
Fairness in Preference-based Reinforcement Learning

Umer Siddique 1 Abhinav Sinha 1 Yongcan Cao 1

Abstract
In this paper, we address the issue of fairness in
preference-based reinforcement learning (PbRL)
in the presence of multiple objectives. The main
objective is to design control policies that can op-
timize multiple objectives while treating each ob-
jective fairly. Toward this objective, we design a
new fairness-induced preference-based reinforce-
ment learning or FPbRL. The main idea of FPbRL
is to learn vector reward functions associated with
multiple objectives via new welfare-based pref-
erences rather than reward-based preference in
PbRL, coupled with policy learning via maximiz-
ing a generalized Gini welfare function. Finally,
we provide experiment studies on three different
environments to show that the proposed FPbRL
approach can achieve both efficiency and equity
for learning effective and fair policies.

1. Introduction
The broad application of reinforcement learning (RL) faces
a significant challenge, namely, the design of appropriate
reward functions that align with specific mission objec-
tives in given environments. To mitigate this challenge,
preference-based RL (PbRL) (see, for example, (Christiano
et al., 2017)) has emerged as a promising paradigm, leverag-
ing human feedback to eliminate the need for manual reward
function design. However, real-world missions often entail
multiple objectives and the consideration of preferences
among diverse users, necessitating a balanced approach.
Existing PbRL methods primarily focus on maximizing a
single performance metric, neglecting the crucial aspect of
equity or fairness, e.g., (Stiennon et al., 2020; Wu et al.,
2021; Lee et al., 2021). Consequently, the lack of fairness
considerations poses a barrier to the widespread deployment
of PbRL for systems affecting multiple end-users when it is
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critical to address fairness among these users.

To address this critical gap, the development of methods
enabling fairness in PbRL becomes imperative. While re-
cent advancements have explored fairness in RL, albeit not
within the PbRL framework, notable contributions in, e.g.,
(Weng, 2019; Siddique et al., 2020; Fan et al., 2022), have
employed welfare functions to ensure fairness in the single-
agent RL setting. Furthermore, the work in (Zimmer et al.,
2021) considered fairness in a multi-agent RL setting.

This paper proposes an approach that builds upon existing
studies on fairness, focusing on a PbRL setting. In particu-
lar, rather than relying on known ground truth rewards, our
method involves learning fair policies by incorporating fair-
ness directly into the PbRL paradigm, thereby eliminating
the need for hand-crafted reward functions. By doing so,
we aim to address fairness in PbRL without compromising
on its advantages.

Contributions. In this paper, we present a novel approach
that addresses fairness in PbRL. Our proposed method intro-
duces a novel technique to learn vector rewards associated
with multiple objectives by leveraging welfare-based prefer-
ences rather than reward-based preferences in (Christiano
et al., 2017). Hence, the proposed approach provides new
insights and techniques to address fairness in PbRL. We
validate the effectiveness of our approach through compre-
hensive experiments conducted in three real-world domains.
The proposed approach is expected to provide solutions for
RL problems when reward functions are absent, or it is too
costly to design them.

2. Related Work
The concept of having equity and fairness, especially in real-
world missions with multiple objectives and diverse users, is
imperative. Such a concept has also been given careful con-
sideration in many domains, including economics (Moulin,
2004b), political philosophy (Rawls, 2020), applied mathe-
matics (Brams & Taylor, 1996) operations research (Bäuerle
& Ott, 2011), and theoretical computer science (Ogryczak
et al., 2014). Fairness considerations have been incorporated
into classic continuous and combinatorial optimization prob-
lems in scenarios where the underlying model was assumed
to be fully known, and learning might not be necessary (Nei-
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dhardt et al., 2008; Ogryczak et al., 2013; Nguyen & Weng,
2017; Busa-Fekete et al., 2017; Agarwal et al., 2018). Such
methods include linear programming and other model-based
algorithms that consider the feedback effects and dynamic
impacts in decision-making processes, allowing for the de-
velopment of fair policies that adapt to changing circum-
stances. While such methods yielded satisfactory results,
they cannot be directly used if the underlying model is un-
known or too complex to be modeled.

The study of fairness in RL, especially within a model-free
paradigm, has gained significant attention in recent years,
with notable contributions shedding light on various aspects
of this emerging field. Initial work by (Jabbari et al., 2017)
laid the foundation by focusing on scalar rewards, paving the
way for further advancements. Researchers have pursued di-
verse directions to incorporate fairness into RL frameworks.
(Wen et al., 2021) explored fairness constraints as a means to
reduce discrimination, while the work of (Jiang & Lu, 2019;
Zimmer et al., 2021; Ju et al., 2023) delved into achieving
fairness among agents. The work of Siddique et al. (2020)
introduced a novel fair optimization problem within the con-
text of multi-objective RL, enabling modifications to the
existing deep RL algorithms to ensure fair solutions. Chen
et al. (2021) extended the scope by incorporating fairness
into actor-critic RL algorithms, optimizing general fairness
utility functions for real-world network optimization prob-
lems. The work of Zimmer et al. (2021), on the other hand,
focused on fairness in decentralized cooperative multi-agent
settings, developing a framework involving self-oriented
and team-oriented networks concurrently optimized using
a policy gradient algorithm. Notably, the work in Ju et al.
(2023) introduced online convex optimization methods as a
means to learn fairness with respect to agents.

Despite the significant successes achieved in the field of
deep RL, these methods heavily rely on the availability
of known reward functions. However, in many real-world
problems, the task of defining a reward function is often
challenging and sometimes even infeasible. To address
this limitation, PbRL has emerged as an active area of re-
search (Christiano et al., 2017). Within PbRL, different set-
tings have been explored, depending on whether the involve-
ment of humans is direct or if simulated human preferences
are derived from the ground truth rewards. In the context
of PbRL, the standard approach typically revolves around
maximizing a single criterion, such as a reward, which is in-
ferred from the preferences (Stiennon et al., 2020; Lee et al.,
2021; Wu et al., 2021). However, it is clear that focusing
exclusively on maximizing rewards falls short of assuring
fairness across various objectives. Our approach, which
is consistent with the fundamental concepts of preference-
based learning, digs into the investigation of learning fair
policies in the context of PbRL.

3. Preliminaries
3.1. Preference-based RL (PbRL)

We consider a Markov Decision process without reward
(MDP\R) augmented with preferences, which is a tuple
of the form (S,A, T, ρ, γ), where S is the set of states, A
is the set of possible actions, T : S × A × S → [0, 1] is
a state transition probability function specifying the prob-
ability p(s′ | s, a) of reaching state s′ ∈ S after taking
action a in state s, γ is a discount factor, and ρ : S → [0, 1]
specifies the initial state distribution. The learning agent
interacts with the environment through rollout trajecto-
ries, where a length-k trajectory segment takes the form
(s1, a1, s1, a1, . . . , sk, ak). A policy π is a function that
maps states to actions, such that π(a | s) is the probability
of taking action a ∈ A in state s ∈ S.

PbRL is an approach to learning policies without rewards
in which humans are asked to compare pairs of trajecto-
ries and give relative preferences between them (Chris-
tiano et al., 2017). More specifically, in PbRL, a hu-
man is asked to compare a pair of length-k trajectory
segments σ1 = (s11, a
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the user preferred σ1 over σ2. Owing to the unavailabil-
ity of the reward function, many PbRL algorithms learn
an estimated reward function model, r̂(·, ·) : S × A → R.
The reward estimate r̂(·, ·) can be viewed as an underlying
latent factor explaining human preferences. In particular,
it is often assumed that the human’s probability of prefer-
ring a segment σ1 over σ2 is given by the Bradley-Terry
model (Christiano et al., 2017),

P (σ1 ≻ σ2 | r̂) = eR̂(σ1)

eR̂(σ1) + eR̂(σ2)
, (1)

where R̂(σi) :=
∑k

t=1 γ
t−1r̂(sit, a

i
t) is the estimated total

discounted reward of trajectory segment σi, and (sit, a
i
t) is

the tth state-action pair in σi. One can minimize the cross-
entropy loss between the Bradley-Terry preference predic-
tions and true human preferences, given by (Christiano et al.,
2017),

L(r̂) =−
∑

(σ1,σ2,µ)∈S

(
µ(1) logP [σ1 ≻ σ2]

+µ(2) logP [σ2 ≻ σ1]
)
, (2)

where µ(i), i ∈ {1, 2} is an indicator such that µ(i) = 1
when trajectory segment σi is preferred, whereas S is the
dataset of labeled human preferences. By optimizing L(r̂),
an estimated reward function r̂(·, ·) can be obtained to help
explain human preferences.

3.2. Notion of Fairness

The fairness concept used in previous work such as (Spe-
icher et al., 2018; Weng, 2019; Siddique et al., 2020; Zim-
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mer et al., 2021) enforces three natural properties: efficiency,
equity, and impartiality. The concept of efficiency, also re-
ferred to as optimality, implies that the solution should be
optimal and Pareto dominant. Equity is often associated
with the concept of distributive justice, as it pertains to the
fairness of resource or opportunity distribution. This prop-
erty ensures that a fair solution follows the Pigou-Dalton
principle (Moulin, 2004a), which states that by transferring
rewards from the more advantaged to the less advantaged
users, the overall fairness of the solution can be improved.
Impartiality or equality requires that all users be treated
equally, without favoritism towards any particular user in
terms of the solution’s outcomes.

To operationalize this notion of fairness, the use of welfare
functions is employed. These welfare functions aggregate
the utilities of all users and provide a measure of the overall
desirability of a solution for the entire group. While there
exist various welfare functions, we only consider those that
satisfy the three fairness properties discussed earlier. One
welfare function that satisfies the aforementioned properties
is the generalized Gini welfare function (Weymark, 1981),
which is defined as follows:

ϕw(u) =
∑
i∈K

wiu
↑
i , (3)

where u ∈ RK represents the utility vector of a size K,
w ∈ RK is a fixed weight vector with positive components
that strictly decrease (i.e., w1 > . . . > wK), and u↑ de-
notes the vector obtained by sorting the components of u
in increasing order (i.e., u↑

1 ≤ . . . ≤ u↑
K). For consistency,

bold variables represent vectors/matrices. In essence, this
function computes the summation of the weight multiplied
by the sorted utility for each objective. The weight vector
is fixed, positive, and strictly decreasing. It is important to
note that the strict decrease in weights is crucial to ensure a
fair and Pareto optimal, as well as an equitable solution.

4. Approach
In order to account for the impact of an agent’s actions on
multiple objectives, i.e., users in the notion of fairness in
Section 3.2, we extend previous RL formulations by redefin-
ing the estimated reward function as a vector function, de-
noted as r̂ : S ×A → RK, where K denotes the number of
objectives. This vector function captures the rewards associ-
ated with all objectives, acknowledging the multi-objective
nature of the problem at hand. Note that this is different
from the scalar reward function r̂ in PbRL (Christiano et al.,
2017). To formalize the fair policy optimization problem,
we integrate the welfare function ϕw into our objective func-
tion. Consequently, the goal is to find a policy that generates
a fair distribution of rewards over K objectives given by

max
πθ

ϕw(J(πθ)), (4)

where πθ represents a policy parameterized by θ, ϕw de-
notes a welfare function with fixed weights that requires
optimization, and J(πθ) represents the vectorial objective
function that yields the utilities (i.e., u) for all users. It is
also worth noting that the chosen welfare function, such
as the generalized Gini welfare function, is concave. As
a result, the optimization problem presented in (4) can be
characterized as a convex optimization problem. This con-
vexity property facilitates the exploration of effective solu-
tion methods for achieving equitable policies in model-free
RL settings.

Note that optimizing the welfare function defined in (3) is
an effective way to address fairness because the weights
w are selected such that a higher weight will be assigned
for objectives with lower utility values, which will ensure
that all objectives are treated fairly than the cases when the
weights are assigned without considering the utility values.

Our procedure to optimize the welfare function is an it-
erative process that integrates the policy update step and
reward update step (via the collection of more preferences
for reward function estimation). Since the reward function
estimation is non-stationary, we focus on policy gradient
methods. As a state-of-the-art policy gradient method, we
adopt the Proximal Policy Optimization (PPO) algorithm
(Schulman et al., 2017) for policy optimization and compute
the advantage function via

Aπθ
(st, at) =

∑
t

(γλ)t−1δt , (5)

where δt is determined by the expression r̂t+ γVθ(st+1)−
Vθ(st), with r̂t representing the estimated rewards, and
Vθ(st) denoting the value function associated with state st.
In PPO, the objective function J(θ) is designed to limit
policy changes after an update, that is,

Es∼dπ,a∼πθ(·|s) [min(ρθAπθ
(s, a), ρ̄θAπθ

(s, a))] , (6)

where ρθ =
πθ(a|s)
πb(a|s)

, ρ̄θ = clip(ρθ, 1 − ϵ, 1 + ϵ), πb rep-

resents the policy generating the transitions, and ϵ is a hy-
perparameter controlling the constraint. To compute the
gradient for J(θ), we have

∇θϕw(J(πθ)) =∇J(πθ)ϕw(J(πθ)) · ∇θJ(πθ) (7)
=w⊺

σ∇θJ(πθ), (8)

where ∇θJ(πθ) is a K×N matrix representing the classic
policy gradient over the K objectives, wσ is a vector sorted
based on the values of J(πθ), and N denotes the number
of policy parameters.

For reward estimation function update, we ask a human
(or a similar mechanism like a synthetic human) to provide
preferences for the segments collected by the policy, estab-
lishing or expanding the dataset for preferences. The vector
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function r̂ is learned via minimizing the loss function (2)
with a modified preference probability given by

P (σ1 ≻ σ2 | r̂) = eR̂(σ1)

eR̂(σ1) + eR̂(σ2)
, (9)

where R̂(σi) := ϕw(
∑k

t=1 γ
t−1r̂(sit, a

i
t)). This formula-

tion applies the welfare function ϕw to the discounted cumu-
lative vector rewards, resulting in a scalarized R̂(σi). This
scalarized value is then utilized to compute P (σ1 ≻ σ2 | r̂).
It is important to note that the key distinction between our
proposed approach and PbRL in (Christiano et al., 2017)
lies in the utilization of the welfare function to determine
preferences, as opposed to relying on segment rewards as
done in (Christiano et al., 2017).

5. Experimental Results
To demonstrate the robustness and practicality of our
method, we meticulously design and conduct three experi-
ments. Each experiment showcases a unique scenario where
fairness plays a pivotal role in RL outcomes. Moreover, at
present, our primary emphasis is directed toward investigat-
ing synthetic human preferences owing to their convenient
acquisition process and their appropriateness for testing ob-
jectives. Nonetheless, it is essential to note that our proposed
approach is readily applicable in situations that involve
human-in-the-loop interactions. Through rigorous analysis
and evaluation, we assess the performance of our approach,
both in terms of achieving fairness objectives and maintain-
ing desirable learning outcomes in a model-free setting. We
assign weights wi =

1
2i , i = 0, ...,K − 1, and to ensure the

reproducibility of the results, and average the results over
5+ runs with different seeds to provide reliable evidence
of our method’s effectiveness. All algorithm hyperparam-
eters were optimized using the open-source Lightweight
HyperParameter Optimizer (LHPO) (Zimmer, 2018).

5.1. Species Conservation

Species conservation is a critical domain in the field of
ecology, particularly when dealing with the preservation of
multiple interacting endangered species. Here, we tackle the
challenge of incorporating fairness considerations into the
conservation efforts of two specific species: sea otters and
their prey, the northern abalone. The sea otter and northern
abalone populations face a delicate balance as sea otters
consume abalones, both of which are currently endangered.
To navigate this complex conservation problem, we adopt
the setting proposed in Chadès et al. (2012) and tailor it to
address the fairness aspects of this ecosystem. In our conser-
vation problem, the state is defined by the current population
numbers of both species. To influence the system, we have
five distinct actions at our disposal: introducing sea otters,
enforcing antipoaching measures, controlling sea otter pop-

ulations, implementing a combination of half-antipoaching
and half-controlled sea otters, or taking no action. Each
action has significant implications, as introducing sea otters
is necessary for balancing the abalone population, but if not
carefully managed, it can inadvertently drive the abalone
species to extinction. Similarly, neglecting any of the other
managerial actions would result in the extinction of one of
the species, highlighting the importance of a comprehensive
approach in terms of equity and fairness. The transition
function in this conservation problem incorporates popula-
tion growth models for both species, accounting for factors
such as poaching and oil spills. Through this framework,
we strive to optimize not just a single objective but the pop-
ulation densities of both species, thereby dealing with a
multidimensional problem where two objectives, sea otter
and abalone population densities, need to be simultaneously
optimized, leading to K = 2.

In this domain, our primary objective is to assess the effec-
tiveness of our proposed method in optimizing the welfare
function, denoted as ϕw. To evaluate this, we conduct a
comparative analysis of welfare scores between three ap-
proaches: PPO, PbRL, and our proposed FPbRL method
within this domain. To compute the welfare scores, we em-
ploy trained agents and evaluate their performance across
100 trajectories within the given environment. The empiri-
cal average vector returns of these trajectories serve as the
basis for deriving the welfare score by applying the function
ϕw. The distribution of welfare scores for PPO, PbRL, and
FPbRL is shown in Figure 1a. Our results reveal that FPbRL
achieves the highest welfare score, thereby demonstrating
its ability to identify fairer solutions compared to PPO and
the standard PbRL method. However, recognizing that the
welfare score alone may not provide a comprehensive un-
derstanding of the objective balance, we present individual
density plots in Figure 1b depicting the densities of both
species. These plots offer further insights into the distribu-
tion of objectives. Consistently, our findings demonstrate
that FPbRL yields more balanced solutions in terms of eq-
uity, surpassing both PbRL and PPO. In addition, we intro-
duce the Coefficient of Variation (CV) to address scenarios
where demonstrating the utility of each objective becomes
challenging due to a multitude of objectives. Figure 1c
showcases the CV, as well as the minimum and maximum
densities. Corresponding with our previous findings, our
proposed FPbRL method exhibits the lowest CV, indicating
reduced variation between different objectives. Moreover,
our method prioritizes maximizing the minimum objective
to foster a more equitable distribution of utilities.

5.2. Resource Gathering

We now consider a resource-gathering environment that
encompasses a 5 × 5 grid world, adapted from the work
of (Barrett & Narayanan, 2008). This dynamic environ-
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Figure 1. Performances of PPO, PbRL, FPbRL in the species conservation problem.

PPO PbRL FPbRL

40

50

60

W
el

fa
re

sc
or

e

(a) Welfare scores.

PPO PbRL FPbRL
0

50

100

150

A
ve

ra
ge

co
ll
ec

te
d

re
so

u
rc

es

Gold Gem Stones

(b) Individual number of resources col-
lected.

CV Min resource (x10) Max resource (x100)
0.0

0.4

0.8

1.2

1.6

2.0

PPO PbRL FPbRL

(c) CV, min, and max resources collected.

Figure 2. Performances of PPO, PbRL, FPbRL in resource gathering.

ment poses the challenge of resource acquisition, where
the agent’s objective is to collect three distinct types of
resources: gold, gems, and stones, thus K = 3. Within
this grid world, the agent is situated at a specific position,
while the resources are scattered randomly across various
locations. Upon consumption of a resource, it is promptly
regenerated at another random location within the grid, en-
suring a continuous supply. The state representation in this
environment encapsulates the agent’s current position within
the grid, as well as the cumulative count of each resource
type collected throughout the ongoing trajectory. To navi-
gate this complex environment, the agent is equipped with
four cardinal direction actions: up, down, left, and right,
enabling movement across the grid. However, to introduce
an additional layer of intricacy, we assign distinct values to
the resources. Gold and gems are endowed with a value of 1,
symbolizing their higher significance, while stones, deemed
less valuable, are assigned a value of 0.4. This deliberate
assignment fosters an unbalanced distribution of resources,
with two stones, one gold, and one gem, strategically placed
within the grid. Amidst this resource-rich environment, the
agent’s ultimate goal is twofold: to maximize the accumula-
tion of resources while concurrently maintaining a balanced
distribution among the different resource types. By striking
this delicate equilibrium, the agent strives to optimize its
resource-gathering strategy, maximizing its overall utility
and adaptability within this domain.

To demonstrate the efficacy of our proposed approach in
maintaining a balanced distribution of resources, we con-
duct an analysis of welfare scores for the resource collection
problem. Through this analysis, we aim to assess the fair-

ness of different approaches and determine the extent to
which our proposed method promotes equitable solutions.
Figure 2a presents the welfare scores computed for PPO,
PbRL, and the proposed FPbRL. These scores were com-
puted over a hundred trajectories during the testing phase.
Encouragingly, our proposed method achieved the highest
welfare score, signifying a fairer solution when compared
to both PPO and the standard PbRL method. To gain a
comprehensive understanding of the balance between objec-
tives in resource collection, we also examine the individual
number of resources collected (see Figure 2b). Once again,
the results reinforce the superiority of FPbRL in producing
more balanced solutions. In contrast, PbRL and PPO tend to
favor the accumulation of certain resources at the expense of
others, highlighting the limitations of a standard approach
that solely optimizes the aggregate or weighted sum of ob-
jectives. Our proposed method, however, maintains a bal-
anced distribution of different resources, underscoring the
significance of fairness considerations in resource collec-
tion scenarios. Furthermore, Figure 2c provides additional
insights into the performances of PPO, PbRL, and FPbRL
by examining the CV as well as the minimum and the max-
imum number of collected resources. Strikingly, FPbRL
outperforms the other algorithms, exhibiting the lowest CV,
which indicates a more equitable distribution of objectives.
Notably, only FPbRL successfully maximizes the minimum
objective utility, whereas PPO and the PbRL method yield
the lowest minimum objective values, reflecting a prioriti-
zation of maximizing cumulative rewards at the expense of
fairness considerations.
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Figure 3. Performances of PPO, PbRL, FPbRL in traffic control.

5.3. Traffic Control at Intersections

To thoroughly validate the effectiveness of our proposed
method, we also conduct a series of experiments in the de-
manding real-world domain of traffic light control. This
domain presents unique challenges due to the multitude of
objectives involved, making it an ideal testbed for evalu-
ating the efficacy of our approach. To simulate a realistic
traffic intersection scenario, we employed the widely-used
Simulation of Urban MObility (SUMO) platform (Lopez
et al., 2018). Specifically, our focus is on a standard 8-lane
intersection, with two lanes designated for turning (left or
right, depending on the side of the road) and the remaining
lanes facilitating straight driving or additional turns. Tradi-
tionally, the objective of traffic control is to optimize traffic
flow by minimizing the total waiting time for all vehicles ap-
proaching the intersection. However, our approach diverges
from this conventional perspective. Instead, we adopted a
novel viewpoint, aiming to optimize traffic flow for each
of the four distinct sides of the road. Each side of the in-
tersection is treated as a separate objective, and our goal is
to learn a controller that effectively reduces the expected
waiting times for vehicles on each road segment. This multi-
objective setup thus takes K = 4, reflecting the four sides of
the road that need to be individually optimized. In this chal-
lenging problem, a state is defined by several key factors,
including the waiting time of vehicles, the car density in the
vicinity, and the current phase of the traffic light. The action
space comprises four distinct options, each corresponding to
a different phase change that influences the traffic flow on a
specific side of the road. The transition function governing
the evolution of the system is dependent on factors such
as the current traffic light phase, the movement of vehicles
through the intersection, and the generation of new traffic.

Similar to the previous assessments, we evaluate the efficacy
of the proposed method in optimizing the welfare function.
The welfare scores obtained during testing for PPO, PbRL,
and FPbRL are presented in Figure 3a. To improve read-
ability, the y-axis has been scaled by a factor of 1000, with
each tick representing 1000 units. It is evident that FPbRL
outperforms both PPO and PbRL, achieving the highest wel-
fare score. This noteworthy result underscores the efficacy
of FPbRL in optimizing the welfare function, which is cru-

cial for ensuring fair and equitable treatment of the diverse
objectives at hand. To establish the correlation between
these high welfare scores and fairer solutions, we examine
the waiting times for all sides of the roads, as depicted in
Figure 3b. Our proposed method, FPbRL, demonstrates a
more balanced distribution of waiting times across all road
segments. Although FPbRL exhibits slightly higher total
waiting times, it prioritizes lanes with fewer cars, thereby
preventing any single vehicle from enduring significantly
prolonged waiting periods. In contrast, PPO and PbRL tend
to favor lanes with higher car densities in their pursuit of
minimizing total waiting times. This observation under-
scores the importance of fairness considerations, indicating
that the attainment of fairness may sometimes come at a
cost. However, the cost of fairness is not excessively high,
as evidenced in the previous domains (Figures 1b and 2b).
Furthermore, we compare the performances of PPO, PbRL,
and FPbRL in terms of the CV, minimum waiting time,
and maximum waiting time (Figure 3c). Once again, FP-
bRL emerges as the top-performing algorithm, attaining the
lowest CV and achieving a more balanced distribution of
objectives. Notably, only FPbRL successfully maximizes
the minimum objective and minimizes the maximum objec-
tive, thereby promoting equitable outcomes in the context
of traffic light control.

6. Conclusions and Future Work
By incorporating fairness into PbRL, we developed a new
fairness-induced PbRL (FPbRL) approach that can pro-
vide more equitable and socially responsible RL systems.
Through our multi-experiment validation, we provided
compelling evidence of the effectiveness and practicality
of our approach toward its potential applications in real-
world scenarios where fairness considerations are impera-
tive. Our findings underscore the effectiveness of our pro-
posed method, FPbRL, in optimizing the welfare function
and achieving fairness in the presence of multiple objec-
tives. A detailed investigation of other welfare functions
and different impartiality properties, along with actual hu-
man feedback, could be interesting to explore in the future.
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