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Abstract—It is believed that using electric vehicles (EVs)
for transportation is essential for addressing environmental
and sustainable development challenges. Current ecofriendly
concerns, such as the fast depletion of fossil fuels, rising air
pollution, rising energy demand, global warming, and climate
change, have made it possible to electrify the transportation
industry. EVs can address all of the aforementioned issues.
For electric vehicles (EVs), and particularly those powered by
lithium-ion (Li-ion) batteries, portable power supplies have
become indispensable. Although Li-ion batteries have been
the focus of EV research for a long time, issues like battery
aging and safety have yet to be fully understood. According
to our current understanding of smart technology, we have the
ability to use the digital twin (DT) to overcome a problem
that has been holding back battery development, as well as
the preliminary DT applications in complicated systems such
as industry 4.0. This research focuses on the characteristics
of batteries and how they relate to their modeling, state
estimation, remaining usable life prediction, safety, and control.
We put together an analysis of some of the most current
achievements in battery prognostics and health monitoring.
Finally, we provide prospects for the development of DTs in
the field of EV batteries.

Index Terms—Electric vehicles, li-ion battery, digital twin
technology, health monitoring, industry 4.0
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I. Introduction
Automobiles are one of the primary sources of emissions

of carbon dioxide and other chemicals that contribute
to global warming. A major first step toward achieving
carbon peaking and carbon neutralization [1] is to en-
courage the usage of electric vehicles (EVs). It could also
help the energy revolution and the energy transformation
move forward. EV use will continue to rise exponentially in
the future, putting greater pressure on the existing grid’s
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power supply capacity as new charging stations are built
on a huge scale [2]. In the creation and administration
of new energy vehicles, batteries are the most important
technology [3]. High energy density, an extended life cycle,
and low self-discharge rates make lithium-ion batteries an
attractive option [4]. There are a large number of complex
micro-electrochemical reactions in the battery, which are
seriously harmful to the long-term stable operation of
the battery. The external sensors of the battery, such
as current, voltage, and temperature, are weak and have
hysteresis. Often, the battery management system (BMS)
cannot detect abnormal signals until the internals of the
battery have caused combustion and explosion due to
violent reactions [5] [6]. Smart batteries with multiple
intelligent sensors can monitor various signals such as bat-
tery internal temperature, electrode potential, pressure,
and gas, so that charge state estimation and active control
can be carried out more accurately. It is the development
direction of the next generation of batteries [7]. There
is still a lack of systematic research on the processing
and analysis of sensor signals and their role in BMS. In
addition, at present, most sensors are still parasitic outside
the battery. On the one hand, the implantation technology
is immature; on the other hand, the battery’s hidden
dangers caused by implantation are difficult to eliminate.
At present, regulating the pore structure of the electrode
is one of the main methods to improve the mass transfer
efficiency of lithium battery electrodes [8] [9]. However,
it is still a challenge to determine the practical role of
electrode optimization in the process of battery charging
and discharging. The mainstream research method is still
to analyze the changes of internal parameters in the
process of battery discharge through battery performance
tests and numerical simulation. Li et al. made a model
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of a lithium-air battery with an ultra-thin electrode and
studied how oxygen moves through it, how fast reactions
happen, and how products are left behind [10]. Wang et al.
built an electrode pore model through SEM and analyzed
the effect of electrode saturation on battery performance
[11]. Pan et al. summarized an optimization method for
the porous electrode of a lithium battery through the
analysis of pore size distribution, porosity, specific surface
area, and other parameters of the electrode [12]. Li et
al. proposed a linear gradient pore structure and proved
that this structure can improve the performance of organic
lithium batteries [13]. The traditional continuous pore
lithium battery model can indeed describe the trend of
various parameters when the battery works in principle.
However, it is necessary to further clarify the mass transfer
process in porous media and introduce the discrete pore
structure into the model analysis. With the progress of
technology, digital twin (DT) can be used to deal with
more complicated systems and create a DT framework for
battery systems in particular [14]. Joonam et al. used a
DT model to reveal parameters such as dead particles and
three-dimensional charge distribution of contact specific
surface area in solid-state batteries, which are difficult to
achieve by experiments and traditional simulation [15].
Ngandjong et al. used the DT method to build the
electrode model of the lithium-ion battery, providing an
optimization method for the production process of li-ion
batteries [16]. Wang et al. built a fuel cell model based
on a DT model, showing the development potential of
numerical twinning technology in the field of fuel cells
[17]. However, in the 3D simulation analysis, the influence
of some complex factors on numerical calculation needs
to be ignored to ensure the operational feasibility and
efficiency of the model. Therefore, the model assumptions
are set as follows:

• The main product of the model is lithium peroxide,
and the by-products lithium oxide and lithium car-
bonate are not considered in the model.

• There is an adequate supply of reactants in the
reaction process.

• The influence of temperature change caused by bat-
tery reaction is not considered.

• The mass transfer in the model is only carried out by
diffusion, without considering the convection effect.

II. INDUSTRY 4.0 AND DT
The concept “Industry 4.0” refers to the following

characteristic pillars that are applied in smart batteries
manufacturing industries for electric automobiles that
are in their fourth generation. A description of how the
elements of Industry 4.0 can be used in automation, as
shown in Table I.

The automobile industry 4.0, manufacturing an EV
that gets its power from an independent system that
changes fuel into electricity. This system could consist of
a battery, solar panels, fuel cells, or an electric generator,

among other things. The layout of a battery-powered EV
is shown in Figure 1. In this section, the application and
key technologies of DT in the battery EV manufacturing
industry 4.0 will be discussed.

Fig. 1. A model of a battery-powered electric vehicle (BEV)

A. DT technology
It makes full use of physical models and sensors

to collect information and operational data; integrates
multi-disciplinary, multi-physical quantities, and multi-
scale simulation processes; completes the mapping of the
whole life cycle process of solid lithium-ion batteries in
the virtual space [26]; and constructs a high-precision
digital simulation model for vehicle BMS, also known as
the virtual battery model [27]. According to the historical
data of the cloud, building a battery twin model based
on the powerful computing power and storage space of
the platform can greatly improve the accuracy of state
estimation, the ability of safety early warning and the ef-
ficiency of active safety protection mechanisms. Compared
to traditional BMS technology, it can reduce the number
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of experiments needed in the early stages of development
and shorten the time it takes to develop something [28].

B. Big Data
sensor, model, and virtual-to-real fusion data are only

a few of the many types of information that can be
incorporated into twin data [29]. Big data can help explain
and estimate the outcomes and processes of real-world
events by assembling important information from the huge
amounts of data generated by the DT. According to the
DT model, large data sets have a consistent data type. The
DT can be seen as a bridge between the digital world and
the physical world in several ways. Wang et al. introduced
the DT technology and cloud-side-end collaboration for
BMS. They also introduced the DT model and important
technologies like state estimation, big data, and cloud-
assisted battery adjustment [30]. The proposed model can
help manage the battery, and big data can be used to plan
the upgrade path of the battery.

C. Augmented Reality (AR)
Augmented reality connects the virtual world with

the natural world. This technology hasn’t been used in
factories yet, but it will soon have a big effect on the
automobile industry.

D. Machine learning
It is one of the most important algorithms in the field

of batteries [31], which is one of the many fields that
can benefit from AI’s wide applications. The DT is able
to accomplish functions such as simulation, diagnosis,
prediction, and optimization control by utilizing its high-
fidelity virtual model, enormous twin data, and real-time
two-way dynamic interaction. DT is able to make data far
more usable with the assistance of AI, as well as enhance
the speed and accuracy of various processes.

E. Additive manufacturing and 3D printing
With the advent of the additive (layer-by-layer) manu-

facture of goods with varying shapes, sizes, and materials,
the industry has changed quite a bit. Additive manufac-
turing is also known as ”additive” manufacturing. The
advent of 3D printing has made it possible to manufacture
a wide variety of items on a variety of scales, including
commercial, industrial, and even personal. This includes
making everything from small items to huge printing
houses and even rockets [32] [33].

F. Cybersecurity
This is an important foundational component of the

fourth industrial revolution (Industry 4.0). Cybersecurity
keeps networks, servers, devices, and data from being
used in the wrong way or by people who shouldn’t. This
is important because everything in the 21st century is
accessed and used through digital systems.

G. IoT
Internet of Things: devices and services that gather,

process, analyze, and transport digital data from the
physical world to the virtual world operate as ”ladders.”
Twin data frequently have the properties of big data,
and battery DT uses these data to predict the future
state of the battery using machine learning technology
in situations where the physical mechanism and the
input data are both inadequate. Saad et al. addressed
modeling the deployment of energy-efficient cyber-physical
systems (ECPSs) for diverse applications. The results of
the experiments show that IoT and cloud computing can
be used to make the DT for the ECPS work in real time
[34].

H. Cloud
At the present time, academics are focusing their efforts

on the investigation of cloud-based business management
systems (BMS), and they feel that cloud-based BMS is
an unavoidable trend of future development [35]. The use
of the cloud computing platform will be required by DT
because of the extensive amount of data and the intricate
nature of the algorithm.

I. Blockchain
Each data block in the blockchain contains a string

of data that may be used to verify whether or not
the transaction information is valid. The integration and
analysis of data is at the heart of DT. However, certain
aspects of data management can be fraught with danger,
including the loss of data or its unauthorized modification.
The primary benefits of combining distributed ledger
technology (DT) and blockchain technology are evident
in the fact that the combination protects data from being
altered while it is being stored or transmitted and makes
it possible for DTs to communicate with one another.

III. METHODOLOGY
High-precision digital simulation model for vehicle BMS

as shown in Figure 2, also known as the virtual battery
model, which is the result of DT technology’s use of
physical models and sensors to collect information and
operational data; integration of multi-disciplinary, multi-
physical quantities, and multi-scale simulation processes;
and completion of the mapping of the entire life cycle
process of solid lithium-ion batteries in the virtual space.
When the organic electrolyte lithium battery works, the
lithium metal of the cathode loses electrons to form
Li+, which is transferred to the electrolyte through the
diaphragm and forms lithium peroxide with the oxygen
that obtains electrons. Because lithium peroxide is a de-
composable product, the stable cycle of a lithium battery
is realized. The chemical equation in the reaction process
is as follows;

Li = Li+e− (1)

2Li+ +O2 + 2e− = Li2O2 (2)
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Fig. 2. Digital simulation model for vehicle BMS

It is possible to recreate the changes that occur in
the electrode during the discharge process by building
a model of a lithium battery based on the actual pore
structure and simulating the process. The model uses
Unity3D software to build the numerical twin structure
of the electrode, imports the numerical twin model into
COMSOL software to build the transient discharge model
of a three-dimensional lithium battery, and then uses
COMSOL software to output the model results after it
has been calculated. This information is made available
to users in real time by the BMS, which measures the
capacity of the battery, the degradation of the battery as
it is being charged or discharged, and the optimal perfor-
mance of the battery [36]. Condition-Based Maintenance
(CBM) of the batteries can now be carried out thanks
to battery health monitoring, which eliminates the need
to rely on fault-based or time-based maintenance. The
BMS verifies that the subsystem is operating in its normal
state and that there has been no unexpected breakdown.
DTs give automobile producers with an expanded capacity
to identify abnormal states and estimate the remaining
usable life of a vehicle’s ablative components within the
context of this paradigm. This is accomplished without the
requirement for any form of field testing. This leads to an
increase not only in the level of happiness experienced by
the owner, but also in the level of safety experienced by
the user [14]. Figure 3 demonstrates how incorporating
DT technology into the management of a vehicle’s overall
health can make the process more efficient overall.

IV. DIGITAL TWIN OF BATTERY ELECTRIC
VEHICLE

Battery management systems and smart charging ar-
chitectures are directly related to one another and both
contribute to the overall efficiency of smart EV systems.
The model uses Unity3D software to build the numerical
twin structure of the BMS, imports the numerical twin
model into COMSOL software to build the transient

Fig. 3. Integrated vehicle battery health management model with
DT technology

discharge model of a 3D li-lion battery, and then uses
COMSOL software to output the model results after
it has been calculated. Electronic Control Units, also
known as ECUs, along with EV power trains, are the
fundamental components of this smart technology. As a
consequence of this, the optimization of these components
through the application of DT technology plays a major
role in the creation of an efficient charging architecture
and is a significant area of academic research. A DT-
based electrical and mechanical co-simulation (virtual
automobile) is realized in the cited literature [37], which
also depicts the behavior of the automobile while it is
charging. The development of an EV automated charging
system was made possible by the development tool for
virtual vehicles, in which simulation-based verification was
used to make adjustments to the algorithm even before
the real system was deployed. A microprocessor electronic
control unit (ECU) with intelligent data acquisition is used
to get the battery state of health (SoH) and battery state
of charge (SoC) through the collaboration of conventional
monitoring parameters (CMPs) and a new-age battery
monitoring model. Additionally, virtual ECU, hardware-
in-the-loop, and virtual microprocessor are used to train
the battery electrochemical model for the 3D rendering
engine in order to get the unified interconnection among
DT model and BMS of EVs, as shown in Figure 4.

The figure shows how the combination of DT technology
and BMS can help the battery EV industry 4.0 and allow
consumers to know the health and charging status of
their vehicles before any danger. Because of the high
load requirements, charging EVs can frequently have a
negative impact on the public grid. In order to create
a realistic model of a smart grid, the authors in [38]
use a genetic algorithm to optimize a distribution tree
(DT) of electric vehicle (EV) charging infrastructure.
This is done in order to lessen the impact of the effect
that was discussed earlier. This topic is investigated by
Park et al. [39], who do so by developing a DT-driven
model for an all-solid-state battery that makes use of
voxel-microstructures. This article outlines the exceptional
procedures and applications of DT technology for BMS
and smart charging systems. These are helpful for the
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Fig. 4. Fusion of DT technology with BMS

manufacturing industry 4.0. From refueling to charging,
the energy supply mode of vehicles has undergone great
changes, and vehicles can also become mobile energy
storage stations. These are technical problems that need
to be solved urgently.

A. Fast charging and fast changing
The safety of lithium-ion battery fast charging is insuf-

ficient, the heat generation problem in the fast-charging
process is serious, the design of the thermal management
system is difficult, and the infrastructure construction and
operation costs are too high [40]. However, it is the biggest
difficulty to realize the compatible exchange of multi-
station and multi-vehicle types through power exchange
supply.

B. Station interaction
Charging and changing facilities, roof photovoltaics,

building energy, etc. form an energy supply microgrid. In-
depth research is needed to optimize the energy scheduling
between the superior power grid, renewable energy power
generation, EV charging, and changing loads; promote the
consumption of renewable energy within the microgrid;
and reduce the impact on the power grid.

C. Vehicle network coordination
At present, the real-time performance of large-scale EV

scheduling technology needs to be verified, the cost of

infrastructure transformation is high, and there is a lack
of an effective market mechanism and business model.

V. CONCLUSION

Vehicle electrification is a positive trend of vehicles in
all even the world. EVs will be the primary means of
transportation in the future. The power battery system
is the key core component that needs to be promoted
from multiple levels. The fastest growing areas, such as
AI, big data, cloud computing, IoT, and blockchain, are
essential in the advancement of DT and the battery
research process. This article contains a detailed DT
model for EVs and lithium-ion battery systems, as well
as some future works that are discussed in detail: In
terms of intelligent battery and active control, consid-
ering the influence of the barrier effect, the design of
flexible distributed multi-signal integrated sensors and
corresponding feedback control systems for implantable
wireless transmission will be the crucial to the lightweight
design and disruptive development of the next generation
of BMS with the help of flexible electronic technology and
advanced communication technology. In terms of battery
defect and safety monitoring, it is necessary to further
analyze the failure boundaries corresponding to different
types and degrees of defects in combination with the actual
manufacturing process; study the evolution mechanism
and modeling of the whole life cycle of defects; explore
production line detection technologies such as ultrasound,
DT, and vision; and combine advanced sensing technology
with big data and artificial intelligence algorithms to
form a reliable whole process battery safety monitoring
method. In terms of battery degradation and intelligent
management, it is important to: face the multi-stage
application of the whole life cycle of the battery; create
a top-down management system from the cloud to the
vehicle based on mechanism research and the combination
of cloud-side technology and intelligent algorithms; put an
emphasis on closed-loop management in the context of the
whole life cycle; and improve aging management, echelon
utilization, and battery recycling. In terms of battery
energy storage and smart energy, it is currently in the early
stages of exploration. With the rapid development of new
energy vehicles and the increase in renewable energy, it is
necessary to develop advanced power electronics technol-
ogy and hierarchical control optimization algorithms at all
levels of source network load storage, consider charge and
exchange coordination, wind and light consumption, multi
energy complementarity, and multi-vehicle combination,
and explore and take into account robustness. The real-
time and optimal vehicle station network multi-level and
multi-space-time scale optimization strategy will build an
energy intelligent dispatching system with multi-microgrid
coordination and dynamic interaction with the large power
grid. This will allow for the intelligent connection of power,
energy, and transportation.
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