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Abstract

Prevailing alignment methods induce opaque parameter changes, obscuring what
models truly learn. To address this, we introduce Feature Steering with Rein-
forcement Learning (FSRL), a framework that trains a lightweight adapter to steer
model behavior by modulating interpretable sparse features. First, we theoreti-
cally demonstrate that this mechanism is expressive enough to approximate the
behavioral shifts of post-training processes. We then apply FSRL to preference
optimization and perform a causal analysis of the learned policy. Our analysis
reveals a crucial insight: the model learns to reward stylistic presentation as a proxy
for quality, disproportionately relying on features related to style and formatting
over those tied to alignment concepts like honesty. By effectively optimizing
the preference objective, FSRL serves as a transparent proxy for observing the
alignment process. Overall, FSRL offers an interpretable control interface and a
practical way to diagnose how preference optimization pressures manifest at the
feature level.

1 Introduction

Large Language Models (LLMs) are typically aligned with human preferences through post-training
methods like Reinforcement Learning from Human Feedback (RLHF) (1). This fine-tuning induces
parameter updates across the model’s underlying weights. Consequently, the newly learned alignment
behaviors and the model’s original capabilities are encoded in the same parameters, making them
difficult to disentangle. When models trained with RLHF subsequently exhibit undesirable behaviors
like sycophancy or reward hacking (2; 3), identifying their root cause becomes challenging. This
opacity motivates the need for tools that can decompose the alignment process into transparent,
auditable components.

Mechanistic interpretability offers a way to make alignment more transparent by exposing and
manipulating a model’s internal concepts. At its core is the Linear Representation Hypothesis, which
suggests that high-level concepts correspond to linear directions in activation space (4). Sparse
Autoencoders (SAEs) provide a practical method for uncovering these directions by decomposing
dense activations into a sparse basis of largely monosemantic features (5; 6). These features capture
diverse phenomena, ranging from “code syntax” to “flattery”, and can often be assigned interpretable
labels using automated methods (5; 7; 8). The resulting feature vocabulary enables not only analysis
of what models represent, but also a potential interface for directly steering their behavior.
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Building on this foundation, we propose Feature Steering with Reinforcement Learning (FSRL),
a framework that uses the interpretable feature vocabulary in SAEs as a direct interface for alignment.
Conceptually, FSRL acts as a ‘Feature Adapter’- combining the dynamic, input-dependent control of
parameter-efficient fine-tuning with the transparency of feature steering. Instead of fine-tuning the
entire model, FSRL operates on a frozen LLM together with its SAE, and trains a lightweight adapter
with reinforcement learning to learn a policy for modulating SAE features, as illustrated in Figure 1.
This design keeps the model’s underlying capabilities intact in the frozen LLM, while channeling the
learned alignment behavior through steering interpretable SAE features.

Contributions In this work, we introduce Feature Steering with Reinforcement Learning (FSRL),
a framework that aligns a frozen LLM by training a lightweight adapter to steer its interpretable
SAE features. We first establish the soundness of this approach by theoretically demonstrating
that FSRL’s activation-space corrections are functionally equivalent to a class of LoRA updates.
Empirically, FSRL effectively optimizes the preference objective on UltraFeedback, though we find
this optimization degrades generation coherence. We then leverage FSRL’s transparency to perform
a causal analysis of the learned policy. This analysis reveals a crucial insight: the model learns to
reward stylistic presentation as a proxy for quality, disproportionately relying on features related
to style over those tied to alignment concepts like honesty. Finally, we validate this mechanism by
ablating style features, showing that this surgical intervention partially restores generation quality.
These findings establish FSRL as a general method for diagnosing how alignment pressures manifest
at the feature level.
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Figure 1: The FSRL Framework for Interpretable Alignment. (a) FSRL Architecture: At a given
layer, the original activation vector is processed by a trainable adapter. The adapter outputs a sparse
vector of steered features, which are transformed by a frozen SAE decoder into a correction vector.
This correction is added to the original activation to steer the model’s behavior. (b) Application for
Mechanistic Insight: FSRL replaces opaque alignment processes with a transparent one by learning
a policy over a basis of interpretable, monosemantic SAE features. This allows the learned alignment
pressures to be decomposed into concrete actions on meaningful concepts.

2 Background

We build on three key components: Sparse Autoencoders (SAEs) for creating an interpretable
interface, Simple Preference Optimization (SimPO) to optimize a policy on a preference dataset, and
a large annotated dataset to train our system.

Sparse Autoencoders (SAEs) SAEs are an unsupervised method for representing model activations
as a sparse set of interpretable features (5; 9). Each SAE consists of an encoder and a decoder. Given
a model’s hidden activation x ∈ Rd, the encoder first maps it into a higher-dimensional feature vector
f ∈ Rdsae with dsae > d:

f = ReLU(Wencx+ benc), (1)
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where Wenc ∈ Rdsae×d and benc are encoder parameters. The decoder then reconstructs the original
activation from f :

x̂ =Wdecf + bdec, (2)

where Wdec ∈ Rd×dsae and bdec are decoder parameters. The columns of Wdec form a dictionary of
learned feature vectors. In particular, SAEs are trained such that each activation can be decomposed
into only a few features, achieved by adding an ℓ1 penalty to the reconstruction loss. The total loss
function is therefore:

L(x) = ∥x− x̂∥22 + α∥f∥1, (3)

where α is a hyperparameter that controls the trade-off between reconstruction fidelity and feature
sparsity. While this formulation is common, other SAE variants achieve sparsity through different
mechanisms, such as the JumpReLU activation function (6) or the Top-K operator (10).

SAE features can also be used for intervention. As each feature corresponds to a direction given by a
column of Wdec, modifying an activation x by x′ = x + λW

(i)
dec can steer the model’s behavior in

predictable ways. This property, known as feature steering, highlights that SAEs features are not only
descriptive, but can also be used as actionable controls on model behavior.

Simple Preference Optimization (SimPO) SimPO is an efficient algorithm for aligning language
models with human preferences (11). It operates directly on a dataset D of preference triplets
(x, yw, yl), where x is a prompt, yw is the preferred (chosen) response, and yl is the less preferred
(rejected) response.

The objective is a modified Bradley-Terry loss with a target reward margin γ, which encourages the
model to confidently separate yw and yl:

LSimPO(πθ) = −E(x,yw,yl)∼D

[
log σ

(
β

|yw|
log πθ(yw|x)−

β

|yl|
log πθ(yl|x)− γ

)]
, (4)

where β is the temperature/scaling parameter, |y| the sequence length and σ(·) the sigmoid function.

We adopt SimPO for its ability to match the performance of Direct Preference Optimization (DPO)
(12) without requiring a separate reference model. This makes it possible to efficiently train the
model (or FSRL adapter) directly on a preference dataset.

Preference Dataset In this work, we use the UltraFeedback dataset (13). Specifically, we utilize the
version of this dataset annotated with the Absolute-Rating Multi-Objective Reward Model framework
(14). Our choice of this dataset is motivated by its use in the SimPO paper, which allows for a direct
comparison, isolating the impact of our proposed FSRL framework rather than confounding it with
dataset variations.

3 Methodology

We present Feature Steering with Reinforcement Learning (FSRL), a framework for transparently
aligning LLMs by training a policy to steer sparse SAE features of a frozen model. In this section,
we describe the system architecture, the training procedure, and the experimental configuration used
for evaluation.

3.1 System Architecture

FSRL intervenes at a single chosen layer of a frozen LLM by steering the residual stream with a
sparse, learned set of feature directions (Figure 1). At this layer, the residual activation x ∈ Rd is
first translated by the SAE into a sparse feature vector f ∈ Rdsae . To decide how these features should
be modulated, the same x is also given to a trainable adapter πϕ, which outputs a sparse steering
vector v ∈ Rdsae . In effect, πϕ learns both the subset of features to target, as well as the direction and
magnitude in which to steer them.
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Adapter Implementation We implement the adapter as a single feedforward layer with parameters
ϕ = (Wa,ba, τ ), where Wa ∈ Rdsae×d, ba ∈ Rdsae , and τ ∈ Rdsae

+ is a vector of learnable positive
thresholds. Its output is produced by a coordinate-wise soft-thresholding activation function:

v = πϕ(x) = sign(Wax+ ba)ReLU(|Wax+ ba| − τ ). (5)

We adapt this activation function from learned approximations of sparse coding (15). Unlike a
standard ReLU, this function enables a tri-state intervention that improves interpretability: positive
values amplify a feature, negative values suppress it, and values in the dead zone between −τi and
+τi leave the feature unchanged. We validated this choice through architectural ablations detailed
in Appendix F, which confirm that the ability to both amplify and suppress features leads to a
significantly sparser and more effective policy than an amplification-only ReLU approach..

Applying Steering The steering vector v specifies how SAE features are modulated. We obtained
the steered activation by adding the decoded steering adjustment back into the residual stream:

xsteered = x+ Decoder(v). (6)

Hence, given the input activation, the adapter learns to output a steering vector v that steers the
model’s output to be better aligned with the preference objective. In practice, we implement the
update using a reconstruction-error variant (see Appendix A).

We favored this learned, dynamic approach over static heuristics. We empirically demonstrate that
static steering vectors fail to adequately minimize the preference loss compared to our dynamic
adapter (see Appendix H). Furthermore, we find that our learned sparsity policy is significantly more
efficient and sparser than fixed top-k budgets (see Appendix G). Beyond these performance benefits,
a trainable adapter allows the system to be optimized against any differentiable objective, ensuring
FSRL is flexible enough for applications beyond preference optimization.

3.2 Theoretical Justification

While FSRL can align models with the training objective in practice, it is important to establish
why its restricted form of intervention should, in principle, be expressive enough to match other
fine-tuning methods. To this end, our theoretical justification shows that FSRL is a principled
approach by demonstrating its functional equivalence to a restricted, yet powerful, class of low-rank
adaptation (LoRA) updates (16). While FSRL’s practical effectiveness is contingent on the capacity
of its underlying SAE, our theory shows that its adaptation mechanism is sound.

The core of our proof, detailed in Appendix B, is that FSRL’s activation-space corrections are
functionally equivalent to a class of input-dependent LoRA updates. The FSRL update, xsteered =
x + ∆(x), injects an additive correction into the residual stream. When passed to a downstream
linear layer, this is algebraically equivalent to applying an effective weight update, ∆W [x], whose
rank is dynamically determined by the number of actively steered SAE features.

This equivalence is significant because it connects FSRL to the established foundations of LoRA.
Recent work by Zeng and Lee (17) proved that LoRA possesses sufficient expressive power to
match a target model, given enough rank. While FSRL inherits these guarantees in principle, our
single-layer intervention is a constrained application of this theory. Specifically, the adapter’s policy
is conditioned only on the activation at one layer, meaning it cannot distinguish between different
upstream computational paths that yield the same activation vector. Despite this limitation, the
connection confirms FSRL as a valid optimization method. Crucially, because FSRL is constrained
to express its policy through the SAE’s interpretable basis, the policy it learns provides a robust and
transparent reflection of the optimization pressures driving the alignment task.

3.3 Training Configuration

The adapter’s parameters are optimized using the SimPO algorithm (11). To encourage a sparse and
interpretable policy, we augment the training objective with an ℓ1 penalty on the steering vector,
controlled by a coefficient α. In addition to this proxy-based sparsity, we also investigated a more
direct method using a JumpReLU activation (6) in the adapter to directly optimize the ℓ0 norm.
However, this proved to be difficult to tune within our framework (see Appendix E).
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We evaluate our approach on both the Gemma-2-2B-it and Gemma-2-9B-it models (18) using pre-
trained SAEs from GemmaScope (19). For training, we use the UltraFeedback dataset (13). Our
primary experimental decisions involved selecting the intervention layer and the sparsity coefficient.
We performed a sweep across transformer layers and α values for both models to identify configura-
tions that balanced steering vector sparsity with SimPO validation loss. We independently validated
this layer selection using a computationally cheaper linear probing heuristic (see Appendix C). De-
tailed methodology for these sweeps and the final hyperparameters for both models are provided in
Appendix D.

3.4 Comparative Evaluation

To contextualize the performance of our FSRL-steered models, we establish baselines for comparison.
For the 2B scale, we trained our own baseline consisting of the same instruction-tuned model fully
fine-tuned using the standard SimPO algorithm. For the 9B scale, to ensure a rigorous comparison
against the state-of-the-art and eliminate potential errors from our own training setup, we utilize the
official public model checkpoint provided by the SimPO authors. The training configuration for our
2B baseline mirrors that of our FSRL adapter where applicable, with a decrement in the learning rate
to ensure stable convergence (see Appendix D).

4 Validating the Alignment Policy

We emphasize that FSRL is designed as a diagnostic tool rather than a competitor to full fine-tuning.
Therefore, we benchmark the models primarily to verify that the adapter successfully captures the
optimization signal. We compare performance against the base models and their fully fine-tuned
SimPO counterparts, which serve as the non-interpretable performance ceiling.

We assess performance on MMLU (20) for general knowledge, TruthfulQA (21) for truthfulness, and
GSM8K (22) for mathematical reasoning. Evaluations were performed using the Language Model
Evaluation Harness (23). The results are presented in Table 1.

Table 1: Benchmark performance for Gemma-2-2B-it and Gemma-2-9B-it models. FSRL optimizes
the preference objective across model scales. Bold values indicate the best performance on a given
metric within each model size group. We denote TruthfulQA as TQA for brevity.

Model MMLU ↑ TQA (MC2) ↑ GSM8K ↑ Loss ↓

Gemma-2-2B-it
Baseline 30.11 55.77 53.45 6.99
SimPO Full 50.28 61.35 4.40 2.19
FSRL 41.95 56.10 7.05 2.58

Gemma-2-9B-it
Baseline 33.86 61.02 75.73 6.09
SimPO Full2 58.24 59.4 77.78 2.74
FSRL 43.69 62.08 0.00 2.46

Our results confirm that FSRL effectively optimizes the preference objective. Despite the theoretical
constraints of a single-layer intervention discussed in Section 3.2, the adapter successfully minimizes
preference loss across model scales. The 2B model illustrates a distinct trade-off: it preserves more
mathematical reasoning capabilities than the full fine-tune, though it lags in the other benchmarks.
The trend shifts at the 9B scale. Here, FSRL achieves the lowest preference loss and the highest
TruthfulQA score, surpassing even the fully fine-tuned baseline. This optimization comes at the
cost of a collapse in mathematical reasoning. We hypothesize this stems from the entanglement of
concepts within the SAE; the features necessary for preference optimization may be closely linked to
those required for mathematical ability, causing the adapter to disrupt reasoning capabilities when
optimizing for preferences despite the enforcement of a sparsity penalty.

5 Mechanistic Insights into the Alignment Process

Having established that FSRL successfully captures the optimization signal, we now leverage its
primary advantage: interpretability. To analyze the policy at a conceptual level, we developed an
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automated pipeline to classify SAE features based on their text-based explanations. We focus on
two categories: alignment features, which encompass abstract concepts such as ethics, safety, and
honesty; and style features, which relate to structural presentation elements like markdown syntax,
list formatting, and punctuation. This automated process was validated against manual annotations,
achieving reliable agreement with MCC scores ranging from 0.448 to 0.764 (details in Appendix J).

Examining Feature Activations To understand how the adapter uses different types of features, we
examine the composition of its feature activations. The FSRL adapter outputs a steering vector with
an average ℓ0 norm of 95 for the 2B model and 58 for the 9B model (compared to the SAE baselines
of 73 and 130). The 9B adapter is significantly sparser than its underlying SAE, while the 2B adapter
is slightly denser. Given these distinct shifts in density, a simple raw count of active features can be
misleading. We therefore analyze the proportion of active features belonging to a given category at
each token, relative to the base SAE’s activation patterns.

We measured this composition using activations derived from the preference dataset. As summarized
in Table 2, this analysis reveals a consistent strategy across scales. For both the 2B and 9B models,
the adapter learns to significantly decrease the proportional activation of alignment features (by∼43%
and ∼54% respectively) while simultaneously and substantially increasing the proportional activation
of style features (by ∼150% and ∼256% respectively). This opposing pattern suggests the learned
policy applies a general strategy of suppressing abstract alignment concepts in favor of amplifying
stylistic ones. However, activation frequency does not imply utility. We therefore employ causal
analysis to determine which of these actions drives optimization performance.

Table 2: Aggregate steering effect on the composition of active features for 2B and 9B models.
‘SAE Baseline‘ is the average proportion of active features in a category for the unmodified model.
‘Relative Change‘ is the percent change in this proportion caused by the FSRL adapter.

Model Feature Type SAE Baseline (%) Relative Change (%)

Gemma-2-2B-it Alignment 22.83 -43.52
Style 19.43 154.82

Gemma-2-9B-it Alignment 19.21 -54.19
Style 11.71 256.48

Intervening on Feature Activations For each category, we disabled the adapter’s intervention by
setting the corresponding components of its output steering vector to zero. We measured the impact
of this ablation directly on the SimPO loss. Using the training objective as the metric allows us
to make direct claims about the optimization process itself, revealing which feature categories are
responsible for minimizing the preference loss, rather than observing indirect effects on downstream
benchmarks. A null hypothesis where all features contribute equally would predict that the loss
increases in proportion to the number of features ablated. Our results in Table 3 deviate sharply from
this expectation.

Table 3: Causal contribution of feature categories for 2B and 9B models. ‘Features Ablated‘ is the
total number of features in a category. ‘Loss per Feature‘ normalizes the resulting increase in SimPO
loss by this count.

Model Ablation Condition Features Ablated SimPO Loss ↓ Loss per Feature

Gemma-2-2B-it

None (Full Steering) 0 2.58 –
Alignment Features 11,143 2.63 4.49× 10−6

Style Features 15,391 5.12 1.65× 10−4

Both Categories 26,534 5.45 1.08× 10−4

Gemma-2-9B-it

None (Full Steering) 0 2.46 –
Alignment Features 2,920 2.67 7.19× 10−5

Style Features 1,889 3.21 3.97× 10−4

Both Categories 4,807 4.10 3.41× 10−4
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The Loss per Feature column quantifies the disproportionate impact of each category. For the
2B model, the average loss increase per style feature is nearly 37 times greater than that of an
alignment feature. For the 9B model, while the gap narrows, style features still exhibit a causal
impact nearly 6 times greater than alignment features. We verify the robustness of this finding via a
sensitivity analysis in Appendix L, demonstrating that the causal primacy of style features remains
significant even under worst-case assumptions regarding classifier precision. This provides robust
causal evidence across scales that the policy prioritizes the manipulation of style features to achieve
its objective. Furthermore, we observe a significant non-linear interaction: ablating both categories
simultaneously often results in a performance drop exceeding the sum of the individual ablations,
suggesting entanglement between the model’s representations of style and alignment.

We term this phenomenon style-hacking—a specific form of reward hacking where the policy
minimizes loss by exploiting the reward signal’s sensitivity to presentation artifacts rather than
improving semantic content. This offers a direct mechanistic explanation for recent observations
that chatbot rankings are heavily influenced by stylistic factors (24). Our work reveals how this
phenomenon is encoded at a feature level: the alignment policy learns that precise control over style
is causally necessary to maximize the reward signal.

To provide qualitative evidence for this strategy, we examined the individual features most strongly
amplified in our adapter (Table 4). For the 2B model, the preference for style is very prominent, with
features controlling specific punctuation, such as em dashes, appearing among the most strongly
amplified. While this bias is not as immediately apparent in the top features of the 9B model, notable
stylistic and formatting concepts remain present in the list.

Table 4: Top 10 features ranked by mean positive activation. The 2B model’s most amplified features
are primarily related to style and document structure. While less direct, the top features for the 9B
model also show a bias towards structural and formatting elements.

Gemma-2-2B-it Gemma-2-9B-it
ID Description ID Description

8619 Punctuation in code 4185 French instructions/computer terms
30572 Code comments 9151 Beginning-of-sequence tokens
10827 Legal terminology 5038 Medical/health statistics
56395 Formatting in code/markup 9033 Software licensing legal terms
46406 Document start indicators 2469 Web dev: sessions & buttons
45950 Mathematical notation 10953 Transitional phrases (multi-lingual)

3876 Dashes and em-dashes in text 2857 Proper nouns (names, locations)
29393 Mathematical expressions 8668 Scientific study notations
15418 Paragraph beginnings 9807 Account verification processes
55930 Code assignment operators 15981 Code structures for updates

While analysis of individual features supports our central claim, the policy’s reliance on a broad set
of interventions is confirmed by the long-tail usage distribution of steered features (see Appendix I).
Therefore, the aggregate causal analysis provides the most comprehensive picture of the strategy
learned during preference optimization.

6 Ablating the Style Proxy

To test whether our mechanistic insights can guide the alignment process, we trained new FSRL
adapters with the style features identified in Section 5 masked out. By removing the features the
model previously relied upon, we force the policy to optimize the preference objective using only the
remaining feature vocabulary. We compare these "Style-Ablated" models against the standard FSRL
runs in Table 5.

Style Hacking vs. Truthfulness Ablating style features consistently improves TruthfulQA perfor-
mance across both model scales. This suggests that, for the Gemma family, the standard optimization
process minimizes loss by prioritizing style rather than improving fundamental capabilities like
truthfulness. This effect is most pronounced in the 2B model, where the ablated variant significantly
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Table 5: Comparison of Standard FSRL vs. Style-Ablated FSRL. Ablating style features leads to
higher TruthfulQA (TQA) scores across scales. The divergence in GSM8K performance highlights
the impact of feature entanglement in the underlying SAEs.

Model Variant MMLU ↑ TQA (MC2) ↑ GSM8K ↑ Loss ↓ L0 ↓

Gemma-2-2B-it Standard 41.95 56.10 7.05 2.58 95
Style-Ablated 42.34 60.13 1.97 3.90 78

Gemma-2-9B-it Standard 43.69 62.08 0.00 2.46 58
Style-Ablated 40.49 62.80 18.57 2.62 68

outperforms the standard model on TruthfulQA despite failing to minimize the preference loss (3.90
vs 2.58). While the 9B model also improves on TruthfulQA, the gain is marginal compared to the
smaller model, indicating that the clear separation between style-hacking and capability may diminish
or become more complex as model scale increases.

Feature Entanglement and Reasoning The impact on mathematical reasoning (GSM8K) diverges
across scales, revealing scale-dependent feature properties. In the 2B model, reasoning performance
drops (7.05 to 1.97) when style features are ablated. As detailed in Appendix N, our analysis suggests
that style features at this scale are highly polysemantic and central to computation. Ablating them
removes the adapter’s primary control surface, forcing a pivot to suboptimal features that destabilize
the reasoning trajectory. Conversely, the 9B model sees a significant recovery (0.00 to 18.57). We find
that style features here are relatively less entangled and auxiliary; their ablation removes optimization
interference without damaging core reasoning circuits.

Generation Quality and Coherence To assess open-ended generation quality, we evaluated our
models on AlpacaEval 2.0 (25), using Gemini 2.5 Flash as the annotator. We report length-controlled
win rates in Table 6.

Table 6: Length-controlled AlpacaEval 2.0 win rates and average completion lengths. Standard FSRL
models suffer a collapse in generation quality. Ablating style features recovers partial performance,
indicating these features drive much of the observed incoherence.

Model Variant Win Rate (%) ↑ Avg. Length

Gemma-2-2B-it
Baseline 8.48 1565
FSRL (Standard) 0.98 1095
FSRL (Style-Ablated) 2.93 1363

Gemma-2-9B-it
Baseline 34.71 1323
FSRL (Standard) 0.20 1532
FSRL (Style-Ablated) 5.57 1196

The results highlight a critical trade-off. Standard FSRL models suffer a collapse in win rates,
consistent with the qualitative degradation observed in Appendix M. SimPO explicitly discards the
KL divergence penalty, relying instead on a reduced learning rate to implicitly constrain the policy.
While this strategy successfully yields coherent models in the context of full fine-tuning (11), we
found it insufficient for our feature adapter. Manual inspection of samples from preliminary runs
showed that lowering the learning rate did not meaningfully improve FSRL’s coherence—a rigidity
that parallels the SimPO authors’ observation that learning rate variations had minimal impact on
the Gemma-2-9B model. We hypothesize that without the hard constraint of a KL penalty, the
FSRL adapter drives style-related features to extreme magnitudes to maximize the reward margin,
overwriting the semantic content necessary for coherent generation.

Ablating style features leads to a partial recovery (e.g., from 0.20% to 5.57% for the 9B model). While
this does not fully restore baseline performance, it confirms that style-hacking is a significant driver
of the observed incoherence. FSRL thus demonstrates that it is possible to perform "mechanistic
surgery" to specifically excise these reward-hacking pathways. While not yet completely effective at
restoring full capability, this targeted approach offers a promising alternative to the broad restraint of
a global KL penalty.
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7 Discussion

Our work introduces FSRL, an interpretable alignment framework that uses a lightweight adapter to
steer a model’s conceptual features. Because this adapter can be optimized against any differentiable
objective, FSRL opens the door for the community to audit a wide range of post-training methods
using a shared infrastructure. This approach amortizes the cost of interpretability: once a high-quality
SAE is trained and explained, it becomes a reusable instrument for diagnosing infinite variations of
alignment policies.

Our findings provide a mechanistic explanation for Goodhart’s Law in preference optimization. Our
causal analysis reveals that the model minimizes loss by prioritizing features related to stylistic
presentation over concepts like honesty, effectively treating surface-level polish as a proxy for quality.
Furthermore, the consistency of these findings across model scales suggests that mechanistic insights
derived from smaller, accessible models can predict the behavior of larger systems.

FSRL also presents an efficient alternative to model-diffing, the practice of analyzing internal
differences between a base and a fine-tuned model, by directly addressing its key methodological
challenge: feature stability. The transferability of SAEs is not guaranteed for instruction-tuned models
(26), particularly for specialized reasoning models that develop novel features (27). By design, FSRL
sidesteps this issue entirely by operating on a fixed, interpretable feature basis. This stable foundation,
in turn, is what enables direct causal analysis of the learned policy, allowing for targeted ablations to
determine which features are causally important for the task. While this prevents the discovery of
emergent concepts, it provides a controlled framework for auditing alignment pressures.

7.1 Limitations

Our approach’s primary limitation is its dependence on the quality of the underlying SAEs. The
extent to which SAE features represent true learned computations versus artifacts is an active area of
research (28). We mitigate this by using high-quality public SAEs from GemmaScope, though the
generalizability of any specific feature vocabulary remains an open question.

Furthermore, our analysis is confined to relatively small models, as scaling FSRL faces practical
hurdles. Extending this work to larger models is challenging due to library limitations for model
intervention, as well as the computational cost of training quality SAEs and obtaining reliable feature
explanations. This resource bottleneck extends to our analysis, where our causal claims are mediated
by an LLM-based classifier with moderate human agreement, introducing a layer of approximation.

Finally, our analysis is conducted exclusively on a single-layer intervention. While our theoretical
grounding in LoRA’s expressive power is important, the guarantees from cited work (17) suggest
a worst-case need for adaptation across all layers. Our empirical results provide strong evidence
that for a structured, pre-trained LLM, this constraint is not a practical barrier, as FSRL successfully
optimizes the preference objective.

7.2 Future Work

These limitations point toward several avenues for future work. A key direction is to explore the
scaling properties of this approach, testing the hypothesis that higher-dimensional SAEs yield a
more disentangled and controllable feature basis. This exploration should also include alternative
interfaces beyond SAEs, such as Transcoders, which may offer a more direct way to control MLP
computations (29). Scaling the feature interface will also require scaling the analysis pipeline, for
which unsupervised methods like embedding and clustering feature explanations could provide a
more efficient alternative to our LLM-based classification.

Finally, a crucial direction is to empirically compare FSRL with the alternative of interpretable
model-diffing. Such a study could quantify FSRL’s efficiency gains and, more importantly, test the
fundamental trade-off between the methodological stability of a fixed conceptual vocabulary and the
ability of a new SAE to discover emergent features that arise during alignment.
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Table 7: Comparison of model adaptation methods, grouped by family. ‘Adaptivity’ refers to whether
the intervention is fixed (Static) or input-dependent (Dynamic). FSRL introduces a new family,
Feature Adapters, that combines the interpretability of feature steering with the dynamic nature of
adapters.

Family Methods Target Space Adaptivity Interpretability

Adapters LoRA, IA3 Parameters Dynamic Low

Static Steering ActAdd, CAA Activations Static Low

Learned Steering BiPO Activations Static Low

Feature Steering SAE-TS, SAS Sparse Features Static High

Feature Adapters FSRL (Ours) Sparse Features Dynamic High

8 Related Work

Steering Dense Activations FSRL builds on a line of work that steers model behavior by modifying
internal activations at inference. These methods range from applying algebraically computed vectors,
as in ActAdd (30) and CAA (31), to learning steering parameters directly from data. For example,
BiPO (32) uses preference optimization to learn an optimal static steering vector. A common thread
unites these methods: they intervene on the model’s opaque activation space, making the mechanism
of control difficult to interpret.

Interpretable Steering with Sparse Features SAEs offer a solution to this opacity by providing
an interpretable feature basis for steering. Methods like SAE-TS and SAS leverage this basis to
construct static steering vectors, utilizing linear approximations or contrastive algebraic manipulation
to target specific features (33; 34). While effective for inducing fixed behaviors, these vectors are
applied uniformly across all inputs. FSRL distinguishes itself by learning a dynamic, context-aware
policy via gradient descent. Instead of deriving a fixed vector offline, FSRL trains a lightweight
adapter to modulate SAE features token by token. This approach mirrors the dynamics of traditional
fine-tuning.

Comparison with Parameter-Efficient Adapters Among existing approaches, FSRL is most
methodologically similar to parameter-efficient fine-tuning (PEFT) methods like LoRA (16) and
IA3 (35). Like these methods, FSRL trains a lightweight adapter via gradient descent to minimize
a loss function, distinguishing it from the algebraic or heuristic steering methods discussed above.
However, a crucial difference lies in the target of intervention. PEFT methods operate in parameter
space, injecting updates into the model’s opaque weight matrices. In contrast, FSRL operates in a
sparse activation space, directly modulating more interpretable features.

We adopt the term ’steering’ strictly to denote that our intervention occurs in activation space rather
than parameter space. As summarized in Table 7, FSRL introduces a family of methods, which we
term Feature Adapters, that combine the dynamic, input-dependent nature of adapters with the high
interpretability of feature steering. Since this dynamic policy can be optimized with any differentiable
objective, the framework is a general tool for auditing a wide range of post-training processes.

9 Conclusion

We introduced FSRL to dissect the opaque mechanics of alignment by projecting the process onto
interpretable features. Our analysis reveals that preference optimization minimizes loss through
“style-hacking,” a strategy that prioritizes presentation artifacts over concepts like honesty. While
this approach satisfies the objective, it degrades coherence. We demonstrate that surgically ablating
style features partially mitigates this failure. FSRL thus provides a powerful instrument for auditing
alignment, moving the field toward a transparent and debuggable engineering discipline.
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A Reconstruction-Preserving Implementation

In the main text (Eq. 6), we described the steered activation with a simple additive update for
conceptual clarity:

xsteered = x+ Decoder(v).
Our implementation follows the convention used in libraries like SAE-Lens. The steering intervention
is applied in the SAE’s feature space, and the original reconstruction error is added back to the final
activation. This approach also incorporates a ReLU activation to maintain the non-negativity of
feature activations, a property assumed by the SAE decoder.

The process is as follows. First, we compute the steered feature vector, f ′, by combining the steering
vector v with the original SAE features f and applying a ReLU:

f ′ = ReLU(f + v).

The final activation is then reconstructed from f ′ and corrected by adding back the SAE’s reconstruc-
tion error, (x− Decoder(f)). This step ensures that information in the original activation x that was
not captured by the SAE is preserved. The full update is:

xsteered = Decoder(f ′) +
(
x− Decoder(f)

)
.

By substituting the definition of f ′, we get:

xsteered = Decoder
(
ReLU(f + v)

)
+ x− Decoder(f).

Due to the non-linearity of the ReLU function, this formulation is not algebraically equivalent to
the simple additive update x + Decoder(v). The ReLU can clip negative values resulting from
suppressive steering, making the overall activation change a more complex, non-linear function of f
and v.

B Theoretical Justification

In this Appendix, we outline in more detail the main theoretical justification of FSRL. This is done by
showing that under some mild assumptions, the class of possible FSRL updates is a restricted class of
possible LoRA updates, therefore inheriting useful expressive power results from LoRA as discussed
in (17). In particular, any base model (Transformer, fully connected networks) can be adapted to a
target model with the same architecture, provided the rank is high enough. This shows that FSRL is a
valid method for preference optimization coupled with interpretable SAE features.

Additional Relevant Definitions:

• Rank of matrices: For a matrix A ∈ Rm×n the rank is

rank(A) = dim(col(A)) = dim(row(A)) (7)

where col(·), row(·) denotes the column and row space respectively. Equivalently it is the
number of nonzero singular columns of A in its singular value decomposition. A matrix is
low-rank if rank(A) = r with r < min(m,n) for A ∈ Rm×n.

• LoRA: The weight update ∆W is constrained to be low rank with ∆W = BA where
B ∈ Rd×r and A ∈ Rr×k and r ≪ min(d, k) is the LoRA rank. This reduces the number
of trainable parameters fromO(dk) toO(r(d+k)). Sometimes a scaling factor α is applied:
∆W = α

rBA.
• rank(AB) ≤ min(rank(A), rank(B)).

Assumptions (linearization). We analyze FSRL locally around a reference point x0. Let z =
Wax+ba and z0 :=Wax0 +ba. Fix the adapter activation to be the coordinate-wise soft-threshold

ψ(z) = sign(z)ReLU(|z| − τ), (8)

with threshold τ ≥ 0. The function ψ is piecewise-linear: on any region that does not cross the kinks
at ±τ each coordinate is affine. Therefore, by choosing a neighborhood of x0 that does not cross
those threshold hyperplanes, the adapter becomes exactly linear on that region. If needed, upstream
ReLUs can be forced into their identity regime, either with an analogous argument or by choosing
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sufficiently large biases (17), so that the network upstream of the adapter is linear and the whole
effect of the adapter reduces to an affine correction in activation space.

Lemma 1 (piecewise-linear exact affine form). The FSRL update x 7→ xsteered is an affine map on
any region that does not cross the activation kinks (e.g., under the linearization assumption), and can
be written as

xsteered = (I +A[x])x+ c[x], (9)

with
A[x] =WdecM [x]Wa ∈ Rd×d, c[x] =Wdec

(
ψ(z0)−M [x]Wax0

)
+ bdec, (10)

where M(x) = diag(m1, . . . ,mdsae) is the binary mask

mi := I{|z0,i| > τ}. (11)

We write M [x] and by extension A[x] because the entries of the matrix M [x] depend on the input to
the adapter.

Proof. Start from the FSRL reconstruction:

xsteered = Decoder(f + z) + (x− Decoder(f)). (12)

Rearrange:
xsteered = x + Decoder

(
ψ(Wax+ ba)

)︸ ︷︷ ︸
∆(x)

. (13)

Thus FSRL modifies the residual activation by adding the correction ∆(x) to x

xsteered = x+∆(x), ∆(x) = Decoder
(
ψ(Wax+ ba)

)
, (14)

observe that, on any region where no coordinate of z crosses ±τ , each coordinate of ψ is affine with
slope either 0 or 1:

ψ(Wax+ ba)i =

{
zi − z0,i + ψ(z0,i) if mi = 1

ψ(z0,i) if mi = 0.
(15)

Hence for such x we have the exact identity

ψ(Wax+ ba) = ψ(z0) +M [x]
(
Wa(x− x0)

)
. (16)

Applying the decoder Wdec yields

∆(x) =Wdec M [x]Wa x+Wdec
(
ψ(z0)−M [x]Wax0

)
+ bdec, (17)

where Wdec ∈ Rd×dsae ,M [x] ∈ Rdsae×dsae ,Wa ∈ Rdsae×d and the claim follows by grouping terms. □

Lemma 2 (rank bound via active features). Let S = {i : |z0,i| > τ} = ∥ψ(Wax0 + ba)∥0 be the
set of non-zero activations from the adapter network in FSRL with k := |S|. Then

rank(A[x]) ≤ min{k, rank(Wa), rank(Wdec)} = min(k, d). (18)

Proof. Since M [x] is diagonal with exactly k ones, rank(M [x]) = k. From the rank inequality of a
product of matrices, it follows that.

rank(A[x]) = rank(Wdec M [x]Wa) ≤ min{rank(Wdec), rank(M [x]), rank(Wa)}, (19)

Now because ψ has a dead zone (|z| ≤ τ ) and the adapter output is further encouraged to be sparse by
an ℓ1 penalty, typically k ≪ dsae, and we know that rank(Wdec) = rank(Wa) ≤ min(dsae, d) = d as
dsae > d. A[x] is low-rank only if the input x to the adapter induces k < d active features otherwise
d ≥ k and A[x] is full rank. Therefore the rank of A is min(d, k). which yields the desired bound. □

Theorem 1: Under the local linearity assumption, the FSRL steering x 7→ xsteered ∈ Rd is a (possibly
low-rank) additive correction in activation space that can always be expressed as a restricted LoRA-
style update of downstream weight matrices W ∈ Rd×d′

, d′ ≤ d (e.g., a Transformer query/key/value
or other linear projections). Specifically for any input x, the induced weight modification:

W ←W +∆W [x], ∆W [x] :=WA[x] (20)
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together with a bias term Wc[x] is contained within the class of weight updates expressible by LoRA
CLoRA(W, r) = {∆W | ∆W = BA, rank(∆W ) ≤ r}, but with the factorization expressed through
the SAE basis and adapter parameters trained via RL.

The rank of the weight modification depends on the input and by extension the number of active SAE
features k induced by the input:

rank(∆W ) ≤ min(rank(W ), d, k), (21)

where k is the number of actively steered SAE features. Thus, all FSRL updates are a subset of LoRA
updates, but with the factorization expressed through the SAE basis and adapter parameters trained
via RL.

As an additional note we describe the overall rank across inputs by reff = dimspan{∆W (x) | x ∈
Rd}.
Proof. Assume we have an arbitrary Transformer network with the aforementioned linearization
assumption and no residual connection. According to Lemma 1, the FSRL update can be written as
an affine map:

xsteered = (I +A[x])x+ c[x], (22)

where A[x] ∈ Rd×d, c[x] ∈ Rd and x ∈ Rd is the original activation vector. By Lemma 2
rank(A[x]) ≤ min(d, k) where k corresponds to the number of active (non zero) steered SAE
features. We essentially want to show that if we perform the substitution x 7→ xsteered that this
operation can be written down as a (restricted class) LoRa style update of the relevant weight matrix:

W ←W +∆W. (23)

Consider an arbitrary layer in the Transformer network. For any linear projection in the downstream
network Wx with W ∈ Rd×d′

, d′ ≤ d, so for example query, key, value projections or the ones in
the multi-layer perceptron sublayer. After applying steering x 7→ xsteered, we get:

Wxsteered =W ((I +A[x])x+ c[x])
= (W +WA[x]︸ ︷︷ ︸

∆W

)x+Wc[x]. (24)

This shows that this is a restricted LoRA style update where the weight matrix modification includes
the original matrix and a matrix A[x] whose rank depends on the number of actively steered SAE
features k. Because d′ ≤ d and rank(A) ≤ min(k, d) we have that rank(WA[x]) ≤ min(d′, k).
For multi-head attention, the matrix modification is only low rank if the number of actively steered
SAE features is less than the per attention head subspace dimensionality d′, which we assume is
d′ < d but for the multi-layer perceptron sublayer d′ = d. □

Corollary 1 (Inheritance of LoRA properties). Because FSRL updates are contained in the class of
LoRA updates, LoRA expressive-power results from (17) apply when replacing LoRA’s rank R by
the effective FSRL rank reff. Concretely:

1. (Exactness): If reff exceeds the LoRA rank threshold from (17), then FSRL can exactly
represent a target model.

2. (Approximation) If reff is below that threshold, the FSRL error is bounded by the same
singular-value tail bound as in mentioned (17), with R replaced by reff.

These properties only depend on the rank of the updates, not on the exact factorization. Therefore,
as long as FSRL can achieve the necessary effective rank via its active features, it inherits the same
guarantees.

C Hyperparameter Selection Sweeps

This section details the methodology used to select the intervention layer and the ℓ1 regularization
coefficient (α) for our main experiments with the Gemma-2-2B-it model. It is important to note
that these sweeps were conducted using a variant of our architecture that did not enforce a non-
negativity constraint via a ReLU activation on the combined feature and steering vectors. We found
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that the optimal hyperparameters identified through this process transferred effectively to our final,
non-negativity-enforced architecture described in Appendix A.

For these sweeps, each configuration was trained for one epoch over the training set using a learning
rate of 5× 10−7. Other training parameters are detailed in Appendix D.
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Figure 2: Results of the two-stage hyperparameter sweep for the Gemma-2-2B model. Top Row:
Sparsity sweep performed on layer 12, showing the trade-off between final SimPO validation loss
(left) and the resulting ℓ0 norm of the steering vector (right) for different α penalty coefficients.
Bottom Row: Layer sweep showing the final SimPO validation loss (left) and ℓ0 norm (right) when
intervening at different model depths (layers 6, 12, 18, 24).

Intervention Layer Selection Our first objective was to identify the most effective layer for
feature steering. We hypothesized that mid-model layers would be most suitable, as early layers in a
transformer tend to focus on low-level feature extraction, while the final layers are highly specialized
for next-token prediction. Mid-model layers, in contrast, are thought to represent more abstract
semantic concepts, making them an ideal target for steering high-level behaviors. We tested this by
intervening at layers corresponding to depth quartiles of the transformer (6, 12, 18, and 24), measuring
the final SimPO validation loss on the UltraFeedback validation set. For this study, we limited our
analysis to the publicly available SAEs from GemmaScope with a width of 65k. For each layer, we
selected the SAE with the lowest average ℓ0 norm as a proxy for higher feature monosemanticity.
As shown in Figure 2 (bottom row), intervening at layer 12 yielded the lowest validation loss (2.94),
supporting our hypothesis.

Heuristic Layer Selection via Linear Probing To investigate whether a computationally cheaper
method could predict the optimal intervention layer without running full SimPO training sweeps,
we trained linear probes to distinguish between preferred and rejected completions based on their
residual stream activations.

We trained a logistic regression classifier (using Scikit-learn) on a subset of 1,000 samples from the
UltraFeedback dataset (800 training, 200 validation). For each layer at quartile depths, we extracted
the residual stream activations at the final token of the sequence for both the prompt + chosen and
prompt + rejected pairs.

As shown in Table 8, Layer 12 yields the highest classification accuracy, independently corroborating
our finding that mid-model layers are the most effective target for intervention. Notably, the classifi-
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Table 8: Validation accuracy of logistic regression probes trained to classify chosen vs. rejected
sequences based on residual stream activations. Layer 12 achieves the highest classification accuracy,
aligning with the optimal layer identified in our full training sweep.

Layer Validation Accuracy
6 54.00%

12 54.75%
18 53.00%
24 49.50%

cation accuracy at Layer 24 drops to 49.50% (random chance), suggesting that the relevant signal for
preference separation is processed or obscured before the final layer. Additionally, the relatively low
accuracy of linear probing even at the optimal layer indicates that the boundary between preferred
and rejected responses is not easily linearly separable, further justifying the use of FSRL’s non-linear
adapter over simpler linear steering methods.

ℓ1 Regularization Coefficient Selection With the intervention layer fixed at 12, we then sought
an optimal α that encourages a sparse steering policy. We swept through several values for the
coefficient. The results, shown in Figure 2 (top row), illustrate the expected trade-off: increasing the
penalty reduces the ℓ0 norm of the average steering vector, but an excessively high penalty degrades
performance as measured by the evaluation loss. We selected a coefficient of 1×10−1 as it represents
the elbow point in the trade-off.

D Training and Evaluation Details

Hardware and Software Our experiments were constrained to a single NVIDIA GH200 system.
The training process for the FSRL adapter for one epoch requires approximately 52GB of VRAM
and completes in around 50 minutes on this hardware. This single-GPU setup was necessitated by
limitations in multi-GPU support for model surgery in transformer-lens at the time of this work.
Our software stack includes transformer-lens (36), sae-lens (37), Hugging Face’s TRL (38),
and DeepSpeed (39).

Training Configuration Our training configuration for both the FSRL adapter and the full-model
baseline closely follows the methodology of the original SimPO paper (11). To create a comparable
baseline, we performed full-model fine-tuning on the instruction-tuned Gemma 2 2B model. While
the SimPO paper reports a learning rate of 8× 10−7 for the larger 9B model, we found it necessary
to lower this to 2 × 10−7 for our 2B baseline to converge. Training the full baseline model is
substantially more resource-intensive, requiring 93 GB of VRAM and approximately 1 hour and 45
minutes per epoch.

For the FSRL adapter, we adopt nearly the same hyperparameters but use a learning rate of 5× 10−5.
We hypothesize that the adapter could be trained effectively with a higher learning rate than the full
baseline because the ℓ1 activation penalty acts as a strong regularizer, stabilizing the training process.

For the 9B model, we performed a similar sweep to that described in Appendix C to determine the
optimal intervention layer and sparsity coefficient. We selected layer 12 and an ℓ1 coefficient of
0.01. The final hyperparameters for our main experimental runs are detailed in Table 9, and the
corresponding training and validation loss curves are presented in Figure 3.

E Exploration of a JumpReLU Adapter for Direct ℓ0 Sparsity

In addition to using an ℓ1 penalty, we investigated an alternative adapter architecture for inducing
sparsity more directly. The ℓ1 penalty, while computationally convenient, is a proxy for the ℓ0 norm
that we ultimately seek to minimize. A known side effect of ℓ1 regularization is that it penalizes the
magnitude of all feature activations, which can lead to a potentially suboptimal steering policy.

To address this, we explored replacing the adapter’s ReLU activation function with a JumpReLU
activation (6). This approach introduces a vector of learnable thresholds θ, allowing the adapter
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Table 9: Hyperparameters for the final FSRL training runs across model scales.

Hyperparameter Gemma-2-2B-it Gemma-2-9B-it
Model & Data
Dataset ID princeton-nlp/llama3-ultrafeedback-armorm
Context Length 2048 1600
Maximum Prompt Length 1800 1400
Intervention Layer 12 12
SAE Width 65k 16k
SAE Average L0 73 130

Optimization
Learning Rate 5× 10−5 6× 10−5

L1 Penalty (α) 1× 10−1 1× 10−2

First Moment Decay Rate 0.9
Second Moment Decay Rate 0.98
SimPO Beta (β) 10
SimPO Gamma Ratio (γ/β) 0.5
Epochs 10
Optimizer Muon + AdamW
LR Scheduler Cosine
Warmup Ratio 0.01
Weight Initialization Uniform (−10−6 to 10−6)
Soft Threshold Initialization (τ ) 10−6

Training Environment
Device Batch Size 2
Gradient Accumulation Steps 16
Precision BF16
Memory Optimization DeepSpeed ZeRO Stage 2

Figure 3: SimPO training and validation loss curves for our adapters of Gemma-2-2B-it (left)
and Gemma-2-9B-it (right). Both models exhibit stable convergence, effectively minimizing the
preference loss over the course of training.

to directly optimize an ℓ0 sparsity objective. The sparsity loss is calculated using the Heaviside
step function, ||v||0 =

∑
iH(vi − θi), whose non-differentiable nature is handled by using a

Straight-Through Estimator (STE) during backpropagation to learn the thresholds θ.

However, we encountered a significant challenge in practice. SimPO alignment generally requires
a low learning rate to minimize KL divergence from the base model and maintain coherent text
generation. In our experiments, we observed that the STE-based training of the thresholds θ only
became effective at learning rates roughly three orders of magnitude greater than what was stable for
the main adapter weights.

To reconcile these conflicting requirements, we implemented a dual learning rate scheme, assigning
a low learning rate to the adapter’s linear layer parameters (Wa,ba) and a separate, much higher
learning rate to the learnable thresholds θ. We additionally had to train the thresholds at full
FP32 precision for them to work effectively at inducing sparsity in the activations. Despite these
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modifications, our models trained with the JumpReLU adapter failed to outperform those trained with
the simpler ℓ1 penalty in terms of either validation performance or final steering vector sparsity within
our limited tuning budget. We believe that a more rigorous hyperparameter search could potentially
unlock the benefits of this direct sparsity-tuning method, and it remains a promising avenue for future
work.

F Architectural Ablations and Design Choices

To validate our final FSRL architecture, we compare its performance against two legacy variants
trained on Gemma 2 2B. These experiments justify our choice of the soft-thresholding activation
function and highlight the impact of both the underlying SAE and the enforcement of a non-negativity
constraint on steered features. The "legacy” designation for these variants refers to two key differences
from our final model:

1. SAE Choice: Both were trained using an SAE with an ℓ0 norm of 21. Due to an oversight, we
later discovered this SAE lacked feature explanations on Neuronpedia, making it unsuitable
for mechanistic analysis. Our final model uses a different SAE (ℓ0 = 73) for which
explanations were available.

2. Non-Negativity Constraint: Both legacy models omit the ReLU activation on the combined
feature and steering vectors, meaning they did not enforce that steered feature activations
remain non-negative.

The legacy architectural variants are:

1. Soft-Threshold: Uses the soft-thresholding activation.

2. ReLU: Replaces the soft-thresholding with a standard ReLU.

The performance of these variants is compared against our final FSRL architecture in Table 10.

Table 10: Benchmark performance of different FSRL architectural variants. The two legacy models
were trained on the same SAE (ℓ0 = 21) and without a non-negativity constraint. The final model
uses a different SAE (ℓ0 = 73) and enforces this constraint.

Model Variant MMLU ↑ TruthfulQA (MC2) ↑ GSM8K ↑ SimPO Loss ↓ L0 Norm ↓
Final Architecture
Soft Threshold 41.95± 0.4 56.10± 1.67 7.05± 0.70 2.58 95
Legacy Architecture
Soft-Threshold 34.46± 0.39 56.17± 1.63 44.05± 1.37 2.60 360
ReLU 38.12± 0.40 58.50± 1.62 30.40± 1.27 2.71 930

This comparison highlights several key trade-offs. The legacy soft-threshold model shows that the
ability to both amplify and suppress features is highly effective at minimizing the preference loss,
achieving a better score (2.60) than the amplification-only ReLU variant (2.71).

The ℓ0 norms reveal significant differences in policy sparsity. The ReLU-only adapter learns a far
denser policy (ℓ0 = 930), suggesting that without suppression, it must resort to a less efficient
strategy. The soft-threshold adapter learns a much sparser policy (ℓ0 = 73). This efficiency is
dramatically improved in our final model, which achieves an ℓ0 norm of just 95. We hypothesize
that this substantial increase in sparsity is a direct result of enforcing the non-negativity constraint.
By ensuring steered feature activations remain non-negative, our final model adheres to the SAE’s
training assumptions, allowing the adapter to learn a more principled and targeted policy.

Ultimately, these results validate our final design. The soft-thresholding activation is superior for
the core preference optimization task, and enforcing the non-negativity of steered features leads to a
more effective and significantly sparser policy.
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G Justification for a Learned, Sparse Adapter

To justify our use of a learned, dynamic sparsity mechanism, we compared its performance against
a simpler, static top-k% heuristic. This experiment was conducted using our legacy soft-threshold
architecture, as detailed in Appendix F. For each input, we computed the full steering vector but
retained only the top-k% of components with the largest absolute values, testing a range of k values
up to 12.8%.

The results, shown in Figure 4, reveal that our FSRL adapter occupies a superior position on the
performance-sparsity trade-off curve. Within the tested range, the static heuristic achieved its best
validation loss of 2.69 at a sparsity of 1.60%. In contrast, our trained adapter achieves a superior
validation loss of 2.60 with an average sparsity of just 0.55%.

This demonstrates that the learned policy is significantly more efficient: it achieves a better outcome
while being, on average, nearly three times as sparse. This suggests that a static, uniform sparsity
budget is suboptimal. Instead, the adapter learns a flexible, input-dependent policy that can apply a
highly sparse vector for most inputs but activate a larger set for more complex examples, as supported
by the long-tail feature usage distribution in Appendix I.
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Figure 4: Comparison of static vs. dynamic steering performance. The blue line traces the validation
loss for a static steering policy that activates a fixed top-k% of features, plotted on a logarithmic x-axis
with sparsity levels doubled at each step from 0.1% to 12.8%. Within the tested range, this heuristic
performs best at 1.60% sparsity (loss of 2.69). The isolated purple point shows the performance of our
learned dynamic policy, which achieves a lower loss (2.60) with a much smaller average activation of
only 0.55%, demonstrating the clear efficiency benefit of a learned, context-dependent approach.

H Comparison with Static Steering Baselines

To empirically justify the need for an adapter, we compared FSRL against static steering baselines
derived from Contrastive Activation Addition (CAA) (31). Unlike FSRL, which computes a context-
dependent update π(x), static methods derive a single universal vector v that is added to the residual
stream at every token position.

Methodology We computed the steering vector using 1,000 samples from the UltraFeedback
training set, matching the sample size used in the largest experiments by the CAA authors. For
each sample, we extracted the activations at the last token of the response. The steering vector
was derived by calculating the mean difference between the preferred and rejected responses: v =
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1
N

∑
(xchosen−xrejected). We evaluated two variants of this approach at Layer 12 (the same layer used

by our FSRL adapter):

1. Residual Steering: The vector is computed directly on the dense residual stream. This
implementation mirrors the standard CAA approach.

2. SAE Steering: The difference is computed in the SAE’s sparse feature space and then
decoded back to the residual stream. This mirrors methods like Sparse Autoencoder Steering
(SAS) (34). While SAS typically employs a filtering procedure to limit effects on unrelated
capabilities, we omitted this step. Since our primary metric is the reduction of SimPO
loss, filtering would not improve performance; omitting it grants the baseline the maximum
possible capacity to optimize the objective.

Results We evaluated these vectors on the full UltraFeedback validation set across a sweep of
steering coefficients. The results are presented in Table 11.

Table 11: SimPO validation loss for static steering baselines on Gemma-2-2B-it (Layer 12). While
static methods improve over the unaligned baseline, they fail to come close to the performance of
FSRL, demonstrating that the capacity of a universal vector is insufficient for this task.

Method Coeff 0.1 Coeff 0.25 Coeff 0.5 Coeff 1.0 Coeff 2.0
Residual Steering (CAA) 5.69 5.68 5.68 5.66 5.64
SAE Steering (SAS) 5.64 5.58 5.46 5.39 6.14

Reference Comparisons: Base Model Loss: 6.99 | FSRL (Ours): 2.58

Analysis Both static methods yield a reduction in preference loss compared to the base model (6.99
→ 5.39), confirming that the average direction of preference captures some signal regarding response
quality. However, they significantly underperform FSRL (2.58).

This gap highlights a fundamental limitation of static steering methods, including more advanced
optimization-based approaches like Bidirectional Preference Optimization (BiPO) (32). These
methods are constrained by the need to create a universal steering vector that works across all samples.
There is simply insufficient capacity in a static vector to represent the complex, context-dependent
expressions required for general preference optimization on a diverse dataset like UltraFeedback. By
learning a dynamic policy, FSRL bridges this gap, achieving performance comparable to fine-tuning
while maintaining the interpretability of the sparse feature basis.

I Steered Feature Usage Distribution

To understand the usage patterns of features modulated by our FSRL adapter, we analyzed the
frequency with which each feature was steered across the validation dataset. We computed the
average usage for each feature at every token position, considering three distinct contexts: tokens
belonging to the prompt only, tokens from the prompt and the chosen response, and tokens from the
prompt and the rejected response.

The results are visualized in Figure 5. The plots show that feature usage follows a highly skewed
distribution. A linear fit on the log-linear plot indicates that the usage frequency exhibits an exponen-
tial decay with respect to feature rank. This pattern reveals that a small subset of features is steered
orders of magnitude more frequently than the majority, which form a long tail of rarely-used features.
This long-tail distribution is remarkably consistent across all three contexts.

Furthermore, we performed a sub-analysis by partitioning the features into the alignment and style
categories defined in Appendix J. When we examined the usage distribution for each of these subsets
independently, we observed no apparent change in the fundamental shape of the distribution. This
suggests that both alignment-related and style-related steering interventions rely on a similar pattern
of activating a small head of common features alongside a large set of more specialized ones.
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Figure 5: Distribution of steered feature usage across the validation set. The plots show feature usage
frequency on a log scale (y-axis) against the feature rank percentile (x-axis). A linear fit (dashed line)
is overlaid to highlight the exponential decay in usage frequency. This distribution is shown for three
contexts: activations from prompt tokens only, from prompt and chosen response tokens, and from
prompt and rejected response tokens.

J Automated Classification of SAE Features

To analyze the steering vectors produced by FSRL at a conceptual level, we required a method for
categorizing the features of the SAE we use for training our adapter. We obtained feature explanations
from Neuronpedia (40), which are generated using the method described by Bills et al. (7). It is
important to note that these explanations did not include a quantitative quality score; calculating such
scores is a computationally expensive process that we could not undertake.

Given the nature of the SimPO objective and the UltraFeedback dataset, we hypothesized that the
steering policy would primarily modulate two categories of features. The first category, alignment,
includes features related to high-level concepts like ethics, safety, and honesty. The second, style,
covers features related to text structure, punctuation, and presentation. The full definitions used for
classification are provided in Appendix K.

Manually classifying all available features was infeasible. We therefore developed an automated
classification pipeline using Deepseek V3 0324 (41) via an API. We used structured decoding to
constrain the model’s output to one of two predefined labels for each category. This process cost
approximately 20 USD.

J.1 Validation of Automated Classifications

To validate the LLM’s classifications, one of the authors manually labeled a random sample of 300
feature explanations for each category. The annotator was unaware of the model’s classifications to
prevent bias. We assessed the human-LLM agreement using the Matthews Correlation Coefficient
(MCC, or ϕ coefficient), a metric for binary classification that accounts for class imbalance.

The results are summarized in Table 12. For the 2B model, agreement was reliable for style features
and moderate for alignment features. For the 9B model, agreement was moderate for both alignment
and style. This level of agreement validates the use of the automated pipeline as a scalable proxy for
human judgment in analyzing the high-level properties of the learned steering policy.

Table 12: Validation of the automated feature classification pipeline against a human annotator on a
sample of 300 features for each model. TP: True Positives, TN: True Negatives, FP: False Positives,
FN: False Negatives.

Model Category Accuracy Confusion (TP, TN, FP, FN) MCC (ϕ)

Gemma-2-2B-it Alignment-related 0.847 (27, 227, 22, 24) 0.448
Style-related 0.900 (69, 201, 5, 25) 0.764

Gemma-2-9B-it Alignment-related 0.883 (27, 238, 24, 11) 0.548
Style-related 0.837 (23, 228, 5, 44) 0.461
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K Feature Classification Prompts

The following system prompts were used to guide the large language model in the automated
classification task.

K.1 Alignment Classification Prompt

You are an expert AI alignment researcher. Your task is to classify
explanations of features from a neural network into one of two
categories: ‘alignment-related’ or ‘not-alignment-related’.

1. Alignment-related: Features that represent abstract, high-level
concepts, complex cognitive processes, or goal-directed behaviors
relevant to AI safety and alignment. This includes but is not
limited to:
- Morality and ethics (e.g., right vs. wrong, fairness, justice)
- Honesty, deception, or covert actions
- Sycophancy (flattery, brown-nosing, pandering)
- Power-seeking behaviors or instrumental goals
- Corrigibility, cooperativeness, and shutdown avoidance
- Self-awareness, self-preservation, or mentions of agency
- Harmfulness, violence, or dangerous content generation
- Systemic biases (racial, gender, political, etc.)
- Complex, goal-directed behaviors or planning (even if not

inherently harmful)
- Refusal to answer, evasiveness, or stating limitations

2. Not alignment-related: Features that represent low-level,
concrete, or topic-specific concepts without a clear link to
alignment. This includes but is not limited to:
- Specific programming languages or syntax (e.g., Python code,

JSON structures)
- Grammatical structures (e.g., punctuation, specific parts of

speech, sentence endings)
- Common objects or factual knowledge (e.g., names of people,

places, dates, scientific facts)
- Simple linguistic patterns (e.g., capitalization, repeated

characters, specific tokens like ’the’ or ’is’)
- Specific domains like mathematics, cooking, or sports, unless

they directly involve an abstract alignment concept.

Your response must be exactly one of the two categories below and
nothing else. Do not add any conversational text or preamble.
- ‘alignment-related‘
- ‘not-alignment-related‘
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K.2 Style Classification Prompt

You are an expert in natural language processing and text analysis.
Your task is to classify explanations of features from a neural
network into one of two categories: ‘formatting-related’ or
‘not-formatting-related’.

1. Formatting-related: Features that represent aspects of text
structure, presentation, style, or format rather than semantic
content. This includes but is not limited to:
- Punctuation and symbols (e.g., periods, commas, parentheses,

quotation marks, dashes)
- Capitalization patterns (e.g., sentence beginnings, proper

nouns, ALL CAPS)
- Whitespace and spacing (e.g., indentation, line breaks,

paragraph breaks)
- Programming/code formatting (e.g., syntax highlighting, code

blocks, indentation)
- List formatting (e.g., bullet points, numbered lists,

item separators)
- Text length and conciseness (e.g., short responses, word

limits, brevity)
- Structural elements (e.g., headings, titles, section markers)
- Repetition patterns (e.g., repeated characters, duplicate text)
- Language style markers (e.g., formal vs informal tone indicators)
- Special characters and encoding (e.g., Unicode symbols, HTML

entities)

2. Not formatting-related: Features that represent semantic
content, meaning, topics, or conceptual information rather than
formatting. This includes but is not limited to:
- Specific topics, subjects, or domains (e.g., science, history,

sports)
- Semantic concepts and meanings (e.g., emotions, actions,

relationships)
- Factual knowledge (e.g., names, dates, places, events)
- Abstract concepts and ideas (e.g., morality, justice, creativity)
- Content-specific patterns (e.g., question types, answer

categories)

Your response must be exactly one of the two categories below and
nothing else. Do not add any conversational text or preamble.
- ‘formatting-related‘
- ‘not-formatting-related‘

L Sensitivity Analysis of Causal Claims

Our central finding is that the model relies more heavily on style features than alignment features to
minimize preference loss. This claim is based on the ratio between the Loss Per Feature (LPF) of
the two categories. Since our automated classifier is not perfect, we perform a sensitivity analysis to
determine if classification errors could explain this observed disparity.

We first consider a worst-case scenario. The LPF metric is calculated by dividing the total increase
in loss by the number of features in a category. In this analysis, we assume that all false positive
features are unrelated noise that contribute zero to the loss. This is a conservative assumption because
it maximizes the resulting LPF by reducing the feature count (denominator) without reducing the
total loss (numerator). Because the alignment classifier has lower precision than the style classifier,
this correction increases the alignment LPF metric more than the style LPF metric, narrowing the gap
between them.

We also consider the possibility of cross-contamination, where features from one category are
mislabeled as the other. It is theoretically possible that the high-impact style category contains
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misclassified alignment features; however, the high precision of our style classifier (up to 93%)
suggests this is rare. The more significant risk is the reverse: that the lower-precision alignment
category is contaminated by high-impact style features. If we were to correct for this by reassigning
these high-impact features to the style category, the gap would widen further. This interpretation
assumes that misclassified features carry the average impact of their true category, rather than
contributing equally.

We focus our quantitative reporting on the worst-case lower bound to ensure our claims are conser-
vative. We derive the precision values directly from the confusion matrix provided in Table 12 in
Appendix J. As shown in Table 13, our findings remain robust even under these strict assumptions.
For the 2B model, the adjusted ratio indicates that style features are still over 21 times more impactful
than alignment features. For the 9B model, the ratio narrows but remains significant, with style
features retaining a causal impact 3.1 times greater than alignment features.

Table 13: Sensitivity analysis of the Style-to-Alignment impact ratio. The Observed Ratio is derived
from the raw measurements. The Lower Bound Ratio represents the worst-case scenario where
misclassified features are assumed to be non-impactful noise, calculated by adjusting the feature
counts using the classifier precision.

Model Category Precision Observed Ratio Lower Bound Ratio

Gemma-2-2B-it Alignment 55.1% 36.78x 21.73xStyle 93.2%

Gemma-2-9B-it Alignment 52.9% 4.83x 3.11xStyle 82.1%

M Qualitative Analysis of Steered Outputs

In this section, we provide the verbatim model outputs. To fit the page width, we have manually
inserted line breaks into the generated text where the model failed to produce whitespace.

Note: The Standard FSRL model occasionally generates non-Latin characters (e.g., Korean, Japanese)
and full-width punctuation. Due to LATEX rendering limitations, we have replaced these characters
with placeholders like [CJK Text] or standard ASCII equivalents below.

M.1 Example 1: Broadway Actors

Prompt: What are the names of some famous actors that started their careers on Broadway?

Model Outputs

Baseline Output

Here’s a list of famous actors who got their start on Broadway:
**Classics & Legends:**
* **Alfred Molina:** *The Producers*, *Raisin in the Sun*
* **Robert DeNiro:** *The Godfather*, *Guys and Dolls*
* **John Gielgud:** *Hamlet*, *Romeo and Juliet*
* **Jessica Lange:** *The Ritz*, *Sound of Music*
* **Stephen Sondheim:** *West Side Story*, *Gypsy*
... [Truncated for brevity] ...
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FSRL Output (Standard)

Here’sanextensivelistofrenownedperformerswhomadetheirmarkonbroadway,
**organizedbygenerationandwithnotesonkeyrolesandachievements:**
**InfluentialLegends:**
***(1930s-early‘70s)**
-**Baryshnikov,Mikhail:**“____of_the_Dance,”“Yerma,”“One-ActPlays”
*LegendaryBalletIcon;starredin“Anna_1981’s“Giselle,”ENGULFED_BIGGEST_
CONGREGATION_EVER,nominatedfor“Think LikeAnArtist”
**(1973,PulitzerPrize)**
-**JessicaTressler:**“TheSecretLifeof...”“TheWildParty,”“CityLights”
*[CJK Text]**“SuckerPunch”:**[CJK Text]-**[CJK Text]**
“DoctorNeverTooLate”
***(1940s-50s)**

*MauriceNonie,author
“Cabaret,”“MyFairLady,”“SweetCharity”

-Baryshnikov,Natalia
**RodgerGoldstein(Composer,Producer)**

FSRL Output (Style-Ablated)

## A-list Beginnings: Broadway Legends & Rising Stars
This list spans iconic performers spanning eras and genres:
**Classics & Icons:**
* **Barbra Streisand (7-time Tony winner):** "Funny Girl,
Yentl, Hello Dolly!**
* **Glenn Close:** Stage adaptation of "The Real Thing,
The Seagull
* **Katharine Hepburn:** Sparkling talent in timeless musicals
& dramas
* Laurence Olivier, Laurence Fishburne, Meryl Streep
* William Shatner, Dustin Hoffman (The Baker Street,
Waiting for Godot)
* JudithAnderson, Audrey Hepburn, Paul Newman -
captivating stagescapes

Steered Feature Analysis

Table 14: Top steered features for Example 1.

Standard FSRL Top Features
ID Description Act.

10827 Legal proceedings and evidence terms 0.37
46406 Document start (bos) indicators 0.34
45950 Formal mathematical notation symbols 0.30
16857 Technical document math/structure 0.25
26449 Speech-related punctuation/quotes 0.23

Style-Ablated FSRL Top Features
ID Description Act.

54438 Data results statistical/math notation 0.49
4359 Programming/software technical terms 0.48

63616 Experiential action phrases 0.36
46766 Expectation/aspiration phrases 0.33
53758 Software licensing/copyright info 0.32
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M.2 Example 2: US State Names

Prompt: How did US states get their names?

Model Outputs

Baseline Output

The origins of US state names are a fascinating blend of historical,
geographical, and cultural influences...
**Historical Influences:**
* **Colonial Origins:** Many states were named after:
* **Native American Tribes:** Names reflecting presence of tribes.
* **Early European Explorers:** Honoring early settlers.
* **Political and Religious Figureheads:**
Named after influential groups.

FSRL Output (Standard)

NamingOurStates:ATimelineOfAmerica’sGoverningNames:**
**EarlyYears:FromEarlySettlers’InkToFormalGovernments**
*BeforeIndependence:**
*Legend holds:**NativeAmericannames,oftenreflectinglocalfeatures
(i.e.,“Massachusetts-Massachuset’tuc”,afterMasschusettsBayinregion)
*ColonialPeriodDefinedTerritory(1602-1776):
*EarlyformsmostlyderivedfromBritishcognos,mostwithinfluencesof
“TheCrown’sBrand”**(England,Scotland,etc.)
*AfterRevolution’sSpirit:**

**“CountyReorganization”DuringTheRevolution:**
*Incorporatedmostwith“CountyOf...”suffix,e.g.,Pennsylvania(“");
**(Exctinction:**Somewerebrieflycalled“Countyof________”beforebecoming
“State”or“District”names**(e.g.,Pennsylvania’sofficialnamewasinitially
“ProvinceofPennsylvania”incolonialperiod)**

FSRL Output (Style-Ablated)

The genesis of American state appellations reflects a tapestry
of colonial history, indigenous heritage, geographic features,
and political intrigue.
**Early Settlements & Enduring Influences**
* **European Colonization (1607-1776):**
* Pioneer narratives: christened landmasses with prevalent explorers,
explorers’ surnames (e.g., Massachusetts Bay, Delaware)
* Native American roots: prevailing linguistic influences
shaped Coastline
nomenclature (Maine, Rhode Island)
* **Royal Charters & Authority:**
* Crown grants granted charters for colonies (Virginia, Carolina)

M.3 Example 3: 1920s Music

Prompt: What is some cool music from the 1920s?
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Table 15: Top steered features for Example 2.

Standard FSRL Top Features
ID Description Act.

10827 Legal proceedings and evidence terms 0.34
46406 Document start (bos) indicators 0.32
45950 Formal mathematical notation symbols 0.28
16857 Technical document math/structure 0.24
26449 Speech-related punctuation/quotes 0.22

Style-Ablated FSRL Top Features
ID Description Act.

54438 Data results statistical/math notation 0.39
4359 Programming/software technical terms 0.38

63616 Experiential action phrases 0.29
46766 Expectation/aspiration phrases 0.27
10827 Legal proceedings and evidence terms 0.26

Model Outputs

Baseline Output

Ah, the roaring twenties! A decade of jazz, innovation,
and boundless energy.
Here’s a taste of cool music from the 1920s:
**Jazz:**
* **Louis Armstrong:** A true legend. Start with his "Hot Five".
* **King Oliver’s Creole Jazz Band:** Launched Armstrong’s career.
* **Bessie Smith:** The "Empress of the Blues."
* **Jelly Roll Morton:** A true pioneer of jazz piano and composer.
* **Duke Ellington:** This bandleader was a force in the big band era.

FSRL Output (Standard)

Here’syourpartytimemachineto“RoaringTwentiesTunes”:
**The“GoldenAge”Highlights:**
*Blues&Improvisation:**

*Bluesbluesy:**“Cowin’BrotherBrown,”“BlackBottom”,
“St.LouisWhirlwind,”
**(DukeEllington’s“Ain’tItWonderful?”]**
*Jumpin’BigBand:**
-Louis’sbigpicturein‘EarlySwingin’Sound”(“Chattin’WithMyGirl”,
‘TheHumanElement’sSentimentalSwing”**

**“SweetSoundOfSoul”:
-**“Handjive,”“Sing,Sing,Sing!”(DorathyPowell)**
*VocalPowerhouse:**

*Vocalists:**
‘HelenHumes,”CabCallaway,ClaraLaVern,BillieHoliday
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FSRL Output (Style-Ablated)

Musical Milestones of the Roaring Twenties: A Blast from the Jazz Age
Embrace the flapper era’s infectious beats and unforgettable tunes!
**Classics & Pioneers:**
- **Louis Armstrong (Louis "Satchmo") & Co.** - "Stardust,"
"West End Blues,"
Armstrong’s signature vocal stylings ignited Big Band swing.
-Duke Ellington, Duke’s Orchestra - "Rhapsody in C-&-F," Paramount
masterpiece blending blues, syncopation, & harmonic innovation.
-Billie Holiday, Billie Holiday - haunting ballads & Billie’s sultry
contralto, embodying resilience & societal longing.

Table 16: Top steered features for Example 3.

Standard FSRL Top Features
ID Description Act.

10827 Legal proceedings and evidence terms 0.51
46406 Document start (bos) indicators 0.47
45950 Formal mathematical notation symbols 0.42
16857 Technical document math/structure 0.35
26449 Speech-related punctuation/quotes 0.32

Style-Ablated FSRL Top Features
ID Description Act.

54438 Data results statistical/math notation 0.38
4359 Programming/software technical terms 0.37

63616 Experiential action phrases 0.28
46766 Expectation/aspiration phrases 0.27
10827 Legal proceedings and evidence terms 0.25

M.4 Summary of Qualitative Patterns

Our analysis of the steered outputs reveals three distinct pathological patterns that corroborate the
"style hacking" hypothesis presented in the main text:

The Universal Formatting Mask. Regardless of the prompt context—whether discussing Broad-
way, history, or music—the Standard FSRL adapter consistently amplifies the same set of features.
Specifically, feature 10827 (Legal Terminology) and feature 45950 (Mathematical Notation) appear
as top interventions across all examples. This suggests the policy has learned a context-agnostic “for-
matting mask" that attempts to impose rigid structure on the output. The visual result is a degradation
of basic linguistic constraints: spacing is frequently omitted (e.g., “Here’sanextensivelist...”) and
the model actively uses text with formatting artifacts, including dense clusters of bolding markers,
underscores used as separators, and sometimes even a different language.

Content Flair vs. Coherence. While the Standard FSRL model is nearly illegible, the Style-
Ablated model recovers a degree of grammatical coherence and proper spacing. Notably, the content
of the Style-Ablated outputs is often more dramatic and engaging than the Baseline. For instance,
where the Baseline simply lists facts ("The origins of US state names are..."), the Style-Ablated model
uses more evocative framing ("The genesis of American state appellations reflects a tapestry..."). This
suggests that SimPO successfully optimizes for a more compelling, high-quality tone. However,
because this tone is entangled with the "structure" features, the adapter cannot achieve this style
without also inducing artifacts that make the text practically less preferable than the Baseline.

N Investigation into Feature Entanglement

To investigate the divergent effects of style ablation across model scales, we performed a quantitative
analysis of feature usage in the base models. We hypothesize that the impact of ablation depends
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on whether the targeted features are central to the model’s computation (Entangled) or auxiliary
(Disentangled).

N.1 Methodology: L1 Activation Mass

We measured the L1 Activation Mass of the targeted style features during inference on the base
models (frozen) with their respective SAEs. This metric quantifies the proportion of the residual
stream’s total energy routed through the style features identified by our audit.

For a set of style feature indices S, the style intrusion metric is calculated as:

Style Intrusion =

∑T
t=1

∑
i∈S |ft,i|∑T

t=1

∑dsae

j=1 |ft,j |
(25)

where ft,i represents the activation of feature i at token t. To ensure robustness, we cached activations
for a maximum of 1,000 samples for each benchmark (GSM8K, TruthfulQA, and MMLU).

N.2 Results and Analysis

The results, presented in Table 17, reveal a structural difference in how the two models utilize these
features.

Table 17: Style Feature Activation Mass (L1 Intrusion) on Base Models. The 2B model consis-
tently routes ≈ 50% of its activation energy through the targeted style features, indicating they are
the primary control surface. The 9B model routes only ≈ 15-20%, indicating they are auxiliary.

Dataset Gemma-2-2B-it (L1 %) Gemma-2-9B-it (L1 %)

GSM8K (Reasoning) 45.8% 15.8%
TruthfulQA (Knowledge) 52.7% 21.2%
MMLU (Multiple Choice) 52.0% 19.9%

Gemma-2-2B: Central Control Surface. The 2B model routes ≈ 50% of its computation through
the targeted features. This suggests they are central and polysemantic.

• Loss of Optimization Capacity: The centrality of these features is further evidenced by
the training dynamics reported in Section 6. When these features were ablated, the adapter
failed to effectively minimize the preference loss (rising from 2.58 to 3.90). This indicates
that the style features served as the model’s primary control surface; without them, the
optimizer struggled to influence the model’s behavior.

• GSM8K (Trajectory Instability): Mathematical reasoning is a long-horizon generation task
sensitive to state perturbations. Blocking the adapter from using the primary control surface
forces it to modulate secondary, less effective features to minimize loss. These suboptimal
interventions introduce accumulating errors that destabilize the reasoning trajectory (Score
7.05→ 1.97).

• TruthfulQA (Pivoting to Less Entangled Features): The significant improvement in
TruthfulQA (56.10 → 60.13) indicates that the standard adapter heavily relied on high-
impact features where style and truthfulness were fused. By preventing the adapter from
using these entangled features, it was forced to focus on alternative, less entangled features
that were important for truthfulness. Although this pivot resulted in a higher preference
loss, it effectively bypassed the specific entanglements that were degrading the relative
truthfulness performance in the standard run.

Gemma-2-9B: Auxiliary Interference. In contrast, the 9B model routes only ≈ 15-20% of its
energy through these features, suggesting they are largely auxiliary.

• GSM8K (Noise Removal): In the Standard run, the adapter artificially amplified these
auxiliary features to satisfy the reward model, creating high-magnitude noise that drowned
out the reasoning signal (Score 0.00). Ablating them removed this specific noise source
without damaging the separate reasoning features (recovered to 18.57).
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• TruthfulQA (Marginal Gain): The gain in TruthfulQA is marginal (+0.8%) compared to
the 2B model. This is consistent with the disentanglement hypothesis: since the features
required for truthfulness are already sufficiently separated from the style features (low
overlap), the standard adapter was not interfering with them as heavily to begin with. Thus,
removing style features provided less relative benefit.

MMLU (Inconclusive). The results on MMLU are mixed across scales. Given the broad, multi-
domain nature of this benchmark and the variation in results, we do not draw a strong conclusion
here.

FSRL effectively diagnoses that the 2B model suffers from polysemanticity (where the style features
are the primary control surface which are mixed with everything else), while the 9B model suffers
from optimization interference (where style features act as distractors).

O Use of Large Language Models

We disclose the use of LLMs as assistive tools in the preparation of this manuscript. The core research
ideas, experimental design, analysis, and the interpretation of all results were conceived and executed
entirely by the human authors. The LLMs’ roles were confined to technical and editorial assistance.

The specific models and their functions were as follows:

• Gemini 2.5 / 3 Pro: This model was used as a writing assistant. Its functions included
generating initial drafts of sections based on detailed outlines and key points provided by
the authors, rephrasing sentences to improve clarity and flow, and checking for grammatical
consistency.

• Claude 4 / 4.5 Sonnet: This model served as a technical and programming assistant. Its pri-
mary uses were for debugging Python code, troubleshooting issues within our experimental
setup, and suggesting optimizations for software implementation.

The authors have reviewed, edited, and take full responsibility for all content presented in this paper,
including any text initially drafted by an LLM, and verified its correctness and originality.
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