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CausalQuestion Answering with Reinforcement Learning
Anonymous Author(s)∗

ABSTRACT
Causal questions inquire about causal relationships between differ-
ent events or phenomena. Specifically, they often aim to determine
whether there is a relationship between two phenomena, or to
identify all causes/effects of a phenomenon. Causal questions are
important for a variety of use cases, including virtual assistants
and search engines. However, many current approaches to causal
question answering cannot provide explanations or evidence for
their answers. Hence, in this paper, we aim to answer causal ques-
tions with CauseNet, a large-scale dataset of causal relations and
their provenance data. Inspired by recent, successful applications
of reinforcement learning to knowledge graph tasks, such as link
prediction and fact-checking, we explore the application of rein-
forcement learning on CauseNet for causal question answering.
We introduce an Actor-Critic based agent which learns to search
through the graph to answer causal questions. We bootstrap the
agent with a supervised learning procedure to deal with large ac-
tion spaces and sparse rewards. Our evaluation shows that the
agent successfully prunes the search space to answer binary causal
questions by visiting less than 30 nodes per question compared
to over 3,000 nodes by a naive breadth-first search. Our ablation
study indicates that our supervised learning strategy provides a
strong foundation upon which our reinforcement learning agent
improves. The paths returned by our agent explain the mechanisms
by which a cause produces an effect. Moreover, for each edge on a
path, CauseNet stores its original source on the web allowing for
easy verification of paths.

CCS CONCEPTS
• Information systems → Question answering; • Computing
methodologies→ Reinforcement learning; Causal reasoning and
diagnostics; •Mathematics of computing → Causal networks.

KEYWORDS
question answering, causality graphs, reinforcement learning
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(WWW ’24), May 13–17, 2024, Singapore.ACM, New York, NY, USA, 12 pages.
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1 INTRODUCTION
Causal question answering addresses the problem of determining
the causal relations between given causes and effects [5, 19]. This
involves examining whether a causal relation exists, what causal
relations exist, and how causal relations can be explained in terms
of intermediate steps. Examples of such questions include “Does
pneumonia cause anemia?”, “What are the effects of pneumonia?”,
and “How does pneumonia cause death?” Nowadays, the necessity
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2024. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

to answer causal questions arises in various domains. For example,
users often seek answers to causal questions from virtual assistants
like Alexa or from search engines [13, 27]. Reasoning via chains of
causal relations is crucial for argumentation [11, 44] and automated
decision-making [12, 13, 19], too, e.g., to arrive at better answers
and to gain a deeper understanding.

The literature started to introduce approaches for causal ques-
tion answering [4, 12, 19, 37]. However, they lack explanations and
verifiability of their answers due to a lack of large, high-quality
datasets for causal relations [12, 19, 37]. Only recently, the introduc-
tion of CauseNet [13], a large-scale knowledge graph consisting of
causal relations with context information, provides new opportuni-
ties to build effective, verifiable causal question answering systems
that we exploit in this work.

Inspired by the successful application of reinforcement learn-
ing to knowledge graphs on different tasks such as link predic-
tion [48], fact-checking [6], conversational question answering [18],
and multi-hop reasoning [45], in this paper, we explore whether
we can model the causal question answering task as a sequential
decision problem over CauseNet. We train a reinforcement learning
agent that learns to walk over CauseNet to find good inference
paths to answer binary causal questions. We implement the agent
via the Synchronous Advantage Actor-Critic (A2C) algorithm [26]
and use generalized advantage estimation (GAE) [35] to compute
the advantage. To address the challenge of a large action space in
CauseNet [13], we bootstrap the agent with a supervised learning
procedure [48] where the agent receives expert demonstrations to
understand what good paths look like.

We evaluate our approach both on causal questions from Se-
mEval [14] as well as a novel dataset constructed from the MS
MARCO [13, 27] dataset, which consists of questions asked to search
engines. While the former is skewed to questions with the answer
“yes”, the latter is balanced and contains an equal number of ques-
tions that are to be answered with “yes” or “no”. Our evaluation
demonstrates that on both datasets, our agent can effectively prune
the search space, considering only a small number of nodes per
question—on average, less than 30 nodes per question. For compari-
son, a breadth-first search (BFS) visits over 3,000 nodes per question.
Furthermore, our agent minimizes false positives achieving a pre-
cision of 0.89, whereas BFS achieves a precision of only 0.75 and
the language model UnifiedQA [20, 21] only a precision of 0.5. Our
experiments confirm that bootstrapping the agent via supervised
learning establishes a strong foundation decreasing uncertainty and
accelerating the learning process. The paths found by our agent can
be used to explain the relations between cause and effect, including
the option to report the original source of the causal relation [13].

To summarize our contributions: (1) We introduce the first re-
inforcement learning approach for causal question answering on
knowledge graphs; (2) we introduce a supervised learning proce-
dure for causal question answering to handle the challenge of the
large action space and sparse rewards and accelerate the learning
process; (3) we introduce a new causal question dataset.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’24, May 13–17, 2024, Singapore Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

2 RELATEDWORK
In the following, we summarize related work regarding causal
knowledge graphs, approaches for causal question answering, and
approaches that apply reinforcement learning to reasoning tasks
on knowledge graphs.

Causal Knowledge Graphs. ConceptNet [41] is a general knowl-
edge graph (KG) consisting of 36 relations between natural language
terms, including a Causes relation. CauseNet [13] and Cause Effect
Graph [22] specifically focus on causal relations extracted via lin-
guistic patterns from web sources like Wikipedia and ClueWeb12.1
ATOMIC [34] focuses on inferential knowledge of commonsense
reasoning in everyday life. It consists of “If-Event-Then-X” relations
based on social interactions or real-world events. ATOMIC20

20 [16]
selects relations from ATOMIC and ConceptNet to create an im-
proved graph while adding more relations via crowdsourcing. In-
stead, West et al. [46] automate the curation of causal relations by
clever prompting of a language model. Finally, CSKG [17] builds a
consolidated graph combining seven knowledge graphs, including
ConceptNet and ATOMIC. We use CauseNet because most of the
other KGs are smaller and less focused on causal relations, e.g.,
CauseNet contains many more causal relationships than Concept-
Net [13]. Future work may involve combining multiple KGs.

Causal Question Answering. As of now, only few approaches
tackle the causal question answering task. Most of them focus on
binary questions, i.e., questions such as “Does X cause Y?” which
expect a “yes” or “no” answer. Kayesh et al. [19] model the task
as a transfer learning approach. They extract cause-effect pairs
from news articles via causal cue words. Subsequently, they trans-
form the pairs into sentences of the form “X may cause Y” and
use them to finetune BERT [8]. Similarly, Hassanzadeh et al. [12]
employ large-scale text mining to answer binary causal questions
introducing multiple unsupervised approaches ranging from string
matching to embeddings computed via BERT. Sharp et al. [37] con-
sider multiple-choice questions of the form “What causes X?”. First,
they mine cause-effect pairs from Wikipedia via syntactic patterns
and train an embedding model to capture the semantics between
them. At inference time, they compute the embedding similarity
between the question and each answer candidate. Dalal [4], Dalal
et al. [5] combine a language model with CauseNet [13]. Given
a question, they apply string matching to extract relevant causal
relations from CauseNet. Subsequently, they provide the question
with the causal relations as additional context to a language model.
As other language model-based approaches, too, they cannot pro-
duce verifiable answers. None of them selects relevant paths in a
causality graph via reinforcement learning.

Knowledge Graph Reasoning with Reinforcement Learning. In re-
cent years, reinforcement learning on knowledge graphs has been
successfully applied to link prediction [6], fact-checking [48], or
question answering [31]. Given a source and a target entity, Deep-
Path [48] learns to find paths between them. The training of Deep-
Path involves two steps. First, it is trained via supervised learning
and afterward via REINFORCE [47] policy gradients. During in-
ference time, the paths are used to predict links between entities
1https://lemurproject.org/clueweb12/

or check the validity of triples. Subsequently, MINERVA [6] im-
proves on DeepPath by introducing an LSTM [15] into the policy
network to account for the path history. Moreover, MINERVA does
not require knowledge of the target entity and is trained end-to-
end without supervision at the start. Lin et al. [23] propose two
improvements for MINERVA. First, they apply reward shaping by
scoring the paths with a pre-trained KG embedding model [7] to
reduce the problem of sparse rewards. Second, they introduce a tech-
nique called action dropout, which randomly disables edges at each
step. Action dropout serves as additional regularization and helps
the agent learn diverse paths. M-Walk [38] applies model-based
reinforcement learning techniques. Like AlphaZero [40], M-Walk
applies Monte Carlo Tree Search (MCTS) as a policy improvement
operator. Thus, at each step, M-Walk applies MCTS to produce
trajectories of an improved policy and subsequently trains the cur-
rent policy to imitate the improved one. GaussianPath [45] takes a
Bayesian view of the problem and represents each entity by a Gauss-
ian distribution to better model uncertainty. Previous approaches
for reinforcement learning on knowledge graphs [6, 31, 48] were
designed for knowledge graphs with multiple relation types which
enabled them to use the relations types as actions at each time step.
In contrast, we tailor our approach to causal knowledge graphs that
contain only one relation type “cause”. Thus, the relations do not
provide any learning signal, which makes the question answering
task particularly challenging. In our case, the action space consists
of all entities in the knowledge graph2 and the actions the agent can
take change at each time step, due to the different neighborhoods
of each entity. Moreover, we employ an actor-critic reinforcement
learning algorithm to boost performance.

3 CAUSAL QUESTION ANSWERINGWITH
REINFORCEMENT LEARNING

In the following, we formulate the question-answering task as a se-
quential decision problem on a causal knowledge graph and define
the environment of the reinforcement learning agent. Afterward,
we present our reinforcement learning agent, including the net-
work architecture, the training procedure, the search strategy at
inference time, and an approach to bootstrapping the agent with
supervised learning.

3.1 Problem Definition
Given a causal question 𝑞 in natural language and a causal knowl-
edge graph K = {(ℎ, 𝑟, 𝑡)} ⊆ E × R × E, where ℎ, 𝑡 ∈ E denote
entities and 𝑟 ∈ R denotes a relation, the agent walks over the
graph to answer the question. Note that the causal knowledge
graph considered in this paper only contains the cause relation
such that R = {𝑐𝑎𝑢𝑠𝑒}. We consider binary causal questions 𝑞,
where the agent has to determine the validity of a causal relation
such as “Can X cause Y?” where X and Y represent a cause and
effect, respectively.

In the following, we elucidate the binary causal question answer-
ing task on the knowledge graph K on the basis of the example
in Figure 1. The example shows an excerpt of a causal knowledge
graph (CauseNet) and the binary causal question “Does pneumonia
cause anemia?”. In this question, pneumonia takes the role of the
2In case of CausNet, we have 80,222 entities [13].
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Figure 1: An excerpt from CauseNet [13] showing the entity
pneumonia togetherwith its neighborhood containing causes
and effects, where each edge depicts a cause relation. The
numbers on the edges show the probability of taking this
edge under the current policy 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ). For brevity, we only
show the relevant probabilities for the given paths. The lower
part of the figure shows the possibility to combine our agent
with a languagemodel. In that setup, we provide the paths the
agent learned as additional context to the language model.

cause, and anemia the role of the effect. First, the cause and effect
are linked to the graph. Therefore, we find entities 𝑒𝑐 , 𝑒𝑒 ∈ E such
that pneumonia maps to 𝑒𝑐 and anemia to 𝑒𝑒 . Currently, we link
them via exact string matching. However, more sophisticated strate-
gies can be considered in future work [18]. Consequently, starting
from 𝑒𝑐 , the agent has to find a path (𝑒𝑐 , 𝑒1, 𝑒2, . . . , 𝑒𝑒 ) with 𝑒𝑖 ∈ E,
where the agent arrives at the effect 𝑒𝑒 .3 If the agent finds such
a path, the question is answered with “yes” and otherwise with
“no”. For the example, a possible path is (pneumonia, sepsis, kidney
failure, anemia). Afterward, we can inspect the path to get further
insights into the relationship between cause and effect.

3.2 Environment
As done by relatedwork [6, 31, 48], we formulate the causal question
answering task as a sequential decision problem on the knowledge
graphK . The agent walks over the graph and decides which edge to
take at each entity. Therefore, we define a Markov Decision Process
(MDP) as a 4-tuple (S,A, 𝛿,R). The MDP consists of the state space
S,the action space A, the transition function 𝛿 : S × A → S, and
the reward function R : S → R. Hence, at each state 𝑠𝑡 ∈ S
the agent selects an action 𝑎𝑡 ∈ A, which changes the current
state via 𝛿 (𝑠𝑡 , 𝑎𝑡 ) to 𝑠𝑡+1. Additionally, the agent receives a reward
R(𝑠𝑡+1) = 𝑟𝑡 . Note that the transition function 𝛿 is known and
deterministic because the graph entirely defines 𝛿 . So, for each
action 𝑎𝑡 in state 𝑠𝑡 , the next state 𝑠𝑡+1 is known.
3The path only shows the entities, because the graph contains only one relation type.

Agent. Our agent consists of a policy network 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ) (Actor)
parameterizedwith𝜃 and a value network𝑉𝜓 (𝑠𝑡 ) (Critic) parameter-
ized with𝜓 . The policy network 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ) generates a distribution
over actions𝑎𝑡 at the current state 𝑠𝑡 . The value network𝑉𝜓 (𝑠𝑡 ) gen-
erates a scalar to estimate the value of the state 𝑠𝑡 . Specifically, the
value network should predict the future reward from 𝑠𝑡 onwards.

States. At each time step t, we define state 𝑠𝑡 = (q, 𝑒𝑡 , et, ht, 𝑒𝑒 ) ∈
S, where q represents the embedding of the question 𝑞, 𝑒𝑡 ∈ E
the current entity, and et its embedding. The entity 𝑒𝑡 is needed to
define the action space, and its embedding et is used as input to
the agent’s networks. Additionally, ht represents the path history
of the agent and 𝑒𝑒 the entity corresponding to the effect found in
the question 𝑞. Moreover, 𝑒0 = 𝑒𝑐 and h0 = 0, where 𝑒𝑐 is the entity
corresponding to the cause of the question (e.g., pneumonia in the
example in Figure 1). The path history is represented by the hidden
states of an LSTM.

Actions. The action space at each time step 𝑡 consists of all
neighboring entities of the current entity in state 𝑠𝑡 . Therefore,
the set of possible actions in state 𝑠𝑡 = (q, 𝑒𝑡 , et, ht, 𝑒𝑒 ) is defined
as 𝐴(𝑠𝑡 ) = {𝑒 | (𝑒𝑡 , 𝑟 , 𝑒) ∈ K} where 𝑟 = 𝑐𝑎𝑢𝑠𝑒 . So only the current
entity 𝑒𝑡 is needed to define the action space 𝐴(𝑠𝑡 ). Note that while
the additional components inside the state are not needed to define
the action space, they are needed for other parts of the learning
algorithm, as described below in Sections 3.3 and 3.4.

CauseNet [13] contains additional meta-information for each
relation in the form of the original sentence 𝑠 from which the
relation was extracted. Therefore, we include the original sentence 𝑠
when computing the embedding at for an action 𝑎𝑡 . This is done
by concatenating the sentence embedding s with the embedding of
the entity 𝑒 = 𝑎𝑡 . Thus, the action embedding becomes at = [s; e].

As done by prior works [6, 23, 31], we add a special STAY action
at each step, so the action space becomes 𝐴(𝑠𝑡 ) = 𝐴(𝑠𝑡 ) ∪ {𝑆𝑇𝐴𝑌 }.
When selecting this action, the agent stays at the current entity.
This way, we can keep all episodes to the same length, even though
different questions might require a different number of hops. An-
other option would be to add a stop action. However, in that case,
we would have episodes of different lengths.4 Moreover, we add in-
verse edges to the graph because our experiments showed that their
addition increases the performance. In general, inverse edges allow
the agent to undo wrong decisions and to reach nodes that could
otherwise not be reached under a given episode length. We discuss
some implications and tradeoffs of inverse edges in Section 5.

Transitions. As described above, the transition function is deter-
ministic, so the next state is fixed after the agent selects an action.
Let 𝑠𝑡 = (q, 𝑒𝑡 , et, ht, 𝑒𝑒 ) be the current state and 𝑎𝑡 ∈ 𝐴(𝑠𝑡 ) be the
selected action in 𝑠𝑡 . Subsequently, the environment evolves via
𝛿 (𝑠𝑡 , 𝑎𝑡 ) to 𝑠𝑡+1 = (q, 𝑒𝑡+1, et+1, ht+1, 𝑒𝑒 ), where 𝑒𝑡+1 = 𝑎𝑡 .

Rewards. The agent only receives a terminal reward at the fi-
nal time step 𝑇 − 1. Specifically, the agent receives a reward of
R(𝑠𝑇−1) = 1 if 𝑠𝑇−1 = (q, 𝑒𝑇−1, eT−1, hT−1, 𝑒𝑒 ) with 𝑒𝑇−1 = 𝑒𝑒 .
Conversely, the agent receives a reward ofR(𝑠𝑇−1) = 0 if 𝑒𝑇−1 ≠ 𝑒𝑒 .
Similarly, for all other time steps 𝑡 < 𝑇 − 1 the reward is 0 as well.
4In principle, episodes of different lengths are not a problem. However, keeping them
to the same length simplifies the implementation. We chose this simplification because
it worked well in prior works [6, 31].
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Path Rollouts — Episodes. We define a path rollout or episode as
a sequence of three tuples containing a state, action, and reward.
Assuming a path rollout length of 𝑇 , an example for a path rollout
is: ((𝑠0, 𝑎0, 𝑟0), . . . , (𝑠𝑇−2, 𝑎𝑇−2, 𝑟𝑇−2)). For path rollout length 𝑇 , a
path rollout contains𝑇 −1 tuples. This is because the last state 𝑠𝑇−1
is only needed for the calculation of reward 𝑟𝑇−2, and no further
action is taken.5 For brevity, the rewards 𝑟𝑡 can be omitted.

3.3 Network Architecture
We use a Long Short-Term Memory (LSTM) [15] to parametrize our
agent. Additionally, we experimented with a simple feedforward
architecture but found that incorporating the path history is crucial
for our needs. This aligns with previous research, where approaches
such as MINERVA [6] and SRN [31] also used LSTMs and GRUs.
Just CONQUER [18] used a feedforward architecture, but they only
considered paths of length one.

Let q ∈ R𝑑 be the embedding of the question 𝑞 and E ∈ R | E |×𝑑

the embedding matrix containing the embeddings for each entity
𝑒 ∈ E of the knowledge graph K . The parameter 𝑑 specifies the
dimension of the embeddings. The LSTM is then applied as

ht =

{
𝐿𝑆𝑇𝑀 (0; [q, ec]), if 𝑡 = 0
𝐿𝑆𝑇𝑀 (ht−1, [q; et]), otherwise

(1)

where ht ∈ R2𝑑 represents the hidden state vector (history) of the
LSTM, and [; ] is the vector concatenation operator. At each time
step, the LSTM takes the previous history ht−1 and the concatena-
tion of the question embedding q and the current node embedding
et ∈ R𝑑 to produce ht. In the first time step, h0 is initialized with
the zero vector and e0 = ec, where ec is the embedding of the entity
corresponding to the cause found in the current question.

On top of the LSTM, we stack two feedforward networks: one for
the policy network 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ) and one for the value network𝑉𝜓 (𝑠𝑡 ).
In Section 3.2, we defined the action space A(𝑠𝑡 ) at time step 𝑡 and
state 𝑠𝑡 = (q, 𝑒𝑡 , et, ht, 𝑒𝑒 ) to contain all neighbors of the entity 𝑒𝑡 .
Therefore, we introduce an embedding matrix At ∈ R |𝐴(𝑠𝑡 ) |×2𝑑 ,
where the rows contain the embeddings of the actions 𝑎𝑡 ∈ A(𝑠𝑡 ).
The output of the policy network 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ) is computed as

𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ) = 𝜎 (At ×𝑊2 × 𝑅𝑒𝐿𝑈 (𝑊1 × ht))
𝑎𝑡 ∼ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 (𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ))

(2)

where 𝑊1 ∈ Rℎ×2𝑑 and 𝑊2 ∈ R2𝑑×ℎ are weight matrices with
hidden dimension ℎ and 𝜎 is the softmax operator. The final output
of the policy network is a categorical probability distribution over
all actions 𝑎𝑡 ∈ A(𝑠𝑡 ). Similarly, the output of the value network
𝑉𝜓 (𝑠𝑡 ) is computed with the feedforward network

𝑉𝜓 (𝑠𝑡 ) =𝑊4 × 𝑅𝑒𝐿𝑈 (𝑊3 × ht) (3)

where𝑊3 ∈ Rℎ×2𝑑 and𝑊4 ∈ R1×ℎ are weight matrices with hidden
dimension ℎ, and the output is a scalar that estimates the future
reward from state 𝑠𝑡 onwards. Overall, the weights of the LSTM are
shared between the policy and value network, while each network
has its own weights in the form of its feedforward head.
5See Algorithm 1 Lines 17-22 for more details.

3.4 Training the Reinforcement Learning Agent
The training process involves pre-processing questions and link-
ing them to CauseNet entities. As CauseNet [13] does not contain
negative information (see Section 7.1 in appendix), we only train
the agent on positive causal questions, i.e., questions whose answer
is “yes”. We remove all questions where the cause, effect, or both
cannot be found in CauseNet. Then we obtain embeddings for the
entities from their textual representation, initialize agent weights,
and sample path rollouts with the policy network. The training
utilizes the Synchronous Advantage Actor-Critic (A2C) algorithm,
with the policy network acting as the actor and the value network
as the critic. The policy network update rule includes the gener-
alized advantage estimate (GAE). As commonly done, we add an
entropy regularization term to help the agent with the exploita-
tion vs. exploration tradeoff. Simultaneously, the value network is
updated. Further details on our training procedure for the policy
network including the pseudocode can be found in Section 7.3 in
the appendix.

3.5 Search Strategy
At inference time, the agent receives both positive and negative
questions. To answer a given question, we sample multiple paths 𝑝
of length 𝑇 from the agent. If any path contains the entity 𝑒𝑒 , the
agent answers the question with “Yes”, otherwise with “No”. In case
the cause, effect, or both cannot be found in CauseNet, the question
is answered with “no” per default.

For each path rollout ((𝑠0, 𝑎0), (𝑠1, 𝑎1), . . . , (𝑠𝑇−2, 𝑎𝑇−2)), the path
that was taken on the graph consists of the entity 𝑒0 in 𝑠0 and the
actions taken at each time step 𝑡 , i.e., 𝑝 = (𝑒0, 𝑒1, . . . , 𝑒𝑇−1) where
𝑎𝑡−1 = 𝑒𝑡 ∈ E for 𝑡 > 0. The probability of path 𝑝 is the product

P(𝑝) =
𝑇−2∏
𝑡=0

𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ) (4)

of the probabilities of taking action 𝑎𝑡 at state 𝑠𝑡 under the current
policy 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ) for 𝑡 ∈ {0, . . . ,𝑇 − 2}. Figure 1 shows an excerpt
from CauseNet where each edge is annotated with the probability
of taking this edge under the current policy.

To sample paths from the agent, we apply greedy decoding or
beam search. Greedy decoding takes the action with the highest
probability at each time step, i.e., 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑡 ∈A(𝑠𝑡 ) 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ). In
Figure 1, the agent would select sepsis in the first time step, kid-
ney failure in the second time step, and anemia in the third time
step. However, one disadvantage of greedy decoding is its myopic
behavior, i.e., it might miss high-probability actions in later time
steps. Beam search tries to alleviate this problem by always keeping
a set of the best partial solutions up to the current timestep. In our
case, partial solutions are paths of length 𝑡 , where 𝑡 is the current
timestep. Furthermore, the paths are ranked by their probability,
as defined in Equation 4. Assuming a beam width of two, Figure 1
shows the two paths that are found by beam search for the exam-
ple. After obtaining these paths, the agent examines each one to
determine whether it includes the effect. If that is the case, the
agent answers the question with “yes”, otherwise with “no”. In this
example, anemia is found, so the agent answers with “yes”.
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Table 1: Number of questions for training, validation, and
testing for the MS MARCO [27] and SemEval [37] datasets.
The “E. Train” column shows the number of questions the
agent has effectively available for learning.

Dataset Train Validation Test E. Train

Pos. Neg. Pos. Neg. Pos. Neg. Pos.
MS MARCO 1837 332 194 47 223 40 1350
SemEval 694 690 84 89 87 86 812

3.6 Bootstrapping via Supervised Learning
Reinforcement learning algorithms often take a long time to con-
verge due to their trial-and-error nature combined with large ac-
tion spaces and sparse rewards [23, 48]. Thus, the reinforcement
learning agent can be bootstrapped, by first training it on a series
of expert demonstrations. For example, AlphaGo [39] trained the
agent on demonstrations from expert Go players before continuing
with their reinforcement learning algorithm. In our case, the expert
demonstrations come from a breadth-first search (BFS) on CauseNet.
First, we randomly select a subset 𝑄 of size 𝛼 · |𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑠 | of the
training questions, where 𝛼 is a hyperparameter. Subsequently, we
run a BFS on the cause 𝑒𝑐 and effect 𝑒𝑒 of each question in 𝑄 and
build a path rollout for each found path. If a path rollout is shorter
than the path rollout length 𝑇 , it is padded with the STAY action.6
Next, we train the policy network 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ) via REINFORCE

∇𝜃 𝐽 (𝜃 ) = − 1
𝐵

𝐵∑︁
𝑖

𝑇−2∑︁
𝑡=0

∇𝜃 log(𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )) 𝑟𝑡 + 𝛽𝐻𝜋𝜃 (5)

where 𝐵 is the batch size, 𝑇 the path rollout length, and 𝐻𝜋𝜃 the
entropy regularization from Section 3.4. During supervised training,
the reward 𝑟𝑡 is set to 1 at each step. Note that we only train the
policy network 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ) during supervised learning. Afterward,
we further train both the policy and value networks via Algorithm 1,
as explained in Section 3.4.

4 EVALUATION
In this section, we present the evaluation of our approach. We
start by providing an overview of the experimental setup, including
the datasets, the baselines, evaluation measures, hyperparameter
settings, and implementation details. Afterward, we compare our
agent to two baselines on the binary causal question answering task.
Next, we conduct an ablation analysis to evaluate the effectiveness
of the different components of our approach and evaluate the effects
of initial supervised learning. Finally, we provide a few example
paths found by our agent. The code and data to reproduce our
results is publicly available.7

4.1 Experimental Setup
Datasets. As datasets, we employ subsets of causal questions

from MS MARCO [27] and SemEval [14, 37]. To extract binary
6A question 𝑞 is discarded, if a path of length less than or equal to𝑇 cannot be found
between its cause 𝑒𝑐 and its effect 𝑒𝑒 .
7https://github.com/CausalRLQA/CausalRLQA

causal question from MS MARCO we extended an extraction mech-
anism from Heindorf et al. [13] by including additional causal cue
words [10]. SemEval was curated by Sharp et al. [37] by selecting a
subset of 1730 word pairs from the semantic relation classification
benchmark SemEval 2010 Task 8 [14]. Among the 1730 word pairs,
there are 865 causal pairs and 865 non-causal pairs, i.e., the dataset
is balanced, whereas MS MARCO is imbalanced. The first three
columns of Table 1 show the original numbers of training, valida-
tion, and test questions of both datasets. However, as discussed in
Sections 3.4 and 7.3, for training our reinforcement learning agent,
we remove negative questions and questions where either the cause
or effect cannot be found in CauseNet. The “E. Train” column shows
the number of questions effectively available for learning when
combining the training and validation sets. That leaves us with
1350 questions for MS MARCO and 812 questions for SemEval.
For testing question answering, we use both positive and negative
questions regardless of whether the cause/effect can be mapped
to CauseNet. If a cause or effect cannot be found in CauseNet, the
question is answered with “No”. Further details regarding Causenet
and our dataset construction are given in Sections 7.1 and 7.2 in
the appendix, respectively.

Baselines. We compare our agent with two baselines: a breadth-
first search (BFS) on CauseNet and the question answering system
UnifiedQA-v2 [20, 21]. BFS performs an exhaustive search in the
graph up to a certain depth and serves as a strong baseline. How-
ever, it must be noted that BFS can be applied effectively only to
binary causal questions. Moreover, it needs to traverse many nodes
in the graph whereas our reinforcement learning agent visits much
fewer nodes. As a second baseline, we use UnifiedQA-v2 [20, 21].
UnifiedQA-v2 is a text-to-text language model based on the T5
architecture [32] and achieved state-of-the-art performance on mul-
tiple datasets. We chose UnifiedQA-v2 because it was used by the
CausalQA [3] benchmark for their evaluation. Its input consist of a
question and additional contextual information as shown in Figure 1.
We experimented with three variants of UnifiedQA-v2: (1) with an
empty context (UnifiedQA-v2), (2) with causal triples as context
(UnifiedQA-v2-T) as done by [4, 5], (3) by using the provenance
data available in CauseNet along paths from the cause to the effect
(UnifiedQA-v2-P). For (2), all triples from CauseNet are obtained
where the cause in the question matches the cause in CauseNet
and the effect in the question matches the effect in CauseNet. For
(3), we take advantage of the additional meta-information available
in CauseNet [13]. For each causal pair, CauseNet contains the origi-
nal sentence from which the pair was extracted. Given a question 𝑞
and a path (𝑒1, . . . , 𝑒𝑛) our agent found for that question, we extract
the original sentence for each causal pair (𝑒𝑖 , 𝑒𝑖+1), with 0 ≤ 𝑖 < 𝑛,
on the path 𝑝 . We concatenate the sentences for all paths and all
pairs therein and input the sequence into the language model as
context.

Evaluation Measures. We evaluate our agent for binary question
answering using the standard classification measures accuracy, 𝐹1-
score, precision, and recall. Additionally, we evaluate our agent and
the BFS baselines w.r.t. the number of unique nodes (entities) that
are visited per question on average.

5
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Hyperparameter Optimization. We optimized hyperparameters
using Optuna [1] on the validation sets and subsequently retrained
on the combined training and validation sets. We trained each agent
for 2000 steps with a batch size of 128 and a learning rate of 0.0001.
The hidden dimension of the feedforward heads was set to 2048.
Additionally, we set the discount factor𝛾 to 0.99 and the 𝜆 parameter
of GAE to 0.95 [35]. The weight 𝛽 for the entropy regularization
was set to 0.01. During supervised learning we used 300 training
steps, a batch size of 64, and a supervised ratio 𝛼 of 0.8. Moreover,
we used a beam width of 50.

Implementation Details. Weused the AdamW [24] optimizer with
gradient norm clipping [28] at a value of 0.5. As knowledge graph
we used CauseNet-Precision [13] and to embed the entities and
questions we used GloVe embeddings [30]. For the UnifiedQA-v2
baseline we chose the base model [20, 21]. All experiments were
run on a NVIDIA A100 40GB. Additional details can be found in
our GitHub repository (URL see above).

4.2 Evaluation of the RL Agent
The last column of Table 2, compares the number of visited nodes
by our approach with a brute-force BFS. Our approach visits less
than 30 nodes per question on average whereas a BFS visits over
3,000 nodes to answer binary questions with 3 or 4 hops. Thus, our
approach effectively prunes the search space by 99%. The fact that
the number of nodes visited by BFS barely increases from 3 to 4
hops can be attributed to the topology of CauseNet.

The first columns of Table 2 compare the question-answering
performance of our agent with the BFS and the language model
UnifiedQA. We can observe that our agent achieves better precision
for all configurations. In terms of F1 measure, our agent comes
close to the performance of the BFS and UnifiedQA. On SemEval,
the results of BFS are worse in the 3-Hop setting compared to
the 2-Hop setting due to the introduction of many false positives
through inverse edges.8 As we discuss in 5, inverse edges can lead
to mistakes by potentially introducing false positives. When going
from 2 hops to 3 hops on SemEval, it is possible to reach more false
positives than before. This is especially indicated by the reduction
of precision from 0.937 to 0.750. In contrast, our agent mitigates this
problem by pruning the search space and avoiding paths leading to
wrong answers, still achieving a precision of 0.929. Compared to
BFS, our agent has several advantages: (1) it prunes the search space
and decreases the number of visited nodes by around 99%, (2) it
can avoid false positives introduced by inverse edges and errors
in CauseNet as shown above, (3) it can be extended to open-ended
causal questions as discussed in Section 5.

Comparing our approach to a language model such as UnifiedQA,
we observe that we consistently achieve a high precision above or
around 0.9 whereas UnifiedQA only achieves a precision around
0.5. We attribute this to the tendency of UnifiedQA-v2 to guess and
answer with “yes” most of the time. This works relatively well on
MS MARCO dataset that is skewed towards positive questions (85%
positive, 15% negative) and less so on SemEval that is balanced at
8The results of BFS 3-Hop on SemEval are improved when not using inverse edges.
However, using inverse edges improves the results for all other configurations. Thus,
we included them in the graph as they also improve the performance of our agent, as
shown in the ablation study in Section 4.3.

Table 2: Evaluation results of our agent on the MS MARCO
and SemEval test sets compared to the BFS baseline and
UnifiedQA-v2 baseline. The table reports the accuracy: A,
F1-Score: F1, recall: R, precision: P, and the average number
of nodes that were visited per question |Nodes|. The results
for UnifiedQA-v2 using triples or paths of the agent as con-
text are denoted as UnifiedQA-v2-T and UnifiedQA-v2-P.

MS MARCO

A F1 R P |Nodes|

BFS 1-Hop 0.259 0.241 0.139 0.912 56.98
BFS 2-Hop 0.494 0.612 0.471 0.875 1726.71
BFS 3-Hop 0.589 0.714 0.605 0.871 3338.75
BFS 4-Hop 0.612 0.734 0.632 0.876 3494.94

UnifiedQA-v2 0.722 0.828 0.789 0.871 –
UnifiedQA-v2-T 0.741 0.843 0.821 0.867 –
UnifiedQA-v2-P 0.661 0.789 0.740 0.842 –

Agent 1-Hop 0.255 0.234 0.135 0.909 14.02
Agent 2-Hop 0.460 0.562 0.408 0.901 25.76
Agent 3-Hop 0.529 0.648 0.511 0.884 26.75
Agent 4-Hop 0.536 0.657 0.525 0.880 27.19

SemEval

A F1 R P |Nodes|

BFS 1-Hop 0.665 0.508 0.345 0.968 35.14
BFS 2-Hop 0.815 0.787 0.678 0.937 1565.20
BFS 3-Hop 0.751 0.754 0.759 0.750 3686.83
BFS 4-Hop 0.751 0.754 0.759 0.750 3843.54

UnifiedQA-v2 0.497 0.653 0.943 0.500 –
UnifiedQA-v2-T 0.503 0.659 0.954 0.503 –
UnifiedQA-v2-P 0.566 0.651 0.805 0.547 –

Agent 1-Hop 0.647 0.460 0.299 1.000 13.43
Agent 2-Hop 0.769 0.714 0.575 0.943 26.83
Agent 3-Hop 0.775 0.727 0.598 0.929 28.60
Agent 4-Hop 0.751 0.699 0.575 0.893 29.09

around 50%. Moreover, in contrast, due to CauseNet, we can provide
a source for each causal edge encountered on a path.

Moreover, as described in Section 4.1, we evaluated the effec-
tiveness of providing triples (UnifiedQA-v2-T) from CauseNet as
additional context to the language model as well as providing paths
found by our agent as additional context to a language model
(UnifiedQA-v2-P). The results indicate that UnifiedQA-v2-T slightly
outperforms the vanilla UnifiedQA-v2 without context as well as
UnifiedQA-v2-T with triples.

4.3 Ablation Study
In our ablation study in Table 3, we investigate the performance
impact of the components of our approach. We try out the follow-
ing configurations: (1) without supervised learning, i.e., we run
Algorithm 1 directly and train the policy and value network with
policy gradients from scratch, (2) without Actor-Critic, we remove
the critic and only run the REINFORCE algorithm, (3) we remove
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Table 3: Results of the ablation study, where we compare
different configurations of our approach by removing (–) dif-
ferent components. The evaluationmeasures are abbreviated
as follows: accuracy: A, 𝐹1-Score: F1, recall: R, precision: P.

MS MARCO SemEval

A F1 R P A F1 R P

Agent 2-Hop 0.460 0.562 0.408 0.901 0.769 0.714 0.575 0.943

− Beam Search 0.293 0.306 0.184 0.911 0.613 0.374 0.230 1.000
− Supervised Learn. 0.342 0.397 0.257 0.891 0.682 0.538 0.369 1.000
− Actor-Critic 0.441 0.539 0.386 0.896 0.740 0.657 0.494 0.977
− Inverse Edges 0.422 0.513 0.359 0.899 0.740 0.651 0.483 1.000
− LSTM 0.426 0.518 0.363 0.900 0.738 0.646 0.475 1.000

the beam search and use greedy decoding to only sample the most
probable path, (4) without inverse edges in the graph, (5) without
LSTM only using the two feedforward networks.

Overall, beam search has the biggest impact on performance.
When beam search is exchanged for greedy decoding, the accuracy
drops from 0.460 to 0.293 on MS MARCO and from 0.769 to 0.613 on
SemEval. Notably, greedy decoding slightly increases the precision
on MS MARCO and does reach a precision of 1.0 compared to the
0.943 of beam search on SemEval. Thus, the number of false posi-
tives decreases when only using the most probable path. Supervised
learning has the second highest impact and we analyze it in more
detail below. Next, the Actor-Critic algorithm only has a minor
impact with a difference of around 0.02-0.03 points accuracy on
both datasets. Similarly, the removal of inverse edges results in a
slight decrease in overall performance but an increase in precision
on the SemEval dataset to 1.0. That is because the removal of in-
verse edges reduces the probability of finding false positives, as
discussed in Section 5. Using a feedforward network instead of an
LSTM slightly decreases peformance, too. We attribute this to the
fact that a pure feedforward network can only encode a single node
whereas an LSTM can capture a broader context of a node, namely
the previously visited nodes on the path. In future work, inspired by
Almasan et al. [2], we would like to capture an even larger context
of nodes (e.g., 1-hop or 2-hop neighborhood) by employing a graph
neural network (GNN).

4.4 Effects of Supervised Learning
We compare the performance of the agent when using different
numbers of supervised training steps. Figure 2 shows the accuracy
of the agent on the SemEval [37] test set depending on the number
of reinforcement learning training steps. Each of the three runs
was bootstrapped with a different number of supervised training
steps. Thus, at step 0, we can see the accuracy directly after su-
pervised learning without any training via reinforcement learning.
We observe that the run with 100 steps is significantly worse than
the runs with 200 and 300 steps. It starts at around 0.67 directly
after supervised learning and increases to around 0.72. Whereas the
difference between 200 to 300 steps is already a lot smaller. Both
start between 0.72 and 0.73 and follow similar trajectories after-
ward to reach an accuracy of around 0.76 after 2000 reinforcement
learning steps. To maintain the clarity of the figures, we did not
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Figure 2: Accuracy of the agent on the SemEval test set de-
pending on the number of reinforcement learning training
steps. Each run was bootstrapped with a different number
of supervised training steps. Step 0 shows the performance
directly after supervised learning.
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Figure 3: Number of unique paths explored during reinforce-
ment learning training on the left and the mean entropy of
the action distribution of the policy network on the right.
Each run was bootstrapped with a different number of su-
pervised training steps.

include a run with 400 steps, but the trend of diminishing returns
on the number of supervised steps continues. This suggests that
increasing the number of supervised steps beyond 300 does not
improve performance. Likewise, we observed similar results on the
MS MARCO [27] dataset.

Moreover, Figure 3 illustrates the number of unique paths ex-
plored during training on the left and the mean entropy of the
action distribution of the policy network on the right. Notably,
with an increasing number of supervised steps, the entropy of the
policy network drops significantly. Hence, the number of explored
paths during reinforcement learning also decreases as shown on
the left in Figure 3. These findings indicate that supervised learning
effectively establishes a strong foundation for the reinforcement
learning agent. For example, an agent trained with 300 supervised
steps only explores 21.6% of the paths of an agent without any
supervised steps at the start. Accordingly, the agent trained with
300 supervised steps can exploit the knowledge acquired during
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Table 4: Some examples that our agent found. Each example
consists of a cause, an effect, and a path between them. For
each path, we indicate whether the agent used a normal cause
edge, the STAY action, or an inverse edge cause−1.

Cause: h. pylori Effect: vomiting

Path: h. pylori
cause
=⇒ peptic ulcer disease

cause
=⇒ vomiting

STAY
=⇒ vomiting

Cause: Xanax Effect: hiccups
Path: Xanax

cause
=⇒ anxiety

cause
=⇒ stress

cause
=⇒ hiccups

Cause: chocolate Effect: constipation

Path: chocolate
cause
=⇒ constipation

cause
=⇒ depression

cause−1
=⇒ constipation

supervised learning to follow better paths. In contrast, the agent
without any supervised learning steps requires more exploration
and fails to achieve the same performance, as shown in Table 3.

4.5 Examples
In Table 4, we illustrate a few example paths found by our agent.
The paths can be used to follow the complete reasoning chain to
examine the mechanisms of how a cause produces an effect. For
example, the first path indicates that the bacterium helicobacter
pylori can lead to the development of peptic ulcer disease, which
can lead to vomiting. This example also demonstrates the agent’s
ability to utilize the STAY action.

Moreover, the agent learned to use inverse edges to recover from
mistakes. In the third example, the agent went one step too far,
from constipation to depression, and used an inverse edge afterward
to return to the constipation entity.

5 DISCUSSION
Inverse Edges. For CauseNet [13], the addition of inverse edges

implies that the agent can also walk from an effect to its cause. In
general, their addition has a few benefits, like the possibility to
undo wrong actions and to reach nodes that otherwise could not be
reached under a given path length constraint. Conversely, they also
introduce the possibility to make mistakes through false positives.
While these mistakes will always happen for the BFS, our agent
can minimize them by pruning the search space, as demonstrated
in our experiments in Section 4.2.

Moreover, it might not always be clear that it makes sense to
take an inverse edge in theory. For example, given a question like
“Does X cause Y?”, we start the search at 𝑋 . If we take an inverse
edge from an entity 𝑍 to 𝑌 at some point during the search, it
does not directly follow that 𝑋 causes 𝑌 in theory. However, as
our experiments show (Section 4.3), adding inverse edges improves
performance in practice, so their benefits seem to outweigh the
pitfalls. This is in line with prior works that also added inverse
edges to improve performance [6, 48].

Additional Causal Question Types. At the moment, our approach
only supports binary causal questions. In the following, we discuss
a straightforward extension to open-ended questions. For example,

questions like “What causes X?” or “What are the effects of X?”, i.e.,
questions that ask for the cause of a given effect or vice versa.

Contrary to binary causal questions, we no longer have to verify
a given causal relation but search for a suitable entity. Therefore,
we need to change the decoding at inference time since we no
longer know the entity we are looking for. Thus, we can introduce
a majority voting approach. Given a question like “What causes
pneumonia?”, we still sample multiple paths from the agent. Next,
we count the occurrence of the entities as endpoints on these paths
and select the one with the highest count as the answer. Alterna-
tively, we can conduct the ranking by summing their probabilities
on different paths. Moreover, we can also provide multiple answers
by selecting the top-n candidates. Overall, this approach only re-
quires minor changes to our current code base. To answer more
complex questions like “How does smoking cause cancer?”, we can
run the agent to answer the question as if it were a binary question
and then use the paths and provenance data as explanations.

Explainability of Causal Questions. Our approach has the advan-
tage of not only being able to answer binary causal questions but
also providing explanations in the form of paths. Of course, this
only holds for questions that were answered with “yes” because
CauseNet [13] does not contain negative information.

As the examples in Section 4.5 show, the paths found during
inference can be used to follow the complete reasoning chain. Thus,
we can inspect the paths to examine the specific mechanisms by
which the cause produces the effect, potentially through a chain
of multiple entities. Moreover, since the agent might find multiple
paths between a cause and effect pair, we can showcase multiple
ways in which the cause and effect are related.

Finally, we can use the additional provenance data that is part
of each relation [13]. For example, we can reference the original
sentence from which the relation was extracted, which may provide
additional insights. Furthermore, each relation contains the URL of
the original web source, which can be checked to verify the causal
relations and receive further information.

6 CONCLUSION
In this paper, we propose the first reinforcement learning approach
for answering binary causal questions on knowledge graphs. Given
a question “Does X cause Y?”, we model the problem of finding
causal paths as a sequential decision process over the causality
graph CauseNet. We evaluate our approach on two causal ques-
tion answering datasets. The results show that our reinforcement
learning agent efficiently prunes the search space. Unlike language
model-based approaches, our graph-approach with CauseNet yields
high-precision and verifiable answers: for each single edge on a
path, we can provide its original source on the web. In future work,
we will extend the approach to open-ended causal question answer-
ing, as discussed in Section 5.
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Table 5: Statistics of CauseNet, including its precision, num-
ber of entities, and number of relations as reported by Hein-
dorf et al. [13].

Graph Precision |Entities| |Relations|

CauseNet 96% 80,223 197,806

7 APPENDICES
In this appendix, we give further details on the causality graph
CauseNet that our reinforcement learning agent traverses and how
we constructed the dataset of causal questions. Moreover, we give
additional details on howwe train our reinforcement learning agent.
Finally, we report additional experiments regarding the beam width
in the decoding phase.

7.1 CauseNet
CauseNet [13] is a large-scale causal knowledge graph of causal
relations that were extracted from web sources like Wikipedia and
ClueWeb129. Formally, CauseNet is defined asK = (E,R), where E
represents the set of entities andR is the set of relations. The entities
in CauseNet are single words or noun phrases, while the set of re-
lations contains only the mayCause relation, i.e., R = {𝑚𝑎𝑦𝐶𝑎𝑢𝑠𝑒}.
Figure 1 shows an excerpt from CauseNet. It shows the entity pneu-
monia together with some of its causes and effects. The causal rela-
tions are stored as triples, e.g., (𝑝𝑛𝑒𝑢𝑚𝑜𝑛𝑖𝑎,𝑚𝑎𝑦𝐶𝑎𝑢𝑠𝑒, 𝑠𝑒𝑝𝑠𝑖𝑠) ∈ K
where 𝑝𝑛𝑒𝑢𝑚𝑜𝑛𝑖𝑎, 𝑠𝑒𝑝𝑠𝑖𝑠 ∈ E. Moreover, CauseNet contains addi-
tional meta-information for each relation. Included are the original
source, i.e., the URL of the web page and the original sentence, if
applicable.

7.2 QA Dataset Construction
To construct a dataset of binary causal questions, we extracted
them from the Webis-CausalQA-22 corpus [3].10 Webis-CausalQA-
22 is a corpus for causal question answering containing around 1.1
million causal questions. The corpus was constructed by extracting
causal questions from ten well-known question answering datasets
including SQuAD v2.0 [33] and MS MARCO [27]. Other datasets
have few causal questions to begin with, e.g., NewsQA [43] and
HotpotQA [49], or are focused on open-ended question answering,
e.g., ELI5 [9].

To extract binary causal questions, we build on work by Heindorf
et al. [13] who extract questions via patterns of the form

[question word]? [cause/effect] [cue word] [cause/effect]

where the [question word] placeholder either represents one of
the question words from Table 7 or is empty. The [cue word]
placeholder represents words that are good indicators for causal
relations together with their appropriate prepositions. The original
approach only considers cause in different verb forms, e.g., infini-
tive, past, or progressive. We extend this to a greater number of
causal cue words. Specifically, we use the collection from Girju and
Moldovan [10] who curated a collection of causal cue words and
ranked them by their frequency and ambiguity, i.e., how often they
9https://lemurproject.org/clueweb12/
10https://zenodo.org/record/7476615

Table 6: Causal cue words for detecting binary causal ques-
tions. The list was curated by Girju and Moldovan [10] and
includes words that frequently indicate causality while hav-
ing low ambiguity.

Causal Cue Words

induce provoke relate (to) trigger off
give rise (to) arouse link (to) bring on

produce elicit stem (from) result (from)
generate lead (to) originate trigger

effect derive (from) bring forth cause
bring about associate (with) lead up

Table 7: Question words used for binary question extraction
(left) and POS tags used for exclusion (right).

Question Words

is do
can does

might did
would will
could are
may

POS-Tag Description

CC Coordinating conjunction
IN Preposition or subordinating conj.
TO To-prepositions
WDT Wh-determiner
WP Wh-pronoun
WRB Wh-adverb

appear in text and how often they refer to a causal relation. Among
these, we selected the ones that were ranked with high frequency
and low ambiguity. Table 6 shows the full list of 23 words.

Moreover, the [cause/effect] placeholder represents causal
concepts, where one takes the role of the cause and the other the
role of the effect. The order depends on the question word and
the causal cue word. As done by Heindorf et al. [13], we place a
few restrictions on the questions to keep the concepts simple and
increase the probability that they can be found in CauseNet. The
restrictions are enforced by filtering questions based on POS-Tags
from the Stanford CoreNLP [25], e.g., we disallow coordinating
conjunctions and subordinating conjunctions. The full list is shown
in Table 7 on the right. Finally, we check whether the questions are
answered with “yes” or “no” and remove any further explanation.

7.3 Pseudocode for Training the Reinforcement
Learning Agent

In the following, we describe the training procedure of our re-
inforcement learning agent. This includes the pre-processing of
the questions, the sampling of path rollouts, and the update rules
for the weights of the agent. We start with the observation that
CauseNet [13] does not contain negative information. Thus, we
only train the agent on positive causal questions, i.e., questions
whose answer is “yes”. Similarly, we must remove all questions
where the cause, effect, or both cannot be found in CauseNet.

Algorithm 1 displays the pseudocode of the whole training phase.
The pseudocode assumes that only positive causal questions, where
cause and effect can be found in CauseNet, remain in the given
𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑠 . First, we pre-process the questions by linking the cause
and effect to the corresponding entities 𝑒𝑐 and 𝑒𝑒 in CauseNet. This

10
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1 Input: Knowledge graph K , questions 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑠 ,
optimization steps 𝑠𝑡𝑒𝑝𝑠 , batch size 𝐵, path rollout length
𝑇 , learning rate 𝑙𝑟 , entropy weight 𝛽 , discount factor 𝛾 ,
GAE lambda 𝜆

2 Output: Trained Agent 𝜃 ,𝜓
3 Function Training(K , 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑠 , 𝑠𝑡𝑒𝑝𝑠 , 𝐵, 𝑇 , 𝑙𝑟 , 𝛽 , 𝛾 , 𝜆):
4 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑠 = [ ]
5 for each 𝑞 in 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑠 do
6 Link the cause and effect of 𝑞 to entities 𝑒𝑐 , 𝑒𝑒 in K
7 Compute embeddings q, ec for 𝑞, 𝑒𝑐
8 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 ((q, 𝑒𝑐 , ec, 𝑒𝑒 ))
9 end

10

11 Initialize agent weights 𝜃 ,𝜓
12 𝑝𝑎𝑡ℎ_𝑟𝑜𝑙𝑙𝑜𝑢𝑡𝑠 = [ ]
13 𝑠𝑡𝑒𝑝 = 0
14 while step < steps do
15 𝑝𝑎𝑡ℎ_𝑟𝑜𝑙𝑙𝑜𝑢𝑡 = [ ]
16 (q, 𝑒𝑐 , ec, 𝑒𝑒 ) =

𝑆𝑎𝑚𝑝𝑙𝑒𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑠)
17 𝑠0 = (q, 𝑒𝑐 , ec, 0, 𝑒𝑒 )
18 for 𝑡 = 0 to 𝑇 − 1 do
19 𝑎𝑡 = 𝑆𝑎𝑚𝑝𝑙𝑒𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 (𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ))
20 Receive state 𝑠𝑡+1 = 𝛿 (𝑠𝑡 , 𝑎𝑡 ) and reward

𝑟𝑡 = R(𝑠𝑡+1)
21 𝑝𝑎𝑡ℎ_𝑟𝑜𝑙𝑙𝑜𝑢𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 ((𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 ))
22 end
23

24 𝑝𝑎𝑡ℎ_𝑟𝑜𝑙𝑙𝑜𝑢𝑡𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑝𝑎𝑡ℎ_𝑟𝑜𝑙𝑙𝑜𝑢𝑡)
25 if |𝑝𝑎𝑡ℎ_𝑟𝑜𝑙𝑙𝑜𝑢𝑡𝑠 | = 𝐵 then
26 Compute the GAE A𝜓

𝑡 and 𝜆-returns 𝑅𝑡 (𝜆) for
each episode in 𝑝𝑎𝑡ℎ_𝑟𝑜𝑙𝑙𝑜𝑢𝑡𝑠 using 𝜆,𝛾

27 𝑝𝑜𝑙𝑖𝑐𝑦_𝑢𝑝𝑑𝑎𝑡𝑒, 𝑣𝑎𝑙𝑢𝑒_𝑢𝑝𝑑𝑎𝑡𝑒 = 0
28 for each ((𝑠0, 𝑎0, 𝑟0,A𝜓

0 , 𝑅0 (𝜆)), . . . ,
29 (𝑠𝑇−2, 𝑎𝑇−2, 𝑟𝑇−2,A

𝜓

𝑇−2, 𝑅𝑇−2 (𝜆))) in
path_rollouts do

30 𝑝𝑜𝑙𝑖𝑐𝑦_𝑢𝑝𝑑𝑎𝑡𝑒 +=∑𝑇−2
𝑡=0 ∇𝜃 log𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ) A

𝜓
𝑡

31 𝑣𝑎𝑙𝑢𝑒_𝑢𝑝𝑑𝑎𝑡𝑒 += ∑𝑇−2
𝑡=0 ∇𝜓 (𝑅𝑡 (𝜆)−𝑉𝜓 (𝑠𝑡 ))2

32 end
33 Compute the entropy regularization term 𝐻𝜋𝜃

34 𝑝𝑜𝑙𝑖𝑐𝑦_𝑢𝑝𝑑𝑎𝑡𝑒 = − 𝑝𝑜𝑙𝑖𝑐𝑦_𝑢𝑝𝑑𝑎𝑡𝑒
|𝑝𝑎𝑡ℎ_𝑟𝑜𝑙𝑙𝑜𝑢𝑡𝑠 | ,

𝑣𝑎𝑙𝑢𝑒_𝑢𝑝𝑑𝑎𝑡𝑒 = 𝑣𝑎𝑙𝑢𝑒_𝑢𝑝𝑑𝑎𝑡𝑒
|𝑝𝑎𝑡ℎ_𝑟𝑜𝑙𝑙𝑜𝑢𝑡𝑠 | · (𝑇−1)

35 𝜃 = 𝜃 − 𝑙𝑟 · (𝑝𝑜𝑙𝑖𝑐𝑦_𝑢𝑝𝑑𝑎𝑡𝑒 + 𝛽𝐻𝜋𝜃 )
36 𝜓 = 𝜓 − 𝑙𝑟 · 𝑣𝑎𝑙𝑢𝑒_𝑢𝑝𝑑𝑎𝑡𝑒
37 𝑝𝑎𝑡ℎ_𝑟𝑜𝑙𝑙𝑜𝑢𝑡𝑠 = [ ]
38 𝑠𝑡𝑒𝑝 = 𝑠𝑡𝑒𝑝 + 1
39 end
40 end
41 return 𝜃

Algorithm 1: Pseudocode of the training procedure for the
policy network 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ) and value network 𝑉𝜓 (𝑠𝑡 ).

is followed by the computation of embeddings for the question and
entities.11 Next, the weights 𝜃 and 𝜓 of the agent are initialized.
In the default setup, both are initialized randomly. In the case of
a preceding supervised learning phase (Section 3.6), the weights
of the policy network 𝜃 are initialized with the resulting weights
from the supervised learning.

Afterward, we start sampling path rollouts from the environment
via the current policy network 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ). Each path rollout has the
same length𝑇 . Hence, the agent should learn to use the STAY action
in case it arrives at the target entity before a length of 𝑇 is reached.
Given a pre-processed question 𝑞, we construct the first state 𝑠0.
Subsequently, the agent interacts with the environment for 𝑇 time
steps. At each time step, the agent applies an action 𝑎𝑡 and receives a
reward 𝑟𝑡 while the environment evolves via the transition function
𝛿 (𝑠𝑡 , 𝑎𝑡 ) to the next state 𝑠𝑡+1. This procedure is continued until a
full batch of path rollouts is accumulated.

The training of the agent is facilitated via the Synchronous Ad-
vantage Actor-Critic (A2C) [26] algorithm. The policy network
𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ) takes the role of the actor while the value network𝑉𝜃 (𝑠𝑡 )
takes the role of the critic. We briefly experimented with Proximal
Policy Optimization (PPO) [36] but found no significant perfor-
mance improvements. Thus, the update rule for the policy network
𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ) becomes

∇𝜃 𝐽 (𝜃 ) = − 1
𝐵

𝐵∑︁
𝑖

𝑇−2∑︁
𝑡=0

∇𝜃 log(𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )) A
𝜓
𝑡 (6)

where 𝐵 is the batch size, T the path rollout length, and A𝜓
𝑡 the

generalized advantage estimate (GAE) [35]. GAE introduces two
hyperparameters, the discount factor 𝛾 and a smoothing factor 𝜆
which controls the trade-off between bias and variance [35, 42].

As commonly done, we add an entropy regularization term to
the objective [6, 18]. The entropy regularization should help the
agent with the exploitation vs. exploration tradeoff. Specifically,
it should encourage exploration during training and the resulting
policy should bemore robust and have a higher diversity of explored
actions. We compute the average entropy of the action distribution
of 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ) over all actions 𝑎𝑡 ∈ A(𝑠𝑡 ) at each time step 𝑡 and take
the average over the whole batch:

𝐻𝜋𝜃 =
1

𝐵(𝑇 − 1)

𝐵∑︁
𝑖

𝑇−2∑︁
𝑡=0

(−
∑︁

𝑎𝑡 ∈A(𝑠𝑡 )
𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ) log𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )) (7)

The final update for the policy network becomes

𝜃 = 𝜃 − 𝑙𝑟 · (∇𝜃 𝐽 (𝜃 ) + 𝛽𝐻𝜋𝜃 ) (8)

where 𝑙𝑟 is the learning rate and 𝛽 is a hyperparameter that deter-
mines the weight of the entropy regularization term.

Simultaneously, we update the value network 𝑉𝜓 (𝑠𝑡 ) via the
mean-squared error between the 𝜆-return and the predictions of
the value network

∇𝜓 𝐽 (𝜓 ) =
1

𝐵(𝑇 − 1)

𝐵∑︁
𝑖

𝑇−2∑︁
𝑡=0

∇𝜓 (𝑅𝑡 (𝜆) −𝑉𝜓 (𝑠𝑡 ))2 (9)

11We use GloVe [30] embeddings to embed the questions and entities. For more details,
see Section 4.1.
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Figure 4: Accuracy on the MS MARCO test set depending on
the number of reinforcement learning training steps. Each
run uses a different beam width.

where 𝑅𝑡 (𝜆) is the 𝜆-return [29, 42]. Therefore, the update for the
value network becomes:

𝜓 = 𝜓 − 𝑙𝑟 · ∇𝜓 𝐽 (𝜓 ) (10)

7.4 Decoding Analysis
In the following, we investigate the effects of different beam widths
on the MS MARCO test set. We experiment with beam widths of
1, 5, 10, and 50 and present the results in Figure 4. As the beam
width increases, accuracy also increases. For example, the differ-
ence between a width of 1 and a width of 50 is 0.09 points accuracy
after 2000 steps. In general, beam search can be viewed as an in-
terpolation between greedy decoding and BFS. If the beam width
is set high, the agent performs close to an exhaustive search. We
can already observe this effect when looking at step 0. As the beam
width increases, the accuracy without any learning also increases
slightly, e.g., for widths of 10 and 50 from 0.18 to 0.21. Having said
this, even beam width 50 only starts at 0.21 and still has a lot of
learning progress afterward and the performance of width 50 does
not reach the performance of supervised learning suggesting that
50 is still a reasonable beam width.
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