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ABSTRACT

Generating compact and sharply detailed 3D meshes poses a significant challenge
for current 3D generative models. Different from extracting dense meshes from
neural representation, some recent works try to model the native mesh distribution
(i.e., a set of triangles), which generates more compact results as humans crafted.
However, due to the complexity and variety of mesh topology, most of these
methods are typically limited to small datasets with specific categories and are
hard to extend generating meshes with simple geometry. In this paper, we introduce
a generic and scalable mesh generation framework PivotMesh, which makes an
initial attempt to extend the native mesh generation to large-scale datasets. We
employ a transformer-based auto-encoder to encode meshes into discrete tokens and
decode them from face level to vertex level hierarchically. Subsequently, to model
the complex typology, our model first learns to generate pivot vertices as coarse
mesh representation and then generate the complete mesh tokens with the same
auto-regressive Transformer. This reduces the difficulty compared with directly
modeling the mesh distribution and further improves the model controllability.
PivotMesh demonstrates its versatility by effectively learning from both small
datasets like Shapenet, and large-scale datasets like Objaverse and Objaverse-xl.
Extensive experiments indicate that PivotMesh can generate compact and sharp 3D
meshes across various categories, highlighting its great potential for native mesh
modeling.

1 INTRODUCTION

The field of 3D generation has witnessed remarkable advancements in recent years (Poole et al., 2023;
Hong et al., 2023; Xu et al., 2024a). Meshes, the predominant representation for 3D geometry, are
widely adopted across various applications from video games and movies to architectural modeling.
Despite the promising performance of current methods, they mostly rely on neural 3D representation
like triplanes (Hong et al., 2023; Li et al., 2023) and FlexiCubes (Xu et al., 2024a). Post-processed
meshes extracted from these representations tend to be dense and over-smoothed, which are unfriendly
for modern rendering pipelines as shown in Figure 1 (bottom). In contrast, meshes crafted by humans
are typically more compact with fewer faces, reusing geometric primitives to efficiently represent
real-world objects.

To avoid extracting dense meshes through post-processing, another promising direction is emerging
that focuses on explicitly modeling the mesh distribution (i.e., native mesh generation). This line of
works (Nash et al., 2020; Siddiqui et al., 2023; Alliegro et al., 2023) generates meshes by predicting
the 3D coordinates of faces, thus producing compact meshes as humans. However, due to the
complexity and variety of topological structures in meshes, most of these methods are typically
confined to small datasets like Shapenet with single or narrow object categories generating meshes
with simple topology, hindering the generalizability across diverse types of objects complex objects.
Therefore, it still remains a challenge to establish a generic generative model for native mesh
generation at scale.

In this paper, we propose PivotMesh, a generic and scalable framework to extend mesh generation to
large-scale datasets across various categories. PivotMesh consists of two parts: a mesh auto-encoder
and a pivot-guided mesh generator. First, the auto-encoder is based on the Transformer to encode
meshes into discrete tokens. We also adopt a two-stage decoding strategy to decode mesh tokens

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

InstantMesh InstantMesh (Decimated) PivotMesh

Meshes Generate by PivotMesh

Figure 1: Different from 3D generation methods based on neural representations like InstantMesh
(Xu et al., 2024a), our methods can generate compact and sharp meshes with much fewer faces when
producing similar shapes.

from face level to vertex level hierarchically, which further improves the reconstruction performance
and mesh surface continuity. Second, we employ an auto-regressive Transformer to learn the joint
distribution of pivot vertices and complete mesh tokens, where the pivot vertices serve as the coarse
representation to guide the following mesh generation. Specifically, pivot vertices are selected based
on vertex degree and dropped randomly to prevent overfitting. As shown in Figure 1 (top), once the
model is trained, it can produce meshes from scratch, starting with the generation of pivot vertices
followed by the complete mesh token sequence. Furthermore, it can perform conditional generation
given the pivot vertices from the reference mesh and supports downstream applications.

PivotMesh is designed to be scalable and extensible. We initially evaluate its effectiveness on small
dataset ShapeNet (Chang et al., 2015) as previous settings (Siddiqui et al., 2023). Next, we carefully
curate and train our model on the existing largest 3D datasets Objavese (Deitke et al., 2023) and
Objaverse-xl (Deitke et al., 2024). By leveraging large datasets, our model can generate generic
meshes across various categories to accelerate the mesh creation process. Both the qualitative and
quantitative experiments show that the proposed PivotMesh beats previous mesh generation methods
like PolyGen (Nash et al., 2020) and MeshGPT (Siddiqui et al., 2023) by a large margin.

The contributions of this paper can be summarized as follows:

• We propose a generic and scalable mesh generation framework PivotMesh, which makes an initial
attempt to extend the native mesh generation to large-scale datasets.

• We present a Transformer-based auto-encoder to preserve the geometry details and surface continu-
ity in meshes by efficiently decoding from face level to vertex level hierarchically.

• We introduce pivot vertices guidance for complex mesh geometry modeling, which serves as the
coarse representation to guide the complete mesh generation in a coarse-to-fine manner.

• PivotMesh achieves promising performance in various applications like mesh generation, variation,
and refinement, accelerating the mesh creation process.

2 RELATED WORKS

Neural 3D Shape Generation. Most previous attempts learn 3D shape with various representations,
e.g., SDF grids (Cheng et al., 2023; Chou et al., 2023; Shim et al., 2023; Zheng et al., 2023) and
neural fields (Gupta et al., 2023; Jun & Nichol, 2023; Müller et al., 2023; Wang et al., 2023a; Zhang
et al., 2023; Liu et al., 2023b; Lyu et al., 2023). To improve the generalization ability, researchers
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Table 1: Difference between MeshGPT and two concurrent works with PivotMesh. Our main
contribution mainly falls on two aspects. First, our autoencoder yields great reconstruction perfor-
mance with a shorter sequence length. Second, our model can produce a more complex typology
with the pivot guidance. n is the number of faces and v is the number of vertices.

Difference MeshGPT MeshXL MeshAnything PivotMesh

AE Architecture GNN-CNN N/A Transformer Transformer
AE Decoding Face-level N/A Face-level Face-level & Vertex-level

Sequence Type Latent Coordinates Latent Pivot-guided Latent
Generation Formulation Direct Direct Direct Coarse-to-fine

Sequence Length 6n 9n 9n 0.1v + 6n
Compression Ratio (↓) 66.7% 100% 100% 68.9%

start to leverage pretrained 2D diffusion models (Rombach et al., 2022; Saharia et al., 2022; Liu
et al., 2023a) with score distillation loss (Poole et al., 2023; Lin et al., 2023; Wang et al., 2023b)
in a per-shape optimization manner. Multi-view diffusion models (Shi et al., 2023b; Weng et al.,
2023; Zheng & Vedaldi, 2023; Shi et al., 2023a; Chen et al., 2024d; Voleti et al., 2024) are used to
further enhance the quality and alleviate the Janus problem. Recently, Large Reconstruction Models
(LRM) (Hong et al., 2023; Li et al., 2023; Xu et al., 2023; Wang et al., 2024; Xu et al., 2024b; Tang
et al., 2024a; Xu et al., 2024a) train the Transformer backbone on large scale dataset (Deitke et al.,
2023) to effectively generates generic neural 3D representation and shows the great performance of
scaling. However, these neural 3D shape generation methods require post conversion (Lorensen &
Cline, 1998; Shen et al., 2021) for downstream applications, which is non-trivial and easy to produce
dense and over-smooth meshes.

Native Mesh Generation. Compared with the well-developed generative models of neural shape
representations, the generation of the mesh remains under-explored. Some pioneering works try
to tackle this problem by formulating the mesh representation as surface patches (Groueix et al.,
2018), deformed ellipsoid (Wang et al., 2018), mesh graph (Dai & Nießner, 2019) and binary space
partitioning (Chen et al., 2020). PolyGen (Nash et al., 2020) uses two separated auto-regressive
Transformers to learn vertex and face distribution respectively. Polydiff (Alliegro et al., 2023) learns
the triangle soups of mesh with a diffusion model. MeshGPT (Siddiqui et al., 2023) is most relevant
to our work, which first tokenizes the mesh representation with a GNN-based encoder and learns
the mesh tokens with a GPT-style Transformer. Despite its promising results on small datasets, it is
non-trivial to extend MeshGPT to the large-scale dataset. Our research, along with several concurrent
works (Chen et al., 2024a;b;c; Tang et al., 2024b) as shown in Table 1, is designed to build a generic
generative model for native mesh generation within large-scale datasets.

3 METHOD

In this section, we will introduce the details of the proposed PivotMesh as shown in Figure 2. The
challenges to scale up native mesh generation are analyzed in Section 3.1. Meshes formulated as
triangle face sequences are first encoded into discrete tokens by the proposed mesh auto-encoder
(Section 3.2). Then, we use an auto-regressive Transformer to learn the joint distribution of pivot
vertices and mesh tokens (Section 3.3).

3.1 CHALLENGES FOR NATIVE MESH GENERATION ON LARGE DATASETS

There are two main challenges for scaling up native mesh generation to large datasets.

Mesh Reconstruction. It is challenging to tokenize meshes due to its high requirement on recon-
struction accuracy to preserve the mesh surface continuity. Previous works like MeshGPT (Siddiqui
et al., 2023) formulate meshes as face graphs for reconstruction, which only focuses on face-level
relationships and neglects the connection and interaction among vertices. Furthermore, the limited
network capability of auto-encoder (i.e., GNN and CNN) also hinders its scalability on large-scale
datasets. To this end, we propose a Transformer-based auto-encoder to preserve the geometry details
and surface continuity by decoding from face level to vertex level hierarchically.
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Transformer
Vertex Decoder

Vector Quantization Module

(a) Hierarchical Mesh Auto-enoder

Auto-regressive Transformer

(b) Pivot-guided Mesh Transformer

Pivot Vertices (P) Full Mesh Tokens (T)

Transformer
Face Decoder

Transformer
Face Encoder

Face Embedding
Face

Vert. Vert. Vert.

Reconstruct

Figure 2: The overall method of PivotMesh. (a) Triangle mesh sequences are tokenized into mesh
tokens and hierarchically decoded from face level to vertex level via our mesh auto-encoder. (b) The
auto-regressive Transformer first learns to generate pivot vertices as coarse mesh representation and
then generates the complete mesh tokens in a coarse-to-fine manner.

Complex Typology Modeling. Due to the complexity and variety of mesh topology, directly
modeling the mesh sequence on large-scale datasets makes it easy to produce trivial meshes with
simple geometry (e.g., cubes). To model complex mesh typology, a natural solution is to first generate
a coarse representation and then the full mesh sequence. For this purpose, we define pivot vertices
(the sequence of high-degree vertices) as the coarse representation of meshes. With the guidance of
pivot vertices, our model is capable of generating complex mesh geometry in a coarse-to-fine manner.

3.2 ENCODE MESHES INTO DISCRETE TOKENS

A triangle mesh M with n faces can be formulated as the following sequence:

M := (f1, f2, ..., fn) = (v11, v12, v13, v21, v22, v23, ..., vn1, vn2, vn3), (1)

where each face fi consists of 3 vertices and each vertex vi contains 3D coordinates discretized with
a 7-bit uniform quantization. To effectively learn the mesh distribution, we first tokenize the sequence
into discrete tokens with the proposed transformer-based Auto-encoder.

Attention-based Tokenizer. Different from MeshGPT equipped with a GNN-CNN-based auto-
encoder, we employ a Transformer-based architecture as the backbone for the encoder, capturing the
long-range relationship between faces. Furthermore, we replace the vanilla positional encoding in
the Transformer with a single-layer GNN to capture the local topology of meshes. This preserves
the permutation invariance of faces with higher scalability, yielding more effective and robust token
representation for meshes.

Hierarchical Decoding. To further improve the reconstruction performance and mesh surface
contiguity, we design a hierarchical decoder from face level to vertex level. The face embedding F ′

i
from the vector quantization module is first passed to a face-level decoder. Then, the decoded face
embedding is converted to vertex embedding V ′

i by a simple MLP. The vertex embedding is then
decoded by a vertex-level decoder, whose architecture is similar to the face decoder except that its
input sequence is 3 times longer.

F ′
i = FaceDec(F ′

i ),

V ′
i = VertexDec(MLPn→3n(F

′
i )),

(2)

The final decoded vertex embedding Vi is then converted to the quantized 3D coordinate logits
∈ (1, 2, ..., 27) for each axis (x, y and z) and computes the cross entropy with the input mesh
sequence. Such hierarchical architecture allows the connection and interaction among both face and
vertex level, thus improving the reconstruction accuracy and surface continuity.
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A (deg: 1)

B
(deg:2)

D (deg: 1)

F1

F2

A toy mesh with 2 faces

• Face Sequence:
("!!, "!", "!#; ""!, """, ""#)

• Vertex Sequence (MeshGPT):
(&, ', (; ', (, ))

• Pivot guided Sequence (PivotMesh):
', ( &, ', (; ', (, ))

Coarse Rep. Full Rep.

Vertices: A, B, C, D
Faces: F1, F2

C 
(deg:2)

MeshGPT PivotMesh

Simple Geometry

Complex Geometry

Figure 3: Illustration for pivot guided mesh sequence. It is hard to directly generate vertex sequence
with geometry details (MeshGPT formulation) on large scale datasets. In our paper, we found that
some vertices (with high degrees) repeatedly occur in vertex sequence thus we define them as pivot
vertices for coarse mesh representation. By first generating pivot vertices and then the full meshes,
our model is capable of producing more complex geometry with higher quality.

3.3 GUIDE MESH GENERATION WITH PIVOT VERTICES

To model complex mesh typology, it is natural to first generate a coarse representation and then
the full mesh sequences. However, it is non-trivial to find such a coarse representation to preserve
typology information with short length. As shown in Figure 3, we found that some vertices repeatedly
occur in the mesh sequence (since such vertices connect multiple faces), therefore they are highly
informative. Furthermore, these vertices are with high degrees thus preserving more geometry details.
To this end, we define these vertices as pivot vertices, and propose to first generate them as the coarse
representation for full mesh sequence.

Degree-based Pivot Vertices Selection. First, we need to select the most frequently occurring
vertices as the pivot vertices. Specifically, a mesh can be regarded as a graph, where each vertex vi
represents a node and the connection between vertices represents the edges. Then, we compute the
vertex degree deg(vi) in mesh graphs and select the pivot vertices set P with the top-degree vertices.
The size of the pivot vertices set is proportional to the number of vertices with a fixed ratio ηselect.
Furthermore, to prevent overfitting in pivot-to-mesh modeling, we randomly drop some pivot vertices
with the ratio ηdrop of all vertices for each training iteration. In our experiments, the select ratio
ηselect = 15% and the dropping ratio ηdrop = 5%, yielding the final pivot vertex ratio η = 10%. The
benefits of our pivot selecting strategy fall into two aspects. First, it leverages frequently occurring
vertices (with higher degree), enabling the Transformer to utilize these as conditional tokens mesh
sequence generation efficiently. Second, it tends to preserve intricate mesh details, as regions with
finer geometry typically necessitate more faces and thus larger vertex degrees.

Coarse-to-fine Mesh Modeling. As shown in Figure 3, we employ a standard auto-regressive
Transformer decoder to learn the joint distribution of the pivot vertex tokens pi ∈ P and the complete
mesh tokens ti ∈ T . A learnable start and end token are used to identify the beginning and end of the
token sequence, while a pad token is used to separate the pivot vertex tokens and mesh tokens. The
order of both pivot vertices tokens and full mesh tokens is sorted by z-y-x coordinates from lowest to
highest. Different from the Transformer in Section 3.2, we add absolute positional encoding here to
indicate the position in the token sequence. The token sequences are modeled with a Transformer
with parameter θ by maximizing the log probability:

|T |∏
i=1

p(ti|t1:i−1, P ; θ)

|P |∏
j=1

p(pj |pj:j−1; θ), (3)

With such formulation, the auto-regressive Transformer first learns to generate pivot vertex tokens
P as coarse mesh representation and then generates the complete mesh tokens T in a coarse-to-fine
manner. In such a coarse-to-fine manner, our model can effectively learn the complex mesh typology,

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

MeshGPT PivotMeshPolyGen

Figure 4: Qualitative comparison of unconditional generation on ShapeNet. Each line represents
a subset of ShapeNet (bench, chair, lamp, table).

which can be easily extended to large-scale datasets. Once the model is trained, it can produce
meshes from scratch, starting with the generation of pivot vertices followed by the full mesh sequence.
Furthermore, different from previous mesh generation methods (Nash et al., 2020; Siddiqui et al.,
2023), our model can perform conditional generation given the pivot vertices from the reference
mesh, and also supports downstream applications like mesh variation and refinement.

4 EXPERIMENT

4.1 EXPERIMENT SETTINGS

Datasets. Our model is trained on various classes and scales datasets, including ShapeNetV2
(Chang et al., 2015), Objaverse (Deitke et al., 2023), Objaverse-xl (Deitke et al., 2024). For ShapeNet,
follow previous settings (Nash et al., 2020; Siddiqui et al., 2023), we use 4 subsets (chair, table,
bench, lamp) and filter the faces less than 800 after plannar decimation (with a fixed angle tolerance
α = 10◦). For Objaverse and Objaverse-xl, we apply the data curation and filter the objects whose
faces are less than 500 without decimation to preserve the mesh quality. The final dataset size after
filtering of Shapenet, Objaverse, and Objaverse-xl is around 10k, 40k, and 400k respectively. For each
dataset, we split 1k samples for testing, and leave the rest as the training data. For data augmentation,
we use random scaling on each axis and random shifts (±0.01) to enhance the data diversity.

Baselines. We benchmark our approach against leading mesh generation methods: PolyGen (Nash
et al., 2020), which generates polygonal meshes by first generating vertices followed by faces
conditioned on the vertices with two separate Transformer; MeshGPT (Siddiqui et al., 2023), which
tokenizes the mesh sequence into mesh tokens with a GNN-ResNet based Auto-encoder and learns the
mesh tokens directly with an Auto-regressive Transformer. We only visually compare with MeshXL
(Chen et al., 2024a) since we use different training data and can not directly compute the metrics.

Metrics. Following the evaluation settings of previous mesh generation methods (Siddiqui et al.,
2023; Alliegro et al., 2023), we evaluate the reconstruction quality by two metrics, triangle accuracy
and l2 distance. We use the following metrics for mesh quality assessment: Minimum Matching
Distance (MMD), Coverage (COV), and 1-Nearest-Neighbor Accuracy (1-NNA). For MMD, lower
is better; for COV, higher is better; for 1-NNA, 50% is the optimal. We use the Chamfer Distance
(CD) to compute these metrics on 1024-dim point clouds uniformly sampled from meshes.

Implementation Details. For the auto-encoder, the face encoder has 12 layers with a hidden size
of 512, the face decoder has 6 layers with a hidden size of 512, and the vertex decoder has 6 layers

6
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MeshGPT

PivotMesh

PolyGen

MeshXL

Figure 5: Qualitative comparison of unconditional generation on Objaverse.

Table 2: The unconditional generation results on Shapenet dataset. The proposed PivotMesh
significantly improves the mesh quality compared with baselines by a large margin.

Model PolyGen MeshGPT PivotMesh

Subset COV(%)↑ MMD(10−3)↓ 1-NNA(%)↓ COV(%)↑ MMD(10−3)↓ 1-NNA(%)↓ COV(%)↑ MMD(10−3)↓ 1-NNA(%)↓
Chair 29.47 13.34 81.45 41.31 10.30 61.84 52.89 9.77 56.71
Table 38.67 15.84 66.27 43.00 9.77 62.83 51.68 9.28 56.55
Bench 37.50 10.8 79.69 46.87 9.48 67.19 51.56 8.50 53.91
Lamp 31.76 33.87 81.76 45.88 23.43 57.06 50.58 22.65 54.71
Mixed 33.91 13.47 74.63 43.89 11.48 63.24 50.42 11.03 60.89

with a hidden size of 256. For vector quantization, the number of residual quantizers r = 2, and the
codebook is dynamically updated by exponential moving averaging with codebook size 16384 and
codebook dimension 256. It is trained on an 8×A100-80GB machine for around 1 day with a batch
size of 64 for each GPU. For auto-regressive Transformer, it has 24 layers with a hidden size of 1024.
It is trained on an 8×A100-80GB machine for around 3 days with batch size 12 for each GPU. The
temperature used for sampling is set to 0.5 to balance the quality and diversity. We use flash attention
for all Transformer architecture and fp16 mixed precision to speed up the training process. We use
AdamW Loshchilov & Hutter (2017) as the optimizer with β1 = 0.9 and β2 = 0.99 with a learning
rate of 10−4 for all the experiments.

4.2 MESH GENERATION FROM SCRATCH

Comparison with baselines on various-scale benchmarks. We first evaluate the proposed Piv-
otMesh on the commonly used benchmark Shapenet with four selected categories, chair, table, bench,
and lamp. Following the previous setting (Siddiqui et al., 2023; Alliegro et al., 2023), we first
pretrain our model on the mixture dataset of four selected categories and then finetune each category

Table 3: The unconditional generation results on the Objaverse and Objaverse-xl dataset.

Model Objaverse Objaverse-xl

Dataset COV(%)↑ MMD(10−3)↓ 1-NNA(%)↓ COV(%)↑ MMD(10−3)↓ 1-NNA(%)↓
PolyGen 23.86 24.01 84.07 21.79 22.68 83.40

MeshGPT 35.03 17.30 63.86 41.50 14.76 64.25
PivotMesh 46.48 16.66 58.55 45.30 14.33 57.75
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Input
Point Cloud PivotMesh MeshAnything Input

Point Cloud PivotMesh MeshAnything

Figure 6: Further conditioning on point clouds. It shows that our model can produce more complex
typology with the pivot vertex guidance.

Table 4: Ablation study of autoencoder and auto-regressive Transformer on Objaverse. (a) The
proposed autoencoder reconstructs meshes with much higher accuracy compared with MeshGPT,
showing the effectiveness of Transformer architecture and hierarchical decoding strategy. (b) Without
the degree-based selection strategy (i.e., random selecting pivot vertices), the generation performance
will greatly reduce and even worse than that without pivot vertices, showing the importance of
degree-based selection strategy.

Method Accuracy(%)↑ L2 Distance↓
w/o Transformer (MeshGPT) 86.89 10.34

w/o hierarchical decode 92.30 5.37
Ours 97.89 1.05

(a) Ablation Study on Auto-encoder.

Method COV(%)↑ MMD(10−3)↓ 1-NNA(%)↓
w/o pivot guidance 42.76 16.83 61.38

w/o degree selection 42.48 17.62 62.90
Ours 46.48 16.66 58.55

(b) Ablation Study on auto-regressive Transformer.

separately. We report the generation results both on the mixed dataset and each subset in Table
2. Furthermore, we train our model on the larger scale datasets Objaverse and Objaverse-xl and
report the performance in Table 3. For all these experiments, our method can achieve state-of-the-art
performance on all evaluation metrics. As shown in Figure 4 and Figure 5, our model can generate
meshes with the best visual quality and geometry complexity. PolyGen often produces incomplete
meshes due to the accumulation error by the separate training of the vertex model and face model.
MeshGPT can produce complete meshes but it is trapped in simple geometry due to its network
capability and the complex mesh sequence. With the hierarchical auto-encoder and pivot vertices
guidance, our model can produce compact meshes with sharp details and complex geometry. Besides
unconditional generation, we also compare with MeshAnything in point cloud conditioning as shown
in Figure 6. Our model shows the advantages of modeling complex mesh geometry.

Shape Novelty Analysis. To show that our model can create novel shapes instead of memorizing
the training set, we conduct a shape novelty analysis similar to (Hui et al., 2022; Erkoç et al., 2023;
Siddiqui et al., 2023). We generate 500 shapes and search the 3 closest neighbors from the training set
measured in Chamfer Distance (CD), shown in Figure 7 (left). We also show top-1 CD distribution
between the generated shapes and the training set in Figure 7 (right). The CD results show that our
method not only covers shapes in the training set (low CD values) but also creates novel and realistic
shapes (high CD values).

4.3 ABLATION STUDY

The effectiveness of Transformer-based hierarchical auto-encoder. For mesh auto-encoder,
previous works like MeshGPT (Siddiqui et al., 2023) employ GNN as the encoder and CNN as the
decoder. Table 4 (w/o Transformer) shows the reconstruction performance of such architecture, which

8
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20th Percentile 50th Percentile

90th Percentile80th Percentile

Generated Shapes Most similar shapes from training set

Figure 7: Shape novelty analysis on Objaverse dataset. We show the 3 nearest neighbors measured
in Chamfer Distance (CD) for generated shapes (left). We plot the distribution of 500 generated
shapes from our method and their minimum CD to the training set (right). Shapes at the 50th
percentile look different from the closest train shape. It shows that our method not only covers shapes
in the training set (low CD values) but also creates novel and realistic shapes (high CD values).

Figure 8: Conditional generation results with pivot vertices guidance from Objaverse test set.
The generated meshes are marked in blue and the ground truth meshes are marked in gray. The
diversity of generation results is also shown on the bottom line.

is significantly lower than our Transformer-based auto-encoder. The performance gain is mainly from
the high capability and scalability of the Transformer compared with the GNNs and CNNs. Table
4 (w/o hier. decode) shows the performance of the auto-encoder when removing the hierarchical
decoding mechanism. It shows that such a hierarchical network design endows the decoder with
better alignment in both face and vertex levels, thus improving the final reconstruction results.

The effectiveness of pivot vertices guidance and their selection. Table 4 (w/o pivot guidance)
shows the results of directly employing an auto-regressive Transformer to model the mesh tokens
from our auto-encoder. Without the pivot vertex guidance, the model fails to produce meshes with
complex geometry. In Table 4 (w/o degree selection), we employ random pivot vertex selection
instead of the proposed degree-based strategy. Some metrics from its results are even worse than that
without using pivot vertices guidance. The strong performance degradation is because the randomly
selected vertices make it hard to summarize the whole geometry of the meshes and the Transformer
is incapable of learning such pivot-mesh joint distribution, showing the importance of pivot vertices
selection strategy.
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(a) Mesh Variation (b) Coarse Mesh Refinement(a) Mesh Variation(a) Mesh Variation (b) Coarse Mesh Refinement(b) Coarse Mesh Refinement

Figure 9: PivotMesh can support various downstream applications (Reference meshes are marked
in gray). (a) Mesh variation: PivotMesh generates diverse meshes similar to reference meshes but
with different details. (b) Coarse Mesh Refinement: PivotMesh can refine the details for coarse
meshes to accelerate the mesh creation.

4.4 PIVOT VERTICES GUIDANCE ANALYSIS

To trade-off between the generalization and the visual quality for pivot-guided mesh generation, we
first pretrain our model in the mixture of objaverse and objaverse-xl datasets. Then, we finetune the
pretrained model on the well-curated objaverse to further improve the generated mesh quality.

Pivot-guided Mesh Generation. Given a reference mesh, we first encode it into mesh tokens
and then select the pivot vertices. Our model can generate the corresponding meshes as shown in
Figure 8. It shows that our model can generate diverse and high-quality meshes while maintaining
the high-level structure corresponding to the pivot vertices.

Downstream Applications. PivotMesh can serve as a generic mesh generative model to support
various applications in Figure 9. For mesh variation, our model can generate diverse variants with the
user-given meshes. For mesh refinement, it can be regarded as a special case of mesh variation, but
with coarse meshes as input. Our model can refine the coarse meshes to fine meshes with detailed
geometry to accelerate the mesh creation process.

4.5 LIMITATIONS AND FUTURE WORK

Although PivotMesh can produce compact meshes with high quality, it still has some limitations. First,
the controlling ability of PivotMesh is still not enough. Since the same pivot vertices may indicate
diverse meshes, our method may sometimes produce undesired geometry. This can be alleviated by
adding more control conditions like images and texts and we leave it for our future work. Second, the
scale of data and the number of model parameters is still limited. Due to the constrained computation
resources, we only train PivotMesh on meshes less than 500 for both Objaverse and Objaverse-xl,
and the number of model parameters is much less than recent advances in large language models
(Touvron et al., 2023).

5 CONCLUSION

In this paper, we introduce PivotMesh, a scalable framework to generate generic meshes with
compact and sharp geometry. By employing pivot vertices as a coarse representation to guide the
mesh generation process and leveraging a Transformer-based hierarchical auto-encoder, PivotMesh
demonstrates its capability to generate high-quality meshes on both small and large-scale datasets.
The proposed model significantly outperforms existing methods and sets a new benchmark for native
mesh generation tasks, showcasing its potential for creating novel shapes and supporting downstream
applications.
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A ADDITIONAL RESULTS

A.1 FAILURE CASES

Pivot Vertices Generated Ground Truth Pivot Vertices Generated Ground Truth

Figure 10: Some failure cases for the pivot-guided mesh generation. Since the same pivot vertices
may indicate diverse meshes, our method may sometimes produce undesired geometry. This can be
alleviated by adding more control conditions like images and texts.

A.2 USER STUDY

As shown in Table 5, we conduct the user study on two dimensions Aesthetics and Complexity scores,
which range from 0-5 (higher is better).

Table 5: User study on the generated meshes. The users are asked to score on two dimensions mesh
aesthetics and complexity, which range from 1 to 5 (higher is better).

Method Aesthetics↑ Complexity↑
PolyGen 2.49 2.35

MeshGPT 3.20 2.50
PivotMesh 3.60 3.38

A.3 COMPARISON WITH INSTANTMESH

To produce similar shapes for a more straightforward visual comparison, we use the rendering images
of our generated mesh as the image condition for InstantMesh to generate the following instances in
Figure 1 and Figure 11.

InstantMesh InstantMesh
(Decimated) PivotMesh InstantMesh InstantMesh

(Decimated) PivotMesh

Figure 11: Additional results for comparison with InstantMesh.
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A.4 UNCONDITIONAL GENERATION ON SHAPENET

Figure 12: Additional results for unconditional generation on Shapenet.
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A.5 UNCONDITIONAL GENERATION ON OBJAVERSE

Figure 13: Additional results for unconditional generation on Objaverse.
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A.6 PIVOT-GUIDED MESH GENERATION

Generated Ground TruthPivot Vertices Generated Ground TruthPivot Vertices

Figure 14: Additional results for pivot-guided mesh generation on Objaverse.

A.7 SHAPE NOVELTY ANALYSIS

Generated Most similar shapes from training set Generated Most similar shapes from training set

Figure 15: Additional results for shape novelty analysis on Objaverse.
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A.8 PIVOTMESH APPLICATIONS

(a) Mesh Variation (b) Coarse Mesh Refinement

Figure 16: Additional results for the applications of PivotMesh.

B ADDITIONAL EXPERIMENTS FOR REBUTTAL

Meshes with 
thin structures

Meshes with 
holes

Figure 17: Generated Meshes with more complex topologies(especially for meshes with holes and
thin structures.)

Input
Point Cloud

PivotMesh MeshAnything Input
Point Cloud

PivotMesh MeshAnythingMeshAnythingv2 MeshAnythingv2

Figure 18: Comparison with concurrent works Meshanything and Meshanythingv2 for point-cloud
conditioning.
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Figure 19: The distribution for the number of vertices and faces in the training and testing data.
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