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ABSTRACT

Modeling transformations between arbitrary data distributions is a fundamental
scientific challenge, arising in applications like drug discovery and evolutionary
simulation. While flow matching offers a natural framework for this task, its use
has thus far primarily focused on the noise-to-data setting, while its application in
the general distribution-to-distribution setting is underexplored. We find that in the
latter case, where the source is also a data distribution to be learned from limited
samples, standard flow matching fails due to sparse supervision. To address this,
we propose a simple and computationally efficient method that injects stochastic-
ity into the training process by perturbing source samples and flow interpolants.
On five diverse imaging tasks spanning biology, radiology, and astronomy, our
method significantly improves generation quality, outperforming existing base-
lines by an average of 9 FID points. Our approach also reduces the transport cost
between input and generated samples to better highlight the true effect of the trans-
formation, making flow matching a more practical tool for simulating the diverse
distribution transformations that arise in science.

1 INTRODUCTION

Modeling transformations between arbitrary distributions is a canonical problem in science. Con-
sider drug discovery, where the challenge is to find compounds capable of transforming diseased
cells into a healthy state. This task is complicated by the inherent heterogeneity of cell populations,
meaning the desired states must be treated as a distribution. Furthermore, observational constraints
like destructive assays yield unpaired ‘before’ and ‘after’ snapshots, making a one-to-one mapping
impossible (Zhang et al., 2025; He et al., 2024). This fundamental challenge — learning a distri-
butional transformation from unpaired data — extends across scientific fields, from understanding
disease progression in patients to tracing the evolution of galaxies over cosmological timescales (He
et al., 2025; Anstine & Isayev, 2023; Wu et al., 2025; Höllmer et al., 2025).

Flow matching offers an elegant framework for distribution-to-distribution learning. Unlike diffu-
sion models, which typically transport Gaussian noise into the data distribution, flow matching can
directly model a transformation between two arbitrary empirical distributions (Lipman et al., 2022;
Liu et al., 2022). Despite this theoretical promise, it has primarily been leveraged for learning noise-
to-data. We study the more general, scientifically relevant, yet underexplored data-to-data setting,
and diagnose a critical failure mode: sparse supervision. With finite samples from both source and
target distributions, training supervision is available only along one-dimensional interpolant trajec-
tories that sparsely cover the sample space. Consequently, the learned velocity field that overfits
these few interpolations, leading to poor generalization. Our controlled experiments on a synthetic
problem (Section 2.2) confirm that the performance of flow matching drastically deteriorates with
increasing data dimensionality or decreasing number of training data.

To counteract sparsity, we propose a simple and effective intervention: inject three forms of stochas-
ticity during training to densify the supervision signal. First, we propose a two-stage training scheme
inspired by transfer learning, initially training on the less data-sparse task of mapping noise to tar-
get before fine-tuning on the source-to-target transformation. Second, we perturb the source samples
with Gaussian noise, augmenting the available data to a denser source distribution. Third, we perturb
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Figure 1: Our objective is to learn a flow from source onto target distributions, given unpaired
training samples. Left: In the illustrated example, we learn to simulate cellular response to a chem-
ical intervention. Right: We introduce stochastic injections that alleviate the sparsity challenges of
distribution-to-distribution learning from finite target and source training examples, by 1) transfer
learning from the noise-to-target task, 2) perturbing source samples, and 3) perturbing the training
interpolant.

the flow interpolant with a noise schedule, creating a denser set of interpolating points between each
source-target pair sampled during training. Our theoretical analysis supports these perturbations’
ability to alleviate sparsity and improve generalization. Figure 2 provides complementary intuition:
the stochastic injections induce more space-filling interpolants than standard flow matching.

We validate our method on five challenging, high-dimensional image datasets covering natural and
scientific domains, spanning problems in biology, radiology, and astronomy. The tasks range from
modeling cellular response to chemical treatments (Caie et al., 2010), to simulating the effects of
cosmological redshift (Do et al., 2024). Our stochastic injections significantly improve generation
quality, outperforming vanilla flow matching by 13 FID (Frechet Inception Distance) points and
other established baselines by 9 FID points. Moreover, our stochastic injections improve the trans-
port cost between a given source sample and its generated counterpart in the target distribution, as
measured by Euclidean distance in pixel space. This means there is a closer visual correspondence
between source and generated target, which better highlights the true effect of the distributional
transformation at a sample level.

In summary, we identify flow matching as a promising solution to the scientifically important prob-
lem of distribution-to-distribution learning, but find that the standard formulation struggles in high
dimensions due to data sparsity. We propose stochastic injections that alleviate sparsity and im-
prove generalization, while being simple to implement, computationally cheap, and compatible with
ODE sampling. The resulting recipe turns flow matching into a practical tool for learning unpaired
distribution-to-distribution transformations, advancing data-driven modeling for scientific discovery.

2 PROBABILITY FLOWS AND DATA SPARSITY

In this section, we review probability flows and show, using controlled experiments on a synthetic
task, how data sparsity impedes standard flow matching in the distribution-to-distribution setting.

2.1 PRELIMINARIES

Consider data distributions living on a metric space X , such as X = Rd. The objective of generative
modeling with flow matching is to learn a time-dependent velocity field vt(x) such that each sample
x0 ∼ p0 from the source distribution is smoothly transported by vt(x) onto a sample x1 ∼ p1 from
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the target distribution by the ODE

dxt = vt(xt)dt, x0 ∈ p0, x1 ∈ p1, t ∈ [0, 1]. (1)

The most common setting, which we call one-sided distribution matching, is interested in learning
only the data distribution p1.1 In this case it is standard to choose p0 = N (0, 1) (Lipman et al., 2022;
Liu et al., 2022). In this work, we consider the more general and scientifically relevant two-sided
setting, where both p0 and p1 are non-trivial distributions from which we have access to a finite
number of training examples. In the case of drug discovery, p0 might be the control distribution
cells and p1 the distribution of cells after some chemical treatment. Flow matching constructs an
interpolant object xt conditioned on data samples x0 ∼ p0 and x1 ∼ p1,

xt = αtx0 + βtx1, t ∈ [0, 1], (2)

where αt, βt are differentiable functions which define the interpolant path, satisfying α0 = β1 =
1, α1 = β0 = 0. A core insight of flow matching is that to learn the unconditional velocity field
vθt (x), parametrized by a neural network, it suffices to regress against the conditional target velocity
vt(xt|x0, x1) := ∂txt = (∂tαt)x0 + (∂tβt)x1 over all data pairs observed during training:

Lv(θ) = E(x0,x1)∼pdata,t∼U(0,1)||vθt (xt)− vt(xt|x0, x1)||2. (3)

2.2 DATA SPARSITY IN DISTRIBUTION-TO-DISTRIBUTION LEARNING

Equation 2 exposes a key challenge in two-sided distribution learning with finite data: supervision
via xt arrives only along sparse, one-dimensional interpolant paths determined by a limited set of
data samples x0 and x1. Intuitively, in high dimensions, these thin supervision ‘tubes’ cover a
vanishing fraction of X . As d grows or as the dataset shrinks, the learned vθt must extrapolate more
aggressively, degrading sample quality.

We make this challenge concrete with a synthetic task, CONCENTRICSHELLS, where the source
and target distributions are d-dimensional concentric hyperspheres. The cost-minimizing transport
moves points radially outward from the inner to outer shell. We train flow models from unpaired
samples and evaluate two metrics: cosine similarity and sinkhorn distance. The cosine similarity
between a source sample x0 and the generated output x̂1 should be close to 1 for the CONCENTRIC-
SHELLS geometry. The sinkhorn distance, an entropic-regularized Wasserstein proxy between
generated and target samples, should be minimized.

Systematic experiments, carefully controlling the availability of training supervision, show that spar-
sity significantly degrades the quality of the learned transformation. Sparsity hurts as data dimen-
sion grows: Figure 3a shows that as d scales from 2 to 2048, the cosine similarity falls from 0.98 to
0.77 while the sinkhorn distance rises from 0.3 to 4.7. Sparsity hurts when data are few: comple-
mentarily, Figure 3b varies the number of training examples from 128 to 8192 while fixing d = 512,
showing that both metrics degrade sharply as supervision thins.

Figure 2: Our stochastic injections en-
able denser supervision, as visualized
for d = 2 CONCENTRICSHELLS.

Stochastic injections mitigate sparsity. Our proposed
stochastic injections substantially stabilizes learning un-
der both stressors, making flow matching more robust
to the sparsity induced by the curse of dimensionality.
Figure 3 (blue curves) shows that with this intervention,
the cosine alignment remains high across dimensions and
number of data, and the sinkhorn distance is significantly
reduced, with the largest gains precisely in the sparsity-
challenged regimes of large d and few samples where
standard flow matching is most challenged. In the fol-
lowing section, we introduce our stochastic injections and
explain why how they densify the training signal, leading
to better distribution-to-distribution learning.

1In the one-sided setting with Gaussian p0, flow matching is equivalent to v-prediction diffusion (Salimans
& Ho, 2022).
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(a) Scaling data dimension. (b) Scaling number of training data.

Figure 3: Sparsity stress tests on CONCENTRICSPHERES demonstrate that flow matching struggles
in high dimensions and with few training examples. Our stochastic injections help ‘de-sparsify’ the
supervision for the flow model, learning a more robust, generalizable velocity field.

3 METHOD

To counteract the challenges of sparse supervision highlighted in Section 2.2, we introduce three
stochastic injections that densify training coverage with minimal code changes and almost no com-
putational overhead.

3.1 TWO-STAGE TRANSFER LEARNING

Problem. In one-sided distributional learning, we can sample infinitely many x0 ∼ p0 = N (0, Id)
from the source distribution for training, so the supervision is dense. In contrast, the two-sided
setting relies on finite data samples from both source and target distributions, compounding the
sparsity challenge.

Solution. Inspired by this insight and the success of transfer learning, we bootstrap from the
supervision-abundant noise-to-target setting to our sparsity-challenged source-to-target setting. For
the first stage of training (defined by a fixed number of epochs), we draw samples from (x0, x1) ∼
p(x0, x1) but discard the source x0, supervising the velocity field with the interpolant

xt = αtz + βtx1, z ∈ N (0, Id). (4)

In the second stage, we continue to draw samples (x0, x1) ∼ p(x0, x1), but fine-tune the same
velocity field with now the interpolant

xt = αtx0 + βtx1. (5)

The first stage learns vector fields that flow on p1, without suffering the two-sided sparsity. The
second stage can therefore adapt those fields to condition on p0 described by data samples. In sum-
mary, pre-training on the noise-to-target setting supplies dense supervision for a flow that samples
p1, making the subsequent source-to-target fine-tuning stage more robust and sample-efficient.

3.2 PERTURBING THE SOURCE DISTRIBUTION

Problem. In the two-sided setting, both source and target distributions are observed only through
finite data. Concretely, the empirical source distribution is a sum of Dirac masses centered on
training examples. This discreteness poses two challenges: 1) the model may fail to generalize to
unseen source samples, and 2) even if the ground-truth flow is learned, the recovered target remains
a discrete mixture rather than a continuous distribution. We formalize this in the following lemma.

Lemma 1. If the source distribution p0(x0) is a mixture of delta distributions 1
n

∑n
i=0 δ(x − xi)

with sample size n, then the ground-truth probability-flow ODE can only recover a mixture of delta
distributions with sample size n.
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Proof is in Appendix B. The lemma implies that if source samples are sparser than target samples,
the denser target distribution cannot be recovered. Moreover, training solely on sparse source data
introduces generalization error when new source samples appear at test time.

Solution. To address the finite-support limitation of p0, we densify the source distribution by in-
jecting Gaussian perturbations. During training, we draw source and target samples from data,
(x0, x1) ∼ p(x0, x1), and jitter the source sample to

x̃0 = x0 + z, z ∈ N (0, Id) (6)

with z independently sampled every batch. The flow path now becomes

xt = αtx̃0 + βtx1. (7)

Notably, we do not perturb x1, as this causes the model to learn to learn a “noisy” target manifold. In
summary, injecting Gaussian noise into each source sample densifies the support of the empirically
observed p0, enabling better generalization and recovery of the target distribution.

3.3 PERTURBING THE INTERPOLANT

Problem. With the deterministic interpolant of Equation 2, supervision lies on one-dimensional
lines sampled during training. The direct interpolation between sparse sets of points – namely, the
training examples from source and target – can only result in sparse interpolating sets. They have
vanishing coverage in high dimensions, and training on them can lead to poor generalization.

Solution. To densify the interpolating points between each source-target pair sampled during train-
ing, we leverage stochastic interpolants that preserve the same marginal distributions at t = 0 and
t = 1. Introduced by Albergo et al. (2023a), this framework generalizes the flow interpolant object
(Equation 2) to

xt = αtx0 + βtx1 + γtz, x0 ∈ p0, x1 ∈ p1, z ∈ N (0, Id), t ∈ [0, 1] (8)

where γt is a differentiable functions satisfying γ0 = γ1 = 0. A similar objective as flow matching
(Equation 3) is employed to learn the velocity field vθt ,

Lv(θ) = E(x0,x1)∼pdata,z∼N (0,I),t∼U(0,1)||vθt (xt)− vt(xt|x0, x1, z)||2, (9)

and to perform inference by numerically solving Equation 2. Additionally, stochastic interpolants
support SDE sampling with a score field that models st(x) = ∇ log pt(x).2 It may be shown that,
for every t where γt ̸= 0,

st(x) = −γ−1
t E(z|xt = x). (10)

Similarly to learning the velocity field, a neural-network-parametrized sϕt may be learnt by regress-
ing against z over the interpolants observed during training. For numerical stability, we often choose
the parametrization ηt(x) = γtst(x) and learn

Ls(ϕ) = E(x0,x1)∼pdata,z∼N (0,I),t∼U(0,1)||ηϕt (xt)− ηt(xt|x0, x1, z)||2. (11)

At inference, we can choose an arbitrary diffusion schedule σt and numerically integrate with an
SDE solver, such as Euler-Maruyama:

dxt =
(
vt(xt)−

1

2
σ2
t γ

−1
t ηt(xt)

)
dt+ σtdWt, (12)

where Wt is the Wiener process.

Injecting stochasticity into the interpolant densifies the distribution of the interpolating points, tight-
ening the discrepancy between empirical samples and population. We formalize this intuition with
the following theorem.
Theorem 1 (Informal). Let LFM(θ, t),LSI(θ, t) be the population risk of flow matching and our
stochastic injection loss at time t, and L̂FM(θ, t), L̂SI(θ, t) be their empirical risks with n i.i.d. sam-
ples. Let pt(xt), qt(xt) be the respective population distribution of xt, and p̂t(xt), q̂t(xt) be their
empirical distributions, the 1-Wasserstein distance W1(pt, p̂t),W1(qt, q̂t) characterizes each loss’
generalization gap. Moreover, W1(qt, q̂t) ≤ W1(pt, p̂t).

2If p0 or p1 is Gaussian, i.e. the one-sided setting, the score can be directly obtained from vt by the relation
vt(x) =

β̇t
βt
x− γt

(
γ̇t − β̇tγt

βt

)
st(x), without separately learning the score.
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See Appendix B for a more formal statement and proof. This theorem allows us to use the 1-
Wasserstein distance to approximately measure the generalization gap, and shows that the gap is
smaller if xt is a stochastic interpolation. In summary, perturbing the interpolant path densifies
supervision along the interpolating path, tightening the generalization gap.

Designing the interpolant noise schedule. Stochastic interpolants extend the design space to the
choice of γt. Prior work (Albergo & Vanden-Eijnden, 2022) favored γt =

√
2t(1− t), which

maintains identical variance α2
t + β2

t + γ2
t = 1 over all timesteps, assuming linear path and p0, p1

normalized to unit variance. However, this does not guarantee optimality in real data distributions;
in fact, the divergence of ∂tγt at the endpoints creates numerical instability when regressing the
conditional target velocity. In this work, we explore the shape and scale of γ on a real world image
two-sided image distribution, considering three noise schedules,

γt =


a
√

2t(1− t) square-root
a sin2(πt) sin-squared
a t(1− t) quadratic

, a ∈ R+, (13)

where a controls the noise scale. Since our work focuses on the impact of stochastic injection, we
fix αt = 1− t and βt = t, the conditional optimal transport between two Gaussians.

3.4 MODEL

Algorithm 1 summarizes the flow matching training with all three stochastic injections. We imple-
ment both the velocity and score fields with a tied UNet (Rombach et al., 2021), using a shared
backbone and a lightweight projection head that maps the feature space to vθ and ηϕ separately. We
optimize the combined objective Lv(θ) + Lη(ϕ). Following common practice in image generation,
we perform training and inference in the latent space of a variational autoencoder (VAE) which
reduces data dimension and compute.

4 EXPERIMENTS

4.1 DATASETS

We demonstrate the efficacy of our method on five tasks representing a wide spectrum of scientific
and natural image domains, modeling cellular response, seasonal transitions, disease progression,
and galaxy evolution. On BBBC, a cell microscopy dataset, we learn chemically-conditioned mor-
phological changes, where cells under the control condition form the source distribution and cells
post-intervention form the target distribution. On SEASONET, which comprises satellite images
covering Germany over four seasons, and on YOSEMITE, which comprises user-uploaded images
of Yosemite National Park, we learn to map images from the summer to the same view in win-
ter. On MIMIC-CXR, we learn the markers of Pleural Effusion (PE) with chest radiographs of
PE-negative patients forming the source distribution and those of PE-positive patients forming the
target distribution. On GALAXIESML, we learn cosmological evolution reflected in galaxy images,
transforming low redshift images onto high redshift ones. See Appendix C for further details.

4.2 RESULTS

Baselines. We evaluate our proposed stochastic injections by comparing to standard flow matching,
as well as several other unpaired distribution-to-distribution learning methods. UNSB (Kim et al.,
2023) leverages a multi-step GAN to learn a Schrödinger bridge variant between the source and
target. DDIB (Su et al., 2022) learns to transform each source sample to an intermediate Gaussian
latent and then to the generated target sample. SDEdit (Meng et al., 2021) partially noises the source
sample and denoises the remaining timesteps into a target sample.

Improved distribution learning. Table 1 shows that across all datasets, the stochastic injections
lead to significant improvements over standard flow matching, averaging 13 FID points, while also
outperforming UNSB, DDIB, and SDEdit baselines by 9 FID points. Qualitative examples in Fig-
ure 4 show that our generated samples are highly realistic while preserving the structure of the source
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Table 1: Frechet Inception Distance (FID) (Heusel et al., 2017) of target samples on the held out
test set demonstrate that our method significantly improves standard flow matching and outperforms
baselines across five diverse image datasets.

BBBC SEAONET YOSEMITE MIMIC-CXR GALAXIESML

UNSB 94.6 89.6 73.9 45.0 178.1
DDIB 30.0 71.4 84.7 30.9 10.0
SDEdit 164.1 299.7 261.7 293.0 136.9
Flow (standard) 33.6 80.0 87.3 34.9 13.1
Flow w. stochastic (ours) 19.9 60.5 71.5 22.9 7.4

Figure 4: Qualitative examples. The top row is from the source side of the test set. The middle row
is the corresponding model generation with the top image as the source, using a flow model trained
with all three forms of stochastic injection. The bottom row is a random sample from the target side
of the test set.

image. For example, the BBBC column shows a conditional generation with the floxuoridine in-
tervention, which inhibits DNA replication. The generated sample exhibits the expected reduced
density while maintaining the position of the central cell’s nucleus and surrounding cytoskeleton.
The MIMIC-CXR example shows blunting of the costophrenic angle characteristic of pleural effu-
sion, while preserving the patient’s orientation.

Improved source-target correspondence. Preserving the content of the source image and mod-
ifying only the characteristics specific to the true transformation is desirable because it highlights
the true transformation of interest. In our setting, this correspondence between source and target
correlates to the transport cost. Though flow models do not solve an optimal transport problem, we
observe that implicit regularization results in a visual correlation between each source sample and
its generated target. Furthermore, our stochastic injections reduce the transport costs of standard
flow matching. This is reflected in two metrics: the pixel-space mean-squared-error (MSE) between
input source image and generated target.3, and the percentage of source samples that are matched to

3Pixel values are normalized to the range [−1, 1] and the reported MSE number is averaged over the image
dimension and across all pairs.
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Table 2: The stochastic injections generally improve the alignment between the source sample and
the generated target sample, compared to standard (fully deterministic) flow matching.

BBBC SeasoNet Yosemite MIMIC-CXR GalaxiesML

MSE (↓) determ. 0.055 0.042 0.060 0.025 0.0054
stoch. 0.057 0.032 0.041 0.014 0.0046

% matched (↑) determ. 24% 39% 63% 54% 13%
stoch. 24% 54% 71% 74% 47%

Table 3: Ablations on two datasets support that each form of stochastic injection is independently
beneficial for distribution learning, and the best model uses a all three. All numbers are test FID.

all noises no two-stage no src noise no interp. noise no noises

BBBC 19.9 20.6 27.9 23.2 33.6
SEASONET 60.5 62.8 62.2 76.0 80.0

their corresponding generated sample by linear sum assignment.4 Table 2 shows that the stochastic
injections reduces MSEs by 22% and improves assignment matches by 15 percentage points, indi-
cating stronger alignment between source target to better highlight the true effect of the underlying
transformation.

4.3 ABLATIONS

Each form of stochastic injection helps. Table 3 shows that removing any of the three stochas-
tic injections degrades performance: all are necessary to achieve the strongest FIDs. Their relative
contributions depend on the data distribution. For example, perturbing the source distribution is
especially valuable on BBBC, while the stochastic interpolant drives most of improvement on SEA-
SONET.

Interpolant noise schedule. We experiment with several choices of γt on BBBC. Figure 5a shows
that the sine-squared noise schedule achieves the strongest improvement over the deterministic base-
line. Interestingly, performance is degraded by the square-root noise schedule favored in prior work,
possibly due to numerical instability as discussed in Section 3.3. The scale of the noise schedule
(a in Equation 13) is also important: Figure 5b suggests that too low of a noise scale underutilizes
the benefit of this stochastic injection. Guided by these results, we fixed γt to be the sine-squared
schedule at scale 1.0 for the main experiments. We found that these are reasonable choices to
achieve strong gains over the deterministic interpolant, but acknowledge that optimal choices re-
quire dataset-specific tuning.

Sampling strategy. Stochastic interpolants (γt ̸= 0) support both ODE and SDE sampling – which
is better? Consistent with Ma et al. (2024)’s observations, Figure 5c shows that SDE surpasses
ODE in the limit of many inference steps. However, we find that such gains can be obtained with a
simpler technique: adding Gaussian noise to each source sample. With this inference-time noising,
we find that SDE sampling no longer offers any gains over ODE. Since ODEs are cheaper to simulate
numerically, require fewer inference steps, and do not require learning score field, we reported our
main results with ODE-generated samples with inference-time source noising as described.5

4We use pixel-space Euclidean distance as the cost metric for the linear assignment, with the set of source
images forming one side of the bipartite graph and the set of generated target images forming the other side.
Intuitively, a score of 100% means that each source image is most similar in pixel space to its corresponding
generated sample.

5The deterministic flow baseline is sampled without this inference-time Gaussian noise, as it is OOD for the
model and significantly degrades sample quality.
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(a) The sine-squared interpolant
noise schedule outperforms
quadratic and sqrt schedules.

(b) The noise scale a (shown for the
sine-squared noise schedule) can be
tuned for best performance.

(c) At inference, ODE sampling
with Gaussian perturbations to the
source gives best results.

Figure 5: Ablations suggest that the sine-squared function (Figure 5a) at scale a = 1.0 (Figure 5b)
is the best choice of interpolant noise schedule γ. For inference, we find that ODE sampling with
source noising performs better than SDE sampling. All metrics are FID are reported on the test set
of BBBC.

5 RELATED WORK

Distribution-to-distribution learning. Earlier works (Zhu et al., 2017; Park et al., 2020) leveraged
GANs with cycle consistency loss to learn transformations between two image distributions. More
recently, (Kim et al., 2023) designs a multi-step GAN with optimal transport regularization. How-
ever, GANs can suffer from mode collapse; we focus on improving probability flow models, which
have become the dominant paradigm for scalable and stable generative modeling. Liu et al. (2023)
and Delbracio & Milanfar (2023) learn diffusion bridges to transform between two distributions, but
require access to paired data. Tong et al. (2023) and De Bortoli et al. (2021) aim to learn optimal
transport (OT) maps, but rely on noisy approximations to the true OT pairings and scale poorly to
high-dimensional data. Other works adapt traditional noise-to-target diffusion to learn distribution-
to-distribution transformations: Su et al. (2022) by concatenating two diffusion models and Meng
et al. (2021) by denoising from the source samples at an intermediate timestep. In contrast, we di-
rectly learn the transformation the source and target distribution, and show that this achieves superior
sample quality.

Stochastic interpolants. Albergo & Vanden-Eijnden (2022) and Albergo et al. (2023a) introduce
stochastic interpolants (SI), unifying flows and diffusion under a common framework for bridging
two data distributions. Albergo & Vanden-Eijnden (2022) shows that the stochasticity of the inter-
polant can improve learning on toy distributions. Albergo et al. (2023b) uses the language of SI for
image translation with paired data, but chooses a deterministic interpolant equivalent to the usual
flow matching. Ma et al. (2024) explores the diffusion design space using the SI framework, but
does not study general source-to-target transformations. Höllmer et al. (2025) leverages stochas-
tic interpolants for the design of inorganic crystalline materials. Concurrent work Singh & Lagun
(2025) learns interpolants in conjunction with a VAE. Despite recent interest, we are still in the
nascent stages of understanding SI’s practical utility in their full generality beyond flow and diffu-
sion special cases. Our work demonstrates that perturbing the interpolant path, in conjunction with
other stochastic injection techniques, improves distribution-to-distribution learning.

6 CONCLUSION

In this work, we explore flow models for unpaired distribution-to-distribution learning, and iden-
tify sparse supervision from finite data as a core challenge impeding performance. Our proposed
stochastic injections alleviate this data sparsity, lowering FIDs by 13 points relative to standard flow
matching and 9 points relative to other baselines, across five imaging datasets spanning biology,
satellite data, health, and astronomy. Our contributions make flow matching a powerful method for
modeling diverse distributional transformations in science.
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A ALGORITHM

Algorithm 1 Training

Require: Training data {x}
0 and {x1}, epochs Epre-train, Etotal, interpolant functions αt, βt, γt, inter-

polant noise scale a, untrained velocity field vθ and score field ηϕ
1: for epoch = 1 to Epre-train do ▷ Stage 1: pre-train on noise-to-target
2: for each batch do
3: Sample x0, x1, t ∼ U(0, 1)
4: ztwo-stage ∼ N (0, I)
5: zinterpolant ∼ N (0, I)
6: xt = αtztwo-stage + βtx1 + γtzinterpolant ▷ Perturb the interpolant
7: vt(xt|x0, x1, z) = α̇tztwo-stage + β̇tx1 + γ̇tz
8: η∗t (xt|x0, x1, z) = zinterpolant
9: Update θ, ϕ on Lv(θ) + Lη(ϕ)

10: end for
11: end for
12: for epoch Epre-train to Etotal do ▷ Stage 2: fine-tune on source-to-target
13: for each batch do
14: Sample x0, x1, t ∼ U(0, 1)
15: zsource ∼ N (0, I)
16: zinterpolant ∼ N (0, I)
17: x̃0 = x0 + zsource ▷ Perturb the source sample
18: xt = αtx̃0 + βtx1 + γtzinterpolant ▷ Perturb the interpolant
19: vt(xt|x0, x1, z) = α̇tx̃0 + β̇tx1 + γ̇tz
20: η∗t (xt|x0, x1, z) = z
21: Update θ, ϕ on Lv(θ) + Lη(ϕ)
22: end for
23: end for

Algorithm 2 Inference

Require: Source sample x0, learned fields vθ, ηϕ, interpolant noise schedule γt, inference source
noise scale ϵ, diffusion coefficient σt, step size ∆t, numerical solver function Step

1: z ∼ N (0, I)
2: x̃0 = x0 + ϵz
3: Initialize xt = x̃0 at t = 0
4: for t = 0 to 1 do
5: xt+∆t = Step

(
xt, t, vθ, ηθ, γt, σt

)
6: end for

B THEOREMS AND DERIVATIONS

To formally state the theorem, we need to first define the population risk and empirical risk for flow
matching and our loss. Generally, both losses can be written as

LFM(θ, t) = Ext∼pt(xt)

[
1

2
∥vθt (xt)− vFM

t (xt)∥2
]

(14)

LSI(θ, t) = Ext∼qt(xt)

[
1

2
∥vθt (xt)− vSI

t (xt)∥2
]

(15)

where v∗t (xt) is the marginal velocity at xt, and pt(xt), qt(xt) are the ground-truth distributions to
draw xt for each loss.

Theorem 2. Let LFM(θ, t),LSI(θ, t) be the population risk of Flow Matching and our stochastic
injection loss at t ∈ [0, 1], and L̂FM(θ, t), L̂SI(θ, t) be their empirical risks with n i.i.d. samples. Let

12
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pt(xt), qt(xt) be the respective population distribution of xt, and p̂t(xt), q̂t(xt) be their empirical
distributions, and assume each loss is Lipschitz continuous xt, we have

|LFM(θ, t)− L̂FM(θ, t)| ≤ LW1(pt, p̂t), |LSI(θ, t)− L̂SI(θ, t)| ≤ LW1(qt, q̂t) (16)
for some constant L. Moreover, W1(qt, q̂t) ≤ W1(pt, p̂t).

Proof. Without loss of generality we let GFM
θ (xt) =

1
2∥v

θ
t (xt)− vFM

t (xt)∥2 with Lipschitz constant
LFM, and similarly GSI

θ (xt) has Lipschitz constant LSI, and so
LFM(θ, t) = Ext∼pt(xt) [Gθ(xt)] , LSI(θ, t) = Ext∼qt(xt) [Gθ(xt)] (17)

By Kantorovich–Rubinstein duality of W1(pt, p̂t), we have∣∣∣LFM(θ, t)− L̂FM(θ, t)
∣∣∣ = ∣∣Ext∼pt(xt) [Gθ(xt)]− Ext∼p̂t(xt) [Gθ(xt)]

∣∣ (18)

≤ LFM sup
f∈F

∣∣Ext∼pt(xt) [f(xt)]− Ext∼p̂t(xt) [f(xt)]
∣∣ (19)

≤ max{LFM, LSI} sup
f∈F

∣∣Ext∼pt(xt) [f(xt)]− Ext∼p̂t(xt) [f(xt)]
∣∣ (20)

= LW1(pt, p̂t) (21)
where we let L = max{LFM, LSI} and F is a function set with Lipschitz constant of at most 1. The
same conclusion holds for LSI(θ, t).

For the final result, since qt(xt) is determinstic interpolation (drawn from pt(xt)) with Gaussian
noise, it can be equivalently written as qt = pt ∗Nt where Nt(x) = N (0, σ2

t I), a Gaussian convo-
lution of pt(xt) with variance σ2

t . Similarly q̂t = p̂t ∗Nt. Therefore,

W1(qt, q̂t) = W1(pt ∗Nt, p̂t ∗Nt)
(i)

≤ W1(pt, p̂t) (22)
where (i) is due to Wasserstein-reducing property of Gaussian smoothing (Chen & Niles-Weed,
2022).

We remark that W1(pt, p̂t) is a measure of an upper bound of the generalization gap, and it does not
strictly characterize the gap, so the exact relationship between the two generalization gaps cannot be
measured precisely. However, we use the 1-Wasserstein distance as an approximation of the gap to
give a rough intuition on why injecting stochastic noise can help test performance.
Lemma 1. If the source distribution p0(x0) is a mixture of delta distributions 1

n

∑n
i=0 δ(x − xi)

with sample size n, then the ground-truth probability-flow ODE can only recover a mixture of delta
distributions with sample size n.

Proof. We know that the ground-truth probability-flow ODE path does not cross, and therefore
the ground-truth ODE flow is a one-to-one function. Let Φ(x0) denote the ground-truth flow path
following probability-flow ODE, and consider the pushforward distribution via the flow path as
(Φ#p0)(x1) = 1

n

∑n
i=0 Φ#δ(x0 − xi) = 1

n

∑n
i=0 δ(x1 − Φ(xi)), which is a mixture of delta

distributions with sample size n.

C DATASETS

We describe each dataset below.

• BBBC. We use the BBBC021v1 image set (Caie et al., 2010) from the Broad Bioimage
Benchmark Collection (Ljosa et al., 2012). This dataset contains fluorescent microscopy
of cells treated with 26 small molecule chemicals, forming a conditional target distribution
for each chemical. Three color channels correspond to DNA, F-actin, and beta-tubulin
markers.

• SEASONET. This dataset contains multi-spectral aerial image patches covering the sur-
face of Germany from the Sentinel-2 mission, collected from April 2018 to February 2019
(Koßmann et al., 2022). The images are available in standard RGB channels and sorted
into each of four seasons. We use only the summer and winter splits for the source and
target distributions respectively.

13
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Table 4: Dataset statistics.

# train(A) # train(B) # test(A) # test(B) resolution domain

BBBC 63,781 6,210 690 7,119 256× 256 cell microscopy
SeasoNet 235,826 104,432 1,024 1,024 120× 120 satellite
Yosemite 1,231 962 309 238 256× 256 natural
MIMIC-CXR 16,038 44,372 1,024 1,024 256× 256 medical x-ray
GalaxiesML 35,725 45,741 1,024 1,024 127× 127 astronomy

• YOSEMITE. We use images of Yosemite National Park collected by Zhu et al. (2017) via
the Flickr API. The dataset separates images taken in the summer and images taken in the
winter, which we use as the source and target distributions.

• MIMIC-CXR. MIMIC-CXR is a medical imaging dataset of chest radiographs (Johnson
et al., 2019). We filter to those images with the antero-posterior view angle. Pleural effusion
is a condition characterized by fluid around the lungs. The source distribution is defined
as scans from patients with pleural effusion value of 0.0, and the target distribution scans
from patients with pleural effusion value of 1.0. The scans are in single-channel grayscale.
We resize them to 256× 256.

• GALAXIESML. We use galaxy images from the Hyper-Suprime-Cam (HSC) Survey (Ai-
hara et al., 2019) as processed by Do et al. (2024). This dataset contains five photometric
bands (g, r, i, z, y) as well as spectroscopically confirmed redshifts. We use the g, r, and i
channels to construct a 3-channel image. The images with redshift values 0.3-0.5 are used
as the source distribution and images obtained at redshift values 0.5-0.7 are used as the
target distribution.

Datasets statistics are summarized in Table 4. All FID numbers are reported over the held out test
sets.

D TRAINING DETAILS

D.1 EXPERIMENTS ON CONCENTRICSHELLS

In this task, the source distribution (inner shell) is a hypersphere centered at the origin with radius
1 and the target distribution (outer shell) is a hypersphere centered at the origin with radius 2. For
both the source and target distributions, each sample is obtained by sampling over the d-dimensional
shell, then perturbing this with a random normal noise component with standard deviation 0.1.

For the data dimension scaling experiment, each training run operates over 1024 samples from the
source distribution (inner shell) and 1024 samples from the target distribution (outer shell). For the
dataset size scaling experiment, the data dimension is fixed to 512. We use the Adam optimizer at
learning rate 0.01 and batch size 256. The velocity field is fit by a simple 4-layer MLP with hidden
dimension 64 and an ELU non-linearity between each fully connected layer.

All metrics are reported over a test set of 512 samples. We compute the Sinkhorn distance with
entropy regularization of 0.1.

D.2 VARIATIONAL AUTOENCODER

We learn velocity and score fields in the latent space of a VAE for each of the image datasets in-
troduced in Section 4.1. During training and inference, we use different variational autoencoders
that is best adapted to each dataset. They are first trained from the same data as what is available
for the distribution learning, and the VAE weights are subsequently frozen. We same architecture
as the f = 4 autoencoder from Rombach et al. (2021). The VAE for BBBC is trained from scratch.
The VAE for each of SEASONET, MIMIC-CXR, and GALAXIESML are fine-tuned from Rombach
et al. (2021)’s kl-f4 checkpoint, trained for 176991 steps, at the default KL regularization penalty
of 1e−6. For YOSEMITE, we directly use their pre-trained autoencoder as we found fine-tuning on
YOSEMITE led to overfitting and performance degradation, likely due to the small dataset size.
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D.3 MAIN EXPERIMENTS

On all datasets, models were trained with constant learning rate 1e−4 with the AdamW optimizer
(betas 0.9 and 0.95). We maintain an EMA-weighted copy of the model with 0.999 decay. For
the conditional dataset BBBC, we drop class labels with probability 0.2. Each epoch iterates
over all training data in the target distribution while randomly sampling training data in the source
distribution. We train for 200, 100, 2000, 60, 80 epochs for each of the datasets BBBC, SEA-
SONET, YOSEMITE, MIMIC-CXR, and GALAXIESML respectively, based on observed conver-
gence. When training with the two-stage scheme, some fraction of these epochs are reserved for the
noise-to-target stage. Hence the two-stage training does not incur additional compute.

Sampling is performed with the Heun solver with 50 inference steps (corresponding to 100 NFEs)
unless stated otherwise. The stochastic variant of the Heun solver (Karras et al., 2022) was used for
the ODE/SDE comparison experiments (Figure 5c). Similar to some prior work (Ma et al., 2024),
we chose the diffusion coefficient σ2

t /2 = sin2(πt). We also experimented with a time-independent
σt but found it performed worse than a schedule that is tapered at the t = 0 and t = 1 endpoints.
Additionally, we set the diffusion coefficient to 0 within a margin ϵ = 1e−3 near the endpoints,
to avoid the numerical instability caused by the factor of γ−1. We find this is crucial to obtain
reasonable samples.

For the DDIB and SDEdit baselines, we require access to a generative model that can condition-
ally flow from noise to both the source and the target. For full comparability, we train a noise-to-
source/target flow matching model for each dataset, keeping all hyperparameters consistent with the
flow baseline where applicable.
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