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Abstract

It is often argued that causal inference is a step that follows probabilistic estimation
in a two step procedure, with a separate statistical estimation and causal inference
step and each step is governed by its own principles. We have argued to the contrary
that Bayesian decision theory is perfectly adequate to do causal inference in a single
step using nothing more than Bayesian conditioning. If true this formulation greatly
simplifies causal inference. We outline this beautifully simple idea and discuss
why some object to it.

1 Introduction

Causal inference is often viewed as its own domain requiring concepts beyond standard probability
and Bayesian decision theory. We think this complicated view is unnecessary. Bayesian decision
theory automatically covers causal inference as a special case. Causal inference is complicated, not
because new principles are needed but because probabilistic modelling in causal settings is difficult.
Here we will show how simple Bayesian conditioning is sufficient to do causal inference and discuss
why not everyone accepts the argument.

2 Bayesian Inference on Exchangeable observations

Imagine we measure an outcome on unit i, with binary outcome Yi that received a binary treatment
Ti. Furthermore, assume we have access to a dataset consisting of N different units i.e. our dataset
is Y1:N and T1:N . Furthermore we would like to set some future treatment T ∗ on another unit in
the future. Our goal is to set T ∗ so that it will influence the outcome of Y ∗ and by convention we
consider the outcome Y ∗ = 1 to be preferable to Y ∗ = 0. In other words the goal of our decision
making problem is to determine how the treatment T ∗ influences the outcome Y ∗ and to set the
treatment to maximize the probability that Y ∗ = 1.

We argue that the completely general algorithm to compute this probability is rather simple. To
determine if we wish to treat T ∗ = 1 or not treat T ∗ = 0 we must specify a probabilistic model
P (Y1:N , T1:N , Y

∗|T ∗), we then condition P (Y ∗|Y1:N , T1:N , T ∗). Finally we compute: best t =
argmaxt∗P (Y

∗ = 1|Y1:N , T1:N , T ∗ = t∗). Notably, this algorithm is a straightforward application
of Bayesian Decision theory, with the introduction of no novel notations or concepts to accommodate
the causal aspect. Causal inference is often viewed as complex and difficult, “causation is not
correlation” is a cliche of statistics. So our claim that causal inference can be reduced to computing a
(Bayesian) conditional probability may be viewed with suspicion.

The point of view we develop here argues that causal inference is indeed difficult, but not because
Bayesian conditioning is insufficient but rather because the task of probabilistically modelling
P (Y1:N , T1:N , Y

∗|T ∗) is difficult.

This modelling task is also difficult in ways that somebody familiar with using Bayesian modelling
for associations might overlook. Let’s consider some typical modelling assumptions that we might
apply only to the observational part of the model (which is a more familiar problem to many)
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i.e. P (Y1:N , T1:N ) = P (Y1:N , T1:N |T ∗) =
∫
P (Y1:N , T1:N , Y

∗|T ∗)dY ∗. Usually we will assume
exchangeability (or conditional independence). This is done by introducing parameters, a general
way to do this is:

P (Y1:N , T1:N ) =

∫
P (β, φ)

∏
n

P (Yn|Tn, β, φ)P (Tn|β, φ)dβdφ (1)

Using this model we can “fill in” missing parts of the observational data. e.g. if YN was missing then
we could compute P (YN |Y1, .., YN−1, T1, ..., TN ) but equally if TN were missing we could compute
P (TN |Y1, .., YN , T1, ..., TN−1). The conditional probability can be viewed as “causing you to think”
- or as de Finetti puts it:

I do not look for why THE FACT that I forsee will come about, but why I DO
forsee that the fact will come about. It is no longer the facts that need causes; it is
our thought that finds it convenient to imagine causal relations to explain, connect
and forsee the facts. Only thus can science legitimate itself in the face of the
obvious objection that our spirit can only think its thoughts, can only conceive its
conceptions, can only reason its reasoning and cannot encompass anything outside
itself. de Finetti (1975) [7]

The cause to think interpretation allows resolution of certain associations. For example observing
Christmas cards might cause you to think it is Christmas even if they do not “cause” Christmas.

There are also more restrictive assumptions, one is the following construction based on the “regression
assumption”:

P (Y1:N , T1:N ) =

∫
P (β)P (φ)

∏
n

P (Yn|Tn, β)P (Tn|φ)dβdφ, (2)

which introduces a further partial exchangeability assumption. According to Equation 1 pairs of Y, T
may be permuted i.e. The probability remains the same if Yi = yi, Ti = ti, Yj = yj , Tj = tj or if
Yi = yj , Ti = tj , Yj = yi, Tj = ti and all other elements are the same. Assuming exchangeability
allows not only exchanging pairs but arbitrary numbers of permutations.

A further exchangeability constraint is implied by Equation 2 i.e if Ti = Tj then you may permute
Yi and Yj . One way to understand this assumption is that it is only possible to learn about the
association between Yi and Ti is by observing pairs of Y and T - semi-supervised learning based on
only observing Tj without Yj is not possible.

If we were to marginalize the model to contain only T1:N we have P (T1:N ) =∫
P (φ)

∏
n P (Tn|φ)dφ. Which assumes the elements of Ti and Tj are exchangeable.

A further important remark is that this assumption does not constrain any marginal P (Yi, Ti) but
does constrain the joint over P (Y1:N , T1:N ). This will become important when we address critiques
of probability theory as able to solve causal inference problems.

Another possibility is:

P (Y1:N , T1:N ) =

∫
P (α)P (λ)

∏
n

P (Tn|Yn, λ)P (Yn|α)dαdλ. (3)

Similar to above this implies partial exchangeability i.e. if Yi = Yj then you can permute Ti and Tj
and It also implies exchangeability on the marginal P (Y1, .., YN )

We can consider three different scenarios over P (Y1:N , T1:N ):

1. A model that only assumes exchangeability over pairs of Y and T using the
P (Yn|Tn, φ, β)P (Tn|φ, β) construction
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2. A model that in addition to 1. assumes partial exchangeability of Y if T is the same using
the P (Yn|Tn, β)P (Tn|φ) construction

3. A model that reverses the assumptions in 2. i.e. assumes partial exchangeability of T if Y is
the same using the P (Tn|Yn, λ)P (Yn|α) construction

It is worth noting these are different probabilistic models even if as N → ∞ they all converge to
the same P (YN+1, TN+1|Y1, ..., YN , T1:N ), the difference can be seen for example in considering
if semi-supervised learning is possible. In the case of 2. Having access to measurements of Tj
without the corresponding Yj provides no information how Yk is related to Tk and so semi-supervised
learning is impossible [11] in the more general case of 1. semi-supervised learning may indeed be
possible.

3 Causal Inference as Bayesian Inference

At this stage we move from predicting missing elements of Y1:N , T1:N and return to the original
causal problem of determining the treatment T ∗ in order to induce a preferred outcome on Y ∗. This
requires us to model: P (Y1:N , T1:N , Y ∗|T ∗). We need to connect the new outcome Y ∗ to the (to be
chosen by us) treatment T ∗ and the observed data Y1:N , T1:N . If we base our model on Equation 1
we might arrive at:

P (Y1:N , T1:N , Y
∗|T ∗) =

∫
P (β, φ)P (Y ∗|T ∗, β, φ)

∏
n

P (Yn|Tn, β, φ)P (Tn|β, φ)dβdφ, (4)

which unfortunately is too general for any firm conclusion to be drawn and the details of the
parameteric forms and priors matter even as N →∞. In contrast this extension of Equation 2 makes
strong partial exchangeability assumptions and as a consequence allows (intersubjective) causal
inference:

P (Y1:N , T1:N , Y
∗|T ∗) =

∫
P (β)P (φ)P (Y ∗|T ∗, β)

∏
n

P (Yn|Tn, β)P (Tn|φ)dβdφ, (5)

Intersubjectivity refers to the fact that Bayesian models that agree on exchangeability but otherwise
differ can rapidly reach consensus. This is a consequence of the Bayesian law of large numbers i.e.
if two Bayesians agree on exchangeability but otherwise have different priors then both will have a
predictive distribution that rapidly converges to the observed frequency as N →∞.

If we adopt the assumptions in Equation 5 we then assume that if we set T ∗ = t, then Y ∗ is
exchangeable with any Yj if Tj = t. In practice this means by the Bayesian law of large numbers,that
as N →∞;P (Y ∗ = 1|Y1:N , T1:N , T ∗)→ empirical average of the subset of Yj where Tj = t. This
is the type of assumption we usually want to make when doing causal inference and this assumption
is employed and appropriate after a well executed randomized control trial.

The partial exchangeability in scenario 3. where we use the P (Tn|Yn, λ)P (Yn|α) representation
reverses the exchangeability and results in as N → ∞; P (Y ∗ = 1|Y1:N , T1:N , T ∗) → empirical
average of the of all Y . This is the situation where T does not cause Y , which is trivial - but usefully
demonstrates the impact of different partial exchangeability relationships.

Unfortunately the assumption in Equation 5 often cannot be applied (or there is disagreement
about if it can be applied) and only Equation 4 might be applied which implies no use-able par-
tial exchangeability relationship. While Equation 4 is sufficient to make causal inference very
dependent on assumptions - an alternative way to demonstrate the breakdown of any useful ex-
changeability result is to introduce a covariate into the model and then to discuss the impact of this
covariate being hidden (an unobserved confounder). Making X the covariate the model becomes:
P (Y1:N , X1:N , T1:N , Y

∗, X∗|T ∗) If we have:
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P (Y1:N , X1:N , T1:N , Y
∗, X∗|T ∗) =

∫
P (γ)P (η)P (ζ)P (Y ∗|X∗, T ∗, γ)P (X∗|ζ) (6)

×
∏
n

P (Yn|Xn, Tn, γ)P (Tn|Xn, η)P (Xn|ζ)dγdηdζ,

but we only observe Y1:N , T1:N - there is no exchangeability result that can be exploited and an
intersubjective treatment effect cannot be learned - it is also reasonable to expect most individual
Bayesians observing Y1:N , X1:NT1:N will not learn much about P (Y ∗ = 1|Y1:N , T1:N , T ∗). In-
troducing an unobserved variable is just one way to show how exchangeability can break down.
In statistical inference unobserved parameters are introduced to produce exchangeable probability
models and are occasionally referred to as an indulgence in the strict “operational subjective” theory
[10]. In causality unobserved confounders are introduced with the opposite purpose to destroy
exchangeability and partial exchangeability between the the observed and future outcomes, but the
introduction of a latent variable could equally be viewed as an indulgence.

When the covariate X is observed there are two plausible causally relevant ways a future Y ∗, X∗

may partially exchange with Y1:N ,X1:N . Which results in Simpson’s paradox [17]. The first of these
is shown in Equation 6 with X observed, the second is given by:

P (Y1:N , X1:N , T1:N , Y
∗, X∗|T ∗) =

∫
P (γ)P ($)P (%)P (Y ∗|X∗, T ∗, γ)P (X∗|T ∗, $) (7)

×
∏
n

P (Yn|Xn, Tn, γ)P (Xn|Tn, $)P (Tn|%)dγd$d%.

In the case of Equation 6 a partial exchangeability relationship exists between Yj and Y ∗ so long as
Xj = X∗ and Tj = T ∗. In the case of Equation 7 a different partial exchangeability relationship
exists between Yj and Y ∗ and Xj and X∗ so long as Tj = T ∗.

4 Conclusion

Bayesian theory uses reasonable axioms of rational behaviour to show how we can use the knowledge
of observed outcomes to update beliefs about other outcomes. It does not matter in principle if these
observations are free form events, repetitions of a phenomena (allowing exchangeability) or are the
outcome caused by a hypothetical intervention. To argue against this would require a critique of the
axiom systems (See Appendix A).

It is however the case that once exchangeability is assumed as is possible in most purely observational
studies the subtleties around exchangeable and partial exchangeable relationships between records
can be mostly overlooked. When we must consider the causal outcome of an intervention this subtlety
cannot be avoided and the probabilistic specification may be quite subjective. In this case different
researchers will make a different causal inference, which is indeed a common situation when a high
quality randomized control trial is not available.

It is also the case that a separate conditional probability must be computed1 i.e.
P (Y ∗, Y1:N , T1:N |T ∗ = 0) and P (Y ∗, Y1:N , T1:N |T ∗ = 1). Probability theory is entirely satis-
factory to a) make causal assumptions and b) do causal inference via conditioning.

Alternative approaches separate statistical and causal inferences into separate steps. These steps
involve estimation of a joint P̂ (Y, T ) and construct a causal effect as a transform of P̂ (Y, T ).

As mentioned not everybody accepts this methodology that uses probability (and partial exchange-
ability) both to encode associations and causal assumptions and uses only probabilistic conditioning
to do the causal inference. Instead a two step procedure is adopted involving a statistical estimation of
a (frequentist) distribution e.g. P̂ (Y, T ) and a causal step that explains if it is possible to recover the
causal effect from P̂ (Y, T ). We argue that reducing the Bayesian P (Y1:N , T1:N , Y ∗|T ∗) to the fre-
quentist P̂ (Y, T ) obscures the partial exchangeability probability relationships that are fundamental

1We have no appetite to argue with anyone who sees this as an extension of probability theory.
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to causal inference and requires the introduction of non-probabilistic methods both to encode causal
assumptions and do causal reasoning in lieu of the simplicity and generality of probability theory.
Not everyone agrees with us, and while some researchers are enthusiastic about or formulation it is
rejected by key thinkers in the causal community.

In Appendix B we discuss non-probabilistic approaches to causality that separate inference into causal
and statistical steps. Appendix C responds to some of the criticism and provides key references.
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Appendix

A Axiom systems for Decision Making Under Uncertainty and Causality

A.1 Decision Making Under Uncertainty

In the Bayesian approach probability is a decision theoretic primitive. Probability may be defined
as the price a person is willing to pay for a (reversible) bet on the outcome of a well defined future
event. By the reasonable assumption that a person who provides prices for reversible bets would
want to avoid being made a sure looser (a so called dutch book) it can be shown that the axioms of
probability theory follow. Modern presentations of this idea can be found in [9, 10, 21, 3].

When motivated as a decision theoretic primitive probability is a consistency constraint that requires
an individual is coherent in their probabilistic assessments. These probabilities can be applied to free
form events. A textbook example may involve a joint over it is raining, and the grass is wet, and the
sprinkler is on.

Bayesian statistics is also often applied to statistical quantities. It is equally reasonable to apply
probability as a reversible bet to atomic events such as the sprinkler is on and to statistical quantities
such as

∑N
n=1 yn = S. However it is common when applying models to large numbers of repetitions

of a phenomena e.g. Y1, ..., YN to employ an exchangeability assumption. The celebrated de Finetti
representation theorem shows that such sequences can be modelled by placing a distribution over a
parameter and integrating it out.

We have argued that causal inference requires a probabilistic model of P (Y1:N , T1:N , Y ∗|T ∗) which
factorizes:

P (Y1:N , T1:N , Y
∗|T ∗) = P (Y ∗|Y1:N , T1:N , T ∗)P (Y1:N , T1:N ).

Of these two parts exchangeability will uncontroversially apply to P (Y1:N , T1:N ) and it will not be too
difficult to propose a probabilistic model that scientists agree upon. In other words an exchangeable
assumption can be made in the spirit of de Finetti [7].

On the other hand probabilistic specification of P (Y ∗|Y1:N , T1:N , T ∗) is likely to be much more
fraught. Specification of this except in the case of a randomized control trial is likely to have a nature
much more of the the sprinkler is on character of the Ramsey approach [18].

Causal problems therefore involve modelling challenges but both forms of this probabilistic spec-
ification tradition are entirely legitimate and de Finetti would clearly be approving of mixing
them to do causal inference. Indeed to by-pass computing conditional probabilities to learn
P (Y ∗|Y1:N , T1:N , T ∗) would likely violate axioms of rational behavior.

A.2 Causal Reasoning

Causal analysis as presented in [13] springs from a different set of axioms. The observed system is
represented by a collection of random variables using a directed ac-cyclic graph (DAG) in order to
denote causality and the order that the random variables are drawn like a program. Causality is viewed
as creating a new graph with some of the connections broken or mutilated. Furthermore some of the
random variables are considered to be latent. The do-calculus shows if given the original distribution
over the observed variables if it is possible to transform the distribution over the observables in order
to recover the distribution to be expected in the mutilated graph.

The do-calculus is an impressive piece of mathematics, but it has far narrower scope than Bayesian
decision theory. It is difficult to interrogate the assumptions of the DAG where tools exist for
interrogating the subjective probabilities in P (Y1:N , T1:N , Y ∗|T ∗) 2. Moreover the do-calculus can
only be applied in identifiable situations and ignores statistical issues.

The insistence of the inadequacy of probability theory for causal inference seems to spring from
Pearl’s frequentist interpretation of probability.

2Points of indifference to buying and selling bets can in principle be measured [7, 10]. The DAG is in contrast
usually seen to make an (unverifiable) statement about the world.
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... probability theory deals with beliefs about an uncertain, yet static world, while
causality deals with changes that occur in the world itself, (or in one’s theory of such
changes). More specifically, causality deals with how probability functions change
in response to influences (e.g., new conditions or interventions) that originate from
outside the probability space, while probability theory, even when given a fully
specified joint density function on all (temporally-indexed) variables in the space,
cannot tell us how that function would change under such external influences. Thus,
“doing” is not reducible to “seeing”, and there is no point trying to fuse the two
together. (Pearl 1984) [14]

A full joint over both the observed data and the post-intervention outcome means there is no need for
a probability to change; but the idea that the probability changes when an intervention is applies is
behind the common two step view of causal inference where there are separated statistical and causal
steps each with their own logic.

B Two Step Procedures: Statistical Inference and then Causal Inference

We have argued above that the principles of causal inference are just the principles of Bayesian
inference, although modelling in causal settings has specific challenges. This contrasts with other
approaches that birficate the inference problem into a statistical and causal component.

In the words of Pearl “If I am remembered for no other contribution except for insisting on the
causal–statistical distinction, I would consider my scientific work worthwhile” [15].

According to the two step procedure causal effects involve a statistical step to estimate a joint
distribution followed by a causal step which (if possible) transforms the estimate to the causal
quantities of interest.

Returning to our original example in the first step we first do a statistical analysis of Y1, ..., YN , T1:N
which may be Bayesian resulting in P (YN+1, TN+1|Y1, ...YN , T1:N ) or a frequentist estimate
P̂ (Y, T ). The second step uses a different “causal logic” in order to consider if:

P (Y ∗ = y∗|Y1:N , T1:N , T ∗ = t∗)

= P (YN+1 = y∗|Y1:N , T1:N , TN+1 = t∗) ≈ P̂ (Y = y∗|T = t∗)

as in Equation 2 or if no such assumption can be made. There are a number of ways that this causal
logic may be applied.

• In the case of the Pearlian approach [13] if the causal graph involves an arrow from T to
Y and there are no additional unobserved confounders then applying the do calculus gives
P (Y |do(T )) = P (Y |T ).

• In the Dawidian approach [5] introduces a “non-stochastic-regime-indicator’ FT which
switches between the observed and interventional data. If Y ⊥⊥ FT |T where⊥⊥ represents
conditional independence then the causal effect is given by the conditional probability
P (Y |T ).

• In the Rubinesque approach [19] a joint distribution on the counterfactual outcomes is
defined where YT=0 is the outcome when T = 0 and YT=1 when T = 1. Then subject to
YT=0, YT=1 ⊥⊥ T , then the causal effect is P (Y |T ).

The two step procedure is a valid way to infer causal effects under limited circumstances. How-
ever reducing to a frequentist estimate of P (Y, T ) and consequentially the inability to access
P (Y1:N , T1:N , Y

∗|T ∗) requires new non-probabilistic ways to state assumptions and new non-
probabilistic mathematics. Two step procedures in general suffer from the following limitations:

• Two step procedures are complicated, they unnecessarily develop different logics that apply
in causal and non-causal settings.

• Two step procedures lack generality if a transform cannot be identified of the joint density
then it becomes impossible to introduce prior assumptions to make an assessment of causal
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effects. A Bayesian conditional probability can always be computed, and the variance of the
posterior and predictive distribution can be assessed in order to determine how informative
the data was3.

• Two step procedures do not adequately handle finite sample uncertainty.

• The causal step of two step procedures are non-probabilistic in nature and invite confusion
around terms such as “condition” [16].

• Two step procedures are fundamentally non-Bayesian. The notion of P (Y, T ) being an
external stochastic process is contrary to a purist reading of Bayesian theory as “probability
does not exits” it follows P (Y, T ) as an external entity that can be estimated also does not
exist.

We do not intend to argue that there is any inherent difficulty with two step methods when they may
be applied, only that they lack generality and are conceptually overly complicated.

C Response to our critics

As mentioned in the title of this document, not everyone agrees that causal inference can be reduced
to Bayesian inference.

The idea presented here [12] has been twice rejected from publication, it also has been extensively
discussed on Andrew Gelman’s blog [8] and in a panel [6] on theoretical aspects of Bayesian Causal
Inference. Several criticisms of the idea have been made.

The criticism that we are most sympathetic with is that this idea is not original. We think the
correctness of the idea is more important than its originality and our contribution is surely only to
clarify an existing idea. Our original manuscript presented side by side analysis of causal questions
using Pearl style Causal Graphical model that were manipulated with the do-calculus and probabilistic
graphical models manipulated with only probability theory. We showed both methods gave the same
results using the classic examples of Simpson’s paradox [17] and the front door rule [13]. We received
criticism that the probabilistic graphical model we proposed was similar to twin networks already
proposed in [2] and also was similar to the Bayesian approach developed in [4] where Gibbs sampling
was used to marginalize out an unobserved latent confounder.

We like these papers and agree that in them Pearl and collaborators do causal inference in a single step
using only probability theory very similar to our approach. Given these papers show that probability
theory is adequate for causal inference it is puzzling to see Pearl advocate forcefully that causal
inference requires two step procedures with different logic applying in each step.

An anonymous commentor also argued that because we motivated fully probabilistic models using
Pearl graphs we had used more than probability theory [1]. That you can encode causal assumptions
using only probability theory was precisely our point, in [12] we motivated the discussion with graphs
in this paper we did it from first principles.

In the panel discussion [6] all panellists except Finnian Lattimore argued in favor of two step
procedures. Calling the causal step a “math(s) question”. We do not feel there is any clear argument
made about why the causal step is non-probabilistic or distinct from inference but we invite readers
to listen to this discussion. If a joint distribution of observed and latent quantities can be transformed
to causal quantity of interest using only the observed quantities is indeed a maths question, but
computing a conditional probability provides the causal estimate both in cases which are identifiable
and non-identifiable (in the later case prior assumptions have impact even in the large data limit).
Given Philip Dawid’s previous Bayesian convictions we were surprised by his apparent acceptance
of two step inference and wonder if this is really his considered position. The sentiment of his talk
“Causal inference is just Bayesian Decision Theory” is close to that of this paper.

Turning now to reviews of our paper [12], one of the most constructive negative reviews on our
submission said:

3If the priors have strong influence on the causal effect, then different Bayesians are likely to agree on the
value of running a high quality randomized control trial to gather good estimate even if they disagree on the
current causal effect estimates.
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A main point is that this all works as long as there are no latent variables; and
latent variables are commonplace in causal inference. Latent variables are really
latent: we know nothing about them other than they exist and that they affect
some manifest variables in the graph. So they cannot be marginalised out. In this
condition, the twin network is not useful. Unfortunately one cannot just decide a
prior over then and proceed as usual. The authors seem to be aware of this, but
still there is just no knowledge about them and we have to face it. All the technical
details (parameters, other parameters, parametrisations, ...) can induce one to
think wrongly about the core of the problem: some queries are just unidentifiable.
(Anonymous UAI 2019 Reviewer)

A similar sentiment was put more forcefully:

I am quite certain the method is fundamentally flawed in the presence of con-
founders, but even for the simpler case of non confounding not even an attempt at
proof or reflection of possible assumptions / limitations is provided. (Anonymous
PGM 2020 Reviewer).

Our paper actually demonstrated the agreement of probability theory and the do-calculus in the
case of the front door rule which contains an unobserved latent variable (but for which causality is
identifiable). In the case were causality is unidenifiable due to unobserved confounding then no partial
exchangeability relationship will exist and it will not be possible to produce intersubjective causal
estimates, but in contrast to the anonymous referee it is possible to place priors on the latent variables
- only the affect of these priors will persist even in the large data limit. We think this framework
accurately reflects how intersubjective inference can be made for well executed randomized control
trials but cannot be made from natural experiments - different people have different priors and the
prior impact doesn’t wash out in the large data limit. Also in this case where different priors result
in different inference - they typically will agree on there being very high utility in doing a well
executed randomized control trial that will reduce the uncertainty. Finally as we are simply applying
the Ramsey-de Finetti-Savage theory to decision making under uncertainty our method is proven to
be optimal under reasonable axioms of rational behavior [18, 7, 20].

The negative PGM review also made the following comment that we find to be more substantial:

In other word: the perceived discrepancy lies not in the assumptions or the inference
rules or the available data, but strictly in the fact that the notion of ‘intervention’ is
not part of the axioms of probability theory, and hence it needs an external frame
of reference (the causal model) to make this connection. Exactly as the proposed
solution in this paper does. (Anonymous PGM 2020 Reviewer)

There is indeed a point that the core construct is in some sense unusual P (Y1:N , T1:N , Y ∗|T ∗) where
T ∗ has no distribution (as we optimise it rather than integrate over it). Having a random variable Y ∗

having its distribution vary dependent on action T ∗ is unusual (and neglected) but it is present e.g.
see [9] Section 7.3, but such extensions are surely under discussed and in the case of relationships
between Y ∗ and Y1:N , T1:N and T ∗ - woefully so.

We also received multiple positive reviews and comments, neutral comments and the occasional
comment we did not understand. Despite the critics we are confident that this way of formulating
causal inference will gain popularity due to its simplicity, generality and correctness. Tools such as
the do-calculus also can provide insight and simplifications for causal problems (or indeed random
variables under partial exchangeability) but should ultimately be viewed as being implied by the more
general Bayesian theory.

In closing this section we would like to give the last word to Pearl who was generous enough to
comment on our work in his characteristic poetic style:

There is comfort, I admit, for researchers to dress causal inference in traditional
probabilistic vocabulary; familiar words evoke familiar tools and a sense of safe
passage. From logical viewpoint, however, causality and statistics do not mix,
unless one extends the meaning of “statistics” to cover the entire sphere of scientific
thought. (including of course speculations about Cinderella’s hair color, which
can be decorated with Bayes priors.) But if the comfort of traditional vocabulary
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increases researchers ability to solve causal problems (like front door, external
validity, mediation and missing data) so be it — I am all for it. Judea Pearl (2020)

We think Bayesians would naturally view the meaning of “statistics” to cover the entire sphere of
scientific thought including applying exchangeability to P (Y1:N , T1:N ) and more free form decision
making under uncertainty specification to P (Y ∗|Y1:N , T1:N , T ∗). We thank Pearl for his (qualified)
support.
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