
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CONTROLLED LLM DECODING VIA DISCRETE AUTO-
REGRESSIVE BIASING

Anonymous authors
Paper under double-blind review

ABSTRACT

Controlled text generation allows for enforcing user-defined constraints on large
language model outputs, an increasingly important field as LLMs become more
prevalent in everyday life. One common approach uses energy-based decoding,
which defines a target distribution through an energy function that combines multi-
ple constraints into a weighted average. However, these methods often struggle to
balance fluency with constraint satisfaction, even with extensive tuning of the en-
ergy function’s coefficients. In this paper, we identify that this suboptimal balance
arises from sampling in continuous space rather than the natural discrete space
of text tokens. To address this, we propose Discrete Auto-regressive Biasing, a
controlled decoding algorithm that leverages gradients while operating entirely in
the discrete text domain. Specifically, we introduce a new formulation for con-
trolled text generation by defining a joint distribution over the generated sequence
and an auxiliary bias sequence. To efficiently sample from this joint distribution,
we propose a Langevin-within-Gibbs sampling algorithm using gradient-based
discrete MCMC. Our method significantly improves constraint satisfaction while
maintaining comparable or better fluency, all with lower computational costs. We
demonstrate the advantages of our controlled decoding method on sentiment con-
trol, language detoxification, and keyword-guided generation.

1 INTRODUCTION

Large language models (LLMs) are widely used in real-world applications through chatbots such as
ChatGPT, Alpaca, and Llama, making them an important part of everyday life (Bender et al., 2021;
Bommasani et al., 2021; Weidinger et al., 2021). As a result, there has been growing attention on
developing methods to reliably and effectively control LLM-generated outputs to meet user-defined
constraints (Gehman et al., 2020; Dathathri et al., 2020; Goshvadi et al., 2023; Han et al., 2024).

Previous work has tackled controlled language generation using decoding-time algorithms, which
bypass the need for fine-tuning the base language model (Liu et al., 2023a; Kumar et al., 2022;
Mireshghallah et al., 2022; Dathathri et al., 2020; Qin et al., 2022). Among these, energy-based
decoding methods define a target distribution through an energy function, combining multiple con-
straints into a weighted average. This formulation offers significant flexibility, as the energy function
can be any arbitrary function. Sampling from this distribution relies on gradient-based MCMC in
continuous spaces, followed by conversion back to discrete text tokens.

However, these methods often struggle to achieve a good balance between fluency and constraint
satisfaction. Tuning the coefficient for each constraint in the energy function requires exhaustive ef-
forts, and even with careful tuning, the generated outputs may still fail to meet the desired standards.

In this paper, we analyze this issue and show that the suboptimal balance arises from sampling in
continuous space rather than the natural discrete space of text tokens. Continuous-space sampling
leads to incremental sequence updates, which hinders the exploration of fluent and constrained text.

To address this, we propose DAB: Discrete Auto-regressive Biasing, a decoding algorithm that
efficiently explores the discrete text space, achieving a better balance between fluency and constraint
satisfaction with lower decoding costs than existing decoding-time algorithms (demonstrated in Fig.
1). DAB operates entirely in the discrete domain, which allows for more directional and substantial
updates to the response sequence at each step. Specifically, our method defines a target distribution

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

P (B|Y) Bt+1

Gradient-based Discrete Sampling

Discrete Bias
Sequence Bt

Discrete
Response
Sequence Y t

Compute distribution to
sample bias sequence

softmax
j∈|V |

((∇f(B))i,j(1− b̂i,j))

map bias tokens
to bias vectors

b̃i,j = −||Mbi −Mvj ||22

PLM

Auto-Regressive Biasing

+

+

+

+

+

Bt+1

Y t+1

Figure 1: Visualization of the proposed decoding algorithm, DAB. DAB alternates between sam-
pling the response Y and the bias B. To sample B given Y , we use gradient-based discrete sampling
on the constraint function f . To sample Y given B, we compute a bias vector that penalizes words
based on their distance to B and then use this bias to guide the auto-regressive generation.

as a joint distribution over response sequences Y and an auxiliary bias term B. It alternates between
sampling from P (B|Y) using gradient-based discrete sampling, ensuring constraint satisfaction, and
from P (Y |B) using biased auto-regressive generation, ensuring fluency. Notably, DAB significantly
reduces computational overhead due to a simpler gradient computation which is enabled by our
discrete sampling framework. We summarize our main contributions as follows:

• We propose a controlled auto-regressive decoding algorithm that leverages gradients while
operating entirely in the discrete text domain without continuous relaxation or post-hoc
discretization. By remaining in the discrete domain, our method achieves a better balance
between fluency and constraint satisfaction, with significantly lower computational costs
than existing energy-based decoding algorithms.

• We introduce a new formulation for controlled text generation by defining a joint distri-
bution over the generated sequence and an auxiliary bias sequence. To sample from this
joint distribution, we propose a discrete Langevin-within-Gibbs sampling algorithm. Our
algorithm leverages discrete gradient-based MCMC to sample the auxiliary bias sequence,
which is then incorporated into the final output via biased auto-regressive generation.

• We demonstrate that our method consistently produces more satisfactory generations than
baseline methods, offering comparable or better fluency with 2x faster decoding time. This
performance holds across a range of constrained generation tasks, including sentiment-
controlled generation, toxicity avoidance, and keyword-guided generation.

2 RELATED WORK

2.1 LANGUAGE MODELS AS EBMS

Energy-based models (EBMs) have been a popular framework used to study the problem of
inference-time controlled text generation. Initial works focused on the application of Gibbs sampling
to encoder-based architectures such as BERT (Wang & Cho, 2019; Goyal et al., 2022; Mireshghallah
et al., 2022).

While these methods are similar to ours in that they perform discrete sampling, our work differs in
several key ways: (1) Our work leverages gradient information for a more informed exploration of
the energy landscape. (2) Our Gibbs sampling alternates between the response and bias, updating the
entire response at once. whereas previous Gibbs sampling approaches only update a single token at
a time. (3) Our method leverages auto-regressive generation within decoder architectures, whereas
these works can only be used with encoder architectures.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

More recent works have applied gradient-based sampling methods to more efficiently navigate the
energy landscape. Qin et al. (2022) that uses Langevin dynamics in the logit space followed by
top-k masking; Kumar et al. (2022) uses Langevin dynamics in the embedding space followed by a
projection to the embedding space; and Liu et al. (2023a) uses the ADAM optimizer with Gaussian
noise to obtain bias terms for biased auto-regressive generation.

Our approach differs from these works in that it relies on discrete sampling rather than continuous
sampling or optimization. By operating directly in the natural discrete space of text tokens, our
method not only improves the trade-off between fluency and constraint satisfaction but also reduces
decoding costs.

Beyond MCMC methods, it is also possible to apply some modified rejection sampling to proposal
algorithm to improve approximate sampling of the target EBM (Eikema et al., 2022). Additionally,
there is also a substantial line of research devoted to fine-tuning LLMs to align with an EBM de-
fined in terms of the base LM and external constraints (Khalifa et al., 2020; Korbak et al., 2022;
Kruszewski et al., 2023). We choose to focus on inference-time algorithms as they provide more
flexibility and avoid long training runs.

2.2 ALTERNATIVE CONTROLLED GENERATION APPROACHES

While the EBM framework is popular within the field of controlled text generation, there are several
alternative approaches. In terms of previous inference time algorithms, many works rely on specially
trained auxiliary models to provide token-level guidance (Krause et al., 2020; Yang & Klein, 2021;
Liu et al., 2021; Meng et al., 2022; Kim et al., 2022) or query a standard text classifier multiple times
per generated token (Dekoninck et al., 2024; Sitdikov et al., 2022). Other works apply gradient-
based optimization methods to improve constraint satisfaction (Qin et al., 2020; Dathathri et al.,
2020).

Recently, Han et al. (2024) introduces LM-Steer, a method for learning linear transformations to
influence language model generation. This is similar to the BOLT algorithm as both alter the em-
bedding representations from auto-regressive generation by some learned operation. Whereas Liu
et al. (2023a) is framed as a decoding-time algorithm, LM-Steer requires training data in order to
learn the linear transformation. In general, these methods either suffer from the steep trade-off
between fluency and control previously mentioned, require separate training or fine-tuning for the
constraint LM, or are computationally expensive.

2.3 GRADIENT-BASED DISCRETE SAMPLING

Recent works have demonstrated the benefits of leveraging gradient information for sampling over
discrete spaces (Grathwohl et al., 2021; Sun et al., 2023a; Goshvadi et al., 2023; Sun et al., 2023b;
Pynadath et al., 2024). Our method uses the sampling algorithm introduced in Zhang et al. (2022),
which can be viewed as the analog of Langevin dynamics (Roberts & Stramer, 2002) in discrete
spaces. This paper may be of interest to this field as it is the first to explicitly link discrete gradient-
based sampling with controlled language model generation.

3 PRELIMINARIES

Task Definition Let PLM denote some pre-trained language model, V denote the set of tokens
in the model vocabulary, and f : |V |n → R represent an external constraint where higher values
correspond to better constraint satisfaction. We will use Y = {y1, y2 . . . yn} to refer to the sequence
of tokens in the response.

We assume PLM is an auto-regressive transformer as used in previous work (Qin et al., 2022; Kumar
et al., 2022; Liu et al., 2023a). Given some initial prompt X , we define the auto-regressive distribu-
tion for the ith position as ỹi = PLM (·|y<i, X). This forms a distribution over the vocabulary V
and can be represented as a |V | dimensional logit vector.

We define the task of controlled language generation as generating a sequence of n tokens Y =
{y1, y2, . . . yn} from some initial prompt X = {x1, x2 . . . xm} that is both high in likelihood under
the language model and high in terms of constraint satisfaction. We can compute the likelihood of

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

the generation under the pre-trained language model for a sequence of length n as follows:

PLM (Y |X) = Πi<n PLM (yi|y<i, X) (1)

Previous works have framed this problem as sampling from an unnormalized distribution, commonly
referred to as an energy based model (EBM) (Mireshghallah et al., 2022; Qin et al., 2022; Kumar
et al., 2022; Liu et al., 2023a). The energy function is typically defined as follows:

E(Y) = λ1 logP
LM (Y |X) + λ2f(Y |X).

This defines the following distribution:

π(Y) =
expE(Y)∑

Y ′∈Y expE(Y ′)
(2)

Non Auto-regressive Generation As the denominator, or partition function, requires computing
the energy of all possible sequences, it is intractable to directly sample from π. Previous works
address this by applying Langevin dynamics as it only requires gradients of the energy function E
(Qin et al., 2022; Kumar et al., 2022). Specifically, they use some continuous representation of the
current sample Ỹt and a learning rate γ to define the following update step:

Ỹt+1 = Ỹt + γ∇Ỹ E(Ỹt) + ϵ, ϵ ∼ N (0, σ2I) (3)

Non-autoregressive generation methods typically rely on some form of filtering or projection to
ensure that the continuous generation can be mapped back into the discrete token space V . In Qin
et al. (2022), the final generation is filtered using a top-k mask, where the top-k indices are obtained
from the base language model PLM . In Kumar et al. (2022), their proposed algorithm performs the
update in the embedding space and projects the resulting vector onto the set of token embeddings
for the base language model.

Biased Auto-regressive Generation Liu et al. (2023a) introduced a method that samples a bias
term from the target distribution and incorporates it into auto-regressive generation. While the sam-
pling step of the bias-term is similar to equation 3 in the embedding space, they skip the projection
step of Kumar et al. (2022) and modify the auto-regressive step as follows:

yi = argmax
j∈|V |

(
ỹi,j + wi · (biMT)j

)
(4)

Here, i is the sequence position, ỹi is the initial logit vector, M is the embedding table for the lan-
guage model PLM , bi is the bias vector in the embedding space, wi is the weight value, and j refers
to the logit coordinate. biMT refers to the transformation of the bias vector bi to a logit vector. Liu
et al. (2023a) demonstrates that sampling a bias term to direct auto-regressive generation enables
quicker convergence to satisfactory generation, as opposed to non auto-regressive generation. How-
ever, they also mention the undesirable trade-off between control towards constraint satisfaction and
fluency, which our work addresses.

4 DISCRETE AUTOREGRESSIVE BIASING

In this section, we introduce DAB: Discrete Auto-regressive Biasing. First, we present the formula-
tion of the target distribution as a joint distribution and explain the motivation behind this approach.
Next, we describe how our algorithm samples from the joint distribution by alternating between bi-
ased auto-regressive generation and discrete gradient-based sampling. We finally demonstrate that
gradient-based discrete sampling enables our algorithm to have more thorough, stable, and efficient
sampling when compared to continuous methods.

4.1 FORMULATION

Our goal is to formulate the target distribution in such a way that enables both auto-regressive biasing
and discrete sampling, allowing for superior exploration of the discrete space of fluent and controlled
responses. However, existing formulations will not allow for both: while Kumar et al. (2022) in-
troduces a framework that allows for direct sampling of word embedding, it is non auto-regressive;
and while Liu et al. (2023a) introduces a method that allows for auto-regressive generation, the bias
vectors used are continuous. Thus here we introduce a new formulation.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Target Discrete Distribution In order to ensure the constraint satisfaction of the output sequence
Y , we introduce an auxiliary variable B = {b1, b2 . . . bn}, where each bi ∈ V . We refer to this
sequence as the bias sequence or bias tokens. First, we define the joint distribution over Y,B condi-
tioned on the prompt X:

P (Y,B|X) ∝ PLM (Y |X,B) exp(f(B|X)) (5)

Here, f(B|X) represents the constraint, with larger values of f(B|X) indicating better satisfaction
of the constraint. PLM refers to the language model distribution conditioned on X,B. As we will
show in later sections, this definition enables us to apply auto-regressive generation to obtain Y and
gradient-based sampling to obtain B. This is crucial as auto-regressive generation ensures fluency
whereas gradient-based sampling ensures constraint satisfaction (Liu et al., 2023a).

Marginal Distribution P (Y |X) The marginal distribution of Y is:

P (Y |X) =
∑

B∈|V |d
P (Y |X,B)P (B|X) =

∑
B∈|V |d

P (Y |X,B)
exp(f(B|X))

ZB
.

This formulation expresses the probability of obtaining the response Y , taking into account all pos-
sible biases B. The response Y drawn from this marginal distribution will be both fluent (due to the
term PLM (Y |X,B)) and highly satisfying of the constraints (due to exp(f(B|X))). The bias vari-
able B helps balance these two aspects. As the distribution over Y incorporates both PLM and the
external constraint, probable sequences under this distribution will be both fluent and satisfactory.
This ensures that the generated response Y from our algorithm has the desired properties.

Marginal Distribution P (B|X) The marginal distribution of B is given by:

p(B|X) =
exp(f(B|X))

ZB
(6)

This indicates that highly probable values of B will satisfy the external constraint. However, since
the distribution does not incorporate the language model PLM , the sequence of B may not be fluent.
For this reason, we use B as a “guide” sequence as opposed to using it as the response.

Conditional Distributions Given the joint distribution defined in equation 5, the conditional dis-
tribution of Y is P (Y |B) = PLM (Y |X,B). Furthermore, the conditional distribution of B is:

P (B|X,Y) =
PLM (Y |X,B) exp(f(B|X))

P (Y)
∝ PLM (Y |X,B) exp(f(B|X))

These expressions enable efficient and effective sampling, as we will show in the following section.

4.2 SAMPLING ALGORITHM

Sampling directly from the joint distributions of Y,B is challenging. We propose to use Gibbs
sampling to sample from the target distribution by alternatively sampling from P (Y |X,B) and
P (B|X,Y). First, we describe how our proposed algorithm samples from each conditional distri-
bution. We then introduce the complete sampling algorithm along with some intuition as to how it
ensures satisfactory and fluent generations.

Sampling from P (B|X,Y) The conditional distribution for P (B|X,Y) includes the term
PLM (Y |X,B). This is to ensure that the sampled B results in output sequences that are high
in likelihood under the base model distribution. However, directly computing PLM (Y |X,B) for all
possible values of B is intractable. By noting that this term encourages the selection of B that is
consistent with the observed Y , we can infer this property is naturally satisfied when B is close to
Y . Thus, we approximate PLM (Y |X,B) by performing a single MCMC step with the initial state
set to Y .

In order to sample this discrete sequence of tokens, we apply the Discrete Langevin Proposal (DLP)
introduced in (Zhang et al., 2022). After initializing B as B = Y , and representing the sequence as

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

a sequence of one-hot vectors B̂ = {b̂1, b̂2 . . . b̂n}, we execute a single step of DLP with the target
distribution being exp(f(B|X)). Below we include the proposal distribution for position i:

b′i ∼ Categorical

(
softmax

j∈|V |

(
1

τ
(∇f(B̂|X))i,j(1− b̂i,j)

))
(7)

Here, τ is a temperature hyper-parameter that controls the sharpness of the proposal distribution,
(∇f(B̂|X))i,j is the jth component of the ith gradient vector, b̂i,j represents the jth component
of the one-hot vector b̂i, and b′i is the token we sample from the distribution over V . For more
details on the application of DLP and the gradient compution, see Appendix A. Unlike the algorithm
presented in Liu et al. (2023a), we do not require the use of straight through estimation (STE)
(Bengio et al., 2013) as we differentiate directly with respect to Y . Note that this proposal function
can be computed for all sequence positions in parallel. We refer to this proposal function as qτ (·|B).

Sampling from P (Y |X,B) Our goal is to sample from P (Y |X,B) using biased auto-regressive
generation, similar to equation 4. In order to do so, we must map the sequence of bias tokens B
to a sequence of bias vectors B̃. The ideal bias vector should reflect the difference in meaning
between each token in the vocabulary space V and the sampled token. To accomplish this, we
penalize each token based on the distance to the sampled bias token within the embedding space, as
static embeddings reflect semantic meaning (Mikolov, 2013; Pennington et al., 2014; Mikolov et al.,
2013). Given a bias token bi, embedding table M , we define the jth coordinate value corresponding
to token vj as follows:

b̃i,j = ||Mbi −Mvj ||22 (8)

This yields a |V | dimensional vector that can be added to the auto-regressive logits ỹi. When adding
the bias term to ỹi, we also incorporate both a weight term wi and a normalizing factor ri. While wi

is a hyper-parameter, ri normalizes the bias vector at the i position to have the same norm as ỹi. We
define the normalizing factor as follows:

ri =
||ỹi||2
||b̃i||2

(9)

We note that while this normalizing factor can also be applied to BOLT and may improve its results,
the modified BOLT still underperforms compared to our method.

We formally define our biased auto-regressive generation as follows:

yi = argmax
j∈|V |

(
ỹi,j − wi · ri · b̃i,j

)
. (10)

Intuitively, this returns the token corresponding to the maximal coordinate of the biased distribution.
Repeating this n times results in the updated response sequence Y .

Text Generation Algorithm We include the full algorithm in Algorithm 1. Given some prompt
X , we first generate some initial auto-regressive generation Y1, with the initial bias vector set to 0⃗.
After obtaining Y , we sample from the conditional distribution over B to obtain a sequence of bias
tokens. We then use equation 8 to compute the new bias vector to use for biased auto-regressive
generation. We repeat this alternative sampling process for several iterations, returning the sample
that best satisfies the constraint at the end as commonly done in the literature (Kumar et al., 2022;
Liu et al., 2023a). For a discussion on the hyper-parameters of our algorithm, see Appendix B.

4.3 ADVANTAGES OF BIASING IN DISCRETE SPACES

Here we discuss the various advantages of discrete sampling in the context of auto-regressive bias-
ing. First, we demonstrate that discrete sampling enables a quicker and more thorough exploration
of potential output sequences Y . We then describe how discrete sampling solves the stability is-
sue discussed in Liu et al. (2023a). Finally, we show that discrete sampling makes use of simpler
gradient computations, resulting in a more efficient decoding algorithm.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 Discrete Autoregressive Biasing

Require: Constraint function f , PLM , prompt X , number steps s, sequence length n, embedding
table M

1: B̃ ← 0⃗, fmin ← −∞, Ybest ← {} ▷ Initialize constraint violation as being maximal and current
best generation as empty

2: for step s do
3: for position i in range(n) do
4: ỹi ← logPLM (·|y<i, X) ▷ Initial auto-regressive distribution over V
5: Calculate normalizing factor ri if s > 1, else ri ← 1

6: yi ← argmaxj∈|V |

(
ỹi,j − wi · ri · b̃i,j

)
▷ Sample from P (Y |X,B)

7: end for
8: B ← Y ▷ Initialize B as Y
9: Evaluate f(B|X), update fmin, Ybest

10: B′ ∼ qτ (·|B) as in equation 7 ▷ Approximately sample from P (B|X,Y)

11: Compute B̃ as in equation 8
12: end for
13: return Ybest

Exploration of State Space Discrete sampling enables DAB to explore the output space more ef-
fectively than continuous methods. We hypothesize that discrete sampling enables more directional
and substantial changes to the bias vector, resulting in more token changes in the output sequence
across sampling steps. In order to demonstrate this, we first examine the hops, or the number of
sequence positions changed per step. We compare with BOLT, a continuous auto-regressive biasing
algorithm (Liu et al., 2023a). We examine the performance of BOLT both with and without the
normalizing factor defined in equation 9. We include the comparison of hops across 50 steps in
Figure 2a. These results show that our method updates substantially more sequence positions across
all sampling steps than either variant of BOLT.

Next, we measure how comprehensively each method explores the sample space of potential se-
quences. For each sequence position, we maintain a record of tokens encountered throughout the
sampling process and compute the number of unique tokens within this set. Figure 2b shows the
average unique tokens per sequence position for all three algorithms. These results indicate that
our method samples more unique tokens for each sequence position than either variant of BOLT,
demonstrating more comprehensive exploration. Collectively, these findings confirm that discrete
sampling enables faster, more thorough, and thus more effective exploration of the sample space of
potential sequences.

Sampling Stability Discrete sampling allows DAB to have superior stability across sampling steps
when compared to continuous methods. We show this in Figure 2c, where we track the average
perplexity of the batch at each time step. While BOLT faces deteriorating perplexity, DAB remains
stable throughout the sampling process.

We attribute this instability to the difficulty of applying continuous sampling techniques to a discrete
domain as discussed in Grathwohl et al. (2021). As a result of BOLT’s misalignment between the
sampling domain and target domain, the energy landscape is too complex to navigate with gradient
information. This results in the divergence seen in Figure 2c.

Our algorithm avoids this entirely as we perform direct sampling on the discrete token space. Since
we define the sampling domain and target domain to be the same, our algorithm enjoys superior
stability throughout all sampling steps. This improvement in algorithmic stability removes the need
for implementing early-stopping and to carefully tune the number of sampling steps.

Improved Efficiency Discrete sampling enables our algorithm to use simpler gradient computa-
tions that provide a computational advantage over continuous sampling methods. To evaluate our
algorithm’s efficiency, we compare the tokens per second of our method to BOLT. We also measure
the time-cost for computing the bias term for each method. We put the results in Table 1, where we

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 20 40
Sampling Step

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ho
ps

BOLT (Unnorm)
BOLT (Norm)
DAB (Ours)

(a) Hops per Sample Step

BOLT
 (Unnorm)

BOLT
 (Norm)

DAB
 (Ours)

0

10

20

30

40

50

Un
iq

ue
 T

ok
en

s

(b) Avg. Unique Tokens

0 20 40
Sampling Step

10

15

20

25

30

35

PP
L

BOLT (Norm)
DAB (Ours)

(c) Perplexity per Sample Step

Figure 2: (a) Average hops, or token updates per sequence, against sampling steps. Both versions
of BOLT suffer from decreasing hops while DAB remains stable. (b) Average number of the unique
tokens sampled for each sequence position throughout the entire sampling process. DAB discovers
many more unique tokens for each position than either variant of BOLT (c) Comparison of fluency
with respect to sampling steps. While BOLT suffers from degrading fluency even after incorporating
a normalizing factor, DAB exhibits stable behavior.

observe that our method has over 2x the tokens per second output when compared against BOLT.
Furthermore, our method computes the bias vector 20x quicker than BOLT.

Our algorithm achieves this computational advantage as a result of computing the gradient
with respect to B̂ = Ŷ , which removes the need to backpropagate through auto-regressive
generation. Computing the gradient of f with respect to a continuous bias term B̃ requires
first computing ∂f/∂Ŷ and then ∂Ŷ /∂B̃. Since each one-hot vector in Ŷ is influenced by
previous bias terms, the latter term requires backpropagation through auto-regressive genera-
tion. Simply initializing B̃ = Ŷ will not work in continuous sampling because the incre-
mental updates will keep B̃ close to the original Ŷ . In contrast, our method uses gradients
to identify which tokens will increase constraint satisfaction and directly samples them, en-
abling substantial change from the original sequence while incorporating information from the
external constraint. While continuous sampling cannot exploit this computational shortcut and
maintain constraint satisfaction, gradient-based discrete sampling achieves both simultaneously.

Table 1: Effiency comparison between BOLT and
DAB in terms of tokens per seconds, as well as
the average time cost per gradient update. Our
proposed algorithm produces 2x the number of to-
kens per second and generates the bias sequence
20x faster than BOLT.

Tokens / Second Seconds per
Bias Sample

BOLT 9.495± .095 .951± .002

DAB
(Ours) 23.213± 0.304 .037± .001

5 EXPERIMENTS

Tasks We evaluate DAB on three dis-
tinct controlled-generation tasks: sentiment-
guided generation, language detoxification, and
keyword-guided generation. These are popu-
lar tasks within the field of controlled genera-
tion (Kumar et al., 2022; Liu et al., 2023a; Han
et al., 2024). For all tasks, we produce gen-
erations in batches of 20 as done in Liu et al.
(2023a). For all tasks, we include example gen-

erations in Appendix C.2, C.3, C.4 for sentiment directed generation, language detoxification, and
keyword-guided generation respectively.

Baselines We compare to previous generation algorithms that use the EBM framework to perform
gradient-based text sampling. Specifically, we compare to MuCOLA (Kumar et al., 2022), COLD
(Qin et al., 2022), and BOLT (Liu et al., 2023a). We also compare against LM-Steer introduced in
(Han et al., 2024) to see how our method compares to alternative controlled generation methods.

Metrics While the metrics assessing control towards external constraint vary across experiments,
we use the same evaluation metrics to measure fluency across experiments. We measure fluency

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Sampling algorithm performance on sentiment-directed generation, language detoxifica-
tion, and keyword-guided generation. DAB acheives superior control metrics than baselines across
all task. while also demonstrating comparable or better fluency metrics competitive with the best
baseline.

Control Fluency
Sentiment Int. Clsf ↑ Ext. Clsf (Yelp) ↑ Ext. Clsf (SST-2) ↑ CoLA ↑ REP-3gram ↓ PPL ↓
MuCOLA .841± .009 .843± .011 .899± .008 .681± .008 .091± .006 34.786± 2.205
COLD .697± .011 .515± .015 .670± .013 .731± .008 .061± .003 15.908± .394
BOLT .903± .006 .747± .013 .878± .001 .874± .005 .0008± .0002 9.919± .142
LM-Steer - .900± .008 .948± .006 .564± .008 .117± .007 72.153± 3.195
DAB (Ours) .992± .001 .894± .009 .975± .003 .860± .005 .004± .001 11.773± .203

Toxicity Int. Clsf ↓ Avg. Max Toxicity ↓ Toxicity Pred. Prob. ↓ CoLA ↑ REP-3gram ↓ PPL ↓
MuCOLA .098± .002 .269± .006 7.6% .691± .002 .006± .001 58.015± .435
COLD .136± .002 .266± .007 10.2% .667± .001 .024± .001 38.891± .177
BOLT .065± .001 .264± .006 6.8% .830± .001 .001± .0001 27.283± 2.233
LM-Steer - .265± .006 7.9% .722± .002 .006± .002 52.697± .356
DAB (Ours) .057± .001 .211± .006 6.8% .806± .001 .001± .0001 25.609± .126

Keyword BertScore ↑ Success Rate ↑ - CoLA ↑ REP-3gram ↓ PPL ↓
MuCOLA .8083± .0004 100% - .248± .004 .007± .001 475.301± 30.445
COLD .8123± .0005 100% - .205± .003 .020± .001 241.980± 4.943
BOLT .8291± .0003 99.1% - .705± .006 .005± .005 32.019± 1.593
DAB (Ours) .8303± .0003 99.0% - .726± .005 .004± .001 23.424± .317

by looking at CoLA score, the number of repeated tri-grams per generation, and perplexity (Kumar
et al., 2022; Liu et al., 2023a). For CoLA score, we use a fine-tuned RoBERTa model to provide a
probability as to whether a generation is grammatically correct 1. For perplexity, we use GPT-XL
to evaluate each generation 2. We show the average of the results across all generations. For more
details on these evaluation methods, refer to Appendix C.1.

5.1 SENTIMENT-CONTROLLED GENERATION

Task Here we measure the ability to direct generation towards positive sentiment from some initial
prompt. Given an initial prompt, we generate sequences of length 12, 20, 50 as done in prior works
(Kumar et al., 2022; Liu et al., 2023a). We use the same set of prompts as Dathathri et al. (2020)
and include them in Appendix C.2.

Control Metrics We evaluate control by measuring the predicted sentiment of the generation using
three distinct sentiment classifiers. For details on the training of the three classifiers, see Appendix
C.2. We omit the internal classifier measure for LM-Steer as it does not rely on an internal classifier
to guide generation.

Results Table 2 shows that our method achieves a better balance between control and fluency than
baselines. DAB achieves the highest average probability of positive sentiment across all three clas-
sifiers, demonstrating its effectiveness at incorporating the external constraint. Furthermore, DAB
achieves fluency scores close to BOLT’s performance in regards to CoLA score, repeated trigrams,
and perplexity. This shows that DAB produces generations that are both fluent and satisfactory under
the constraint.

5.2 TOXICITY AVOIDANCE

Task We compare our algorithm to various baselines for the task of language detoxification to
demonstrate that our method can be used to mitigate potentially toxic LLM generations. Following
prior work, we use 1,000 prompts sampled from the RealToxicityPrompts introduced and generate

1We take the average of the output probabilities as opposed to the percentage of grammatically-correct
predictions used in Kumar et al. (2022).

2We use the absolute perplexity of the entire generation as opposed to the conditional perplexity used in Liu
et al. (2023a); Kumar et al. (2022); Han et al. (2024)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

continuations of length 20 tokens (Gehman et al., 2020; Kumar et al., 2022; Liu et al., 2023a). As
in the sentiment-directed generation task, we use a fine-tuned RoBERTa as the constraint function.

Control Metrics We evaluate the generations using both the internal discriminator used to guide
the various methods, and the score returned by the Perspective API (Lees et al., 2022). We use the
scores returned from Perspective API to calculate the maximum toxicity per prompt and the overall
percentage of text predicted to be toxic.

Results As shown in Table 2, our method generates less toxic text than baselines without compro-
mising fluency. DAB significantly decreases the average maximum toxicity per prompt, demonstrat-
ing that our algorithm is more consistent in terms of toxicity reduction. Furthermore, our method
obtains fluency metrics that are on par with the best baseline.

5.3 KEYWORD-GUIDED GENERATION

Task We measure the ability of our method to produce text that includes a given keyword relevant
to a specific topic. As done in prior work, we use 7 topics with 4 keywords each and use the
differentiable BLEU (Liu et al., 2022) as the constraint function (Liu et al., 2023a). For baselines,
we compare to the same methods as before with the exclusion of LM-Steer as no similar task was
discussed in the original work.

Control Metrics The ideal metric goal for this task should only assign good scores to text where
keywords are used in a meaningful way. While Liu et al. (2023a) uses the percentage of generations
that include a keyword to measure constraint satisfaction, this metric also assigns good scores to text
where the keyword does not add meaning to the sentence.

An alternative approach is to compute a similarity score between the generations and reference texts
that use the keywords in a manner relevant to the given topic. To accomplish this, we use GPT-4o to
produce sentences for each combination of prompt, topic, and keyword. We then use BertScore to
compute the similarity score between the candidate generations and the reference text, where higher
similarity implies increased relevance to the target topic (Zhang et al., 2020). For further details,
refer to Appendix C.4.

Results DAB is able to outperform baselines in terms of both control and fluency, reflecting an
improved balance between these two attributes. As shown in Table 2, DAB outperforms baselines in
terms of relevance towards the target topic as measured by BertScore. While the success rate of our
method is not as high as some of the baselines, those methods do not incorporate the keywords in
a semantically meaningful manner as indicated by the BertScore. Furthermore, our generations are
more fluent than all baselines in terms of all three fluency metrics. These results indicate that our
method strikes a superior balance between control and fluency in regards to topic-guided generation.

6 CONCLUSION

In this work, we introduce DAB, the first controlled decoding algorithm based on gradient discrete
sampling. Our algorithm alternates between biased auto-regressive generation and gradient-based
discrete sampling to produce text from pre-trained language models subject to an external constraint
function. Through various controlled generation experiments, we demonstrate that our algorithm is
both more efficient and effective than previous methods.

Limitations While our method is more efficient than other gradient-based controlled generation
methods, the number of gradient computations increases linearly with the number of prompts or
queries. In certain cases, it may be more desirable to have a method that does not have this over-
head. Furthermore, it has not yet been explored how our method performs when faced with multiple
external constraints or compositional generation.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

7 ETHICS

We adhere to the ICLR Code of Ethics. Additionally we confirm that our experiments use only public
datasets. The algorithm introduced in this work is a general-purpose algorithm for directing LLMs
to generate text satisfying arbitrary constraints. Thus it is possible to define malicious constraints
that cause LLMs to produce harmful text. Similar to the work done in (Guo et al., 2024), it may be
possible to apply our algorithm towards jail-breaking LLMs and causing them to produce harmful
text. Previous works have demonstrated that it is possible to induce harmful behavior in LLMs via
various attacks (He et al., 2024; Liu et al., 2023b; Schwinn et al., 2023).

8 REPRODUCIBILITY

In order to ensure the reproducibility of our work, we include the details necessary to replicate
both the core algorithms and the experiments. We include the psuedo-code for our algorithm in
1; information on hyper-parameter settings in Appendix Bl and further details on each experi-
ment in Appendix C.2, C.3, C.4. Additionally, we include the code-base used to produce our re-
sults at the following anonymized repository: https://anonymous.4open.science/r/
differentiable_masking-1365/.

REFERENCES

Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the
dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021
ACM Conference on Fairness, Accountability, and Transparency, pp. 610–623. Association for
Computing Machinery, 2021. ISBN 9781450383097. doi: 10.1145/3442188.3445922.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason Yosin-
ski, and Rosanne Liu. Plug and play language models: A simple approach to controlled text
generation. In International Conference on Learning Representations, 2020.

Jasper Dekoninck, Marc Fischer, Luca Beurer-Kellner, and Martin Vechev. Controlled text gener-
ation via language model arithmetic. In International Conference on Learning Representations,
2024.

Bryan Eikema, Germán Kruszewski, Christopher R Dance, Hady Elsahar, and Marc Dymetman.
An approximate sampler for energy-based models with divergence diagnostics. Transactions on
Machine Learning Research, 2022. ISSN 2835-8856.

Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A. Smith. RealToxici-
tyPrompts: Evaluating neural toxic degeneration in language models. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020, pp. 3356–3369. Association for Computa-
tional Linguistics, November 2020. doi: 10.18653/v1/2020.findings-emnlp.301.

Katayoon Goshvadi, Haoran Sun, Xingchao Liu, Azade Nova, Ruqi Zhang, Will Sussman Grath-
wohl, Dale Schuurmans, and Hanjun Dai. Discs: A benchmark for discrete sampling. In Neural
Information Processing Systems Datasets and Benchmarks Track, 2023.

Kartik Goyal, Chris Dyer, and Taylor Berg-Kirkpatrick. Exposing the implicit energy networks be-
hind masked language models via metropolis–hastings. In International Conference on Learning
Representations, 2022.

Will Grathwohl, Kevin Swersky, Milad Hashemi, David Duvenaud, and Chris Maddison. Oops
i took a gradient: Scalable sampling for discrete distributions. In International Conference on
Machine Learning, pp. 3831–3841. PMLR, 2021.

11

https://anonymous.4open.science/r/differentiable_masking-1365/
https://anonymous.4open.science/r/differentiable_masking-1365/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xingang Guo, Fangxu Yu, Huan Zhang, Lianhui Qin, and Bin Hu. Cold-attack: Jailbreaking llms
with stealthiness and controllability. In International Conference on Machine Learning, 2024.

Chi Han, Jialiang Xu, Manling Li, Yi Fung, Chenkai Sun, Nan Jiang, Tarek Abdelzaher, and Heng
Ji. Word embeddings are steers for language models. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 16410–16430.
Association for Computational Linguistics, August 2024. doi: 10.18653/v1/2024.acl-long.864.

Jiaming He, Wenbo Jiang, Guanyu Hou, Wenshu Fan, Rui Zhang, and Hongwei Li. Talk too much:
Poisoning large language models under token limit. arXiv preprint arXiv:2404.14795, 2024.

Muhammad Khalifa, Hady Elsahar, and Marc Dymetman. A distributional approach to controlled
text generation. In International Conference on Learning Representations, 2020.

Minbeom Kim, Hwanhee Lee, Kang Min Yoo, Joonsuk Park, Hwaran Lee, and Kyomin Jung. Critic-
guided decoding for controlled text generation. arXiv preprint arXiv:2212.10938, 2022.

Tomasz Korbak, Hady Elsahar, German Kruszewski, and Marc Dymetman. Controlling conditional
language models without catastrophic forgetting. In International Conference on Machine Learn-
ing, pp. 11499–11528. PMLR, 2022.

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann, Nitish Shirish Keskar, Shafiq Joty, Richard
Socher, and Nazneen Fatema Rajani. Gedi: Generative discriminator guided sequence generation.
arXiv preprint arXiv:2009.06367, 2020.

Germán Kruszewski, Jos Rozen, and Marc Dymetman. disco: a toolkit for distributional control of
generative models. In Proceedings of the 61st Annual Meeting of the Association for Computa-
tional Linguistics (Volume 3: System Demonstrations). Association for Computational Linguis-
tics, 2023.

Sachin Kumar, Biswajit Paria, and Yulia Tsvetkov. Gradient-based constrained sampling from lan-
guage models. In Proceedings of the 2022 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 2251–2277. Association for Computational Linguistics, December 2022.
doi: 10.18653/v1/2022.emnlp-main.144.

Alyssa Lees, Vinh Q. Tran, Yi Tay, Jeffrey Sorensen, Jai Gupta, Donald Metzler, and Lucy Vasser-
man. A new generation of perspective api: Efficient multilingual character-level transformers. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
KDD ’22, pp. 3197–3207. Association for Computing Machinery, 2022. ISBN 9781450393850.
doi: 10.1145/3534678.3539147.

Alisa Liu, Maarten Sap, Ximing Lu, Swabha Swayamdipta, Chandra Bhagavatula, Noah A. Smith,
and Yejin Choi. DExperts: Decoding-time controlled text generation with experts and anti-
experts. In Proceedings of the 59th Annual Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers). Association for Computational Linguistics, 2021.

Guangyi Liu, Zichao Yang, Tianhua Tao, Xiaodan Liang, Junwei Bao, Zhen Li, Xiaodong He,
Shuguang Cui, and Zhiting Hu. Don’t take it literally: An edit-invariant sequence loss for text
generation. In Proceedings of the 2022 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, pp. 2055–2078. Association
for Computational Linguistics, July 2022. doi: 10.18653/v1/2022.naacl-main.150.

Xin Liu, Muhammad Khalifa, and Lu Wang. Bolt: Fast energy-based controlled text generation
with tunable biases. In Association for Computational Linguistics, pp. 186–200. Association for
Computational Linguistics, July 2023a. doi: 10.18653/v1/2023.acl-short.18.

Yi Liu, Gelei Deng, Yuekang Li, Kailong Wang, Zihao Wang, Xiaofeng Wang, Tianwei Zhang,
Yepang Liu, Haoyu Wang, Yan Zheng, et al. Prompt injection attack against llm-integrated appli-
cations. arXiv preprint arXiv:2306.05499, 2023b.

Tao Meng, Sidi Lu, Nanyun Peng, and Kai-Wei Chang. Controllable text generation with neurally-
decomposed oracle. Advances in Neural Information Processing Systems, 35:28125–28139, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Tomas Mikolov. Efficient estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed represen-
tations of words and phrases and their compositionality. In Advances in Neural Information
Processing Systems, volume 26, 2013.

Fatemehsadat Mireshghallah, Kartik Goyal, and Taylor Berg-Kirkpatrick. Mix and match: Learning-
free controllable text generationusing energy language models. In Association for Computational
Linguistics, pp. 401–415. Association for Computational Linguistics, May 2022. doi: 10.18653/
v1/2022.acl-long.31.

John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby, Di Jin, and Yanjun Qi. Textattack: A frame-
work for adversarial attacks, data augmentation, and adversarial training in nlp. In Empirical
Methods in Natural Language Processing, pp. 119–126, 2020.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In Empirical Methods in Natural Language Processing, pp. 1532–1543, 2014.

Patrick Pynadath, Riddhiman Bhattacharya, Arun Hariharan, and Ruqi Zhang. Gradient-based dis-
crete sampling with automatic cyclical scheduling. In Advances in Neural Information Processing
Systems, 2024.

Lianhui Qin, Vered Shwartz, Peter West, Chandra Bhagavatula, Jena D. Hwang, Ronan Le Bras,
Antoine Bosselut, and Yejin Choi. Back to the future: Unsupervised backprop-based decoding
for counterfactual and abductive commonsense reasoning. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), pp. 794–805. Association for Computational Linguistics, November
2020. doi: 10.18653/v1/2020.emnlp-main.58.

Lianhui Qin, Sean Welleck, Daniel Khashabi, and Yejin Choi. Cold decoding: Energy-based con-
strained text generation with langevin dynamics. In Advances in Neural Information Processing
Systems, volume 35, pp. 9538–9551, 2022.

G. O. Roberts and O. Stramer. Langevin diffusions and metropolis-hastings algorithms. Method-
ology And Computing In Applied Probability, 4(4):337–357, Dec 2002. ISSN 1573-7713. doi:
10.1023/A:1023562417138.

Leo Schwinn, David Dobre, Stephan Günnemann, and Gauthier Gidel. Adversarial attacks and
defenses in large language models: Old and new threats. In Advances in Neural Information
Processing Systems Workshops, pp. 103–117. PMLR, 2023.

Askhat Sitdikov, Nikita Balagansky, Daniil Gavrilov, and Alexander Markov. Classifiers are better
experts for controllable text generation. arXiv preprint arXiv:2205.07276, 2022.

Haoran Sun, Bo Dai, Charles Sutton, Dale Schuurmans, and Hanjun Dai. Any-scale balanced sam-
plers for discrete space. In International Conference on Learning Representations, 2023a.

Haoran Sun, Hanjun Dai, Bo Dai, Haomin Zhou, and Dale Schuurmans. Discrete langevin samplers
via wasserstein gradient flow. In International Conference on Artificial Intelligence and Statistics,
pp. 6290–6313. PMLR, 2023b.

Alex Wang and Kyunghyun Cho. Bert has a mouth, and it must speak: BERT as a Markov random
field language model. In Proceedings of the Workshop on Methods for Optimizing and Evaluating
Neural Language Generation, pp. 30–36. Association for Computational Linguistics, June 2019.
doi: 10.18653/v1/W19-2304.

Laura Weidinger, John Mellor, Maribeth Rauh, Conor Griffin, Jonathan Uesato, Po-Sen Huang,
Myra Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh, et al. Ethical and social risks of harm
from language models. arXiv preprint arXiv:2112.04359, 2021.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers: State-
of-the-art natural language processing, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Kevin Yang and Dan Klein. FUDGE: Controlled text generation with future discriminators. In
Proceedings of the 2021 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, pp. 3511–3535. Association for Compu-
tational Linguistics, June 2021.

Ruqi Zhang, Xingchao Liu, and Qiang Liu. A langevin-like sampler for discrete distributions. In
International Conference on Machine Learning, pp. 26375–26396. PMLR, 2022.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evalu-
ating text generation with bert. In International Conference on Learning Representations, 2020.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A DISCRETE LANGEVIN PROPOSAL

Our proposed controlled text generation leverages the gradient-based discrete sampling algorithm in
Zhang et al. (2022), which is further investigated by Pynadath et al. (2024). Using the same notation
as in the main body of the paper, we put the original proposal distribution from Zhang et al. (2022)
below:

Categorical

(
softmax

j∈|V |

(
1

2
∇f(B̂|X)i(Onehotj − b̂i)−

||Onehotj − b̂i||22
2α

))

Here, b̂i corresponds to the one-hot vector in sequence position i. Similarly, Onehotj corresponds
to the one-hot vector for the jth token in V . This proposal function defines a distribution over the
vocabulary for the ith sequence position in the sequence by taking the softmax over all possible
tokens.

As discussed in Pynadath et al. (2024), this proposal is locally balanced, or optimal for very small
step-sizes. For the task of controlled text generation, we would prefer a proposal function that is
optimal for large step-sizes, which allow for superior exploration of the space of potential sequences.
The globally balanced proposal can be written as follows:

Categorical
(
softmax

j∈|V |

(
∇f(B̂|X)i(Onehotj − b̂i)

))
In terms of the gradient computation, the one-hot representation enables the use of automatic dif-
ferentiation packages to compute ∇f(B̂|X). We observe that the term (Onehotj − b̂i) corresponds
to the distance between the proposed token j and the original token bi. We choose to represent this
distance term as hamming distance, given the discrete nature of the space we wish to sample. For a
token j, the hamming distance to the original token in position i is 0 if the jth coordinate b̂ij = 1
as they are the same token; and 1 if the jth coordinate is 0. Thus we can represent the distances
between the tokens as 1− b̂ij . This leads us to the proposal function in 7, which we place below for
convenience:

b′i ∼ Categorical

(
softmax

j∈V

(
1

τ
(∇f(B̂|X))ij(1− b̂ij)

))
Here, b′i refers to the token we sample from the categorical distribution over V on the right hand
side.

B ABLATION STUDY

To provide further insight into our algorithm, we present an ablation study over the important hyper-
parameters. We demonstrate the robustness of our algorithm to various settings, as well as the
hyper-parameters that are important towards good performance. We include the results in Figure 3.

Bias Weight As visible in Figure 3a, increasing the weight term in equation 10 leads to increased
control over generation at the expense of fluency. However, it is important to note that the perplexity
is still reasonable when we increase the bias to be twice the magnitude of the original model logits.

Proposal Temperature In Figure 3b, we examine how varying the temperature τ in equation 7
effects the performance of our algorithm. Intuitively, τ controls the “sharpness” of the proposal dis-
tribution, with larger values correspending to flatter peaks and lower values correspending to sharper
peaks. This effectively controls the degree of exploration v.s exploitation in the DLP sampler. We
see this relation in the results shown in Figure 3b, where higher values result in lower control to-
wards the desired sentiment as a result of increased exploration. We also see that there needs to a
certain amount of exploration in order to find satisfactory generations, as decreasing the temperature
too much results in lower control values as well.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Top-k Value In order to further ensure fluency and constraint satisfaction of our algorithm, we
restrict the DLP proposal in equation 7 to sample only from the Top-k tokens for each position as
indicated by the base language model, where k is a hyper-parameter that can be tuned. In Figure 3c,
we observe a similar tradeoff between exploration and exploitation: if the k value is too high, than
the algorithm will not exert as much control over the generation process. If the k value is too low,
then the algorithm won’t be able to explore enough sequence combinations to find good modes. We
find that values in the range of 100 to 250 work fairly well across the different tasks.

Algorithmic Robustness Throughout the ablation, it is clear that DAB is capable of achieving
strong performance across a range of reasonable hyper-parameter values. Furthermore, this perfor-
mance does not come at the cost of fluency – the only hyper-parameter that enables for a tradeoff
between fluency and control is the weight value, and here we see that even large values for this
hyper-parameter result in reasonable perplexity compared to the results in Table 2. Thus we see that
our algorithm is fairly robust to various hyper-parameter settings.

0.5 1.0 1.5 2.0
Bias Weight Value

0.70

0.75

0.80

0.85

0.90

0.95

Ex
t.

Se
nt

im
en

t

10

20

30

40

Pe
rp

(a)

0.0 0.5 1.0
DLP Proposal Temp Value

0.85

0.86

0.87

0.88

0.89

Ex
t.

Se
nt

im
en

t

10.5

11.0

11.5

12.0

Pe
rp

(b)

0 500 1000
Top-k Value

0.825

0.850

0.875

0.900

0.925

Ex
t.

Se
nt

im
en

t

10.6

10.8

11.0

11.2

11.4

11.6

Pe
rp

(c)

Figure 3: (a) Ablation over different weight values. Higher values result in increase in terms of
control with a decrease in fluency, representing the tradeoff between the two attributes. (b) Ablation
over DLP proposal temperatures. Higher temperatures correspond to a flatter proposal distribution
favoring exploration as opposed to exploitation, resulting in decreased control. (c) Ablation over
top-k values. There is some optimal value that limits the search space sufficiently to enable effective
exploration.

B.1 EFFICIENCY

Efficiency Improvements Here we further discuss the comparison of efficiency between BOLT
and DAB. For both methods, we use the sentiment-directed generation experiment as the generation
task for evaluating efficiency. In order the generation speed, we track the total time elapsed for
running 50 sampling steps for each algorithm.

Tokens per second Given this time t, sequence length n, and iterations per algorithm s, we com-
pute the following:

TokensPerSecond =
n · s
t

(11)

For computing the cost per bias sampling for both algorithms, we time only the operations that
compute the gradient of the loss and update the bias term. We take the average of this over 50
sampling steps and 15 prompts.

Bias Sampling Cost We use the AutoGrad profiler within Pytorch to count the operations involved
in both BOLT and DAB’s gradient computation. After finding the common operations involved in
both computations, we determine the most costly operations in BOLT and compare them to the
corresponding cost in DAB for those same operations. We show the number of calls as well as the
total time spent on GPU for BOLT’s three most costly operations in 3. It should be noted that using
the profiler increases the run-time of all GPU operations, hence why the values will not correspond
to the total run times recorded in 1.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 3: Comparison between the operations involved in backpropogation for both BOLT and DAB.
We select the three most costly operations involved BOLT’s gradient computation and compare the
number of calls and time cost to the corresponding operations in DAB’s gradient computation. As
visible, BOLT’s gradient computation involves many more repeated operations than DABs, demon-
strating the efficiency of our proposed DAB algorithm.

Operation AddmmBackward ViewBackward BmmBackward
Time (s) # of Calls Time (s) # of Calls Time (s) # of Calls

BOLT 1.8434 3098 .5635 10761 .2702 1536
DAB .02123 74 .1326 205 .0047 24

As visible, the gradient computation for BOLT is significantly more expensive than the gradient
computation for DAB.

C EXPERIMENTAL DETAILS

Here we include additional details on the experiment setup. We provide the hyper-parameter settings
for our algorithm for each experiment in Table 4. It should be noted that for Sampling Steps, we
pick values to maintain roughly the same time cost as BOLT: given that our algorithm is roughly
twice as fast, we use around twice the number of sampling steps. Furthermore, given the use of early
stopping in BOLT, further computational budget doesn’t necessarily provide any advantage.

For the weight value, we use a schedule by Liu et al. (2023a) as it was shown to be effective in terms
of incorporating the bias term into auto-regressive generation. Thus for each position t, we have
wt = w(1− t

L), where w is the value we put in Table 4.

Table 4: Hyper-parameter settings used for DAB on Sentiment-directed generation, language detox-
ification, and topic-constrained generation.

Hyper-parameter Sentiment Detoxify Topic

Proposal Temp .1 .1 .1
Top-k 250 250 250
Bias Weight Value 1.05 1.05 1.4
Number Sample Steps 20 20 200

C.1 FLUENCY METRICS

Here we provide more details as to the metrics we use to evaluate the fluency of text generations.

CoLA Score To assess the grammatical correctness of a generation, we use a fine-tuned RoBERTa
model from Morris et al. (2020) to predict the probability of the sample being labelled as grammat-
ically correct. While a similar metric was used in Kumar et al. (2022), we compute the average
predicted probability as opposed to the percentage over generations predicted as fluent since this
provides more insight into the degree of grammatical correctness.

Repeated Tri-grams To compute the number of repeated tri-grams, we simply count all the tri-
grams that were repeated and divide them by the total number of tri-grams per generation. We show
the average across all generations for each metric.

Perplexity For perplexity, we use the built-in function within the Hugging Face evaluate package
to compute the perplexity of each generation according to GPT2-XL (Wolf et al., 2020). We show
the perplexity of the entire generation, as opposed to conditioning on the prompt as done in Han
et al. (2024); Kumar et al. (2022); Liu et al. (2023a).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C.2 SENTIMENT CONTROLLED GENERATION

Experiment Design We use the same experimental design from Liu et al. (2023a), where the
sampler uses an internal classifier to produce the generations. The internal model is a RoBERTA
with GPT2-Large Embeddings fine-tuned on the yelp polarity dataset. We use two external models
to provide additional evaluation: we use another RoBERTA trained on the same dataset but with the
original embeddings, as well as a RoBERTa fine-tuned on Stanford Sentiment Treebank 2.

We include the hyper-parameters we use for DAB in Table 4. For the baselines, we run the code
within their codebase. While we minimize the changes made to the original code, we note that
there are some necessary modifications needed in order to ensure that the experimental setting is
consistent across all methods evaluated. This due to the fact that all the evaluated methods consider
similar but slightly different experiments from ours in their original work (Qin et al., 2022; Liu et al.,
2023a; Han et al., 2024; Kumar et al., 2022).

In regards to LM-Steer, which requires training data, we train the steering matrix using the SST-
2 dataset, as done in Han et al. (2024). While this is a different dataset from what was used to
fine-tune the internal classifiers for the EBM sampling methods, we choose this dataset as obtained
worse results when training the steer matrix on yelp polarity. Furthermore, we include an external
classifier fine-tuned on SST-2 to use as an evaluation criteria. This makes our experiments fair, as
all the methods are evaluated with classifiers that are fine-tuned on a different dataset than used for
sampling. Lastly, we observe that LM-steer achieves reasonable performance in terms of sentiment
control when compared to other baselines.

Here we list the prompts we use for this experiment:

External Constraint To represent the internal constraint, we use a RoBERTA with GPT-2 large
embeddings fine-tuned on Yelp-Polarity for COLD, BOLT, MuCOLA, and DAB. We train this model
following the codebase of Liu et al. (2023a). Since we require the embedding table to be the same
between the base LM, we use the GPT2-large embeddings for the classifier, as done in Liu et al.
(2023a); Kumar et al. (2022).

We use a slightly different function to represent the constraint imposed by the fine-tuned model
when compared to BOLT. Given the discriminator h : |V | → R2, where the results represent the
logits for both the desired class c+ and the undesired class c−, we define the final constraint function
as follows:

f(Y) = (h(Y)+ − h(Y)−)

Intuitively, this pushes the unnormalized logits between the desired class and the opposite class away
from each other.

This differs from the constraint function in BOLT, which is the typical cross-entropy loss of the
discriminator logits where the correct label is the desired sentiment:

f(Y) = log softmax(h(Y)+)

We find that our formulation of the constraint function enables more effective gradients for our
specific method. Curiously, this modification does not provide any substantial benefit to BOLT. It
is possible that the log softmax of BOLT’s method smooths out the directional information of the
gradient. While this would benefit a continuous sampling algorithm, this could potentially remove
some directional information that is required for effective discrete sampling.

Example Generations In Table 5 we include examples of generations for all methods evaluated.

C.3 TOXICITY CONTROLLED GENERATION

Content Warning: The following section contains examples of LLM generations that some may find
disturbing or offensive, including content that is hateful or violent in nature

Experiment Design Similar to the sentiment control experiment, we use an internal classifier to
guide generation towards less toxic models. We use a RoBERTa classifier fine-tuned on the Jigsaw
toxic comment dataset, following Kumar et al. (2022); Liu et al. (2023a).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 5: Example text for Sentiment-guided generation. As visible, previous methods either produce
coherent text that is not positive enough or positive text that is incoherent. In contrast, our method
produces generations that are both overtly positive and coherent.

Prompt The horse
COLD The horse head was still in the water but the horse still had a good head. The

horse

MuCOLA The horse is not only a beautiful and well-crafted piece of art, but it is also a
great way

BOLT The horseback riding course is a great way to get acquainted with the trails and
the terrain. The course is

LM-Steer The horseman delivers a stunningly beautiful, wonderfully lyrical, beautifully
tender, powerfully moving, beautifully lyrical

DAB (Ours) The horse is also a very good and reliable companion. It has been used to carry
the family’s two-

Prompt The chicken
COLD The chicken is a good source of protein, but it’s a very high fat, cholesterol and

salt.

MuCOLA The chicken is a very healthy, and high in protein, and the other two chicken is
a very good,

BOLT The chicken, which is named after the popular street food in Mexico, was a gift
from a friend who had

LM-Steer The chicken is beautifully tender, beautifully sweet, wonderfully colorful. the
crisp, crispiness is wonderful. and the

DAB (Ours) The chicken is a great way to get the kids hooked on delicious, healthy food. It’s
also a good

External Constraint We represent the external constraint by a RoBERTa model with GPT-2 large
embeddings that was fine-tuned on the Jigsaw dataset, following the same training protocol as used
in Liu et al. (2023a). The final classifier achieves an accuracy of 94% on the hold-out dataset.

Examples In Table 6 we show examples of generations for the various samplers we examine.

C.4 KEYWORD CONTROLLED GENERATION

Experiment Design We largely follow the experimental design introduced in Liu et al. (2023a).
We list the topics and keywords in 7.

Constraint Function Following Liu et al. (2023a), Qin et al. (2022), we use the differentiable
BLEU score introduced by Liu et al. (2022). This function measures the uni-gram similarity between
the generated sentences and the target key-words, using an operation very similar to convolution.

Reference Text Generation We use GPT-4o to generate high-quality reference text to use in the
BertScore computation. For a given topic t and keyword k, we query GPT-4o with the following
prompt:

Given the topic t and the keyword k, write 30 different, unique sentences using the keyword and
relevant to the topic.

We do this for each topic and for every keyword for that topic. This produces 120 different, unique
sentences to use as a reference text in the BertScore computation.

BertScore Computation Details We use the BertScore computation introduced in Zhang et al.
(2020) to evaluate the topicality of the generations. Since BertScore relies on the contextualized

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 6: Examples for Language Detoxification. While all methods seem to have similar probabili-
ties of generating toxic text, here we see the qualitative impact of our method having a lower average
max toxicity: while other methods can end up producing very offensive generations, our method is
able to ensure that the generation is not extremely toxic.

Prompt One student’s complaint; however, has led to the logo being associated with
COLD One student’s complaint; however, has led to the logo being associated with the

school. The school has since been forced to take the logo and the school’s

MuCOLA One student’s complaint; however, has led to the logo being associated in various
East Semitic cultures. What can you do to help save the culture?Who

BOLT One student’s complaint; however, has led to the logo being associated with a
negative image. The school chose to remove it from their website after com-
plaints from students and parents

LM-Steer One student’s complaint; however, has led to the logo being associated with the
campaign. And Turner had previously written Turner School Turner ’. Turner
School Turner Turner

DAB (Ours) One student’s complaint; however, has led to the logo being associated with
a site that is not affiliated with the University of California. The university’s
website and its social

Prompt During a show in Sydney in 2013, Tyler went on a tirade against a member of
the group,

COLD During a show in Sydney in 2013, Tyler went on a tirade against a member of
the group, calling him a ”fucking faggot” and a ”faggot” and a ”

MuCOLA During a show in Sydney in 2013, Tyler went on a tirade against a member of
the group, telling him: ”I want you to go back to your f***ing country.” He also
apologised

BOLT During a show in Sydney in 2013, Tyler went on a tirade against a member of the
group, referring to him as ”a piece of shit.” The singer also publicly criticized
the band’s decision to

LM-Steer During a show in Sydney in 2013, Tyler went on a tirade against a member of the
group, writing,As for the woman who called Tyler a slut, I’m afraid you don’t

DAB (Ours) During a show in Sydney in 2013, Tyler went on a tirade against a member of
the group, who was considered to be his friend. The man had been seen with the
band at a party and

embedding of the candidate generations and the reference text, this provides insight into how well
the methods use the keyword in the desired context.

For each generation, we compute the BertScore against all the 120 reference sentences for the cor-
responding prompt and keyword. Because some of the reference text will not contain the keyword
used in the generation, we use report the precision metric calculated in BertScore instead of the
overall F1 score, as the precision metric matches tokens in the candidate generation to tokens in the
reference text. This is preferable as we want to assess whether the generation is similar to any of the
reference texts, as opposed to measuring whether all the reference texts are similar to the candidate
generation.

Implementation Details We found that in order to obtain good results with DAB on this task, it
was necessary to include a string containing the keywords prior to the prompt. More specifically,
we included the following string before the initial prompt for keywords K and topic t:

Include the following keywords: K relevant to t.

By including the target keywords and topic before the prompt, this increases the probability of
these words and similar words in the underlying language model distribution. This enables the bias
vectors computed in our method to have a more impact on auto-regressive generation process and
thus satisfy the external constraint.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 7: List of topics and correspending keywords.

Topic Keywords
computer router, Linux, keyboard,

server

legal plea, subpoena, tran-
script, bankrupt

military torpedo, headquarters,
infantry, battlefield

politics court, culture, commu-
nism, capitilism

religion Bible, church, priest,
saint

science microscope, mass, min-
eral, scientist

space meteor, planet, satellite,
astronaut

Table 8: Comparison on topic-guided generation between the original BOLT method, the prompted
BOLT method, and DAB. As visible, even if the prompt manages to improve the success rate by
.7%, this comes at the cost of worse fluency and slightly worse topicality. Furthermore, our method
still outperforms this baseline.

Control Fluency
Topic BertScore ↑ Success Rate ↑ CoLA ↑ REP-3gram ↓ PPL ↓
BOLT .8291± .0003 99.1% .705± .006 .005± .005 32.019± 1.593
BOLT (Prompted) .8123± .0002 99.7% .705± .005 .005± .001 38.22± .951
DAB (Ours) .8303± .0003 99.0% .726± .005 .004± .001 23.424± .317

In order to ensure that this was not providing our method with an unfair advantage, we applied the
same trick to BOLT in order to determine whether this would improve the performance of BOLT as
well. We provide results in Table 8.

As visible, while the prompt does improve the success rate marginally, it does not improve any
other metrics for BOLT. In fact, we see that this degrades BOLT’s fluency slightly through a higher
perplexity value.

Examples In Table 9 we show examples of generations for the various samplers we examine.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 9: Examples for Topic-Constrained Generation. As visible, while previous methods include
the keyword, they tend to either repeat the keyword too many times or misuse the keyword. In
contrast, our method is able to include the keyword in a meaningful way relevant to the given topic.

Prompt Once upon a time
Topic Military
Keywords torpedo, headquarters, infantry, battlefield
COLD Once upon a time, the world was a peaceful place. People were headquarters

of the world headquarters of the world torpedo-

MuCOLA Once upon a time, the world was a world of the great battlefield the powerful
headquarters a torpedo of the good and infantry

BOLT Once upon a time, there was a man named John Smith who had a dream that he
would be able to infantry his

DAB (Ours) Once upon a time, there was a small group of officers who were in charge of the
modern infantry and logistics. They

Prompt The book
Topic Science
Keywords microscope, mass, mineral, scientist

COLD The book is scientist-driven, and is a scientist mineralogist, microscope, micro-
scope, mineral microscope,

MuCOLA The book also has massive properties, like the Alabaster House, which features
extensive characters from Alabaster

BOLT The book is divided into three parts, each of which contains a chapter mass
mineral scientist relevant to science. scientist

DAB (Ours) The book is a good introduction to the field of mass spectrometry and is an
excellent resource for hands-

22

	Introduction
	Related Work
	Language Models as EBMs
	Alternative Controlled Generation Approaches
	Gradient-Based Discrete Sampling

	Preliminaries
	Discrete Autoregressive Biasing
	Formulation
	Sampling Algorithm
	Advantages of Biasing in Discrete Spaces

	Experiments
	Sentiment-Controlled Generation
	Toxicity Avoidance
	Keyword-guided Generation

	Conclusion
	Ethics
	Reproducibility
	Discrete Langevin Proposal
	Ablation Study
	Efficiency

	Experimental Details
	Fluency Metrics
	Sentiment Controlled Generation
	Toxicity Controlled Generation
	Keyword Controlled Generation

