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3D Scene Captioning

3D-R1: In the kitchen, there is a sink,
two cabinets, a kitchen counter, two
windows, two trash cans, and ten chairs. 
The trash cans are in front of the chairs, 
while the chairs are behind the trash 
cans …

3D Question Answering
Question: What is the large rectangular piece 
of furniture in the center of the kitchen with 
several tall chairs arranged around it?

3D-R1: Dining table.

3D Dialogue
I need help tidying my kitchen. 

Can you assist me?

Certainly! What would you like 
me to check first?

Could you see if the large table in 
the center is clean?

It looks mostly clear, but I can see 
a few crumbs left on the surface.

3D Visual Grounding
Instruction: The metallic ventilation unit 
hanging above the stove top.
3D-R1:

3D Object Captioning

3D-R1: 
This is a 
black 
television 
mounted on 
the wall.

3D Planning
Human: Organize and tidy up the kitchen.

3D-R1:
1. Wipe the dinning table to remove …
2. Push all chairs neatly under the table…
3. Empty the trash cans beside …

3D Reasoning
Situation: Standing just inside the kitchen 
doorway, facing the long dining table.
Question: Can I walk straight to the trash cans 
beside the refrigerator without detouring around 
the table?
3D-R1: No

Figure 1: 3D-R1 is an open-source generalist model that enhances the reasoning of 3D VLMs for
unified scene understanding.

ABSTRACT

Large vision-language models (VLMs) have made significant strides in 2D vi-
sual understanding tasks, sparking interest in extending these capabilities to 3D
scene understanding. However, current 3D VLMs often struggle with robust rea-
soning and generalization due to limitations in high-quality spatial data and the
static nature of viewpoint assumptions. To address these challenges, we propose
3D-R1, a foundation model that enhances the reasoning capabilities of 3D VLMs.
Specifically, we first construct a high-quality synthetic dataset with CoT, named
Scene-30K, leveraging existing 3D-VL datasets and a data engine based on Gem-
ini 2.5 Pro. It serves as cold-start initialization data for 3D-R1. Moreover, we
leverage RLHF policy such as GRPO in the reinforcement learning training pro-
cess to enhance reasoning capabilities and introduce three reward functions: a
perception reward, a semantic similarity reward and a format reward to maintain
detection accuracy and answer semantic precision. Furthermore, we introduce a
dynamic view selection strategy that adaptively chooses the most informative per-
spectives for 3D scene understanding. Extensive experiments demonstrate that
3D-R1 delivers an average improvement of 10% across various 3D scene bench-
marks, highlighting its effectiveness in enhancing reasoning and generalization in
3D scene understanding.

1 INTRODUCTION

3D scene understanding is a fundamental capability for intelligent systems, enabling a wide range
of applications in embodied AI, robotics, and mixed reality (Zhao et al., 2024; Song et al., 2025).
The ability of an agent to perceive and reason about 3D environments is crucial for tasks such as
robotic manipulation, navigation, and long-horizon planning. Similarly, context-aware augmented
and virtual reality applications require a rich semantic understanding of physical spaces to anchor
virtual content and interactions in the real world. Furthermore, 3D scene understanding facilitates
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Table 1: Statistics of the public 3D-VL datasets that we draw on when synthesising the
Scene-30K dataset. “3D Scene / Obj.” give the number of reconstructed scenes and annotated
objects respectively. “Task” indicates the original benchmark focus, “DC” stands for Dense Cap-
tioning, “QA” for Question Answering, “VG” for Visual Grounding, and “MT” for Multi-tasking.
“Anno.” denotes language from human annotations and “Syn.” for template-based or LLM gener-
ated descriptions.

Dataset 3D Task Obj. Scene Obj. Quality Anno. Syn. TotalScene Obj. Caption Caption Referral Check

ScanRefer Chen et al. (2020) 800 - DC&VG ✗ ✗ ✓ ✓ 52K - 52K
Nr3D Achlioptas et al. (2020) 707 - DC&VG ✗ ✗ ✓ ✓ 42K 200K 242K
ScanQA Azuma et al. (2022) 1.5K 33K QA - - - ✓ 27K - 27K
SceneVerse Jia et al. (2024) 68K 1.5M DC&VG ✓ ✓ ✓ ✓ 190K 2.3M 2.5M

Scene-30K (Ours) 1.5K 33K MT ✓ ✓ ✓ ✓ - 30K 30K

advanced spatial reasoning, such as interpreting spatial relations or inferring hidden object configu-
rations, essential for agents to interact naturally with complex environments.

Researchers have recently extended vision-language models into the 3D domain to tackle tasks like
3D scene dense captioning (3D-DC) (Chen et al., 2021b; 2023b; 2024b), 3D object captioning (Luo
et al., 2024), 3D question answering (3D-QA) (Azuma et al., 2022; Mo & Liu, 2024), 3D dia-
logue (Chen et al., 2024a; Halacheva et al., 2025), 3D visual grounding (3D-VG) (Jia et al., 2024;
Huang et al., 2024a), and 3D reasoning and planning (Halacheva et al., 2025; Chen et al., 2024a), as
shown in Figure 1.

Despite this progress, current 3D vision language models still face significant limitations. One of
the primary challenges is enabling models to reason about complex spatial relationships and dy-
namic scene contexts. Traditional supervised fine-tuning (SFT) approaches often fail to effectively
generalize across varied environments, as they are limited by the static nature of their training data
and lack of adaptability. Another limitation is the reliance on pre-defined views or representations.
Several pipelines assume a fixed set of camera viewpoints or a global panoramic scene encoding,
which can introduce irrelevant visual content and still miss critical details occluded in those views.

Recently, DeepSeek-R1 (DeepSeek-AI, 2025) has successfully used reinforcement learning (RL) to
induce large language models(LLMs) to autonomously emerge complex cognitive reasoning capa-
bilities, begging our thinking to see whether we can leverage reinforcement learning (RL) to improve
reasoning ability in 3D VLMs.

To address these challenges, we propose 3D-R1, a foundation model to enhance reasoning capability
in 3D scene understanding that integrates cold-start initialization with RL training. First, we syn-
thesize a high-quality 3D scene CoT dataset Scene-30K with diverse question types, as illustrated in
Figure 2(b). Specifically, we design a 3D VLM to generate a concise textual description of a scene.
This description captures objects, their relations, and their layout. The resulting textual descriptions
are then passed to a reasoning model Gemini 2.5 Pro (Team et al., 2025) to produce high-quality
CoT reasoning. Finally, the dataset is refined through rule-based data filtering, ultimately obtaining
a dataset with 30K complex CoT reasoning samples, which serves as the cold-start initialization
dataset for 3D-R1. Building on this foundation, we design a GRPO-based RLHF policy in the re-
inforcement learning fine-tune process and introduce three reward functions: a format reward, a
perception reward, and a semantic similarity reward. This process focuses on enhancing the model’s
reasoning capabilities while maintaining detection accuracy and answer semantic precision. Further-
more, we introduce a dynamic view selection method, guiding the model learns to assign ranking
scores to candidate viewpoints of the 3D scene and dynamically select the most informative views.
We conduct extensive experiments to enhance the capacities of reasoning within complex and di-
verse 3D environments. As shown in Figure 2(c), 3D-R1 achieves strong performance across various
3D scene tasks.

The main contributions of this work are as follows:

• We introduce 3D-R1, a pioneering 3D VLM that leverages cold-start initialization and RL
training to enhance reasoning capability in 3D scene understanding. Specifically, we design
RLHF policy based on GRPO, including format, perception and semantic similarity reward
function to improve reasoning in complex 3D scenes.
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Bounding Box

3D-R1 Model

System: You are an 
assistant situated in a 3D 

scene. User: Please 
describe the scene… 

Text

Text Encoder

3D Scene

Point Encoder

Multi-View

Image Encoder

Text Response
Answer: The shape 
of the office desk 
situated near the 
window is 
rectangular.

Caption: It it a 
rectangular 
wooden office 
desk situated 
near the window.

Depth

Depth Encoder

Te
xt

 
D
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od

erD
ense 

D
ecoder

(a) Model Architecture

(b) Distribution of Question Types (c) Multi-Task Performance

(d) Generalizability

LoRA     𝜹 

Figure 2: (a) Architecture. It takes text, multi-view images, 3D point clouds, and depth maps as
input and formulates comprehensive 3D tasks as autoregressive sequence prediction. (b) Distri-
bution of question types. Scene-30K contains diverse categories. (c) Multi-task performance.
3D-R1 demonstrates strong performance across various tasks. (d) Generalizability. 3D-R1 exhibits
remarkable generalizability with enhanced reasoning capabilities.

• A high-quality 30K scene CoT dataset is constructed to serve as a cold-start initialization
data for 3D VLMs. Furthermore, we introduce dynamic view selection strategy that enables
the model to dynamically select views of a 3D scene based on learned relevance scores.

• Extensive experiments demonstrate that 3D-R1 achieves an average improvement of 10%
across various 3D scene benchmarks.

2 THE PROPOSED METHOD

2.1 OVERVIEW

The 3D-R1 framework unfolds in two main phases. In the first phase, we synthesize the Scene-
30K dataset, which pairs 3D scenes with questions and coherent chains of thought (CoT). In the
second phase, we perform a cold start with the Scene-30K dataset to teach the base 3D VLM shown
in Figure 2(a) to reason in a “human-like” fashion. Subsequently, as illustrated in Figure 4 we
use RLHF policy such as Group Relative Policy Optimization (GRPO) and introduce two reward
functions: a perception reward and a semantic similarity reward during the reinforcement learning
training process to enhance the model’s reasoning capabilities. Finally, we introduce a dynamic
view selection method that scores multiple candidate views of each 3D scene and adaptively chooses
the most informative perspectives to answer the questions, ensuring the model focuses on relevant
spatial context.

2.2 COT DATA ENGINE

We propose a CoT data engine for the construction of Chains of Thought (CoT) (Wei et al., 2022)
data tailored to 3D scene understanding. This engine leverages the general reasoning capabilities
of the large language model (LLM) to answer the questions with coherent, high-quality Chains of
Thought (CoT).

As illustrated in Figure 3, the point cloud of a 3D scene is fed into a scene description generator,
which is a pre-trained 3D VLM that produces a concise textual summary of the scene. This sum-
mary captures objects, their relations, and their layout. Then we design a comprehensive prompt
that instructs Gemini 2.5 Pro (Team et al., 2025) to reason through the detailed logic structure to
answer the question from the ScanQA (Azuma et al., 2022) dataset. The prompt provides clear task
instructions, specifies the required output format, and includes the previously generated scene de-
scription, guiding the model to produce structured step-by-step CoT reasoning. Finally, the model
outputs Chains of Thought (CoT) enclosed in <think>...</think> tags, followed by the final
answer in <answer>...</answer> tags. By running this pipeline on tens of thousands of 3D
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3D 
Scene 
Encode

Question: What 
is in the right 
corner of room 
by curtains?

Multimodal Data

Scene 
Caption 
Decode

In this apartment, there is a floor 
supporting the refrigerator. The 
room contains...The apartment is 
well-equipped with various objects, 
providing comfort and 
functionality for its inhabitants.

Scene Description Generator Scene Description

Following the scene description, think step by step and answer the 
following question directly. Output format: 
<think>...reasoning...</think> <answer>…final answer…</answer>.

Prompt

Gemini 
Pro

Question: What is in the right 
corner of room by curtains?
CoT:
<think>To identify what is in the right corner 
of the room …Therefore, based on … from … 
the desk … by the curtains.
</think>
<answer>The right corner of the room … a 
desk.</answer>

Scene-30K

Figure 3: CoT data engine. The point cloud of a scene is first sent to scene dscription generator to
get a description of the scene. Then based on the description, we apply Gemini 2.5 Pro to synthetic
CoT data.

scenes and questions, we collect roughly 35K CoT examples, each containing a scene ID, a ques-
tion, and the machine-generated <think> rationale and <answer> output. Then these examples
are refined through a rule-based filtering process that eliminates responses with missing structure or
inconsistent reasoning; for more details, please see Appendix C. Finally, the 30K resulting examples
constitute a high-quality CoT reasoning dataset, which we call Scene-30K dataset that serves as the
cold-start initialization dataset for 3D-R1.

2.3 COLD START STAGE

Inspired by the success of DeepSeek-R1 (DeepSeek-AI, 2025) in solving mathematical reasoning
tasks through pure reinforcement learning, we first experiment with end-to-end RL training for our
model, with the aim of inducing Chains of Thought (CoT) reasoning to answer the question solely
from reward signals. However, this approach proves highly unstable in the 3D VLM base model: the
model frequently fails to generate coherent CoT sequences and, more critically, produces answers
that are semantically misaligned.

To address the above issues, we adopt a cold start stage based on supervised fine-tuning on
the Scene-30K dataset. Leveraging the dataset, containing a question of scene, Chains of
Thought (CoT) reasoning process, and corresponding final answer sequences, we fine-tune the
3D vision language model to bootstrap its ability to generate structured outputs in the form
<think>...</think><answer>...</answer>. This supervised initialization forces the
model to learn the expected format for both the multistep reasoning process and the final answer,
providing a stable and effective foundation for subsequent policy optimization with reinforcement
learning (RL).

2.4 REINFORCEMENT LEARNING

GRPO (Shao et al., 2024) introduces an innovative approach rooted in reinforcement learning, show-
casing impressive results in models such as DeepSeek R1 (DeepSeek-AI, 2025). Its main objective
is to improve the model’s reasoning skills by progressively improving its policy, using feedback
from the precision of the responses sampled within a group. 3D-R1 decomposes the 3D scene un-
derstanding task into two distinct subtasks: scene perception and answer generation. It enables more
focused learning and better generalization in complex 3D environments.

Policy samples. For a given input state (x, q), where x is the visual encoding of the input point
cloud and q is the textual encoding of the question, 3D-R1 first generates N distinct responses
{o1, o1, · · · , oN} from the current policy πθ. To better guide policy learning and improve alignment
between textual prompts and generated answers, we introduce a multi-reward mechanism.

Format reward. To ensure that the content generated by the model has a resolvable
structure, we introduce Format Reward RFormat. This reward detects through regu-
larization expressions whether the generated results strictly follow the predefined format:
<think>Reasoning</think><answer>final answer</answer>. The Format re-

4
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Policy 
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Point Cloud
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face the 
table?
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⋯
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Question: How many chairs face the table?

𝐴1

𝐴2

⋯

𝐴𝑁

Perception Reward Semantic Similarity Reward

GT answer(𝑎): 10 brown chairs.

Predicted answer(ො𝑎): The number of 
chairs facing the table is 10.

𝑅𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
CLIP ො𝑎 ⋅ CLIP(𝑎)

CLIP( ො𝑎) 2 ⋅ CLIP(𝑎) 2

𝑅𝑝  =  IOU b, b∗

In order to count the number of chairs, 
it is necessary to identify theirs location.

b GT bounding box
b∗ predicted bounding box

CLIP( ⋅ ) CLIP text encoder

Format Reward

Output format: 
<think>Reasoning</think><answer> final 

answer</answer>
𝑅𝐹𝑜𝑟𝑚𝑎𝑡 = ቊ

1, 𝑖𝑓 𝑎𝑛𝑠𝑤𝑒𝑟 𝑎𝑑ℎ𝑒𝑟𝑒𝑠 𝑡𝑜 𝑓𝑜𝑟𝑚𝑎𝑡
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

KL Divergence

Figure 4: The pipeline of Reinforcement Learning based GRPO. The policy model generates
N outputs from a point cloud and question. Then perception IoU, semantic CLIP-similarity, and
format-adherence rewards are computed, grouped, and combined with a KL term to a frozen refer-
ence model to update the policy.

ward is defined as follows:

RFormat =

{
1, if Answer adheres to format
0, otherwise . (1)

Perception reward. The perception reward focuses on the core objective of 3D scene percep-
tion: accurately identifying where the relevant objects’ location is. It evaluates spatial precision by
comparing the predicted bounding box b∗ with the ground-truth box b using the intersection-over-
union (IoU) metric. By optimizing Rp, the model is encouraged to generate spatially precise and
semantically grounded predictions that directly generate the correct answer. The Perception reward
is defined as

Rp = IoU(b, b∗). (2)

Semantic similarity reward. To encourage semantic coherence between the predicted answer â
and the ground-truth answer a, we adopt a semantic similarity reward Rsimilarity . Specifically,
we employ a pre-trained text encoder CLIP to obtain feature representations of both answers. The
reward is computed as the cosine similarity between their embeddings:

Rsimilarity =
CLIPtext(â) · CLIPtext(a)

∥CLIPtext(â)∥2 · ∥CLIPtext(a)∥2
. (3)

Policy update. Inspired by Group Relative Policy Optimization (GRPO) (Shao et al., 2024), we
select multiple responses from the current policy as candidate responses. Each output is assigned a
scalar reward, resulting in a reward vector r = {r1, r2, · · · , rN}, computed by task-specific reward
functions that evaluate the quality of each output. To assess the quality of each response relative to
others, we normalize the rewards by computing the mean and standard deviation:

Âi =
ri −mean(r)

std(r)
, (4)

where Âi denotes the advantage of the i-th response. These advantages are then used to update the
policy by maximizing the following clipped objective:

JGRPO(θ) = Ec

[
1
G

∑G
i=1

(
min

(
πθ(oi|q)
πθold (oi|q)

Âi, clip
(

πθ(oi|q)
πθold (oi|q)

, 1− ε, 1 + ε
)
Âi

)
− β DKL(πθ∥πref)

)]
.

(5)
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Table 2: 3D scene dense captioning results on ScanRefer (Chen et al., 2020) and Nr3D (Achliop-
tas et al., 2020). For fair comparison, we list methods that are trained under the standard per-word
cross-entropy loss without additional 3D scenes. Our proposed 3D-R1 surpasses previous 3D spe-
cialists on both datasets.

Method ScanRefer Nr3D
C@0.25↑ B-4@0.25↑ M@0.25↑ R@0.25↑ C@0.5↑ B-4@0.5↑ M@0.5↑ R@0.5↑ C@0.5↑ B-4@0.5↑ M@0.5↑ R@0.5↑

Scan2Cap Chen et al. (2021b) 56.82 34.18 26.29 55.27 39.08 23.32 21.97 44.78 27.47 17.24 21.80 49.06
MORE Jiao et al. (2022) 62.91 36.25 26.75 56.33 40.94 22.93 21.66 44.42 - - - -
SpaCap3D Wang et al. (2022) - - - - 44.02 25.26 22.33 45.36 33.71 19.92 22.61 50.50
REMAN Mao et al. (2023) 62.01 36.37 26.76 56.25 45.00 26.31 22.67 46.96 34.81 20.37 23.01 50.99
D3Net Chen et al. (2021a) - - - - 46.07 30.29 24.35 51.67 33.85 20.70 23.13 53.38
Contextual Zhong et al. (2022) - - - - 46.11 25.47 22.64 45.96 35.26 20.42 22.77 50.78
UniT3D Chen et al. (2023a) - - - - 46.69 27.22 21.91 45.98 - - - -
3DJCG Cai et al. (2022) 64.70 40.17 27.66 59.23 49.48 31.03 24.22 50.80 38.06 22.82 23.77 52.99
3D-VLP Jin et al. (2023) 70.73 41.03 28.14 59.72 54.94 32.31 24.83 51.51 - - - -
3D-VisTA Zhu et al. (2023) - - - - 61.60 34.10 26.80 55.00 - - - -
Vote2Cap-DETR Chen et al. (2023b) 71.45 39.34 28.25 59.33 61.81 34.46 26.22 54.40 43.84 26.68 25.41 54.43
LL3DA Chen et al. (2024a) 74.17 41.41 27.76 59.53 65.19 36.79 25.97 55.06 51.18 28.75 25.91 56.61
Vote2Cap-DETR++ Chen et al. (2024b) 76.36 41.37 28.70 60.00 67.58 37.05 26.89 55.64 47.08 27.70 25.44 55.22
LEO Huang et al. (2024b) - - - - 72.40 38.20 27.90 58.10 - - - -
ChatScene Huang et al. (2024a) - - - - 77.20 36.30 28.00 58.10 - - - -
LLaVA-3D Zhu et al. (2024) - - - - 84.10 42.60 29.00 63.40 - - - -
BiCA Kim et al. (2025) 78.42 41.46 28.82 60.02 68.46 38.23 27.56 58.56 48.77 28.35 25.60 55.81
3D CoCa Huang et al. (2025a) 85.42 45.56 30.95 61.98 77.13 41.23 28.52 57.40 52.84 29.29 25.55 56.43
3D-LLaVA Deng et al. (2025) - - - - 78.80 36.90 27.10 57.70 - - - -
Spatial 3D-LLM Wang et al. (2025) - - - - 72.20 34.60 23.10 54.30 - - - -

3D-R1 (Ours) 91.85 48.76 32.14 62.23 86.45 44.34 29.78 64.50 56.98 31.13 26.12 57.54

2.5 DYNAMIC VIEW SELECTION

To bridge the gap between 3D scene representations and the 2D perspective inputs that VLMs expect,
we introduce a dynamical view selection module. The core idea is to automatically select a set of
informative 2D views from a 3D scene that best convey the content of the scene to the vision-
language model.

Candidate view generation. For each 3D scene, we first generate a pool of 30 candidate views.
We use the 3D point cloud to render RGB images from various viewpoints. In practice, we sam-
ple camera positions uniformly around the scene or at strategic locations to obtain a diverse set of
perspective images. Each candidate view is processed by a pre-trained visual encoder to extract fea-
tures. This pre-trained model provides a rich description of the view content without any additional
3D training, capitalizing on the learned 2D visual semantics.

View scoring metrics. We design three complementary scoring functions to evaluate each can-
didate view with respect to a given textual context. These scores are used to prioritize critical and
diverse views. Specifically, for each scene v and input text t, we calculate SText→3D, SImage→3D,
and SCLIP as follows:

SText→3D(v, t) =
Etext(t) · E3D(v)

∥Etext(t)∥2 ∥E3D(v)∥2
,

SImage→3D(v, t) =
1

|I(t)|
∑

i∈I(t)

Eimg(i) · E3D(v)

∥Eimg(i)∥ ∥E3D(v)∥
,

SCLIP(v, t) =
Etxt

CLIP(t) · E
img
CLIP(R(v))

∥Etxt
CLIP(t)∥

∥∥∥Eimg
CLIP(R(v))

∥∥∥ ,
(6)

where Etext(·) denotes text encoder, Eimg(·) denotes image encoder, E3D(·) denotes point encoder,
I(t) is the set of multi-view images of the scene, R(v) renders scene v into 2D image, Etxt

CLIP(·) and
Eimg

CLIP(·) are the text and image branches of CLIP, and ∥·∥ is the Euclidean norm.

Dynamic score fusion. The above scores are combined to produce an overall utility score for each
view U(v). Instead of manually tuning their relative importance, we dynamically learn the weight of
these components. We introduce learnable parameters wt, wc, wclip for the text relevance, coverage,
and CLIP alignment scores, respectively. This adaptive fusion ensures that U(v) emphasizes the
most useful views for each scenario. U(v) is defined as follows:

U(v) = wt · SText→3D + wc · SImage→3D + wclip · SCLIP, (7)

where wc + wclip = 1, wt as an independent scalar. This allows the model to dynamically adjust
the influence of textual grounding relative to visual signals. To stabilize training, we apply an L2
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Table 3: 3D question answering results on ScanQA Azuma et al. (2022). 3D-R1 out-performs
previous methods on the validation set and two test sets.

Method Validation Test w/ object Test w/o object
C↑ B-4↑ M↑ R↑ C↑ B-4↑ M↑ R↑ C↑ B-4↑ M↑ R↑

ScanQA Azuma et al. (2022) 64.86 10.08 13.14 33.33 67.29 12.04 13.55 34.34 60.24 10.75 12.59 31.09
Clip-Guided Parelli et al. (2023) - - - - 69.53 14.64 13.94 35.15 62.83 11.73 13.28 32.41
3D-VLP Jin et al. (2023) 66.97 11.15 13.53 34.51 70.18 11.23 14.16 35.97 63.40 15.84 13.13 31.79
3D-LLM Hong et al. (2023) 69.40 12.00 14.50 35.70 69.60 11.60 14.90 35.30 - - - -
3D-VisTA Zhu et al. (2023) 69.60 10.40 13.90 35.70 68.60 10.50 13.80 35.50 55.70 8.70 11.69 29.60
LL3DA Chen et al. (2024a) 76.79 13.53 15.88 37.31 78.16 13.97 16.38 38.15 70.29 12.19 14.85 35.17
BridgeQA Mo & Liu (2024) - - - - 83.75 24.06 16.51 43.26 79.34 17.74 15.60 41.18
ChatScene Huang et al. (2024a) 87.70 14.30 18.00 41.60 - - - - - - - -
3D-LLaVA Deng et al. (2025) 92.60 17.10 18.40 43.10 - - - - - - - -
Scene-LLM Fu et al. (2025) 80.00 12.00 16.60 40.00 - - - - - - - -
Spatial 3D-LLM Wang et al. (2025) 82.50 13.90 16.80 39.10 - - - - - - - -
LSceneLLM Zhi et al. (2024) 88.24 - 17.95 40.82 - - - - - - - -
LEO Huang et al. (2024b) 101.40 13.20 20.00 49.20 - - - - - - - -
LLaVA-3D Zhu et al. (2024) 103.10 16.40 20.80 49.60 - - - - - - - -
GaussianVLM Halacheva et al. (2025) - - 22.90 34.80 - - - - - - - -

3D-R1 (Ours) 106.45 17.80 22.13 51.23 94.65 35.34 27.34 54.35 89.56 26.34 27.34 52.38

Table 4: 3D object captioning results on Cap3D (Luo et al., 2023). † indicates DiffuRank (Luo
et al., 2024) trained with top 6 views.

Method Quality A/B test Hallucination A/B test CLIP
Score(1-5) Win % Lose % Score(1-5) Win % Lose % Score R@1 R@5 R@10

Cap3D Luo et al. (2023) 2.62 32.70 60.20 2.43 25.80 63.90 71.20 20.50 40.80 51.90
DiffuRank (Allviews 28-views) 2.91 37.90 43.60 2.85 35.10 47.20 73.50 24.90 46.70 55.70
DiffuRank (Horizontal 6-views) 2.84 35.20 44.50 2.90 36.20 40.90 73.80 25.80 46.70 55.90
DiffuRank (Bottom 6-views) 2.74 31.10 52.00 2.61 30.10 57.00 72.80 4.60 45.10 55.20
DiffuRank Luo et al. (2024)† - - - - - - 74.60 26.70 48.20 57.50

3D-R1 (Ours) 4.32 34.56 65.34 4.21 27.34 69.12 77.34 32.23 55.45 63.12

regularization term on wt, encouraging it to stay near a target value (e.g., µ = 0.3), which prevents
overly dominant text influence.

3 EXPERIMENTS

3.1 DATASETS AND METRICS

Datasets. To obtain the cold-start dataset, as shown in Tab 1, we use ScanQA (Azuma et al., 2022),
ScanRefer (Chen et al., 2020), Nr3D (Achlioptas et al., 2020) and SceneVerse (Jia et al., 2024)
datasets to synthesize the Scene-30K dataset. In downstream tasks, we incorporate standard bench-
marks including ScanRefer (Chen et al., 2020) and Nr3D (Achlioptas et al., 2020) dataset for 3D-
DC and 3D-VG, Cap3D (Luo et al., 2023) for 3D object captioning, ScanQA (Azuma et al., 2022)
dataset for 3D-QA , 3D-LLM (Hong et al., 2023) for 3D dialogue and planning and SQA3D (Ma
et al., 2023) for 3D reasoning.

Metrics. For 3D-DC, 3D-QA, 3D dialogue, 3D reasoning and 3D planning tasks, we use the met-
rics CIDEr (Vedantam et al., 2015), BLEU (Papineni et al., 2002), METEOR (Banerjee & Lavie,
2005) and ROUGE-L (Lin, 2004), which are briefly denoted by C, B-4, M and R, respectively, to
evaluate the quality of the generated textual responses. For 3D-VG task, we use metric Acc@sIoU,
which reports grounding accuracy with different IoU scores s between the predicted and ground
truth bounding boxes. For the 3D object captioning task, we adopt both human and automated
evaluation metrics. Human evaluation involves A/B testing to assess two key aspects: caption qual-
ity and hallucination rate, reporting average preference scores and win/loss rates. For automated
evaluation, we follow CLIP-based retrieval metrics, including cosine similarity scores and retrieval
precision (Poole et al., 2023) at the top-1, top-5 and top-10 (R@1, R@5, R@10).

3.2 IMPLEMENTATIONS DETAILS

Architecture. We construct the encoder and decoder components on top of the base VLM,
Qwen2.5-VL-7B-Instruct (Bai et al., 2025). We adopt SigLIP-2 (ViT-L/14) (Tschannen et al., 2025),
Depth-Anything v2 (ViT-L/14) (Yang et al., 2024), and Point Transformer v3 (Wu et al., 2024) as
image, depth and point cloud encoders, respectively. The output from each encoder is linearly pro-
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Table 5: 3D dialogue and planning results on 3D-LLM (Hong et al., 2023). 3D reasoning results
on SQA3D (Ma et al., 2023).

Method
Dialogue Reasoning Planning

C↑ B-4↑ M↑ R↑ C↑ B-4↑ M↑ R↑ C↑ B-4↑ M↑ R↑
LL3DA Chen et al. (2024a) 190.01 23.95 23.50 40.61 - - - - 128.80 12.95 17.05 39.25
Spatial 3D-LLM Wang et al. (2025) - - - - - - - - 195.92 14.65 18.95 36.93
LSceneLLM Zhi et al. (2024) 104.98 - 21.26 36.00 - - - - 214.63 - 21.05 47.05
LEO Huang et al. (2024b) - - - - 124.70 9.40 25.50 48.40 - - - -
GPT-4o OpenAI (2024) 200.34 26.47 26.35 47.88 120.45 19.34 25.45 49.34 210.23 18.67 42.23 45.23
Gemini 2.5 Pro Team et al. (2025) 210.23 27.34 28.12 48.22 125.23 20.23 27.34 55.34 215.34 20.19 44.34 46.23
GaussianVLM Halacheva et al. (2025) 270.10 31.50 55.70 48.60 129.60 17.10 26.40 50.20 220.40 20.30 44.50 48.00

3D-R1 (Ours) 280.34 39.45 66.89 55.34 138.67 23.56 35.45 60.02 230.50 25.45 48.34 55.67

Table 6: 3D visual grounding results on ScanRefer (Chen et al., 2020) and Nr3D (Achlioptas et al.,
2020).

Method
Nr3D ScanRefer

Acc@0.25 Acc@0.5 Acc@0.25

3DVG-Trans Lichen et al. (2021) 40.80 34.70 47.60
TGNN Huang et al. (2021) 37.30 29.70 37.37
TransRefer3D He et al. (2021) 48.00 - -
InstanceRefer Yuan et al. (2021) 38.80 32.93 40.23
FFL-3DOG Feng et al. (2021) 41.70 34.01 41.33
LAR BAKR et al. (2022) 48.90 - -
SAT Yang et al. (2021) 56.50 30.14 44.54
3D-SPS Luo et al. (2022) 51.50 36.98 48.82
3DJCG Cai et al. (2022) - 37.33 49.56
BUTD-DETR Jain et al. (2022) 54.60 39.80 52.20
MVT Huang et al. (2022) 59.50 33.26 40.80
ViL3DRel Chen et al. (2022) 64.40 37.73 47.94
EDA Wu et al. (2023) 52.10 42.26 54.59
3D-VisTA Zhu et al. (2023) 64.20 45.80 50.60
SceneVerse Jia et al. (2024) 64.90 48.10 -
ChatScene Huang et al. (2024a) - 50.20 55.50
LLaVA-3D Zhu et al. (2024) - 42.70 50.10
Video-3D LLM Zheng et al. (2025) - 51.72 58.12
GPT4Scene Qi et al. (2025) - 57.00 62.60
MiKASA Chang et al. (2024) 64.40 - -
Scene-R1 Yuan et al. (2025) - 17.10 38.80

3D-R1 (Ours) 68.80 59.24 65.85

jected to match the dimensionality of the text tokens and concatenated with them to form a unified
sequence. And we freeze the entire backbone, including the text encoder and decoder, and fine-tune
only the 12-layer LoRA adapters, the image encoder, the point cloud encoder, the depth encoder,
and the dense decoder.

Parameter efficient tuning. To enable efficient fine-tuning, we inject LoRA adapters (Hu et al.,
2022) into the last 8 transformer blocks of the base VLM, which comprises 28 transformer
blocks. In each selected block, LoRA is implemented for all projection matrices in the VLM,
i.e., (Wq,Wk,Wv,Wo) in attention modules and (Wgate,Wup,Wdown) in MLPs. Each adapter is
configured with rank δ = 12, scaling factor α = 16, and no dropout, introducing only ∼12M addi-
tional trainable parameters, which account for approximately 0.17% of the full backbone. In total,
∼142M parameters are updated during training, compared to ∼7B in full fine-tuning, resulting in
a ∼98% reduction in the trainable parameters. Only these LoRA parameters, along with the image
encoder, depth encoder, point cloud encoder, and the dense decoder are updated, while all remaining
backbone weights are kept frozen.

Supervised fine-tuning (SFT) is performed on Scene-30K for 2 epochs with a batch size of 12, adopt-
ing the AdamW optimizer with a weight decay of 0.1 and a cosine annealing learning rate schedule
that decays from 10−5 to 10−6. Following supervised fine-tuning (SFT), we further optimize the
model via reinforcement learning using Group Relative Policy Optimization (GRPO). The RL stage
is performed for 2 epochs with a batch size of 12, employing the Adam optimizer and a fixed learn-
ing rate of 10−6. To ensure stability, a KL divergence penalty with coefficient β = 0.02 is imposed
between the current policy and the frozen SFT model.
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Furthermore, we introduce a dynamic view selection strategy applied during both training and in-
ference. Given a 3D scene with a pool of rendered multiview images, we extract visual features for
each view using a pretrained SigLIP-2 encoder. For each view, we compute three complementary
scores, which are aggregated using learnable weights to derive a final utility score. Following prior
work (Luo et al., 2024), we select the top-6 views ranked by this score and feed them into the model
alongside corresponding depth inputs. All experiments are conducted on 4 × NVIDIA H20 GPUs.

3.3 MAIN RESULTS

3D scene dense captioning. It demands a model to localize and describe an object in a 3D scene.
We compare SOTA methods on the widely used ScanRefer (Chen et al., 2020) and Nr3D (Achlioptas
et al., 2020) benchmarks. The results in Table 2 show that our method consistently outperforms
existing methods on both datasets.

3D object captioning. This task requires the model to describe a localized object in a 3D scene.
We compare SOTA methods on Cap3D (Luo et al., 2023) benchmark. As shown in Table 4, “Al-
lviews 28-views” indicates DiffuRank (Luo et al., 2024) trained with all 28 views, “Horizontal
6-views” with 6 horizontal views, “Bottom 6-views” with 6 bottom views. The results show that
3D-R1 achieves the highest scores across all evaluation criteria.

3D question answering. It requires a model to generate responses to the natural language queries
questioning towards a 3D scene. We compare SOTA methods on the ScanQA (Azuma et al., 2022)
validation set as well as two test benchmarks in Table 3. The results show that our method consis-
tently outperforms existing methods on all evaluation sets.

3D visual grounding. It requires a model to accurately localize the object referenced by a natural
language expression within a 3D scene. We benchmark state-of-the-art methods on the widely used
Nr3D (Achlioptas et al., 2020) and ScanRefer (Chen et al., 2020) datasets as seen in Table 6. We
can see that our method consistently outperforms existing methods on both datasets.

3D reasoning. It requires the model to infer spatial or functional relationships between objects
based on contextual cues within a 3D scene. We evaluate on the SQA3D (Ma et al., 2023) benchmark
and report standard metrics in Table 5. The results show that 3D-R1 achieves the highest scores
across all metrics.

3D dialogue. This task involves generating interactive context-aware responses grounded in the
3D scene. We compare our method on the 3D-LLM (Hong et al., 2023) dataset, as shown in Ta-
ble 5. 3D-R1 significantly outperforms previous models, achieving state-of-the-art results across all
evaluation metrics.

3D planning. This task aims to generate sequential action plans based on instructions and 3D
contextual understanding. We evaluate on the 3D-LLM (Hong et al., 2023) dataset. As reported in
Table 5, 3D-R1 surpasses all baselines across all evaluation criteria.

4 CONCLUSION

In this work, we propose 3D-R1, a generalist 3D vision-language model designed to advance unified
scene understanding. To address the shortcomings of existing 3D-VLMs in reasoning generaliza-
tion, we introduce Scene-30K, a large-scale, high-quality Chain-of-Thought dataset that provides
structured supervision for cold start initialization. Based on this foundation, we develop a rein-
forcement learning framework based on Group Relative Policy Optimization (GRPO), integrating
perception-based, semantics-based, and format-based rewards to refine the model’s cognitive align-
ment and spatial precision. In addition, we present a dynamic view selection strategy that learns
to rank multiview images based on task relevance, spatial coverage, and cross-modal alignment.
Extensive evaluations across seven representative 3D benchmarks demonstrate that 3D-R1 achieves
significant improvements over prior methods. Our results highlight the promise of combining struc-
tured CoT supervision, reward-driven policy optimization, and adaptive perception strategies for
generalizable 3D scene understanding.
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APPENDIX

A RELATED WORK

3D scene understanding. 3D scene understanding targets the comprehension of the semantic
meaning of objects and their surrounding environment through the analysis of point clouds. In
this study, we focus on several integral scene understanding tasks: 3D Scene Dense Captioning (3D-
DC), 3D Object Captioning, 3D Question Answering (3D-QA), 3D Dialogue, 3D Visual Grounding
(3D-VG), 3D Reasoning, and 3D Planning. 3D-DC involves producing descriptive language based
on a 3D environment, encompassing both individual objects and the entire scene. At the object
level, models localize individual objects in a point cloud and describe each with natural language.
Scan2Cap (Chen et al., 2021b) first introduced this task by detecting objects in RGB-D scans and
generating context-aware captions for each. Subsequent work shifted from a two-stage “detect-then-
describe” pipeline to an end-to-end transformer model. For example, Vote2Cap-DETR (Chen et al.,
2023b) and its Vote2Cap-DETR++ (Chen et al., 2024b) variant use a DETR-based encoder–decoder
to jointly detect and caption objects in one pass. At the scene level, models generate holistic descrip-
tions of entire environments. The recent 3D-CoCa framework (Huang et al., 2025a) integrated con-
trastive vision language pretraining with caption generation to produce semantically coherent scene
descriptions Huang et al. (2025b). Likewise, LLM-augmented methods, such as LSceneLLM (Zhi
et al., 2024) incorporated global context and language priors and used an LLM’s attention to focus
on task-relevant areas and describe large cross-room scenes.

3D-QA extends the visual QA paradigm into 3D scenes, requiring spatial and cross-modal reasoning
beyond 2D capabilities. The ScanQA (Azuma et al., 2022) benchmark introduced this task by pair-
ing 3D indoor scans with questions. The follow-up work has increased the complexity, SQA3D (Ma
et al., 2023), for example, situated an embodied agent in the scene and poses questions about the
agent’s surroundings, testing the model’s ability to interpret the agent’s viewpoint and reason about
spatial relations in the 3D environment.

3D-VG focuses on locating referred objects in a 3D scene based on natural language expressions, re-
quiring precise semantic and spatial alignment across modalities. Recent research advances have ex-
plored unified transformer-based architectures and LLM-enhanced grounding. 3DVG-Trans (Lichen
et al., 2021) proposed a cross-modal transformer that fuses linguistic and point cloud level geomet-
ric features within a transformer-based framework. Building on the capabilities of large language
models, GPT4Scene (Qi et al., 2025) explored the zero-shot grounding setting. It integrated GPT-4
with 3D feature encoders via a lightweight alignment module and prompted the LLM to resolve
spatial references from language alone.

Reinforcement learning (RL) techniques have recently been introduced to further improve multi-
modal 3D reasoning. (Chen et al., 2025) proposed to compile scene graphs with RL-enhanced
MLLM, in a system called R1-SGG. They first train a multimodal LLM to output structured scene
graphs from images and then refine it via RL with graph-centric rewards that promote high recall
and semantic alignment of predicted objects and relationships. In a related vein, (Park et al., 2025)
introduced DIP-R1, an RL-based framework that guides a multimodal LLM to perform fine-grained
visual inspection in complex scenes. These investigations showcase the potential of RL to improve
3D scene understanding in conjunction with large vision language models.

3D vision language models. Research on 3D vision–language models (3D-VLMs) has advanced
rapidly, fueled by progress in large language models (LLMs). The early 3D-VLMs focused on
understanding 3D object point clouds (Xu et al., 2024; Tang et al., 2024). PointLLM (Xu et al.,
2024) introduced an initial 3D-VLM that couples a point cloud encoder with an LLM, enabling the
model to interpret colored object point clouds and answer questions about the shape and attributes
of an object. Another line of work, MiniGPT-3D (Tang et al., 2024) proposed an efficient strategy
to align 3D data with language models utilizing 2D vision language priors.

More recently, researchers have shifted toward scene-level 3D-VLMs that can handle entire rooms
or complex scenes with many objects. For example, LLaVA-3D (Zhu et al., 2024) augmented image
patches with 3D position embeddings and performs joint 2D-3D instruction tuning, enabling the
model to understand a whole scene and even output structured spatial information without relying on
external detectors. A recent work, 3D-LLaVA (Deng et al., 2025) takes a complementary approach,
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using a minimalist point-cloud-based pipeline with an integrated Omni Superpoint Transformer that
acts as a visual encoder and multi-task decoder; this module selects salient 3D features, embeds
interactive visual prompts, and can output grounded 3D segmentation masks, all within a single
unified architecture.

B ABLATION STUDY

Table 7: Ablation of individual and combined
rewards in GRPO-based RL. Performance is
evaluated on 3D-QA (ScanQA) and on 3D-DC
(ScanRefer) tasks. And the first row corresponds
to the supervised fine-tuning (SFT) baseline with-
out any reinforcement learning.

RFormat Rp Rsimilarity
ScanQA ScanRefer

C↑ R↑ C@0.25↑ R@0.25↑
✗ ✗ ✗ 97.95 45.12 85.20 55.94

✓ ✗ ✗ 101.35 46.65 88.00 57.52
✗ ✓ ✗ 102.55 47.34 88.70 58.24
✗ ✗ ✓ 102.45 47.50 88.50 58.33

✓ ✓ ✗ 104.12 48.90 89.90 59.75
✓ ✗ ✓ 104.75 49.03 90.20 59.84
✗ ✓ ✓ 104.60 49.10 90.10 59.90

✓ ✓ ✓ 106.45 51.23 91.85 62.23

Reinforcement learning. We conduct a com-
prehensive ablation to examine the effect of
each reward function in our GRPO-based rein-
forcement learning. As presented in Table 7,
reinforcement learning (RL) yields substantial
improvements in both reasoning and grounding
performance compared to the baseline of su-
pervised fine-tuning (SFT). Although SFT pro-
vides strong initialization, it lacks structural
regularity, spatial alignment, and semantic fi-
delity. The format reward enforces syntactic
consistency in the output, the perception reward
enhances spatial grounding through improved
object localization, and the semantic reward im-
proves alignment with the intended meaning.
When combined, these reward signals lead to
a significant performance increase, increasing ScanQA CIDEr from 97.95 to 106.45 and ScanRe-
fer C@0.25 from 85.20 to 91.85. This highlights the complementary contributions of each reward
component in optimizing the model’s 3D reasoning capabilities.

Table 8: Effect of dynamic view selection. Com-
parison of different view selection strategies for
3D object captioning (Cap3D) and 3D-VG (Scan-
Refer). Our learned selection of six optimal views
achieves superior performance over fixed-view
baselines.

View Strategy Cap3D ScanRefer
CLIP R@1↑ Acc@0.25↑ Acc@0.5↑

All-views 29.19 61.25 51.73
Horizontal 6-views 30.18 60.53 50.26
Bottom 6-views 6.63 57.89 47.63

Learned 6-view selection (Ours) 32.23 65.85 59.24

Dynamic view selection. To quantify the ef-
fect of dynamic view selection, we compare our
learned strategy against three fixed-view base-
lines: (1) All-views, which uses all views of
the scene; (2) Horizontal 6-views, compris-
ing six front-facing views of the scene; and
(3) Bottom 6-views, sampled from below the
scene. In contrast, (4) Ours (Learned 6-view
selection) adaptively selects the most informa-
tive six views based on learned utility scores.
As shown in Table 8, our dynamic view se-
lection strategy consistently outperforms fixed-
view baselines. On the 3D object captioning
task, it improves CLIP R@1 from 30.18 with fixed horizontal 6 views to 32.23, highlighting its abil-
ity to focus on more informative visual perspectives. Moreover, the performance gains observed on
3D visual grounding further demonstrate that adaptive view selection leads to more accurate object
localization by providing contextually relevant observations.

Table 9: Grid search on view weight config-
urations. Performance is evaluated on 3D-QA
(ScanQA) and on 3D-VG (ScanRefer) tasks.

View weight ScanQA ScanRefer
wt wc wclip C↑ B-4↑ Acc@0.25 Acc@0.5

0.3 0.6 0.4 122.76 12.98 55.34 42.98
0.3 0.4 0.6 128.49 15.34 60.45 50.23
0.4 0.5 0.5 137.78 22.23 63.98 57.95
0.2 0.5 0.5 136.67 22.80 60.45 55.94

0.3 0.5 0.5 138.67 23.56 65.85 59.24

We also study the effect of three dynamic view
selection weights, which control the fusion of
three scoring cues: text relevance (wt), spa-
tial coverage (wc), and CLIP-based similarity
(wclip). Table 9 presents a grid search for var-
ious weight combinations. The results show
that all three cues are complementary: using
any single score alone yields suboptimal re-
sults, while balanced weighting (wt = 0.3,
wc = 0.5, wclip = 0.5) achieves the best per-
formance across tasks.

To further illustrate this, Figure 5 visualizes the performance landscape over different weight config-
urations. The plots reveal that moderate reliance on text grounding (wt ≈ 0.3–0.4) combined with
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ScanRefer (Acc@0.5)

ScanQA (C) ScanQA (B-4)

ScanRefer (Acc@0.25)

Figure 5: Performance surfaces under different dynamic view selection weight configurations.
We analyze the influence of text relevance (wt), spatial coverage (wc), and CLIP-based similarity
(wclip) on model performance, with the constraint wc +wclip = 1. Results on 3D-QA (ScanQA) and
3D-VG (ScanRefer) reveal that optimal performance emerges when wt is within the range of 0.3 to
0.4, combined with balanced visual weights.

balanced visual cues leads to optimal performance, validating the effectiveness of learned weight
fusion.

Table 10: Incremental modality encoder abla-
tion starting from Text & Image encoder. Per-
formance is evaluated on 3D reasoning (SQA3D)
and 3D planning (3D-LLM) tasks. The first row
is the baseline, and each subsequent row adds
one encoder. The final row (3D-R1) includes all
modalities.

Setting SQA3D 3D-LLM
C↑ B-4↑ C↑ B-4↑

Text & Image Encoder 110.23 15.34 200.45 20.15
+ Depth Encoder 115.23 18.34 205.45 21.15
+ Point Encoder 120.12 20.13 215.34 22.34

3D-R1 (Ours) 138.67 23.56 230.50 25.45

Architecture and hyperparameters. We
conduct a step-by-step ablation to quantify the
contribution of each modality encoder in our
unified 3D architecture. As shown in Table 10,
we start from a baseline model using only the
text and image encoder, and progressively add
the depth encoder and point cloud encoder.
Each modality brings clear performance gains
on both 3D reasoning (SQA3D) and 3D
planning (3D-LLM) tasks. Adding the depth
encoder improves performance on SQA3D,
confirming that monocular geometric cues are
helpful for grounding and planning. Further
adding the point cloud encoder leads to larger
gains, highlighting the importance of explicit
3D structure for complex reasoning. The full model (3D-R1) achieves the best performance across
all metrics.

Finally, we examine the impact of the LoRA rank δ, which controls the internal dimensionality of
the adapter layers. A higher rank allows for more expressive adaptation but increases the number
of trainable parameters. As shown in Table 11, increasing δ from 4 to 12 results in significant per-
formance gains across reasoning and grounding tasks, with ScanQA CIDEr improving from 94.57
to 106.45, and Nr3D accuracy rising from 63.12 to 68.80. However, the performance gains begin to
saturate beyond δ = 12, as further increasing the rank to 32 yields only marginal improvements at
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Table 11: Ablation of LoRA rank δ. Increasing rank improves performance up to a point, with
diminishing returns beyond δ = 12. Performance is evaluated on 3D-QA (ScanQA) and on 3D-VG
(Nr3D) tasks.

LoRA Rank δ Params (M) ScanQA Nr3D
C↑ B-4↑ M↑ R↑ Acc@0.25

4 82 94.57 13.34 17.12 47.23 63.12
8 112 101.69 15.34 20.12 49.23 65.43

12 (Ours) 142 106.45 17.80 22.13 51.23 68.80
16 175 106.79 17.45 22.23 51.33 68.82
32 250 107.01 17.90 22.50 51.45 68.90

the cost of higher parameter overhead. These results suggest that δ = 12 offers the best trade-off
between performance and efficiency.

C IMPLEMENTATIONS DETAILS

Data synthesis. First, a Scene-30K dataset is synthesized using Gemini-Pro Team et al. (2025),
producing 35,248 raw CoT reasoning examples. To ensure that only high-quality chains of thought
(CoT) are retained, we design a rule-based filtering that reduces the corpus to 30,012 examples.
Some examples are visualized in Figure 6-10.

Specifically, the rule-based filtering process is as follows: We first verify that each exam-
ple follows the required output format: <think>reasoning</think><answer>final
answer</answer>. The <think> segment must contain at least 30 words, and the <answer>
segment at least 20 words, to filter out overly brief reasoning and answers. Subsequently, we assess
whether the <think></think> segment exhibits genuine multi-step reasoning, as opposed to a
single-step deduction. To ensure this, we mandate the presence of at least three explicit reasoning
steps, identified through lexical cues such as “Step n”, “First”, “Next” or “Last”. Moreover, the
final step must explicitly reference the target entity posed in the question (e.g., “Conclusion: ...”), as
exemplified in Figure 6–10. Finally, we assess the logical consistency between the reasoning and the
answer. Specifically, we prompt Gemini 2.5 Pro Team et al. (2025) with the pair {think, question},
where think refers to the reasoning content enclosed within the <think></think> tags. The
model is asked to independently generate an answer â. A sample is retained only if the normalized
Levenshtein similarity between â and the content within the <answer></answer> tags, denoted
as a, is at least 0.8. The similarity score is defined as:

Similarity(â, a) = 1− Dlev(â, a)

max(|â|, |a|)
, (8)

where Dlev(â, a) denotes the Levenshtein distance, and | · | represents the character length of the
string. If the score falls below 0.8, the sample is discarded, even if it satisfies the format and step-
count criteria.

The complete filtering procedure is summarized in Algorithm 1. After applying all filtering criteria,
Scene-30K dataset is constituted and serves as the cold-start initialization for 3D-R1.

D VISUALIZATION

To qualitatively assess the capabilities of 3D-R1 in various 3D scene understanding tasks, we provide
visualizations in Figures 11-17. These examples highlight the reasoning ability of the model, spatial
comprehension, and multimodal alignment.

E LIMITATION AND FUTURE WORK

While 3D-R1 achieves strong reasoning performance and generalizability across diverse 3D scene
understanding tasks, several limitations remain. First, although the Scene-30K dataset provides
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Algorithm 1 Rule-based Filtering for Scene-30K

Require: Raw CoT examples Draw = {(qi, ti, ai)}Ni=1
Ensure: Filtered CoT dataset Dfinal

1: Dfinal ← ∅
2: for all (q, t, a) in Draw do
3: if format is invalid then
4: continue
5: end if
6: if word count of t < 30 or word count of a < 20 then
7: continue
8: end if
9: if number of reasoning steps in t < 3 then

10: continue
11: end if
12: if final step in t does not mention target entity then
13: continue
14: end if
15: Prompt Gemini 2.5 Pro with (t, q) to generate predicted answer â
16: Compute Levenshtein similarity score: s = 1− Dlev(â,a)

max(|â|,|a|)
17: if s < 0.8 then
18: continue
19: end if
20: Add (q, t, a) to Dfinal
21: end for
22: return Dfinal

high-quality Chain-of-Thought (CoT) supervision, it is primarily synthetic and may not fully capture
the richness and ambiguity of real-world human reasoning. Second, the current GRPO-based RLHF
optimization operates at the response level and lacks temporally grounded feedback, limiting the
model’s ability to reason and act over long horizons in embodied settings.

In future work, we plan to extend 3D-R1 in two key directions. First, we will explore embodied AI
applications that integrate path planning and action prediction with multimodal reasoning. Second,
we aim to develop a world model atop 3D-R1, enabling agents to simulate and predict future scene
dynamics for more robust decision-making.

F LLM USE DECLARATION

Large Language Models (ChatGPT) were used exclusively to improve the clarity and fluency of
English writing. They were not involved in research ideation, experimental design, data analysis, or
interpretation. The authors take full responsibility for all content.
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Prompt
You are an AI visual assistant in a 3D scene. Each scene contains a piece of description as follows.
Scene description of the scene: In this apartment scene, there is a floor, sink, mirror, desk, clock, scale,
kitchen cabinets, cabinets, tables, toaster, stools, bed, trash cans, dish rack, curtains, tissue box, toilet,
bicycle, shelf, and a guitar case. The sink is in front of the guitar case, while the cabinet is to the left of
the guitar case. The stool is in front of the scale and the toilet. The bicycle is adjacent to the cabinet, and
the shelf is in front of the sink. The floor supports the stool and the sink. The scene suggests a functional
and organized apartment with various objects for daily activities.
Following the scene description, think step by step and answer the following question directly with
following output format.
Output format: <think>... reasoning...</think> <answer>... final answer...</answer>.

Question: What is in the right corner of room by curtains?

Response
<think>
Step 1: Locate the spatial reference
“right corner by curtains” The question specifies the right corner of the room and objects near the cur-
tains.
This sets our spatial query target.
Step 2: Identify all mentions of curtains and associated objects
A green curtain is described as behind a bicycle.
A tan curtain is above a desk near the bed.
Of these, the green curtain is more likely to be in a corner, since the desk bed setup implies a central or
side-wall arrangement.
Step 3: Explore the green curtain region
Near the green curtain: a bicycle and a cabinet. The cabinet is described as housing a TV, and placed
opposite the kitchen and sofa.
This implies a corner-located entertainment area.
Step 4: Evaluate dominance of objects in that corner
The bike is adjacent, but the TV cabinet is structurally larger, described as a focal point, and clearly fixed
in place.
Curtains likely frame the cabinet setup, reinforcing its positional centrality in that corner.
Conclusion: The TV cabinet is the primary object in the right corner near the green curtains.
</think>
<answer>
The object in the right corner of the room by the curtains is the TV cabinet, which contains the TV.
</answer>

Figure 6: Scene-30K CoT data example 1.
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Prompt
You are an AI visual assistant in a 3D scene. Each scene contains a piece of description as follows.
Scene description of the scene: In the kitchen, there is a sink, an armchair, a kitchen counter, two windows,
two trash cans, two refrigerators, a floor, and ten chairs. The chairs are positioned in front of each other
and behind the trash cans. The trash cans are in front of the chairs, and the chairs are to the right of the
armchair and another chair. The chairs are supported by the floor. The kitchen appears to be a functional
space with various objects for cooking, sitting, and disposing of waste.
Following the scene description, think step by step and answer the following question directly with
following output format.
Output format: <think>... reasoning...</think> <answer>... final answer...</answer>.

Question: What color is the refrigerator?

Response
<think>
Step 1: Identify the query and object
The question is: “What color is the refrigerator?” This requires identifying all refrigerators in the scene
and resolving their associated color attributes.
This sets our spatial query target.
Step 2: Collect all references to refrigerators and colors
A stainless steel refrigerator is described with a bottom freezer.
A white refrigerator is also mentioned.
This suggests that the scene may contain more than one refrigerator or that there is ambiguity in how a
single unit is described.
Step 3: Determine the number of refrigerators
One caption explicitly states “two refrigerators”, which strongly implies the existence of two separate ap-
pliances.
Thus, the color differences likely correspond to two distinct refrigerators rather than conflicting descrip-
tions of one.
Step 4: Evaluate user intent and precision of the query
The question is phrased as “the refrigerator”, suggesting singular intent.
However, since the scene contains two refrigerators, both should be acknowledged unless additional dis-
ambiguation is given.
Conclusion: The kitchen contains two refrigerators: one is stainless steel, and the other is white.
</think>
<answer>
The refrigerators in the kitchen are of different colors. One is stainless steel, and the other is white.
</answer>

Figure 7: Scene-30K CoT data example 2.
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Prompt
You are an AI visual assistant in a 3D scene. Each scene contains a piece of description as follows.
Scene description of the scene: In this classroom scene, there is a single floor, three windowsills, 22 chairs,
two windows, and seven tables. The chairs are adjacent to the tables, with some chairs behind the tables
and others to the left. The tables are positioned in front of some chairs and behind others. The tables are
also stacked, with one table behind another. The chairs are resting on the floor, which supports both the
chairs and the tables. Inside one of the tables, there is a chair. The classroom appears to be well-equipped
with furniture for students to sit and work comfortably.
Following the scene description, think step by step and answer the following question directly with
following output format.
Output format: <think>... reasoning...</think> <answer>... final answer...</answer>.

Question: Please describe the table.

Response
<think>
Step 1: Localize the queried table
The question refers to “the table”, and the blue 3D bounding box highlights a specific rectangular table
placed in the classroom scene.
Given the presence of seven tables, this selection implies that the referred table is either spatially unique,
visually distinct, or structurally notable.
Step 2: Analyze spatial context and adjacency
This table is positioned near the wall and windows, suggesting it is in a front or peripheral position
relative to the rest of the layout.
Step 3: Interpret table arrangement and visibility
Its orientation is consistent with the row-style classroom layout. The surface color is darker than adjacent
tables, possibly due to lighting, material, or rendering artifacts, which may imply a distinct role or usage.
Step 4: Evaluate its role and prominence
Being placed near the windows and slightly apart from the central clutter of chairs suggests this table may
be used by an instructor or for special functions.
Conclusion: The table highlighted in blue box is a rectangular classroom table, located near the wall
and windows. It likely serves an active role in the classroom, possibly for instruction or individual work.
</think>
<answer>
The table is a rectangular classroom table, located near the wall and windows.
</answer>

Figure 8: Scene-30K CoT data example 3.
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Prompt
You are an AI visual assistant in a 3D scene. Each scene contains a piece of description as follows.
Scene description of the scene: In this office scene, there are two windows, one pair of headphones, two
file cabinets, one telephone, and five monitors. The monitors are positioned adjacent to each other and
beside another monitor. Interestingly, the headphones are found inside one of the monitors. The office
appears to be well-equipped with technology, suggesting a modern and efficient workspace. The presence
of file cabinets implies a need for organization and storage. Overall, this office scene exudes a professional
and productive atmosphere.
Following the scene description, think step by step and answer the following question directly with
following output format.
Output format: <think>... reasoning...</think> <answer>... final answer...</answer>.

Question: What color does the sofa look?

Response
<think>
Step 1: Localize the queried table
The question asks: “What color does the sofa look?” This implies that we need to locate all references
to the sofa in the scene and determine the most consistently described color.
Step 2: Extract sofa-related descriptions from captions
The sofa is referred to as a “dark colored two-seater futon.”. Another line mentions a“black sofa.”
These two phrases strongly suggest that the sofa is likely dark, with black being a probable color.
Step 3: Examine object-level annotations
Looking into the object annotations
One mentions a “dark colored two-seater futon located by the door,” Another describes a “black sofa
located to the wall behind the fan.”
These consistently describe the sofa using the terms black, which suggests that the sofa appears consis-
tently dark in the scene.
Step 4: Check for contradictory evidence
To ensure reliability, we examine whether any alternative colors are associated with the sofa. No such
references are found, which strengthens the hypothesis that black is the intended color.
Conclusion: The sofa is most likely black.
</think>
<answer>
The sofa in the scene is black.
</answer>

Figure 9: Scene-30K CoT data example 4.
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Prompt
You are an AI visual assistant in a 3D scene. Each scene contains a piece of description as follows.
Scene description of the scene: In the Conference Room, there are two cabinets and twenty-five chairs.
The cabinets are positioned to the left and behind the chairs, while the chairs are to the right of the cabinets.
Additionally, one chair is in front of the cabinet, and another chair is to the left of it. The room appears
to be a functional space for meetings or discussions, with the cabinets potentially used for storage and the
chairs for seating. The arrangement suggests a professional and organized atmosphere.
Following the scene description, think step by step and answer the following question directly with
following output format.
Output format: <think>... reasoning...</think> <answer>... final answer...</answer>.

Question: What is the object on the wall north of the yellow table?

Response
<think>
Step 1: Identify the query and spatial reference
The question asks: “What is the object on the wall north of the yellow table?” This implies a need to
first determine the location of the yellow table and then identify the object directly north of it.
Step 2: Understand the scene layout
According to the scene description, the setting is a conference room, which contains: a yellow table,
chairs, cabinets, and a whiteboard. The mention of a whiteboard in the scene immediately suggests it
could be a candidate for a wall-mounted item in a directional context.
Step 3: Cross-reference with caption information
Scene captions state that “the whiteboard is located next to the large table”, and in one instance, it is
said to be “on the wall north of the yellow table.” This direct mention supports the hypothesis that the
whiteboard lies on the north wall, aligning with the spatial query.
Step 4: Check for competing candidates
There are mentions of cabinets and pictures, but their described positions place them near corners or above
other objects, not clearly on the north wall relative to the yellow table. This strongly implies that the
whiteboard is the only clearly described object positioned on the wall north of the yellow table.
Conclusion: The object on the wall north of the yellow table is most likely a whiteboard.
</think>
<answer>
The object on the wall north of the yellow table is a whiteboard.
</answer>

Figure 10: Scene-30K CoT data example 5.
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Please locate the TV in the scene and describe it.

The is a wall-mounted flat-screen display, 
landscape oriented with a dark glossy panel 

and slim bezels, fixed on the right wall 
above a narrow console near the corner and 
the faint reflections suggest the screen is off 

or at very low brightness, suitable for 
presentations or casual viewing.

Please locate the chair in scene and describe it.

The object is a small chair with a light-
colored cushioned seat and four wooden 
legs. It appears to have a very low or no 
visible backrest and is placed centrally 
between two seating areas. The chair is 
compact in size, making it suitable for 

occasional seating.

Please locate the pillow on the couch and 
describe it.

The object is a decorative pillow placed on 
the sofa. The pillow has a textured or 

patterned surface, possibly with a mix of 
light and dark tones, and it adds a soft 

contrast to the solid upholstery of the sofa. 
Positioned in the corner, it likely serves

comfort purpose in the office lounge area.

Please locate the towel in the scene and describe 
it.

The object is a kitchen towel hanging on the 
handle of an oven door. It appears to be 

rectangular and made of fabric, likely used 
for drying hands or wiping surfaces. Its 
placement suggests it is positioned for 
convenient access while cooking at the 

stovetop or using the oven.

Figure 11: Qualitative results for 3D scene dense captioning (3D-DC).
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Describe the object.

There is a rectangular brown table. It is in the 
center of the room with 4 chairs on either side.

Ground Truth: It is a brown table, placed in 
the middle of the room, on the left is 4 brown 
chairs, on the right are 4 brown chairs.

LL3DA: It is a table 
in the middle of the 
room.

3D CoCa: It is a 
table, placed in the 
middle of the room.

Describe the object.

This is a brown long table. It is in the center 
of the room with many chairs.

Ground Truth: This is a long table. It is in the 
middle of the room with many chairs pushing 
in it.

LL3DA: It is a table 
in the middle of the 
room.

3D CoCa: It is a 
long table in the 
middle of the room.

Describe the object.

It is a white cabinet. It is to the left of a couch.

Ground Truth: It is a white cabinet. It is to the 
left of a black couch.

LL3DA: This is a
cabinet located next 
to a sofa.

3D CoCa: This is a 
cabinet located to 
the left of a couch.

Describe the object.

This is a white cabinet. It is located to the left 
of the stove.

Ground Truth: It is a white kitchen cabinet. It 
is to the left of a stove.

LL3DA: This is a
cabinet located to 
the right of a stove.

3D CoCa: This is a 
cabinet located to 
the left of a stove.

Figure 12: Qualitative results for 3D object captioning.
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This is a black table lamp on the wall at the end of the bed.

Wooden nightstand with a white lamp, placed to the left 
of the bed.

Brown armchair on the rug near the back wall desk.

Figure 13: Qualitative results for 3D visual grounding (3D-VG).
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Is this chair tucked under the table or slightly 
pulled out?

It is pulled out from the table edge.

Ground Truth: It is slightly pulled out from 
the table edge.

LL3DA: It is tucked 
under the table.

3D CoCa: It is 
tucked under the 
table.

Where is the lamp located in the room?

The lamp is on the nightstand, to the left side 
of the bed.

Ground Truth: The lamp is on the nightstand, 
to the left side of the bed.

LL3DA: The lamp is 
on the nightstand.

3D CoCa: The lamp 
is on the nightstand 
next to the bed.

Is there a couch in the living room area?

Yes. A brown-colored couch is placed in the 
living room, facing a small wooden table.

Ground Truth: Yes. A brown-colored couch is 
placed in the living room, facing a small 
wooden table.

LL3DA: A couch is 
placed in the living 
room.

3D CoCa: A brown 
couch is placed in 
the living room.

Where is the pillow located in the room?

The pillow is on a bed in the room, which is at 
the end of the bed.

Ground Truth: The pillow is on a bed in the 
room, placed near the corner of bedroom.

LL3DA: The pillow 
is on a bed.

3D CoCa: The 
pillow is on a bed in 
the bedroom.

Figure 14: Qualitative results for 3D question answering (3D-QA).
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I’m reorganizing my living room workspace and need some advice. Can you help?

Of course! I would be happy to help. What would you like to change first?

I want the space to feel brighter. Are there any colorful or eye-catching items I could highlight?

Yes. A bright red cushion sits on the left sofa, and a patterned rug spreads across the floor 
between the seating and the desk. Accenting those could instantly add vibrancy.

Nice! How are the main pieces arranged right now?

A long sofa lines the left wall, facing toward the center rug. An armchair is near the middle, 
angled toward the desk on the right. Behind that armchair and closer to the back wall, 

there’s a wooden chair in front of the windowed doors. The desk with a laptop and 
scattered items is along the right wall, with shelves or cabinets behind it.

I am thinking of moving the armchair. Any suggestion for a better spot?

Slide it closer to the sofa’s front edge, slightly left of the rug’s center. That keeps sightlines 
to the desk clear and opens a walkway from the doors to the center of the room.

What about decluttering the desk area?

Place the bags currently on the ottoman and floor into a bin under the desk. Then 
group smaller objects on the desktop into trays. Clearing the surface will make 

the shelves behind it more noticeable and visually tidy.

Great tips—thanks a lot!

You’re welcome! Let me know if you need layout sketches or more organizing ideas.

Figure 15: Qualitative results for 3D dialogue.
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Standing in the doorway and facing the curved, 
clutter-covered workstation in the center of the

room. Can I walk straight to the black office 
chair I see ahead of me without hitting anything?

No. Because the curved desk jutting out from 
the workstation, together with piles of

papers and boxes on the floor, blocks a straight 
path—you’d collide with the desk edge

before reaching the chair.

Standing just inside the doorway and facing the 
long workbench that runs beneath the

window. Can I walk straight to the black floor-
lamp by the window without hitting anything?

No. Because the white desk-peninsula with its 
drawer unit juts out between you and the lamp,
blocking a direct path—you’d bump into the 
desk’s corner before you reached the lamp.

Standing just inside the doorway at the foot of 
the bed and facing the long desk that runs 

beneath the window. Can I walk straight to that 
desk without tripping over anything?

No. Because the blue trash-bin and a scattered 
pile of clothes sit directly between you and the 
desk, a straight path is blocked—you’d bump 
the bin’s rim and have to sidestep the clothes 

before you could reach the desk.

Sitting on the gray sofa and looking toward the 
kitchen, can I see the stovetop well enough to 

watch a boiling pot?

No. Because the kitchen peninsula and the short 
dividing wall form a high occluding edge 

between the living area and the back counter—
your line of sight hits that column before the 

burners.

Figure 16: Qualitative results for 3D reasoning.
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Please tidy and reorganize the workspace, keeping a clear central walkway.

1. Collect loose papers and gadgets on the long left-wall desk; slide every rolling chair fully under it.
2. Shift the gray swivel chair toward the left desk; tuck the small blue stool under the rear shelf to open a 1 
m corridor.
3. Move the orange sofa back so its backrest is parallel to the bottom wall; clear the floor in front and bin 
scattered items.
4. Sort the back-wall shelves: heavy boxes low, frequently used items at chest height, rarely used on top; 
label storage bins.
5. Bundle and route cables behind the monitor on the rear desk; place chargers in one tray at the rear-right 
corner.
6. Vacuum starting from the right entrance, along the new corridor, around the sofa, and under both desks.
7. Final check: no chair legs or boxes protruding, drawers shut, whiteboard area unobstructed.

Reorganize the bedroom with a clean, direct corridor to the back-wall desk.

1. Bag trash, put laundry in a bin, and empty desk surface except monitor and one lamp.
2. Shift the right bed toward the bottom wall; pull the left bed toward the window wall.
3. Push the desk chair fully under the desk; slide the dresser flush to the right wall; set one nightstand 
between the beds; move the armchair and round table tight to the left wall as a reading nook.
4. Tuck the suitcase along the rear-right wall; bundle cables behind the monitor; chargers in the top right 
drawer.
5. Vacuum the aisle and bed perimeters; final check that nothing protrudes into the corridor and both lamps 
are reachable from bed and desk.

Figure 17: Qualitative results for 3D planning.
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