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ABSTRACT

This paper investigates the problem of bandit learning in two-sided decentralized
matching markets with adversarial corruptions. In matching markets, players
on one side aim to learn their unknown preferences over arms on the other side
through iterative online learning, with the goal of identifying the optimal stable
match. However, in real-world applications, stochastic rewards observed by players
may be corrupted by malicious adversaries, potentially misleading the learning
process and causing convergence to a sub-optimal match. We study this problem
under two settings: one where the corruption level C (defined as the sum of the
largest adversarial alterations to the feedback across rounds) is known, and another
where it is unknown. For the known corruption setting, we develop a robust variant
of the classical Explore-Then-Gale-Shapley (ETGS) algorithm by incorporating
widened confidence intervals. For the unknown corruption case, we propose a
Multi-layer ETGS race method that adaptively mitigates adversarial effects without
prior corruption knowledge. We provide theoretical guarantees for both algorithms
by establishing upper bounds on their optimal stable regret, and further derive the
lower bound to demonstrate their optimality.

1 INTRODUCTION

Two-sided matching markets have garnered significant research attention due to their central role in
marketplace applications (Gale & Shapley, 1962), from crowdsourcing markets (matching customers
with freelancers) (Sun et al., 2023) to ridesharing platforms (pairing passengers with riders) (Dicker-
son et al., 2021). In these markets, each participant maintains a preference ordering over the other
side (Liu et al., 2020), derived from latent utilities such as a freelancer’s service quality or a rider’s
reliability. One of the core evaluation metrics on matching markets is stability (Nguyen et al., 2021),
which illustrates equilibrium states where no participant pair can mutually benefit from deviating
from their current match.

In real-world applications, for example, labor markets with employers and workers, employers are
not aware of the real working qualities of workers before employment. Hence, their preferences
over workers are unclear (Liu et al., 2020; Kong & Li, 2023). A key challenge arises on how to
attain an optimal stable matching among competing participants, only through learning from the
iterative matchings with the other side (Kong & Li, 2023). As a well known learning framework under
uncertainty, multi-armed bandit (MAB) has been widely used in many sequential decision-making
applications (Auer et al., 2002; Slivkins, 2020). In recent years, the MAB framework has been studied
in many studies of matching markets (Liu et al., 2020; Kong & Li, 2023; Zhang & Fang, 2024).
These works regard players and arms in MAB as two sides of the market participants. Each player
has unknown preferences over arms corresponding to unknown reward distributions in MAB. Hence,
players aim to learn the distribution iteratively via collecting empirical observations to minimize the
player-optimal regret defined as comparing practical matching with the players’ most-preferred stable
matching. We notice that the common bandit learning model for matching markets significantly
depends on stochastic rewards. In words, most of the current works assume that the rewards generated
by successful matchings between players and arms are drawn from unknown but fixed distributions.

More specifically, existing bandit algorithms in matching markets commonly assume that the feedback
players receive from arms follows the true preference model (Liu et al., 2020; Kong & Li, 2023;
Zhang & Fang, 2024). However, this assumption is often difficult to satisfy in real-world scenarios.
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External noise or deliberate manipulation may compromise the authenticity of the feedback. For
example, in the server resource allocation problem (Hussain et al., 2013), certain computing nodes
may exhibit performance far exceeding their actual capabilities during the testing phase to induce
the system to allocate more resources (Pamarthi & Narmadha, 2022). Click fraud in advertising
scenarios is another typical example of feedback contamination (Zhang & Guan, 2008; Oentaryo
et al., 2014), where competitors or malicious third parties may use automated scripts or click farms
to generate a large number of clicks, creating false click-through rates. These interferences can
severely distort feedback signals, preventing players from accurately learning the true preferences.
Yet, existing algorithms lack defense mechanisms against contaminated feedback, rendering them
unable to converge to the true stable matching once the feedback is polluted.

We observe that these challenges can be naturally modeled as a stochastic multi-armed bandit (MAB)
problem with adversarial corruptions (Lykouris et al., 2018; Gupta et al., 2019), where each arm
pull produces a stochastic reward that may be perturbed by an adversary before being revealed to
the player. We further show that standard bandit algorithms for matching markets with stochastic
feedback, such as the Explore-Then-Gale-Shapley (ETGS) algorithm (Kong & Li, 2023), are highly
vulnerable: even limited adversarial corruption can mislead players into consistently matching with
suboptimal arms, resulting in linear regret. These insights motivate us to design new algorithms for
matching markets that remain robust under adversarial corruptions.

In this paper, we take the first step to study a bandit learning problem of decentralized matching
markets with adversarial corruptions. We first provide a robust variant of ETGS with widened
confidence intervals for tackling the known corruption setting as a warm-up. For the unknown
corruption setting, we devise a Multi-layer ETGS race method that can handle any level of corruption,
and its performance degrades gracefully as more corruption is added. We highlight that this method
can both tolerate corrupted feedback and utilize the stochastic component of feedback to enhance
bandit learning. However, incorporating existing randomized algorithms (Lykouris et al., 2018)
into ETGS leads to frequent matching conflicts, resulting in inefficient feedback collection. To
address this challenge, we introduce a sub-phase level synchronization mechanism to avoid conflicts,
and develop a novel martingale concentration inequality to design principled confidence intervals.
We also uncover an intrinsic trade-off between communication cost and learning efficiency in the
unknown corruption setting, and further propose a joint optimization strategy to identify the optimal
synchronization interval for balancing this trade-off. Eventually, we establish the regret lower bound
of this problem to demonstrate the tightness of our algorithms’ regret upper bounds.

Our contributions can be summarized as follows:

• Our work investigates a new bandit learning problem of decentralized matching markets with
adversarial corruptions, capturing more practical adversarial scenarios.

• We observe that directly extending existing randomized algorithms for matching markets with
unknown corruption leads to frequent conflicts in the vanilla ETGS algorithm. To overcome this
challenge, we develop a novel Multi-layer ETGS race method with a synchronization mechanism
that coordinates effective exploration among the players.

• We derive a novel martingale concentration inequality tailored for the synchronization mechanism
to bound the total corruption suffered by Multi-layer ETGS race with high probability. This
inequality allows us to set a principled confidence radius. Finally, we reveal a fundamental trade-off
between communication overhead and learning efficiency in the unknown corruption setting, and
further identify the optimal synchronization interval that balances this trade-off.

• We prove player-optimal stable regret upper bounds for proposed algorithms, and further provide
the lower bound to show their optimality.

Due to the space limit, more related works can be found in Appendix A.

2 PRELIMINARIES

In this section, we provide the problem formulation of bandit learning in matching markets robust to
adversarial corruptions.

Two-sided matching markets. We consider N players and K arms. Define N = {p1, p2, . . . , pN}
be the player set and K = {a1, a2, . . . , aK} be the arm set. We describe the preference rank of
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player pi over arm aj by a real value µi,j ∈ (0, 1]. We can notice that the greater value of µi,j

demonstrates more preference on arm aj . Without loss of generality, we consider that all preference
lists are heterogeneous, i.e., µi,j ̸= µi,j′ for distinct arms aj ̸= aj′ , keeping consistent to previous
works (Sankararaman et al., 2021; Kong & Li, 2023). Besides, each arm is equipped with a preference
ranking over players. Denote (πj,i)i∈[N ] as the distinct preference values of arm aj over players.
Then πj,i > πj,i′ implies aj prefers pi to pi′ . Motivated by real applications such as online labor
market Upwork with employers and workers, the preferences of players are usually uncertain and
can be learnt through iterative matching processes. While arms usually know their preferences based
on some known utilities such as the payment of employers. In matching markets, stability is a key
concept (Abdulkadiroğlu & Sönmez, 2013). Formally, the matching Ā(t) is stable if no player and
arm has incentive to abandon their current partner, i.e., there exists no player-arm pair (pi, aj) such
that µi,j > µi,Āi(t) and πj,i > πj,Ā−1

j (t), where we simply define πj,∅ = −∞ and µi,∅ = −∞ for
each j ∈ [K], i ∈ [N ]. Notice that there may be more than one stable matching in the market.

Bandit learning in matching markets. In each round t ∈ [T ], each player pi proposes to an
arm Ai(t) ∈ K. Correspondingly, each arm aj receives requests from players in A−1

j (t) :=

{pi : Ai(t) = aj}. Analogous to the labor market where a worker can only work for one task, arms
would only accept one request from the player that it prefers most. If a player pi is successfully
accepted by the proposed arm Āi(t), it will receive a random reward Xi(t) = rS

i,Āi(t)
(t) ∼ Fi,Āi(t)

corresponding to the expectation characterizing its matching experience in this round, which we
assume is 1-subgaussian with expectation µi,Āi(t). And if pi is rejected, it only receives Xi(t) = 0.
For convenience, denote A(t) = {(i, Ai(t)) : i ∈ [N ]} as the selections of all players and Ā(t) ={
(i, Āi(t)) : i ∈ [N ]

}
as the final matching at round t.

Matching markets with corrupted feedback. In this paper, we consider that there exists an
adaptive adversary who can corrupt certain stochastic rewards acquired by players based on historical
information. In the following, we take the player pi as an example to illustrate the interaction process
between the player and adversary. The interaction protocol is formally provided as follows,

1. For player pi, a stochastic reward rSi,j(t) is drawn for each arm j ∈ [K] according to the reward
distribution Fi,j with mean µi,j .

2. For any arm aj , j ∈ [K], the adversary observes the realizations of rSi,j(t), along with rewards
and matches of player pi in previous rounds. Then the adversary returns a corrupted reward
ri,j(t) ∈ [0, 1].

3. If pi is matched successfully with its proposed arm Ai(t), pi will observe the corresponding
corrupted feedback Xi(t) = ri,Ai(t)(t).

Similar to Lykouris et al. (2018), we define maxj∈[K] |ri,j(t)− rSi,j(t)| as the amount of corruption
injected in round t for player pi. The level of total corruption incurred by pi is defined as∑

t∈[T ]

max
j∈[K]

∣∣ri,j(t)− rSi,j(t)
∣∣ ≤ C. (1)

We emphasize that the adversary is allowed to be adaptive, i.e., the corruptions on round t can be
chosen as a function of the past matches and stochastic rewards of player pi.

In this paper, we consider one standard metric in stochastic MAB termed pseudo regret. Fur-
thermore, the player-optimal stable pseudo regret is considered for the matching market set-
ting. In specific, let M := {m : m is a stable matching} be the set of all stable matchings and
m∗ = {(i,m∗

i ) : i ∈ [N ]} ∈M be the players’ most preferred one. That is to say, µi,m∗
i
≥ µi,mi for

any m ∈M, i ∈ [N ]. Our objective is to learn the player-optimal stable matching m∗ and minimize
the player-optimal stable pseudo regret for each pi ∈ N , which is defined as the cumulative reward
difference between being matched with m∗

i and that pi receives over T rounds:

Regi(T ) =

T∑
t=1

µi,m∗
i
− E

[
T∑

t=1

Xi(t)

]
, (2)

where the expectation is taken over the randomness in the received rewards, the players’ algorithmic
decisions, and the adversary’s strategy.
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For convenience, we also introduce several notations to measure the hardness of the bandit learning
problem in matching markets, which will be used in the later analysis.

Definition 2.1. For each player pi and arm aj ̸= aj′ , let ∆i,j,j′ = |µi,j − µi,j′ | be the preference
gap of pi between aj and a′j . Let ρi be player pi’s preference ranking and ρi,k be the k-th preferred
arm in pi’s ranking for k ∈ [K]. Define ∆ = mini∈[N ];k,k′∈[N+1];k ̸=k′ ∆i,ρi,k,ρi,k′ as the minimum
preference gap among all players and their first N + 1-ranked arms, which is non-negative since
all preferences are distinct. Further, for each player pi, let ∆i,max = µi,m∗

i
be the maximum

player-optimal stable regret that may be suffered by pi in all rounds.

3 ALGORITHM

In this section, we first analyze the inherent vulnerability of the ETGS algorithm (Kong & Li,
2023) under adversarial corruptions. We then demonstrate a fundamental limitation of ETGS:
introducing randomness into ETGS for mitigating corruption will inevitably lead to frequent matching
conflicts. To address these challenges, we propose the main algorithm in this paper termed Multi-layer
ETGS race method, which maintains multiple ETGS instances at different learning rates to achieve
robustness against any level of unknown corruptions. To eliminate matching conflicts arising from
the proposed algorithm’s randomness, we develop a sub-phase level synchronization mechanism that
coordinates all players to stay in a same ETGS instance by an elected leader. Besides, we provide
a robust variant of ETGS with widened confidence intervals, which is used for tackling the known
corruption setting, as a warm-up for the Multi-layer ETGS race method.

Vulnerability of ETGS. The core idea of ETGS is to collect sufficient observations in a Round-Robin
manner to accurately estimate preference rankings and then attain the optimal stable matching via the
offline Gale-Shapley algorithm. However, ETGS exhibits significant vulnerability under adversarial
corruptions. Specifically, an adaptive adversary can observe the information of all the past matches
Āi(t) and the corresponding stochastic feedback rSi,Ai(t)

of pi to execute corruption injection in the
current round. Consequently, since the arm proposing follows a deterministic Round-Robin pattern,
the adversary can systematically corrupt the optimal arm for player pi. This forces pi to persistently
match with a suboptimal arm, misleading its learning process. Such manipulation requires only
O(log T/∆2) rounds to take effect, ultimately inflicting O(T ) cumulative regret on pi.

Frequent conflicts in original ETGS caused by algorithmic randomness. Introducing randomness
is a well-established technique for combating adversarial corruptions in bandit algorithms (Lykouris
et al., 2018; Gupta et al., 2019). Randomized algorithms commonly provide inherent tolerance
compared to deterministic approaches like UCB or arm elimination (Lattimore & Szepesvári, 2020).
However, in decentralized matching markets, when players independently employ randomized strate-
gies, the probability of matching conflicts increases substantially, leading to inefficient exploration
and degraded learning performance eventually.

Based on the above observations, we develop robust bandit learning algorithms for decentralized
matching markets under adversarial corruptions. Our proposed algorithm proceeds through three
sequential phases: (1) each player first identifies a unique self-identifier; (2) through strategic
exploration, players estimate their preference rankings over the top N arms; and (3) leveraging these
estimates, they identify and permanently match with their optimal stable arm in all subsequent rounds.
The key distinction between our algorithm and ETGS emerges in the second phase. Specifically,
we introduce a Multi-layer ETGS race method to achieve robustness under agnostic corruption. In
the following sections, we detail these bandit learning innovations for Phase 2, while deferring the
workflows of Phase 1 and Phase 3 in Appendix B. Here we provide some insights about Phase 1 and
Phase 3. Phase 1 is a N -round iterative process that assigns a distinct index to each player based on
their acceptance by a single preference a1. Phase 3 can be regarded as a decentralized Gale-Shapley
algorithm (Gale & Shapley, 1962), where the objective is for players to find their respective arm in
the optimal stable matching based on estimated ranking.

Prior to formally introducing our main algorithm, termed the Multi-layer ETGS race method, we first
present a robust ETGS variant designed for known corruption settings as a warm-up. This preliminary
algorithm enlarges confidence intervals in proportion to the corruption level C, establishing the
foundation for our subsequent developments.

4
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3.1 ALGORITHM WITH KNOWN CORRUPTION LEVEL

As introduced earlier, all players enter in the second phase after identifying their distinct indices
during the first phase. Similar to ETGS, we consider that the second phase is further divided into
several sub-phases k = 1, 2, . . . with the corresponding lengths denoted by d1, d2, . . . respectively.
For the known corruption setting, we adopt the same sub-phase structure as ETGS, where each
sub-phase k consists of 2k + 1 rounds. Specifically, sub-phase k begins with an exploration stage of
length 2k rounds and concludes with a single monitoring round. This monitoring round is used for
checking whether the preferences of players are estimated well, and is introduced in Appendix B in
detail. During this exploration phase, players aim to collect sufficient feedback on arms and detect
whether the preference ranks of all players have been estimated well in the monitoring round.

During each sub-phase of the second phase, players propose to arms in a round-robin fashion.
Leveraging the unique indices obtained in Phase 1, distinct players are guaranteed to pick different
arms, ensuring conflict-free matching with their proposed arms. After pi obtains the feedback on the
matched arm Ai(t), it would update the estimated preference value µ̂i,Ai(t) and the observed time
Ti,Ai(t) for this selected arm Ai(t) as

µ̂i,Ai(t) =
(
µ̂i,Ai(t) · Ti,Ai(t) +Xi,Ai(t)(t)

)
/(Ti,Ai(t) + 1) , Ti,Ai(t) = Ti,Ai(t) + 1 .

At the end of this second phase, players would construct a confidence interval for each estimated
preference value based on its previously collected feedback. Given the prior information of cor-
ruption level C, one intuitive idea is to directly enlarge the confidence intervals to handle the
worst-case corruption. Recall that the corrupted rewards ri,Ai(t)(t) can be decomposed into two
terms rSi,Ai(t)

(t) + ci,Ai(t)(t), where the second term ci,Ai(t)(t) denotes the corruption injected by
the adversary in this round. Thus, if the total corruption introduced by the adversary is at most C, the
confidence interval of pi for the preference value over aj can be established with the upper bound
UCB and lower bound LCB defined as

UCBi,j = µ̂i,j +

√
6 log T

Ti,j
+

C

Ti,j
, LCBi,j = µ̂i,j −

√
6 log T

Ti,j
− C

Ti,j
, (3)

where we simply let UCBi,j be∞ and LCBi,j be −∞ when Ti,j = 0. When the confidence sets
for two arms aj , aj′ are disjoint, i.e., LCBi,j > UCBi,j′ or LCBi,j′ > UCBi,j , pi can determine its
preference over these arms.

Algorithm 1 Robust ETGS with Widened Confidence Intervals (from view of player pi)

1: Input: total corruption C, player set N , arm set K, horizon T
2: Initialize: µ̂i,j = 0, Ti,j = 0,∀j ∈ [K]
3: Phase 1: the index estimation phase in ETGS
4: //Phase 2, learn the preferences
5: for k = 1, 2, . . . do
6: Fk = False //whether the preference has been estimated well
7: for t = N +

∑k−1
k′=1(2

k′
+ 1) + 1, . . . , N +

∑k−1
k′=1(2

k′
+ 1) + 2k do

8: Ai(t) = a(Index+t−1)%K+1

9: Observe Xi,Ai(t)(t) and update µ̂i,Ai(t), Ti,Ai(t) if Āi(t) = Ai(t)

10: tk ← N +
∑k−1

k′=1(2
k′
+ 1) + 2k

11: Compute UCBi,j and LCBi,j for each j ∈ [K] defined in Eq. (3)
12: σi, Ok ←Monitoring({UCBi,j ,LCBi,j}j∈[K], tk)
13: if |Ok| == N then
14: Enter in the next phase with σi

15: Phase 3: the phase of identifying optimal stable match via decentralized GS algorithm in ETGS.
To find the optimal stable arm with σi = (σi,1, σi,2, . . . , σi,K)

Then we present the upper bound for the player-optimal stable pseudo regret of each player by our
algorithm. The corresponding proof is provided in Appendix C.
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Theorem 3.1. Following the Algorithm 1, the player-optimal stable pseudo regret of each player
pi ∈ N satisfies

Regi(T ) ≤
(
N + 8K

(
48 log T

∆2
+

C

∆

)
+ log

(
8K

(
48 log T

∆2
+

C

∆

))
+N2 + 2NK

)
·∆i,max

= O
(
K log T/∆2 +KC/∆

)
.

(4)

Remark 3.2. The regret upper bound of our proposed algorithm for known corruption setting is
similar to that of Kong & Li (2023). The first term in Eq. (4) is the upper bound for regret incurred
in phase 1, the second term is the regret upper bound for the total exploration rounds and the third
term is the upper bound for the total monitoring rounds in phase 2, the fourth term is the regret upper
bound for phase 3 and the last constant term corresponds to the bad concentration events.

3.2 ALGORITHM WITH UNKNOWN CORRUPTION LEVEL

In the previous subsection, we aim to make the algorithm robust to corruption by directly enlarging
confidence intervals. However, this method is inapplicable to unknown corruption settings, as
confidence intervals cannot be properly calibrated without knowledge of the corruption level C.
In this section, we devise a Multi-layer ETGS race method for achieving robustness under the
unknown corruption setting. We highlight that the core innovation of this method includes: (1)
handling all possible amounts of corruption via maintaining multiple ETGS instances with different
levels of robustness; (2) establishing a sub-phase level synchronization mechanism for avoiding
frequent matching conflicts caused by algorithmic randomness, and further identifying the optimal
synchronization interval to balance the trade-off between communication cost and learning efficiency.

Similar to Lykouris et al. (2018), we introduce log T instances of ETGS to address the agnostic
corruption. Specifically, we assign each instance a distinct sampling probability, and probabilisti-
cally select ETGS instances during the bandit learning. Intuitively, instances with lower sampling
probabilities are statistically exposed to fewer corruptions, thereby achieving stronger robustness.
However, a critical challenge arises when players independently sample ETGS instances: frequent
matching conflicts occur because players may select different algorithm instances in a given round,
rendering the Round-Robin mechanism in the original ETGS ineffective. To resolve this, we intro-
duce a synchronization mechanism wherein a unique leader is elected before bandit learning. This
leader exclusively performs random sampling of ETGS instances at the end of each sub-phase and
broadcasts the selected instance index to other players through arm pulls, ensuring all players operate
on the same ETGS instance. This mechanism effectively eliminates potential matching conflicts. The
details of leader selection and the synchronization mechanism are deferred to Appendix B. Below,
we outline the core idea of our mechanism. The leader selection can be implemented by designating
player 1, who first obtains an index, as the leader at the end of Phase 1. To achieve synchronization
across players, the leader can propose a specific arm in a predetermined future round at the end of
each sub-phase, which is used to convey its selected layer index to the other players.

Trade-off between communication overhead and learning efficiency. For the unknown corruption
setting, we also divide the exploration phase into several sub-phases. The difference is that the length
of each sub-phase is set to a constant d. At the end of each sub-phase, the leader selects the ℓ-th
ETGS instance with the probability proportional to 2−ℓ, and broadcasts the index of the selected
layer to other players by pulling arms. Then in the next sub-phase, players would propose arms
based on the corresponding Round-Robin pattern of the selected ETGS instance, thereby avoiding
conflicts. Intuitively, when the constant d is set to 1, the proposed sampling strategy recovers per-
round sampling used in Lykouris et al. (2018). It means the leader should communicate with other
players in each round to achieve synchronization, resulting in a severe communication cost. While
increasing d reduces communication overhead, it may amplify the corruptions experienced by the
selected ETGS instance within each sub-phase (as formally analyzed in following lemma). This
reveals a fundamental trade-off between the communication overhead and learning efficiency
in setting hyper-parameter d. Below, we minimize the regret bound w.r.t. d to select the optimal
hyper-parameter. Notice that observations collected in each sub-phase are solely used to update the
statistics of the corresponding ETGS instance. Below we show that if the corruption level is at most
C, then instances with ℓ ≥ logC will observe at most O(d log T ) corruption with high probability.
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Multi-layer ETGS race. The proposed algorithm is called race since we regard it as multiple ETGS
instances racing to estimate the accurate preference ranks. If the ℓ-th layer ETGS has estimated
preferences well for all players based on its own statistics, players will run the offline GS algorithm to
identify the optimal stable match for this layer. In the remaining rounds, if one layer, whose optimal
stable match has been identified, is selected in a sub-phase, players would propose to arms following
this optimal stable match in this sub-phase. Besides, if the ℓ-th layer has finished identifying its
optimal stable match σℓ, then optimal stable matches σℓ′ of all layers ℓ′ ≤ ℓ would be modified to be
the same as σℓ. This is because the ETGS instance with a lower sampling probability is slower but
more precise. Intuitively, instances with lower sampling probabilities are affected by less corruption.
In the following, we provide a rigorous analysis of the fact that instances behave as without any
corruption if they are selected with the sampling probability lower than 1/C.

Technical challenge. As previously introduced, our synchronization mechanism resolves matching
conflicts by delegating layer sampling to a unique leader at the end of each sub-phase. However, this
algorithm design renders the martingale concentration inequality from Lykouris et al. (2018), which
is developed for per-round bandit instance sampling, inapplicable to our algorithm. To address this
challenge, we derive a sub-phase level martingale concentration inequality that establishes the high-
probability bound on the total corruption observed by the ETGS instance with sampling probability
1/C. Based on this inequality, we can design reasonable confidence intervals below. Below we
provide a lemma to show that the amount of corruption that actually affects the layer with sampling
probability 1/C is at most O(d log T ).

Lemma 3.3. In Algorithm 2, the ETGS instance with sampling probability 1/C experiences, w.p. at
least 1− 1/T , cumulative corruption bounded by d log(T ) + 2 during the exploration phase.

We provide the detailed proof of this lemma in Appendix D.

Algorithm 2 Multi-layer ETGS race (from view of player pi)

1: Input: player set N , arm set K, horizon T , the fixed length d for any sub-phases k in Phase 2
2: Initialize: µ̂ℓ

i,j = 0, T ℓ
i,j = 0,∀j ∈ [K],∀ℓ ∈ [log T ]

3: Phase 1: the index estimation phase in ETGS
4: //Phase 2, learn the preferences
5: for k = 1, 2, . . . do
6: Fℓ

k = False //whether the preference of instance ℓ has been estimated well
7: for t = N +

∑k−1
k′=1(d+ 1 + ck′) + 1, . . . , N +

∑k−1
k′=1(d+ 1 + ck′) + d do

8: Select Ai(t) based on the corresponding Round-Robin pattern of layer ℓ
9: Observe Xi,Ai(t)(t) and update µ̂ℓ

i,Ai(t)
, T ℓ

i,Ai(t)
if Āi(t) = Ai(t)

10: tk ← N +
∑k−1

k′=1(d+ 1 + ck′) + d

11: Compute UCBℓ
i,j and LCBℓ

i,j for each j ∈ [K] defined in Eq. (5).
12: σℓ

i , O
ℓ
k ←Monitoring({UCBℓ

i,j ,LCB
ℓ
i,j}j∈[K], tk)

13: if
∣∣Oℓ

k

∣∣ == N then
14: Find the optimal stable arm with σℓ

i = (σℓ
i,1, σ

ℓ
i,2, . . . , σ

ℓ
i,K) via the decentralized offline

GS algorithm, and set the optimal stable matches σℓ′ of all the layers ℓ′ ≤ ℓ the same as σℓ

15: if pi is the leader then
16: Sample layer ℓ ∈ [log T ] with probability 2−ℓ. With remaining prob, sample ℓ = 1
17: Communicate ℓ to other players via pulling arms in ck = ⌊ℓ⌋ rounds

We then formally introduce the proposed Multi-layer ETGS race algorithm for the unknown corruption
setting. This algorithm maintains ℓ = 1 . . . log T different instances of ETGS. Each instance
ℓ ∈ [log T ] keeps its own empirical mean µ̂ℓ

i,j corresponding to the average empirical reward of the
match between pi and aj , and also keeps track of how many times aj was matched with pi in this
instance T ℓ

i,j . At the end of each sub-phase, the elected leader samples ℓ ∈ [log T ] with probability
2−ℓ and broadcasts ℓ to other players by pulling arms. Based on Lemma 3.3, we can define the same
width of the confidence interval for pi and aj in the ℓ-th layer as

√
6 log T
T ℓ
i,j

+ d log T+2
T ℓ
i,j

. By properly

selecting d we can ensure that d log T +2 ≤ 2d log T , and the corresponding UCB and LCB for each

7
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layer ℓ can be thus defined as

UCBℓ
i,j = µ̂ℓ

i,j +

√
6 log T

T ℓ
i,j

+
2d log T

T ℓ
i,j

, LCBℓ
i,j = µ̂ℓ

i,j −
√

6 log T

T ℓ
i,j

− 2d log T

T ℓ
i,j

. (5)

Then we provide the regret guarantee for Algorithm 2 and defer its proof to Appendix E.

Theorem 3.4. When configured with confidence intervals of width
√

6 log T
T ℓ
i,j

+ 2d log T
T ℓ
i,j

, the Multi-layer

ETGS race algorithm achieves the player-optimal stable pseudo regret of each player pi ∈ N

Regi(T ) ≤ (N +N2 log T + 2NK log T +N log T )∆i,max︸ ︷︷ ︸
Term (a)

+

(
16K log T

(
24 log T

∆2
+

d log T

∆

)
+ 16KC

(
24 log T

∆2
+

d log T

∆

))
·∆i,max︸ ︷︷ ︸

Term (b)

+ 16K log T

(
24 log2 T

d∆2
+

log2 T

∆
+

24C log T

d∆2
+

C log T

∆

)
·∆i,max︸ ︷︷ ︸

Term (c)

≤ O
(
Kd log T (log T + C)

∆
+

K log2 T (log T + C)

d∆2
+

K log2 T (log T + C)

∆

)
.

(6)
Remark 3.5. We first explain each term in this upper bound. Term (a) captures the regret incurred
in phases 1 and 3, as well as from bad concentration events. Term (b) reflects the regret due
to exploration within each sub-phase. Term (c) accounts for the regret arising from the total
communication cost between sub-phases. As previously introduced, we select the optimal hyper-
parameter d to minimize this regret upper bound. In specific, we set d to be O(

√
log T ), and the

upper bound becomes O(K log1.5 T (log T + C)/∆2 + K log2 T (log T + C)/∆). When C = 0,
we know that all ETGS instances finish their respective exploration phase with true optimal stable
matches. For this scenario, the regret is at most O(K log2.5 T/∆2 +K log3 T/∆). The additional
multiplicative log2 T term is from the required rounds of finishing the exploration of log T ETGS
instances and O(log T ) communication cost to acheive synchronization. When N = 1, there is no
need to use the synchronization mechanism for avoiding matching conflicts. Thus we know that the
regret is at most O(K log T (log T + C)/∆) at this time.

Proof sketch. For the layer r ∈ [log T ] whose sampling probability satisfies 2−r ≤ 1/C, the
corruption it experiences is at most O(d log T ) with high probability. We can thus regard these layers
as robust with purely stochastic feedback. The remaining problem is to bound the regret contributed
by layers that are not robust to the corruption. We know that there exists some layer ℓ∗ satisfying
ℓ∗ = argminℓ[2

ℓ > C]. According to our algorithm, when its stable match σℓ∗ is identified, the
stable matches σℓ′ of layers ℓ′ < ℓ∗ would be replaced with σℓ∗ and thus there is no regret for these
faster layers in the remaining rounds. In expectation the sub-optimal arm is played as most C times
more in faster layers ℓ′ compared with that of the layer ℓ∗, and we can bound the regret contributed
by layers ℓ′ < ℓ∗ by this analysis.

Table 1: Comparison of regret and communication cost for known C and unknown C settings

Regret Bound Communication Cost

Known C O
(

K log T
∆2 + KC

∆

)
O
(
log
(

K log T
∆2 + C

∆

))
Unknown C O

(
K(log T + C) log1.5 T

(
1
∆2 +

√
log T
∆

))
We then provide a table to summarize the regret and communication cost of two proposed methods
under different setting, respectively. Table 1 shows that for the regret upper bound of our proposed
algorithm dealing with the known corruption setting, the corruption level C serves as an additive
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factor in O(K log T/∆2 +KC/∆), which is independent of T . Besides, the communication cost
of this algorithm is O(log(log T/∆2 + C/∆)) level, which aligns with that of the original ETGS.
As for the proposed Multi-layer ETGS race method handling unknown corruption, its regret upper
bound is around O(K log3 T/∆2 + KC log2 T/∆2). Compared with the known C setting, the
additional multiplicative log2 T factor in the regret bound stems from running log T ETGS instances
simultaneously and using at most log T rounds to communicate for achieving synchronization.
Notably, in Multi-layer ETGS race for unknown corruptions, both communication cost and regret
share the same order (due to constant sub-phase length d) while exhibiting sublinear scaling with
respect to T , resulting in practically feasible communication overhead.

4 LOWER BOUND

In this section, we provide a regret lower bound for the bandit learning in decentralized matching
markets with adversarial corruption. We mainly use the techniques in (Sankararaman et al., 2021;
Gupta et al., 2019) to prove this lower bound. The proof details are included in Appendix F.

Let RT (ν, π) denote the cumulative regret of a policy π on the instance with arm distributions
ν = {νij : i ∈ [N ], j ∈ [K]} for a horizon of length T . Here, P denotes the set of all probability
distributions with bounded support [0, 1]. This paper focuses on a class of policies termed uniformly
consistent policies, defined as follows: A policy π is called uniformly consistent if π satisfies for
all ν ∈ P , all α ∈ (0, 1), the regret lim supT→∞

RT (ν,π)
Tα = 0. This definition is used to eliminate

tuning a policy to the current instance while admitting large regret in other instances. Before
providing the lower bound, we first introduce a sub-class of bandits, where the stable matching
is optimal. Specifically, we consider bandit instances where dominated arms are bad, i.e. for any
instance ν in this class, for all players i ∈ [N ], µij < µ

ij
(i)
∗

for all arms j ∈ [K] \ {j(i)∗ }, where

j
(i)
∗ := argmax

j∈[K]\{j(1)∗ ,...,j
(i−1)
∗ } µij . We call this class of instances Optimally Stable Bandits

(OSB), as each agent is matched with its optimal arm in the stable matching. For OSB, another metric
∆̃ := min

i∈[N ],j ̸=j
(i)
∗

µ
i,j

(i)
∗
− µi,j is commonly used to characterize the problem’s hardness.

Theorem 4.1. For any player i ∈ [N ], under any decentralized universally consistent policy π, there
exists an OSB bandit instance with Bernoulli rewards, where the regret of agent i is lower bounded as

Regi(T ) ≥ Ω
(
max

{
(i− 1)

( log T
∆̃2

+
C

K

)
,
K log T

∆̃
+ C

})
. (7)

Remark 4.2. From Table 1, we know that the proposed robust variant of ETGS for the known
corruption setting is near-optimal since the regret upper bound matches the lower bound, except for
a slight difference in the definitions of the preference gaps ∆ and ∆̃. We claim that the mismatch
between ∆ and ∆̃ is actually a fundamental open problem in the study of matching markets (even
without corruption). It reflects the intrinsic difficulty and cost of achieving stable matchings through
agent exploration and interaction. The best known lower bounds in the literature are established for
the OSB setting and depend on the gap ∆̃ Sankararaman et al. (2021). For the unknown-corruption
setting, we first note that a gap, steming from the different definitions of ∆ and ∆̃, still remains
between the regret upper bound of the multi-layer ETGS race method and the lower bound. Moreover,
our algorithm’s upper bound incurs an additional multiplicative log2 T factor compared to the lower
bound. The multiplicative log2 T factor arises because our method maintains log T ETGS instances
to estimate the unknown C, and uses at most log T rounds for communication at the end of each
sub-phase to achieve synchronization. These deteriorations in regret stem from the hardness of
coordinating players in decentralized matching markets.

5 EXPERIMENTS

In this section, we first compare our ETGS with widened confidence intervals and Multi-layer ETGS
race with below baselines: Vanilla ETGS (Kong & Li, 2023), Phased ETC (Basu et al., 2021), and
AETGS-E (Kong et al., 2024), all achieving player-optimal stable regret in decentralized matching
markets. We then investigate how varying corruption levels affect our algorithms. We also examine
the effect of sub-phase length d on Multi-layer ETGS race. For the simulation setup, we set N = 5
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and K = 5. The preference rankings are generated as random permutations. The preference gap
between any adjacent ranked arms is set as 0.2. The feedback Xi,j(t) for pi on aj at t is drawn
independently from the Gaussian distribution with mean µi,j and variance 1. We adopt the corruption
strategy from Wang et al. (2024), and evaluate all baselines under the corruption budget C = 4000
over T = 500000 rounds. We set three corruption levels (C ∈ {1000, 2000, 4000}) to explore their
effect on our algorithms. The sub-phase length d is set over {1, 10, 50} to investigate its influence
on Multi-layer ETGS race. We report the maximum cumulative player-optimal stable regret across
all players. The results are averaged over ten independent runs with standard errors. As shown in
Figure 1(a), two proposed algorithms incur the lowest cumulative regret among all baselines. For
experiments about the effect of C on our algorithms, we set the sub-phase length d = 1 for Multi-layer
ETGS race. Figure 1(b) shows that the regret of our algorithms increases with higher C. Besides, the
algorithm with prior knowledge of C outperforms the one without, under the same budget. Finally,
fixing C = 1000, we explore the influence of d on Multi-layer ETGS race. Figure 1(c) depicts that
large d (d = 10 and d = 50) worsens the performance of Multi-layer ETGS race, consistent with
our theoretical findings on the trade-off between communication overhead and learning efficiency.
Next, we present a thorough empirical analysis of the optimal choice of the hyperparameter d. We
evaluate our method over d ∈ {1, 2, 4, 6, 8}. Recall that our theory suggests the optimal sub-phase
length should satisfy d = O(

√
log T ) ≈ 4.3. In Figure 1(d), we observe that settings with d = 4

outperform the other choices, which aligns with our theoretical findings.
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Figure 1: Experimental comparisons of baselines, and the effect of C and d on proposed methods.

6 CONCLUSION AND LIMITATIONS

This paper studies a novel bandit learning problem in decentralized matching markets under adver-
sarial corruptions. We propose a robust ETGS variant to tackle known corruptions, and develop
a Multi-layer ETGS race method to handle unknown corruptions. We derive regret upper bounds
for both algorithms and also provide a lower bound to demonstrate their tightness. An important
future direction is to design robust algorithms that achieve much higher communication efficiency in
unknown corruption settings.
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ETHICS STATEMENT

This work is entirely theoretical and does not involve human subjects, personal data, or sensitive
information. The research focuses on developing mathematical foundations and providing rigorous
proofs for theoretical results in bandit learning. We do not foresee any direct ethical concerns,
including issues of privacy, fairness, security, or legal compliance, arising from this work.

REPRODUCIBILITY STATEMENT

All mathematical statements in our paper are fully specified: we clearly state all definitions, assump-
tions, lemmas and theorems, and provide complete proofs in the main text and appendix. In addition,
for the simulations included in this paper, we provide detailed descriptions of the simulation setups.
While our work does not depend on external datasets, the combination of theory and simulation
documentation ensures that readers can fully reproduce and validate our results.
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APPENDIX

In the appendices, we provide more details and results omitted in the main paper. The appendices
are structured as follows:

• Appendix A provides the related work part of this paper.

• Appendix B provides the missing details of the algorithmic procedures.

• Appendix C provides the proof of Theorem 3.1.

• Appendix D provides the proof of Lemma 3.3.

• Appendix E provides the proof of Theorem 3.4.

• Appendix F provides the proof of Theorem 4.1.

• Appendix G provides the LLM usage disclosure of this paper.

A RELATED WORK

Multi-armed bandits (MAB) have been extensively studied due to their broad applicability in sequen-
tial decision-making tasks (Slivkins, 2020; Lattimore & Szepesvári, 2020). Learning optimal stable
matches for matching markets Gale & Shapley (1962) with unknown preferences has become one of
the important applications of MAB. Early work by Das & Kamenica (2005) introduced the bandit
problem in matching markets, where multiple players and arms occupy opposing sides. Liu et al.
(2020) later examined a variant with unknown one-sided preferences in general markets, deriving
key theoretical guarantees. Further advancing this line of research, Liu et al. (2021); Kong et al.
(2021) investigated decentralized matching markets where players act independently without central
coordination. The decentralized setting is arguably more relevant in practice. Many real-world
systems, such as the online labor market Upwork or the crowd-sourcing platform Amazon Mechan-
ical Turk, inherently operate in a decentralized manner: there is no central clearinghouse, and no
explicit communication among agents to facilitate direct coordination among agents. Instead, they
only have access to limited feedback about past matchings, such as information about their own
conflicts Sankararaman et al. (2021); Zhang & Fang (2024); Liu et al. (2021). Sankararaman et al.
(2021); Wang & Li (2024) consider scenarios in which participants’ preferences adhere to specific
assumptions to enhance learning efficiency. Kong & Li (2023) analyzed player-optimal stable regret
in decentralized settings—a critical metric for practical applications. More recently, Kong et al.
(2024) propose a novel algorithm and refined analysis to achieve an improved regret bound for this
problem, and Kong et al. (2025) devise an adaptive exploration algorithm to tackle the potential
indifferent preferences in matching markets.

Another line of MAB research explores stochastic bandits with adversarial corruptions. For instance,
Lykouris et al. (2018) proposes a randomized bandit algorithm robust to adversarial corruptions of
stochastic rewards. Specifically, they consider a setting where the reward generated by each arm pull
is stochastic but may be perturbed by an adversary before being revealed to the player. The result
was subsequently improved by Gupta et al. (2019). Besides bandits robust to adversarial corruption,
there is another line of works on best-of-both-worlds (BoBW) and best-of-three-worlds (BoTW)
algorithms that aim to achieve near-optimal regret automatically adapting to stochastic, adversarial,
and corrupted regimes. Early BoBW approaches design algorithms that perform competitively
in both stochastic and adversarial settings by carefully combining exploration and exploitation
mechanisms (Bubeck & Slivkins, 2012). Follow-up work further refines these ideas to obtain nearly
optimal pseudo-regret guarantees across these regimes (Auer & Chiang, 2016; Zimmert & Seldin,
2019). In particular, Zimmert & Seldin (2019) propose an essentially optimal FTRL-based method
with Tsallis-entropy regularization, which attains tight pseudo-regret bounds simultaneously in the
stochastic and adversarial cases.

However, most existing work on stochastic bandits with adversarial corruptions focuses on the single-
player scenario, with few studies addressing bandit learning in matching markets under corrupted
feedback.
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B DETAILS OF ALGORITHMIC PROCEDURES

In this section, we present the complete workflow of the vanilla ETGS algorithm Kong & Li (2023)
and the monitoring subroutine used in our proposed algorithms. We then present the details of the
leader selection and synchronization mechanism used in the Multi-layer ETGS race method.

B.1 WORKFLOW OF VANILLA ETGS

First, we provided the algorithm procedure of the vanilla ETGS in Algorithm 3 to clarify the missing
details of Phase 1 and Phase 3 used in our proposed Algorithm 1.

We emphasize that for our presented Multi-layer ETGS race method, designed to address unknown
corruptions, its Phase 1 implementation is identical to that of the vanilla ETGS. Additionally, Phase
3 of the vanilla ETGS operates as a decentralized Gale-Shapley algorithm (Gale & Shapley, 1962).
Consequently, the procedure of identifying the optimal stable matching in Algorithm 2 follows the
same Phase 3 protocol as the vanilla ETGS.

Then we formally introduce the workflow of the vanilla ETGS. The first phase of ETGS proceeds in
N rounds (Line 3-8). At the first round t = 1, all players would propose to arm a1 (Line 6) and only
the player who is successfully accepted gets the index 1 (Line 8). In the second round, all of the other
players (except for the player who gets index 1) still propose to a1 (Line 6) and the only accepted
player gets the index 2 (Line 8). Similar actions would be taken in the following rounds 3, 4, . . . , N .
Intuitively, the index of each player pi is just the order of pi in the preference ranking of a1. At the
end of this phase, each player can obtain a distinct index. For the third phase (Line 24-28), it can
be regarded as a decentralized Gale-Shapley algorithm (Gale & Shapley, 1962). During this phase,
players aim to find and focus on the arm in the optimal stable matching with the estimated ranking σi.
Specifically, pi would propose to arms one by one according to σi until no rejection happens. When
each player pi’s estimated ranking σi for the first N arms is accurate, this procedure is expected to
find the real optimal stable arm for each player.

B.2 THE PROCEDURE OF MONITORING SUBROUTINE

In this subsection, we provide the procedure of the monitoring subroutine used in our algorithms in
Subroutine 4.

Then we provide the motivation behind this monitoring subroutine. The core idea of this monitoring
sub-routine is that, for each player i ∈ [N ], they use the feedback observed during the current
sub-phase to compute UCBi,k and LCBi,k for all arms k ∈ [K]. The player then determines whether
her preference ranking has been successfully estimated by checking whether the confidence intervals
of all arms are mutually non-overlapping. After that, the player checks whether all other players have
already estimated their respective preference ranks to determine whether to proceed to the next phase.

B.3 THE PROCEDURE OF LEADER SELECTION AND SYNCHRONIZATION MECHANISM

In the following, we introduce the details of leader selection and the synchronization mechanism,
which are used in our proposed Multi-layer ETGS race method.

B.3.1 LEADER SELECTION.

The procedure of leader selection is as follows: a leader is designated before the exploration phase
begins, once each player has identified their own index. Specifically, at the end of Phase 1—when
players obtain their respective indices—the protocol can simply assign Player 1 (i.e., the first player
to acquire an index) as the leader.

Reliability of leader selection. As mentioned above, this protocol designates the player who first
successfully acquires index 1 as the leader. All other players can observe the successful match
between this player and arm 1, and they then recognize player 1 as the leader in the subsequent
exploration phase. Based on the above procedure, there will always be a first player who successfully
matches with arm 1, and thus there will always be a player selected as the leader. Therefore, it is
difficult to disrupt this leader selection mechanism.
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Algorithm 3 explore-then-Gale-Shapley (ETGS, from view of player pi)

1: Input: player set N , arm set K, horizon T
2: Initialize: µ̂i,j = 0, Ti,j = 0,∀j ∈ [K]
3: //Phase 1, index estimation
4: Arm = a1
5: for round t = 1, 2, . . . , N do
6: Ai(t) =Arm
7: if Āi(t) = Ai(t) = a1 then
8: Index = t; Arm = a2
9: //Phase 2, learn the preferences

10: for ℓ = 1, 2, . . . do
11: Fℓ = False //whether the preference has been estimated well
12: for t = N +

∑ℓ−1
ℓ′=1(2

ℓ′ + 1) + 1, . . . , N +
∑ℓ−1

ℓ′=1(2
ℓ′ + 1) + 2ℓ do

13: Ai(t) = a(Index+t−1)%K+1

14: Observe Xi,Ai(t)(t) and update µ̂i,Ai(t), Ti,Ai(t) if Āi(t) = Ai(t)
15: Compute UCBi,j and LCBi,j for each j ∈ [K]
16: if ∃σ such that LCBi,σk

> UCBi,σk+1
for any k ∈ [N ] and LCBi,σN

> UCBi,σk
for any

k = N + 1, N + 2, ...,K then
17: Fℓ = True and σi = σ
18: Initialize Oℓ = ∅
19: t = N +

∑ℓ−1
ℓ′=1(2

ℓ′ + 1) + 2ℓ + 1
20: Ai(t) = aIndex if Fℓ == True and Ai(t) = ∅ otherwise
21: Update Oℓ = ∪i′∈[N ]

{
Āi′(t)

}
22: if |Oℓ| == N then
23: Enter in Phase 3 with σi; t2 = t //t2 is the round when phase 2 ends
24: //Phase 3, find the optimal stable arm with σi = (σi,1, σi,2, . . . , σi,K)
25: Initialize s = 1
26: for t = t2 + 1, t2 + 2, . . . do
27: Ai(t) = aσi,s

28: s = s+ 1 if Āi(t) == ∅

Subroutine 4 Monitoring

1: Input: {UCBi,j ,LCBi,j}j∈[K], tk
2: if ∃σ such that LCBi,σn

> UCBi,σn+1
for any n ∈ [N ] and LCBi,σN

> UCBi,σn
for any

n = N + 1, N + 2, ...,K then
3: Fk = True and σi = σ
4: Initialize Ok = ∅
5: t = tk
6: Ai(t) = aIndex if Fk == True and Ai(t) = ∅ otherwise
7: Return σi and Ok = ∪i′∈[N ]

{
Āi′(t)

}

B.3.2 SYNCHRONIZATION MECHANISM.

We observe that in a decentralized matching market, communication among players is realized
through arm-proposing, where each player infers information by observing the arms pulled by others,
not the direct communication among players (Kong & Li, 2023; Basu et al., 2021). Consequently, to
implement the synchronization mechanism at the end of each sub-phase, the leader may spend up to
log T additional rounds proposing a specific arm based on the result of layer sampling. By observing
which arm the leader pulls, all other players can infer which layer (ETGS instance) they should enter
in the next sub-phase.

Reliability of synchronization mechanism. Intuitive, if a player deviates from the designated
round-robin pattern, there must exists a market instance that this player will constantly collide with
others by selecting the same arm. In this case, such a player would suffer Ω(T ) regret since it can
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never have an accurate preference estimation. From this perspective, there are no malicious players
intentionally disrupting the synchronization mechanism.

C PROOF OF THEOREM 3.1

In the following, for convenience, let µ̂i,j(t), Ti,j(t),UCBi,j(t),LCBi,j(t) be the value
of µ̂i,j , Ti,j ,UCBi,j and LCBi,j at the end of round t, respectively. Define F ={
∃t ∈ [T ], i ∈ [N ], j ∈ [K] : |µ̂i,j(t)− µi,j | >

√
6 log T
Ti,j(t)

+ C
Ti,j(t)

}
as the bad event that some pref-

erence is not estimated well during the horizon. Besides, we use the notation µ̃i,j to denote the oracle
empirical mean calculated by stochastic reward rSi,j(t) without any suffering corruption.

To provide the regret upper bound of the proposed Algorithm 1 for the known corruption setting, we
first upper-bound the probability of the bad event F defined above.

Lemma C.1. The upper bound for the probability of inaccurately estimating preferences is

P(F) ≤ 2NK/T. (8)

Proof.

P(F) ≤ P

(
∃t, i, j : |µ̂i,j(t)− µi,j | >

√
6 log T

Ti,j(t)
+

C

Ti,j(t)

)

≤ P

(
∃t, i, j : |µ̃i,j(t)− µi,j |+ |µ̂i,j(t)− µ̃i,j | >

√
6 log T

Ti,j(t)
+

C

Ti,j(t)

)

≤ P

(
∃t, i, j : |µ̃i,j(t)− µi,j | >

√
6 log T

Ti,j(t)

)
+ P

(
∃t, i, j : |µ̂i,j(t)− µ̃i,j | >

C

Ti,j(t)

)
(a)
= P

(
∃t, i, j : |µ̃i,j(t)− µi,j | >

√
6 log T

Ti,j(t)

)

≤
∑
t

∑
i

∑
j

t∑
s=1

P

(
Ti,j(t) = s, |µ̃i,j(t)− µi,j | >

√
6 log T

s

)
(b)

≤
∑
t∈[T ]

∑
i∈[N ]

∑
j∈[K]

t · 2 exp(−3 lnT )

≤ 2NK/T,
(9)

where (a) holds due to the definition of C, and (b) holds since the Hoeffding’s inequality.

In the below Lemma C.2, we show that given ⌝F , once player pi observes that the UCB of an arm aj
is smaller than the LCB of another arm aj′ , we are able to conclude that pi truly prefers aj′ to aj .

Lemma C.2. Conditional on ⌝F , UCBi,j(t) < LCBi,j′(t) implies µi,j < µi,j′ .

Proof. Given ⌝F , we know that ∀t ∈ [T ], i ∈ [N ], j ∈ [K], |µ̃i,j(t)− µi,j | ≤
√

6 log T
Ti,j(t)

.
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Then we have

LCBi,j(t) = µ̂i,j(t)−

√
6 log T

Ti,j(t)
− C

Ti,j(t)

(a)

≤ µ̃i,j(t)−

√
6 log T

Ti,j(t)

≤ µi,j

≤ µ̃i,j +

√
6 log T

Ti,j(t)

(b)

≤ µ̂i,j +

√
6 log T

Ti,j(t)
+

C

Ti,j(t)

= UCBi,j(t),

(10)

where (a) and (b) hold since the definition of C.

Thus, given ⌝F , we have µi,j ≤ UCBi,j(t) < LCBi,j′(t) ≤ µi,j′ .

The following Lemma C.3 provides an upper bound for the number of observations required to
estimate the preference ranking for any player pi well.

Lemma C.3. In round t, let Ti(t) = minj∈[K] Ti,j(t) and T̄i = 384 log T
∆2 + 8C

∆ . Conditional on
⌝F , if Ti(t) > T̄i, we have LCBi,ρi,k

(t) > UCBi,ρi,k+1
(t) for any k ∈ [N ], and LCBi,ρi,N

(t) >
UCBi,ρi,k

(t) for any k = N + 1, N + 2, . . . ,K.

Proof. By contradiction, suppose there exists k ∈ [N ] such that LCBi,ρi,k
(t) ≤ UCBi,ρi,k+1

(t) or
there exists k = N + 1, N + 2, . . . ,K such that LCBi,ρi,N

(t) ≤ UCBi,ρi,k
(t). Without loss of

generality, denote j as the arm in the RHS and j′ as the arm in the LHS in above cases.

According to ⌝F and the definition of LCB and UCB, we have

µi,j′ − 2

√
6 log T

Ti(t)
− 2C

Ti(t)
≤ LCBi,j′(t) ≤ UCBi,j(t) ≤ µi,j + 2

√
6 log T

Ti(t)
+

2C

Ti(t)
. (11)

We can conclude that ∆i,j,j′ = µi,j′ − µi,j ≤ 4
√

6 log T
Ti(t)

+ 4C
Ti(t)

.

If Ti(t) >
384 log T

∆2 + 8C
∆ , we have

∆i,j,j′ ≤ 4

√
6 log T

Ti(t)
+

4C

Ti(t)

<

√
96 log T

384 log T
∆2 + 8C

∆2

+
4C

384 log T
∆2 + 8C

∆2

≤ ∆

2
+

∆

2
= ∆.

(12)

This implies that Ti(t) ≤ 384 log T
∆2 + 8C

∆ and thus contradicts the fact that Ti(t) > T̄i.

According to the protocol of Algorithm 1, all players have the same observations, we can conclude
that all of them would enter the third phase simultaneously. Denote Lmax as the largest sub-phase
number of Phase 2. That is to say, players enter in Phase 3 at the end of sub-phase Lmax.

Based on this observation and the lemmas provided above, we then provide the formal proof of
Theorem 3.1 as follows.
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Proof of Theorem 3.1. As introduced earlier, we denote Lmax as the largest sub-phase number of
Phase 2, i.e., the preference ranks are estimated well after this sub-phase.

The optimal stable regret for player i can be bounded as follows,

Regi(T ) = E
[∑

t

(µi,m∗
i
−Xi(t))

]
≤ E

[∑
t

I{Ā(t) ̸= m∗} ·∆i,max

]
≤ N∆i,max + E

[ T∑
t=N+1

I{Ā(t) ̸= m∗}|⌝F
]
·∆i,max + P(F) · T ·∆i,max

≤ N∆i,max + E
[ Lmax∑

k=1

(dk + 1) +N2|⌝F
]
·∆i,max + P(F) · T ·∆i,max

(a)

≤ N∆i,max + E
[ Lmax∑

k=1

(dk + 1) +N2|⌝F
]
·∆i,max + 2NK ·∆i,max,

(13)

where (a) comes from Lemma C.1.

Based on Lemma C.3, we know that Phase 2 proceeds in at most Lmax sub-phases where

Lmax = min
{
k :

k∑
k′=1

dk ≥ 8K
(48 log T

∆2
+

C

∆

)}
. (14)

Recall that we select dk = 2k and set the confidence radius as
√

6 log T
Ti,j

+ C
Ti,j

in Algorithm 1, based
on the definition of Lmax, we have

Lmax∑
k′=1

2k
′
≤ 16K

(48 log T
∆2

+
C

∆

)
. (15)

Hence we have Lmax = log
(
16K

(
48 log T

∆2 + C
∆

))
, and the regret can be bounded as follows

Regi(T ) ≤
(
16K

(48 log T
∆2

+
C

∆

)
+ log

(
16K

(48 log T
∆2

+
C

∆

)))
·∆i,max

+N∆i,max +N2∆i,max + 2NK∆i,max.
(16)

D PROOF OF LEMMA 3.3

In this section, we provide the proof of Lemma 3.3. We bound with high probability the total
corruption suffered by the ETGS instance with sampling probability 1/C. Similar to Lykouris et al.
(2018), we also use a Bernstein-style martingale concentration inequality.

Lemma D.1 (Lemma 1 in Beygelzimer et al. (2011)). Let X1, . . . , XT be a sequence of real-valued
random numbers. Assume, for all t, that Xt ≤ R and that E[Xt|X1, . . . , Xt−1] = 0. Also let

V =

T∑
t=1

E[X2
t |X1, . . . , Xt−1].

Then, for any δ > 0:

P

[
T∑

t=1

Xt > R ln(1/δ) +
e− 2

R
· V

]
≤ δ.
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Proof of Lemma 3.3. Let Zi,j(t) be the corruption that is observed in the t-th round of the ETGS
instance with sampling probability P = 1/C for the match between the player pi and arm aj .
For every round t, Ci,j(t) is the corruption selected by the adversary for the match of pi and aj .
Tk denotes the k-th sub-phase. We define Zi(k) as the total corruption observed in the k-th sub-
phase of the ETGS instance with sampling probability P = 1/C for player i. In words, Zi(k) is
defined as Zi(k) :=

∑
t∈Tk

Zi,Ai(t)(t). According to our algorithm, Zi(k) is a Bernoulli random
variable: Zi(k) = Ci(k) with the probability P and Zi(k) = 0 with the probability 1 − P , where
Ci(k) :=

∑
t∈Tk

Ci,Ai(t)(t).

Then we define the martingale sequence as

Xi(k) := Zi(k)− E
[
Zi(k)|H(1 : k − 1)

]
, (17)

whereH(1 : k − 1) corresponds to the history up to sub-phase k.

Note that

E
[
(Xi(k))

2|H(1 : k − 1)
]
= P (Ci(k)− PCi(k))

2 + (1− P )(PCi(k))
2

= P (1− P )2(Ci(k))
2 + (1− P )(PCi(k))

2

= P (1− P )(Ci(k))
2(P + (1− P ))

= P (1− P )(Ci(k))
2.

(18)

Since we set the length of each sub-phase as a constant d, we can bound the term (Ci(k))
2 following

(Ci(k))
2 =

(∑
t∈Tk

Ci(t) · 1

)2

≤
∑
t∈Tk

(Ci(t))
2
∑
t∈Tk

12 ≤ d
∑
t∈Tk

(Ci(t))
2 ≤ d

∑
t∈Tk

Ci(t), (19)

where the first inequality holds since Cauchy-Schwarz inequality and the last inequality holds due to
Ci(t) ∈ [0, 1].

Therefore, summing over all the sub-phases, the variance V becomes

V =
∑
k

E
[
(Xi(k))

2|H(1 : k − 1)
]

≤ P
∑
k

(
Ci(k)

)2
≤ Pd

∑
k

∑
t∈Tk

Ci(t)

= Pd
∑
t∈[T ]

Ci(t)

≤ d,

(20)

where the last step holds due to the definition of C and P = 1
C .

Then we turn to upper-bound Xi(k) as follows,

Xi(k) = Zi(k)− E
[
Zi(k)|H(1 : k − 1)

]
≤
∑
t∈Tk

Zi(t)

≤ d,

(21)

where the last inequality holds since the rewards are in [0, 1] (thus the instant corruption for each
match in one round should be in [0, 1]).
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Applying Lemma D.1, we show that, w.p. 1− 1
T :

∑
k

Xi(k) ≤ d log(T ) +
(e− 2)V

d

≤ d log(T ) +
d

d
= d log(T ) + 1

(22)

We also know that

E
[∑

k

Zi(k)|H(1 : k − 1)
]
=
∑
k

E
[
Zi(k)|H(1 : k − 1)

]
= P

∑
k

Ci(k)

=
1

C

T∑
t=1

Ci,Ai(t)(t)

≤ 1.

(23)

To sum up, w.p. 1− 1
T , the total corruption incurred by the ETGS instance with P = 1

C for player i is

∑
t

Zi,Ai(t)(t) =
∑
k

Xi(k) + E
[∑

k

Zi(k)|H(1 : k − 1)
]

≤ d log(T ) + 2.

(24)

E PROOF OF THEOREM 3.4

For each layer ℓ ∈ [log T ], we denote µ̂ℓ
i,j(t), T

ℓ
i,j(t),UCBℓ

i,j(t),LCB
ℓ
i,j(t) as the value of

µ̂ℓ
i,j , T

ℓ
i,j ,UCBℓ

i,j and LCBℓ
i,j at the end of round t, respectively. In the following, we define

Fℓ
S =

{
∃t ∈ [T ], i ∈ [N ], j ∈ [K] :

∣∣µ̂ℓ
i,j(t)− µi,j

∣∣ >√ 6 log T
T ℓ
i,j(t)

+ 2d log T
T ℓ
i,j(t)

}
as the event that some

preference is not estimated well during the horizon for the ℓ-th layer. Besides, we denote FC as the
event that there exists one ETGS instance of those layers ℓ′, ℓ′ ∈ [log T ] whose sampling probability
satisfying 2−ℓ′ ≤ 1/C, the actual experienced total corruption of some player in this instance is
larger than d log T + 2. And we define the bad event F = (∪ℓ∈[log T ]Fℓ

S) ∪ FC .

In the following, we also give an upper bound for the probability of the bad event F .

Lemma E.1. The upper bound for the probability of the bad event F is

P(F) ≤ 2NK log T

T
+

N log T

T
. (25)

Proof. We first define the notation Cℓ
i (T ) as the actual total corruption experienced by the ℓ-th ETGS

instance of player i. Recall that we select the constant d satisfying d log T + 2 ≤ 2d log T , we can
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thus upper-bound the probability of the bad event F as follows

P(F) ≤
∑

ℓ∈[log T ]

P(Fℓ
S) + P(FC)

≤
∑

ℓ∈[log T ]

P

(
∃t, i, j : |µ̂ℓ

i,j(t)− µi,j | >
√

6 log T

T ℓ
i,j(t)

+
2d log T

T ℓ
i,j(t)

)

+
∑

ℓ′:2−ℓ′≤1/C

P(∃i : Cℓ′

i (T ) > 2d log(T ))

(a)

≤
∑

ℓ∈[log T ]

∑
t∈[T ]

∑
i∈[N ]

∑
j∈[K]

t · 2 exp(−3 lnT ) +
∑
i∈[N ]

log T

T

≤ 2NK log T

T
+

N log T

T
,

(26)

where (a) holds based on the similar analysis in the proof of Lemma C.1 and Lemma 3.3.

Based on the results of Lemma 3.3, we know that the actual corruption suffered by the layers ℓ
satisfies that 2ℓ ≥ C, ℓ ∈ [log T ] is at most d log T + 2. Since we select the constant d satisfying
d log T + 2 ≤ 2d log T and set the confidence interval as

√
6 log T
T ℓ
i,j

+ 2d log T
T ℓ
i,j

, we can immediately

have the following results.

Lemma E.2. In round t, let T ℓ
i (t) = minj∈[K] T

ℓ
i,j(t) and T̄ ℓ

i = 384 log T
∆2 + 2d log T

∆ . Conditional
on ⌝F , if T ℓ

i (t) > T̄ ℓ
i , we have LCBℓ

i,ρi,k
(t) > UCBℓ

i,ρi,k+1
(t) for any k ∈ [N ], and LCBℓ

i,ρi,N
(t) >

UCBℓ
i,ρi,k

(t) for any k = N + 1, N + 2, . . . ,K.

Below, we present the proof of Theorem 3.4.

Proof of Theorem 3.4. The optimal stable regret for player i can be bounded as follows,

Regi(T ) = E
[∑

t

(µi,m∗
i
−Xi(t))

]
≤ E

[∑
t

I{Ā(t) ̸= m∗} ·∆i,max

]
≤ N∆i,max + E

[ T∑
t=N+1

I{Ā(t) ̸= m∗}|⌝F
]
·∆i,max + P(F) · T ·∆i,max

≤ (N + 2NK log T +N log T )∆i,max + E
[ T∑
t=N+1

I{Ā(t) ̸= m∗}|⌝F
]
·∆i,max,

(27)

where the last inequality comes from Lemma E.1

In the following, we focus on the regret contributed by those layers whose suffered actual corruption
is smaller than C, and the regret contributed by the layers that are not tolerant to the corruption C,
respectively. We first define the minimum layer that is robust to corruption: ℓ∗ := argminℓ[2

ℓ > C].
Hence, for the robust layers ℓ′ > ℓ∗, according to Lemma 3.3 and Lemma E.2, we can establish a
regret upper bound of 16

∑
j ̸=ji∗

( 24 log T
∆2 + d log T

∆ ) ·∆i,max. Since there are at most log T layers, the

total regret coming from these robust layers is 16
∑

j ̸=ji∗
log T ( 24 log T

∆2 + d log T
∆ ) ·∆i,max.

For the layers ℓ < ℓ∗ that are not tolerant to the corruption, i.e., 2ℓ < C, we know the optimal stable
matches of these faster layers will be modified to keep the same as that of ℓ∗ when ℓ∗ has estimated
its own preference rank well. Hence, in expectation, this is at most C · T ℓ∗

i,j times as every move in
the layer ℓ∗ occurs with probability 1/C of these moves are matches of arm j while it is the optimal
stable matching for the faster algorithms. Based on the above analysis, the total regret contributed by
the faster layers is 16C

∑
j ̸=ji∗

( 24 log T
∆2 + d log T

∆ ) ·∆i,max.
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According to the protocol of our algorithm, the number of sub-phases in Phase 2 is at
most ⌊16K( 24 log2 T

d∆2 + log2 T
∆ + 24C log T

d∆2 + C log T
∆ )⌋ and thus the total communication cost is

⌊16K log T ( 24 log2 T
d∆2 + log2 T

∆ + 24C log T
d∆2 + C log T

∆ )⌋.
To sum up, the regret upper bound of Multi-layer ETGS is

Regi(T )

≤ (N +N2 log T + 2NK log T +N log T )∆i,max + 16K log T

(
24 log T

∆2
+

d log T

∆

)
·∆i,max

+ 16KC

(
24 log T

∆2
+

d log T

∆

)
·∆i,max

+ 16K log T

(
24 log2 T

d∆2
+

log2 T

∆
+

24C log T

d∆2
+

C log T

∆

)
·∆i,max.

= O
((

Kd log T (log T + C)

∆
+

K log2 T (log T + C)

d∆2
+

K log2 T (log T + C)

∆

)
·∆i,max

)
.

(28)

F PROOF OF THEOREM 4.1

In this section, we provide the proof of Theorem 4.1 by utilizing the main results from Sankararaman
et al. (2021); Gupta et al. (2019).

Before providing the formal proof, we provide a vital lemma proposed in Sankararaman et al. (2021).
Lemma F.1. Under any decentralized universally consistent algorithm π, there exist a OSB ban-
dit instance with Bernoulli rewards, where the regret of player i ∈ [N ] is lower bounded as

Ω
(
max

{
(i−1) log T

∆̃2
, K log T

∆̃

})
, where ∆̃ := min

i∈[N ],j ̸=j
(i)
∗

µ
i,j

(i)
∗
− µi,j .

Proof of Theorem 4.1. Recall that we define j(i)∗ := argmax
j∈[K]\{j(1)∗ ,...,j

(i−1)
∗ } µij recursively and

we denote ∆̃i
j := µ

i,j
(i)
∗
− µi,j and ∆̃i

min := argminj∈[K] µi,j
(i)
∗
− µi,j in the following.

For any player i ∈ [N ], we know its pseudo regret under policy π and any bandit instance ν is

Ri
T (ν, π) =

∑
j∈[K]

∆̃i
jEν,π[N

i
j(T )] +

∑
j∈[K]

µ
i,j

(i)
∗
[Bi(T )], (29)

where Bi(t) denotes the number of time the agent i is blocked up to time t.

We claim that this is true as for each matching conflict the player pi obtains µiji∗
regret (0 reward) in

expectation, and for each successful match of arm j it obtains ∆̃i
j regret.

Based on it, a trivial regret lower bound is

Ri
T (ν, π) ≥

∑
j∈[K]

∆̃i
jEν,π[N

i
j(T )]. (30)

Below we follow the basic idea of Gupta et al. (2019) to conduct a finer-grained analysis for Eq. (30).
For any player i ∈ [N ], we consider the below bandit instance ν: the deterministic reward of the
optimal arm is ∆̃ and the reward of each sub-optimal arm is zero without any noise. Given that the
regret defined in this paper is based on an adaptive adversary who can inject corruptions based on the
historical information, we can thus consider a weaker adversary here to provide a valid lower bound
of regret. In specific, this weaker adversary swaps the rewards of matched arms with probability 1/2

at each round. Thus, in expectation, there are at most a total amount of ⌊C/∆̃⌋ rounds where the
rewards are swapped during the first ⌊2C/∆̃⌋ rounds. This makes the arms appear indistinguishable
to the algorithm during these rounds.
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Besides, we know that in expectation the total amount of rounds where the reward of arm j ∈ [K]
is corrupted is roughly ⌊ C

K∆̃
⌋. Then we have E′[N i

j ] ≥ ⌊ C
K∆̃
⌋, where E′ denotes the expectation

operator taken over the randomness from the attacking strategy of the considered adversary.

Based on the above analysis, we have

Ri
T (ν, π) ≥

∑
j∈[K]

∆̃i
jEν,π[N

i
j(T )]

≥
∑
j ̸=ji∗

∆̃E′
ν,π[N

i
j(T )]

= (K − 1)∆̃⌊ C

K∆̃
⌋

= Ω(C),

(31)

where the second inequality holds since we consider a weaker adversary here instead of the adaptive
adversary using the historical information to maximize the pseudo regret.

Applying Lemma F.1, we know that

lim inf
T→∞

Ri
T (ν)− (ξ/2)C

log T
≥ K

2∆̃
, (32)

where ξ is some universal constant.

Referring to similar proof proposed in Sankararaman et al. (2021), we know that for an OSB instance,
the number of times the players 1 to (i− 1) matches arm ji∗ successfully, the player pi should either
move to a sub-optimal arm or it is blocked. In the best possible scenario, pi successfully matches its
second best arm, in each of these instances. This holds as ∆̃i

min ≤ µiji∗
for non-negative rewards.

Therefore, the regret from the events when players p1 to pi−1 matches arm ji∗ successfully, is lower
bounded following

Ri
T (ν, π) ≥

∑
j∈[K]

µ
i,j

(i)
∗
[Bi(T )]

≥
i−1∑
i′=1

∆̃i
minEν,π[N

i′

ji∗
]

≥
i−1∑
i′=1

∆̃E′
ν,π[N

i′

ji∗
]

≥
i−1∑
i′=1

∆̃⌊ C

K∆̃
⌋

= Ω
( i−1∑

i′=1

C

K

)
.

(33)

Similarly, applying Lemma F.1 and then we have

lim inf
T→∞

Ri
T (ν)− (ξ/2) (i−1)C

K

log T
≥ i− 1

∆̃2
. (34)

Combining the results in Eq. (32) and Eq. (34), we can roughly lower-bound the pseudo regret by

Regi(T ) = Ω
(
max

{
(i− 1)

( log T
∆̃2

+
C

K

)
,
K log T

∆̃
+ C

})
. (35)
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G THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used a large language model (LLM) only for editing—correcting grammar, spelling, word choice,
and overall phrasing to improve readability. The LLM did not contribute to research ideation,
methodology, experiments, data analysis, results, proofs, or theoretical claims. All such components
were conceived, developed, and validated solely by the authors. We assume full responsibility for the
final manuscript, including parts influenced by the LLM, and declare that no content generated via
the LLM constitutes plagiarism or scientific misconduct.
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