks and is expected to learn to interact with lettuce by using the pickup lettuce task. This205

can be challenging because the agent was only taught how to pick up lettuce, and did not learn to206

associate lettuce with slice tasks.207

The training tasks in Table 2 were designed such that each object argument appears in multiple tasks.208

Furthermore, when choosing object arguments for a given task type, we prioritized objects that appear209

in as many tasks as possible. For instance, in the pickup and place tasks setup, the objects were plate,210

pan, pot, spoon, etc. where each object appears in at least three of the training tasks. This ensures that211

there are enough occurrences of each object type for the agent to understand and ground the object212

type. It also helps the agent disentangle the notion of an object versus a task in a given instruction.213

5.2 Baselines214

We compare the proposed approach against the following baselines.215

RNN In this baseline we replace the attentional model with an RNN that produces an embedding216

of the text instruction. While this model can potentially work for unseen instructions, we examine if217

the encoding effectively captures the compositional information present in the instructions.218

Gated Attention This architecture (Chaplot et al., 2018) combines the instruction representation219

with the visual observation using a gated attention operation. The fused representation is fed to an220

MLP which models the state-action values. All models and baselines are trained using the DDQN221

Q-learning algorithm.222
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Tasks Training tasks Test tasks
Descriptions seen unseen unseen unseen

obj-obj task-obj

Model

RNN 0.65 0.65 0.26 0.13
Gated Attention 0.92 0.85 0.66 0.34
Ours
(a) Qadd

int (no cross modal) 0.89 0.76 0.84 0.77
(b) Qfull

int + cross modal 0.93 0.85 0.44 0.34
(c) Qadd

int + cross modal 0.95 0.87 0.94 0.91

Table 3: Task success rates of models under different generalization settings. Models are evaluated
on seen/unseen descriptions of seen tasks and on unseen descriptions of unseen tasks. For unseen
tasks, we further evaluate under unseen combinations of objects as well as unseen combinations of
tasks and objects. Best numbers are boldfaced.

5.3 Hyperparameters223

Word embeddings and the RNN have representation size 32. Objects are represented by embeddings224

of size 32 from an embedding table. The CNN observation features have size 512 and the CNN225

encoder has 1.7M parameters, which constitues 90% of the overall model parameters. The MLPs in226

Eqs. (3) and (4) are single hidden layer MLPs with 256 hidden units and ReLU activation.227

5.4 Results228

Short-horizon tasks We first consider pickup tasks that involve a single object interaction. In these229

tasks the agent has to identify the object reference mentioned in the text description and then find and230

pick up the relevant object. We train and evaluate on 10 pickup task types. Four text descriptions of231

each task type are part of the training set and the remaining descriptions (i.e., 1 per task type) are part232

of the test set. Identifying the correct subgoal for these tasks involves paying attention to the verbs233

and nouns in the task description as well as the overall context. On the training and test descriptions,234

our agent trained from scratch achieves success rates of 0.9, 0.92 respectively.235

Figure 3: Learning progress of
agent trained from scratch and
agent pre-trained on pickup tasks.

Longer-horizon Tasks We now consider tasks that involve two236

subgoals, which includes the place and slice tasks in Table 2. Jointly237

learning text grounding and subgoal inference for long horizon tasks238

can be challenging. We thus consider a curriculum learning strategy239

where an agent is gradually trained on tasks of increasingly longer240

horizon. The agent is first pre-trained on the pickup tasks as de-241

scribed in the previous section, and then fine-tuned on the training242

tasks in Table 2. Fig. 3 compares the learning progress of agents243

trained from scratch and an agent that has been pre-trained on the244

pickup tasks. The pre-trained agent learns twice as fast compared245

to the agent trained from scratch and achieves perfect success rate246

on training tasks.247

Generalization Table 3 shows the average task completion success rate of models under different248

generalization scenarios. The RNN and Gated Attention baselines are limited by the fact that the text249

instruction is represented using the same encoding across all time-steps, which has limited ability to250

capture compositional information. The inductive bias of Gated Attention enables better performance,251

but it has difficulty generalizing to unseen tasks. The attention based model outperforms these252

baselines, which indicates that the attention mechanism helps exploit compositional information in253

the instruction better than a fixed encoding.254

In addition to better performance, the attention model has the advantage of being more interpretable.255

Fig. 4 shows the agent’s actions and the attention pattern over time for an example task. The agent256

learns to identify object references in the instruction and uses attention as a sub-goal representation.257

This mimics a hierarchical policy where a high-level controller provides a sub-goal and a low-level258

controller executes it Jiang et al. (2019b). The agent further learns to ground object references in the259
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Instruction Subgoal 1 bring the potato from the table to the plate on the right of the oven .
attention Subgoal 2 bring the potato from the table to the plate on the right of the oven .

Instruction Subgoal 1 pick up the butter knife on the counter , and horizontally slice the lettuce .
attention Subgoal 2 pick up the butter knife on the counter , and horizontally slice the lettuce .

Figure 4: Agent’s observation at different time-steps while performing a place task and a slice task.
The attention distribution in the text goal inference component while executing each subgoal is also
given below the agent observations.

text instruction to objects in the scene. Notably, these attention patterns and grounding are learned260

from the reward signal alone without any other supervision. More example of agent trajectories are261

given in appendix A.262

5.5 Ablations263

We perform ablations to study the impact of cross-modal reasoning and decomposing the value264

function in an additive fashion.265

Cross modal reasoning We examine model performance without the cross modal reasoning com-266

ponent. In this case the MLPs in Eqs. (3) and (5) only receive the text subgoal and observation267

encoding as inputs and the visual subgoal vsg is omitted. From rows (a) and (c) in table Table 3 it268

is clear that the cross-modal reasoning components helps ground text in scene objects and enables269

better generalization across all settings.270

Interaction Q-values We examine the benefit of decomposing the value function approximation271

of interaction actions in an additive fashion in Qadd
int (Eq. (5)). We compare it against Qfull

int (Eq. (4)),272

which treats each (interaction, object) pair as a separate atomic action. Comparing rows (b), (c) in273

Table 3 we see that the additive decomposition is crucial for generalization to unseen tasks.274

6 Conclusion275

In this work we proposed attention based agents that can exploit the compositional nature of language276

instructions to generalize to unseen tasks. The policy mimics a hierarchical process where a text277

embedding obtained via attention represents the subgoal to be executed and the policy network278

executes the low level actions. The proposed method performs strongly against baselines on a testbed279

we created based on a photorealistic simulated environment and provides some interpretability.280

Compared to existing benchmarks such as ALFRED we made simplifying assumptions such as281

oracle visual recognition, relatively short horizon tasks and generalization within single kitchen282
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layout which allows us to focus on compositional generalization in embodied settings. However, the283

ideas presented here can potentially be combined with curriculum learning and learning from human284

demonstrations to perform complex tasks that require planning over hundreds of time-steps such as285

in the ALFRED setting, and we leave this to future work.286
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