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Abstract
Given the importance of building robust machine
learning models, considerable efforts have re-
cently been put into developing training strategies
that achieve robustness to outliers and adversarial
attacks. Yet, a major aspect that remains an open
problem is systematic robustness to global forms
of noise such as those that come from measure-
ments and quantization. Hence, we propose in
this work an approach to train regression models
from data with additive forms of noise, leveraging
the Wasserstein distance as a loss function. Im-
portantly, our approach is agnostic to the model
structure, unlike the increasingly popular Wasser-
stein Distributionally Robust Learning paradigm
(WDRL) which, we show, does not achieve im-
proved robustness when the regression function is
not convex or Lipschitz. We provide a theoretical
analysis of the scaling of the regression functions
in terms of the variance of the noise, for both for-
mulations and show consistency of the proposed
loss function. Lastly, we conclude with numer-
ical experiments on physical PDE Benchmarks
and electric grid data, demonstrating competitive
performance.

1. Introduction
In real-world applications, collected data is often tainted
with different forms of noise. Whether it is sensor noise
in engineering systems or measurement uncertainty in bio-
logical experiments, such noise usually demands costly and
time-consuming pre-processing steps, before meaningful
results can be extracted using predictive machine learning
algorithms. In order to streamline that process, different
robust learning approaches have been proposed with a focus
on robustness to outliers and adversarial attacks (Moha-
jerin Esfahani & Kuhn, 2018; Steinhardt et al., 2018; Bai
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et al., 2023; Levine & Feizi, 2020). Most of such strate-
gies rely on augmenting the data with adversarial examples
(Goodfellow et al., 2014; Madry et al., 2018) or designing
suitable loss regularization techniques (Dong et al., 2020).
However, for more global forms of noise, which are com-
monly encountered in practice, these approaches face both
statistical and practical limitations. In the case of data aug-
mentation, the limitations are inherent to its design, while
adversarial regularization often targets bounded perturba-
tions, thereby overlooking standard noise models that arise
in real-world settings. In contrast, the increasingly popular
paradigm of Wasserstein Distributionally Robust Learning
(WDRL) (Mohajerin Esfahani & Kuhn, 2018; Shafieezadeh-
Abadeh et al., 2019; Gao et al., 2024) represents a more
general framework that allows for arbitrary perturbations,
and is more theoretically appealing while leading to com-
petitive performance. Yet, there seems to be a gap in the
literature when it comes to robustness properties of WDRL
with respect to global forms of noise, as pointed out by
(Hu et al., 2020) for instance. In this work, we address this
question in a regression setting from multiple perspectives:

1. We study the global robustness properties of the popu-
lar WDRL formulation, through a numerical analysis of
its scaling in terms of the variance of the noise.

2. Notably, we show that WDRL may fail to improve the
performance when the regression functions are neither
Lipschitz nor convex.

3. To address this limitation, we propose a simple yet
powerful robust learning approach that is agnostic to
the structure of regression functions, enabling more
expressive models. We further provide a theoretical
analysis of its dependence on the variance of the noise.

4. We numerically demonstrate the performance of our
proposed approach through various physical problem
benchmarks and electric grid usage time series data.

2. Problem Setting
Consider the regression task of predicting response variables
y ∈ Y from input features x ∈ X . Given a class of regres-
sion functions {fθ, θ ∈ Rd} and data samples {Xi, Yi}i≤n

from an underlying distribution µ(X,Y ) ∈ P2(X × Y) with
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fθ : X → Y , the standard goal is to find a model θ ∈ Rd

that minimizes the empirical risk

θ̂MSE ∈ arg min
θ∈Rd

1

n

n∑
i=1

∥Yi − fθ(Xi)∥22.

In this work, we focus on the setup where the response
samples (Yi + σεi)i≤n are tainted with independent and
identically distributed noise with variance σ2, with the ob-
jective of training deep learning models that are the least
sensitive to the noise level σ.

3. Drawbacks of WDRL
In order to compute the objective function of WDRL, cer-
tain structural assumptions on the regression functions
fθ, θ ∈ Rd as well as the loss function ℓ, must be imposed.
This is necessary since the original formulation involves
solving an infinite dimensional optimization problem, which
is generally intractable. For that matter, two main settings
have been proposed:

(a) Assuming that the function ℓθ : (x, y) 7→ ℓ(y, fθ(x))
is a finite maximum of concave functions;

(b) Assuming that the function ℓθ : (x, y) 7→ ℓ(y, fθ(x))
is Lipschitz continuous.

In either cases, the objective function can be rewritten (Mo-
hajerin Esfahani & Kuhn, 2018; Shafieezadeh Abadeh et al.,
2015) under a tractable form1 as follows

d2((Yi)i≤n, (fθ(Xi))i≤n) := sup
(X,Y )∼µ

W2(µ,µ̂)≤δ

Eµ[ℓ(Y, fθ(X))]

= inf
λ≥0

[
λδ +

1

n

n∑
i=1

sup
(ξ1,ξ2)∈X×Y

{
ℓ(ξ1 − fθ(ξ2))

−λ∥Yi − ξ1∥22 − λ∥Xi − ξ2∥22
}]

,

where the optimal solutions λ⋆(θ) and (ξ⋆1(θ), ξ
⋆
2(θ)) are

reached for all θ ∈ Rd. Yet, to satisfy (a) or (b) in a regres-
sion setting where the data distributions have unbounded
domains, one typically needs to set ℓ(y, x) = |y− x| and to
enforce structural properties of convexity or Lipschitzness
on the neural network models, therefore, reducing their
expressive power. A natural question that emerges is
whether using the tractable expression of d2 as a loss
function, regardless of whether the equality holds, can
improve the robustness of the neural network models. We

1(Blanchet & Murthy, 2019) propose a more general condition
for the equality to hold, but leave the question of existence of
optimizers, which is essential here, open.

provide a negative answer to this question by exploring the
behavior of d2 in training a convolutional neural operator
(CNO) (Raonic et al., 2024) to solve the two-dimensional
Navier-Stockes equation. In particular, we estimate
the operator that maps the initial condition (T = 0),
represented as an image, to the final state (T = 1). To
this end, we train the WDRL regression model employing
a stochastic descent- ascent algorithm, exploring the
model behavior as the noise level increases. We use the
hyperparameters optimized by the authors who proposed
the CNO architecture (Raonic et al., 2023). We obtain
the results shown in Figs. 1 and 2, for both Gaussian and
heavy-tail noise distributions, respectively. For the latter
case, we use the standard Cauchy distribution, where σ
represents the scale parameter, as a Cauchy random variable
does not have finite variance due to the heavy tails. We
examine model performance via the mean absolute relative
error (MAE). Our results indicate that under heavy-tail
noise, WDRL training performs significantly worse than the
standard MSE training. In the Gaussian noise setting, both
lead to comparable results, without noticeable improvement
from WDRL. This is in contrast with the novel regression
approach introduced in the follow-up section, whose
performance on this setting is demonstrated in Section 5.

Figure 1. Test error evolution for Navier-Stockes operator learning
with 30% corrupted training data with Cauchy noise

Remark. Note that this limitation of WDRL has not
been raised so far, to the best of our knowledge, mainly
because previous works focused on image classification
where the data domains are bounded, honouring the
Lipschitz property.

4. Wasserstein Batch Matching
The key idea behind our approach is to relax the strict match-
ing between features Xi and their given responses Yi + σεi
for i ∈ Ip, where Ip denotes the index set of a training batch.
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Figure 2. Test error evolution for Navier-Stockes operator learning
with 30% corrupted training data with Gaussian noise

The motivation for this relaxation is that, in the presence of
noise, the observed response Yi+σεi already deviates from
the true response Yi. Consequently, if the batch elements
are sufficiently close, allowing features to match responses
without a fixed correspondence can lead to a more robust
estimate while reducing the sensitivity of the loss function
to noise.

4.1. Formulation & Consistency

The formal way to implement this idea is to compute the
Wasserstein distance between the empirical distributions
of the predictions (fθ(Xi))i∈Ip and the responses (Yi)i∈Ip ,
leading to Wasserstein Batch Matching (WBM) regression

θ̂WBM ∈ arg min
θ∈Rd

∑
p≥1

W2(m[(Yi)i∈Ip ],m[(fθ(Xi))i∈Ip ]) ,

instead of the Mean Squared Error (MSE) regression. We
illustrate the WBM idea in figure 3. For our setting of empiri-
cal distributions, note that the Wasserstein distance reduces
to

W2(m[(Yi)i∈Ip ],m[(fθ(Xi))i∈Ip ]) =

min
P∈C

〈
P, M((Yi)i∈Ip ,(fθ(Xi))i∈Ip )

〉
,

where M((Yi)i∈Ip ,(fθ(Xi))i∈Ip )
=

(
∥Yi − fθ(Xj)∥22

)
i,j∈Ip

is the matrix of the pairwise norms between the predictions
and the target values, and C the set of coupling matrices of
dimension #Ip. As a sanity check, we show in proposition
(1) below that, asymptotically such a matching scheme re-
covers any continuously differentiable bandlimited function,
among its co-monotonic functions from its samples, in the
noise-free regime.

Proposition 4.1. (Consistency) Let f : Rd −→ R be a con-
tinuously differentiable and integrable function with com-
pactly supported Fourier transform and let (f(xϕ(i)))i≤n

Figure 3. Wasserstein Batch Matching illustration. The regression
through cloud of points in a batch (depicted by blue) is tackled by
finding optimal map, depicted by black line, between distributions
of (Xi)i and (Yi + σϵ)i, shown by red and green histograms.

be its values sampled at ordered points (xi)i≤n, where ϕ
is an unknown permutation preserving the batch partition.
Then, given a fixed batch size and an arbitrary amount of
samples, f is completely characterized by minimizing

min
g∈G

∑
p≥1

W2(m[(f(xi))i∈Ip ],m[(g(xj))j∈Ip ]) ,

where {Ip, p ≥ 1} is the finite collection of batch index sets
and G the set of continuously differentiable and integrable
bandlimited functions that are co-monotonic with f , where
we employ m[(Xi)i≤n] = 1/n

∑n
i=1 δXi

, as the shorthand
for empirical measure.

Two remarks are in order concerning the algorithmic
aspects of the introduced approach.

Remark. (Complexity) From a computational com-
plexity perspective, training with WBM involves solving
a linear program at each training step, which costs O(s),
where s = dim(Y) is the dimension of the response space
Y . However, this is independent of the strucutre of the
regression functions. On the other hand, WDRL involves
solving a minimax problem which is in O(s3) when the
function ℓθ is convex-concave. However, in the absence of
this structure, the problem can become arbitrarily hard.

Remark. (Differentiability) The proposed WBM loss is
differentiable with respect to the regression parameters
θ ∈ Rd by the envelope theorem (Bonnans & Shapiro,
2013), which makes it well-suited for training deep learning
models.
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5. Numerical Results
We demonstrate the performance of WBM regression on
two important practical problems: operator learning for
PDEs and electric grid usage forecasting. Evaluation on
test data is carried out using the mean absolute error (MAE)
in all displayed figures, where we compare models trained
with the MSE to those trained with WBM. We explore the
robustness properties of WBM both to standard Gaussian
and heavy-tail Cauchy noise. Heavy-tail noise is present
in many real-world applications such as vibration sensors
for intelligent monitoring, power consumption sensors, and
LIDAR systems. It comes from transient events, sudden
extreme changes such as short circuits, or atmospheric
noise which exhibits heavy-tails. Additionally, we explore
robustness to distribution shift properties, by training on
noise-free data and testing on noisy data. Such a use-case is
encountered in practice, when a model is developped based
on cleaned data before being deployed on real data. We re-
port the results for second practical problem in the appendix.

Learning of PDEs
PDEs model a wide range of physical and engineering
problems and feature a rich set of dynamical processes
that illustrate the performance of machine learning models
on a wide range of practical regression problems. For
that matter, we demonstrate the performance of WBM
on a two of extensively used PDEs: the wave equation
and the Navier-Stockes equation. More precisely, we
consider the corresponding recently proposed benchmarks
in (Raonic et al., 2024), where the task consists of learning
operators mapping initial conditions (T = 0), represented
as images, to the final state reached by the system, e.g.,
corresponding to (T = 1). The underlying images represent
two-variable functions sampled at a given resolution.
We train convolutional neural operators (Raonic et al.,
2023), which have been proposed as featuring robustness
properties notably to change in resolution. We compare
models trained with the MSE loss to those trained with
the WBM loss. We set the hyperparameters optimized in
(Raonic et al., 2023), and keep the same for WBM training,
except the batch size for which we explore different
values. The convolutional neural operator architecture is
based on mapping the sampled images back to function
space using the Whittaker-Shannon interpolation formula
(Raonic et al., 2023). We display the results in Figs. 6,
7. We note that, WBM regression consistently outperforms
MSE regression. In particular, while both MSE and WDRL
regressions indicate significant errors in Navier-Stokes
operator learning subject to the Cauchy noise, as shown in
Fig. 1, the introduced WBM regression demonstrates notable
robustness.

Figure 4. Test error evolution for Navier-Stockes operator learning
- 30% corrupted test data with Cauchy noise

Figure 5. Test error evolution for wave equation operator learning -
30% corrupted training data with Gaussian noise

6. Discussion
In this paper, we considered the open problem of robustness
to global forms of noise, for which we proposed a learning
approach WBM, overcoming the drawbacks of WDRL. We
investigated the scaling of the introduced regression along
with other approaches with respect to noise levels, offering
a theoretical justification for the gains achieved by WBM.
Furthermore, we demonstrated the practical performance of
WBM via several numerical experiments involving learning
of physical PDE operators and electrical time series forecast-
ing. We believe this work paves the way for robust learning
methods that streamline the costly data pre-processing step,
while advancing the development of reliable machine learn-
ing models.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Föllmer, H. and Weber, S. The axiomatic approach to risk
measures for capital determination. Annual Review of
Financial Economics, 7(1):301–337, 2015.

Gao, R. and Kleywegt, A. Distributionally robust stochastic
optimization with wasserstein distance. Mathematics of
Operations Research, 48(2):603–655, 2023.

Gao, R., Chen, X., and Kleywegt, A. J. Wasserstein distribu-
tionally robust optimization and variation regularization.
Operations Research, 72(3):1177–1191, 2024.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explain-
ing and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572, 2014.

Hu, E. J., Swaminathan, A., Salman, H., and Yang, G. Im-
proved image wasserstein attacks and defenses. arXiv
preprint arXiv:2004.12478, 2020.

Ilbert, R., Odonnat, A., Feofanov, V., Virmaux, A., Paolo,
G., Palpanas, T., and Redko, I. Samformer: Unlocking the
potential of transformers in time series forecasting with
sharpness-aware minimization and channel-wise atten-
tion. In Forty-first International Conference on Machine
Learning, 2024.

Ito, K. and Xiong, K. Gaussian filters for nonlinear filtering
problems. IEEE transactions on automatic control, 45
(5):910–927, 2000.

Jain, V. and Seung, S. Natural image denoising with con-
volutional networks. Advances in neural information
processing systems, 21, 2008.

Krull, A., Buchholz, T.-O., and Jug, F. Noise2void-learning
denoising from single noisy images. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pp. 2129–2137, 2019.

Lehtinen, J., Munkberg, J., Hasselgren, J., Laine, S., Karras,
T., Aittala, M., and Aila, T. Noise2noise: Learning image
restoration without clean data. In International Confer-
ence on Machine Learning, pp. 2965–2974. PMLR, 2018.

Levine, A. and Feizi, S. Wasserstein smoothing: Certified
robustness against wasserstein adversarial attacks. In
International Conference on Artificial Intelligence and
Statistics, pp. 3938–3947. PMLR, 2020.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. In International Conference on Learn-
ing Representations, 2018.

Mohajerin Esfahani, P. and Kuhn, D. Data-driven distribu-
tionally robust optimization using the wasserstein met-
ric: Performance guarantees and tractable reformulations.
Mathematical Programming, 171(1):115–166, 2018.

5



Noise Tolerance of Distributionally Robust Learning

Raghunathan, A., Steinhardt, J., and Liang, P. S. Semidef-
inite relaxations for certifying robustness to adversarial
examples. Advances in neural information processing
systems, 31, 2018.

Raonic, B., Molinaro, R., De Ryck, T., Rohner, T., Bar-
tolucci, F., Alaifari, R., Mishra, S., and de Bézenac, E.
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Convolutional neural operators for robust and accurate
learning of pdes. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

Sardy, S., Tseng, P., and Bruce, A. Robust wavelet de-
noising. IEEE transactions on signal processing, 49(6):
1146–1152, 2001.

Shafieezadeh Abadeh, S., Mohajerin Esfahani, P. M., and
Kuhn, D. Distributionally robust logistic regression. Ad-
vances in neural information processing systems, 28,
2015.

Shafieezadeh-Abadeh, S., Kuhn, D., and Esfahani, P. M.
Regularization via mass transportation. Journal of Ma-
chine Learning Research, 20(103):1–68, 2019.

Staib, M. and Jegelka, S. Distributionally robust deep learn-
ing as a generalization of adversarial training. In NIPS
workshop on Machine Learning and Computer Security,
volume 3, pp. 4, 2017.

Steinhardt, J., Charikar, M., and Valiant, G. Resilience:
A criterion for learning in the presence of arbitrary out-
liers. In 9th Innovations in Theoretical Computer Science
Conference (ITCS 2018), volume 94, pp. 45. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018.

Tjeng, V., Xiao, K. Y., and Tedrake, R. Evaluating robust-
ness of neural networks with mixed integer programming.
In International Conference on Learning Representations,
2019.

Wu, D., Xia, S.-T., and Wang, Y. Adversarial weight pertur-
bation helps robust generalization. Advances in neural
information processing systems, 33:2958–2969, 2020.

Xing, W. and Egiazarian, K. End-to-end learning for joint
image demosaicing, denoising and super-resolution. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 3507–3516, 2021.

Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H.,
and Zhang, W. Informer: Beyond efficient transformer

for long sequence time-series forecasting. In The Thirty-
Fifth AAAI Conference on Artificial Intelligence, AAAI
2021, Virtual Conference, volume 35, pp. 11106–11115.
AAAI Press, 2021.

6



Noise Tolerance of Distributionally Robust Learning

A. Proof of Proposition 4.1: Consistency
We assume without loss of generality that X = Y = R. Let f, g ∈ G. Given that g is continuously differentiable, it has
bounded variations on every compact, that is for all a, b ∈ R such that a < b, we have

sup
pr∈Pr

npr∑
i=1

|g(xi+1)− g(xi)| < +∞ ,

where the supremum is taken over the set{
pr = {x0, . . . , xnpr} | pr is a partition of [a, b] satisfying xi ≤ xi+1 for 0 ≤ i ≤ npr − 1}

}
This implies that there exists a partition of the feature space into intervals of lengths (δn)n∈N such that g is monotonous
on every interval. The same holds for f . Hence, we consider the partition formed by Ii ∩ Jj where (Ii)i∈N and (Jj)j∈N
are the chosen partitions for f and g respectively. We denote by (δn)n∈N the new lengths. Since, f is bandlimited, let the
support of its Fourier transform be included in [−B,B] with B > 0. We can choose (δn)n such that δn ≤ 1

B for all n ∈ N.
Furthermore, we can sample each interval a number of times equal to the prefixed batch size. Since, f satisfies

min
g∈G

∑
p≥1

W2

(
m[(f(xi))i∈Ip ],m[(g(xj))j∈Ip ]

)
=

∑
p≥1

W2(m[(f(xi))i∈Ip ],m[(f(xj))j∈Ip ])

= 0,

we know that a minimizer g ∈ G of

g 7→
∑
p≥1

W2

(
m[(f(xi))i∈Ip ],m[(g(xj))j∈Ip ]

)
must satisfy

∀p ≥ 1, W2(m[(f(xi))i∈Ip ],m[(g(xj))j∈Ip ]) = 0 .

Furthermore, since f and g are co-monotonic, the Wasserstein matching recovers the true matching. Last, by the Shannon
sampling theorem we conclude g is equal f .

B. Additional Numerical Results
Electric Grid Usage Forecasting
Predicting electric load is an important and timely problem, especially given the increasing share of renewable energy
sources in all electrical grid networks. We employ the recently proposed state-of-the-art model TSMixer (Chen et al.),
to forecast electric transformer usage from the popular ETDataset (Zhou et al., 2021; Ilbert et al., 2024). TSMixer
is based on mixing operations via stacking multi-layer perceptions. We train the model with input sequence length of
336 and prediction sequence length of 96. We utilize the hyperparameters proposed by the authors, except the number
of training epochs which we reduce to a single swap over the data. This is justified by the fact that we compare the
model against itself trained with different loss functions. Hence, the comparison point can be chosen in a flexible
way. We display the results in Figs. 6 and 7. In the former, the WBM regression outperforms MSE, whereas in the
latter, their performance is similar, with WBM showing slight underperformance. This can be attributed to the mini-
mal errors observed in both approaches, suggesting that the underlying model exhibits little sensitivity to noise in this setting.

Reproducibility. We provide a version of the code used for the numerical experiments in the following link:
code. It is based on modifications of the publicly available code from (Raonic et al., 2023) and (Ilbert et al., 2024).

C. Related Works
Denoising and Filtering. Extensive research has been conducted on denoising and filtering techniques, ranging from
Kalman filtering (Ito & Xiong, 2000) and wavelet denoising (Sardy et al., 2001) to deep learning based methods (Jain
& Seung, 2008; Xing & Egiazarian, 2021; Krull et al., 2019; Lehtinen et al., 2018). For a comprehensive overview in
the context of image data modalities, see (Elad et al., 2023). However, most of these approaches require low noise data,
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Figure 6. Test error evolution for electric time series forecast-
ing - 30% corrupted test data with Cauchy noise

Figure 7. Test error evolution for electric time series forecast-
ing - 30% corrupted test data with Gaussian noise

focus on Gaussian noise distributions or require an explicit noise model. Additionally, they introduce costly separate data
pre-processing steps that must be performed prior to the modeling. In contrast, we propose an approach that directly trains
competitive models from noisy data, eliminating the need for extensive pre-processing.

Adversarial Defense. Early works introduced techniques to augment the training data with adversarial examples
(Goodfellow et al., 2014; Madry et al., 2018), leveraging the expressive power of neural networks to improve robustness.
Building on this, several regularization techniques such as entropic regularization (Dong et al., 2020) and adversarial weight
perturbation (Wu et al., 2020) have been proposed, further enhancing their performance. In parallel, certified robustness
approaches have focused on quantifying the proportion of samples that remain robust to arbitrary perturbations within a
given bound (Tjeng et al., 2019; Raghunathan et al., 2018; Dathathri et al., 2020). However, these techniques often lead
to overly conservative models, which can degrade performance in the presence of global noise perturbations (Bai et al., 2023).

Distributionally Robust Optimization. It is concerned with minimizing the worst-case loss over a given set of
distributions (Mohajerin Esfahani & Kuhn, 2018; Föllmer & Weber, 2015; Blanchet & Murthy, 2019), which is formally
expressed as the minimax problem

inf
θ∈Θ

sup
Q∈P

EQ [ℓθ(Z)]

where the supremum is taken over a suitably chosen class of distributions Q ∈ P . Recent focus (Shafieezadeh Abadeh
et al., 2015; Staib & Jegelka, 2017; Shafieezadeh-Abadeh et al., 2019; Chen & Paschalidis, 2018; Bartl et al., 2021; Gao
et al., 2024) has been given to the formulation with Wasserstein ambiguity set P = Bδ(P ), which is the ball centered at the
empirical distribution P with radius δ under the Wasserstein distance, leading to WDRL. See (Gao & Kleywegt, 2023) for
a discussion on theoretical advantages of this choice. WDRL has demonstrated remarkable performance in out-of-sample
linear regression (Mohajerin Esfahani & Kuhn, 2018) and classification (Shafieezadeh-Abadeh et al., 2019) tasks, as well as
in defending against adversarial attacks (Bai et al., 2023; Bui et al., 2022) on neural networks. In contrast, we consider
robustness to unbounded global forms of noise, which to the best of our knowledge, has not been investigated so far in the
context of WDRL.
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