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ABSTRACT

Knowledge Distillation (KD) is a typical method for training a lightweight student
model with the help of a well-trained teacher model. However, most KD methods
require access to either the teacher’s training data or model parameter, which is
unrealistic. To tackle this problem, recent works study KD under data-free and
black-box settings. Nevertheless, these works require a large number of queries to
the teacher model, which incurs significant monetary and computational costs. To
address these problems, we propose a novel method called query-effIcient Data-
free lEarning from blAck-box modeLs (IDEAL), which aims to query-efficiently
learn from black-box model APIs to train a good student without any real data. In
detail, IDEAL trains the student model in two stages: data generation and model
distillation. Note that IDEAL does not require any query in the data generation
stage and queries the teacher only once for each sample in the distillation stage.
Extensive experiments on various real-world datasets show the effectiveness of
the proposed IDEAL. For instance, IDEAL can improve the performance of the
best baseline method DFME by 5.83% on CIFAR10 dataset with only 0.02× the
query budget of DFME.

1 INTRODUCTION

Knowledge Distillation (KD) has emerged as a popular paradigm for model compression and knowl-
edge transfer Gou et al. (2021). The goal of KD is to train a lightweight student model with the help
of a well-trained teacher model. Then, the lightweight student model can be easily deployed to
resource-limited edge devices such as mobile phones. In recent years, KD has attracted significant
attention from various research communities, e.g., computer vision Wang (2021); Passalis et al.
(2020); Hou et al. (2020); Li et al. (2020), natural language processing Hinton et al. (2015); Mun
et al. (2018); Nakashole & Flauger (2017); Zhou et al. (2020b), and recommendation systems Kang
et al. (2020); Wang et al. (2021a); Kweon et al. (2021); Shen et al. (2021).

However, most KD methods are based on several unrealistic assumptions: (1) users can directly
access teacher’s training data; (2) the teacher model is considered as a white-box model, i.e., model
parameters and structure information can be fully utilized. For example, to facilitate the training
process, FitNets Romero et al. (2015) uses not only the original training data, but also the output
information from the teacher’s intermediate layers. However, in real-world applications, the teacher
model is usually provided by a third party. Thus the teacher’s training data is usually not public
and unable to access. In fact, the teacher model is mostly trained by big companies with extensive
amounts of data and plenty of computation resources, which is the core competitiveness of compa-
nies. As a result, the specific parameters and structural information of the teacher model are never
exposed in the real world. Consequently, accessing the teacher model or teacher’s training data
render these KD methods impractical in reality.

To solve these problems, some recent studies Truong et al. (2021b); Fang et al. (2021a) attempt to
learn from a black-box teacher model without any real data, i.e., data-free black-box KD. These
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Table 1: An empirical study of previous methods with a limited number of queries (we set the query
budget Q = 25K for MNIST, Q = 250K for CIFAR10, and Q = 2M for CIFAR100.) in various
scenarios. We also adopt CMI Fang et al. (2021b) for hard-label scenarios and name it “CMI∗”.

Method access to training data white-box / black-box logits / hard-label MNIST CIFAR10 CIFAR100

Normal KD Hinton et al. (2015) ✓ white-box logits 98.91% 94.34% 76.87%
CMI Fang et al. (2021b) × white-box logits 98.20% 92.22% 74.47%

CMI∗ × white-box hard-label 86.53% 76.17% 63.45%
DFME Truong et al. (2021a) × black-box logits 68.26% 51.28% 39.12%

ZSDB3 Wang (2021) × black-box hard-label 37.33% 32.18% 14.28%

methods do not need to access the private data and can train the student model with the class prob-
abilities returned by the teacher model. However, in real-world scenarios, the pre-trained model on
the remote server may only provide APIs for inference purpose (e.g., commercial cloud services),
these APIs usually return the top-1 class (i.e., hard label) of the given queries. For example, Google
BigQuery1 provides APIs for several applications. Such APIs only return a category index for each
sample instead of the class probabilities. Moreover, these APIs usually charge for each query to the
teacher model, and thus budget should be considered in the process of query. Nevertheless, previous
methods Truong et al. (2021a); Wang (2021); Zhou et al. (2020a) require a large number of queries
to the teacher model, which is costly and impractical. Hence, training a high-performance student
model with a small number of queries is still an unsolved problem.

In this paper, we consider a more practical and challenging setting: (1) the teacher’s training data
is not accessible, i.e., data-free; (2) the parameter of the teacher model is not accessible, i.e., black-
box; (3) the teacher model only returns a category index for each sample, i.e., hard-label; and (4) the
number of queries is limited, i.e., query-efficient. To better understand the difficulty of this setting,
we report the top-1 test accuracy of student models under different scenarios with a limited query
budget2 in Table 1.

As shown in Table 1, we have some valuable observations: (1) In white-box scenarios, data-free
KD can achieve satisfied performance, but when the model API is restricted to only hard labels,
CMI Fang et al. (2021b) suffers from serious performance degradation. It indicates that logits can
provide more information for training, while hard labels are more difficult; (2) With the same num-
ber of queries, the performance of these methods dramatically decrease under the black-box sce-
narios. Furthermore, the performance of data-free black-box KD with hard labels is only 14.28%
on CIFAR10 dataset, which is close to random guess (10%). Consequently, in this paper, we focus
primarily on how to query-efficiently train a good student model from black-box models with hard
labels, which is very practical but challenging.

For this purpose, we propose a novel method called query-effIcient Data-free lEarning from blAck-
box modeLs (IDEAL), which trains the student model with two stages: a data generation stage and
a model distillation stage. Instead of utilizing the teacher model (as in previous methods Truong
et al. (2021b)), we propose to adopt the student model to train the generator in the first stage, which
can solve the hard-label issue and largely reduce the number of queries to the teacher model. In
the second stage, we train a student model that has similar predictions as the teacher model on the
synthetic samples. As a result, IDEAL requires a much less query budget than previous methods,
which saves a lot of money and becomes more practical in reality.

In summary, our main contributions include:

• New Problem: We focus on how to query-efficiently train a good student model from black-
box models with only hard labels. To the best of our knowledge, our setting is the most
practical and challenging to date.

• More Efficient: We propose a novel method called IDEAL, which does not require any
query in the data generation stage and queries the teacher only once for each sample in the
distillation stage. Thus IDEAL can train a high-performance student with a small number
of queries.

1https://cloud.google.com/bigquery
2The detailed settings can be found in Section 4.1.
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• SOTA Results: Extensive experiments on various real-world datasets demonstrate the ef-
ficacy of our proposed IDEAL. For instance, IDEAL can improve the performance of the
best baseline method (DFME) by 33.46% on MNIST dataset.

2 RELATED WORKS

2.1 WHITE-BOX DATA-FREE KNOWLEDGE DISTILLATION

Recent advances in data-free knowledge distillation have enabled the compression of large neural
networks into smaller networks without using any real data Micaelli & Storkey (2019); Fang et al.
(2021b); Yin et al. (2020); Chen et al. (2019); Bhardwaj et al. (2019); Haroush et al. (2020); Yoo
et al. (2019); Zhang et al.. Nevertheless, all of these approaches require access to the white-box
teacher model and the logits (or probabilities) calculated by the teacher model, which is not always
possible in realistic scenarios. For example, according to these approaches Fang et al. (2021b); Yin
et al. (2020); Chen et al. (2019); Ye et al. (2020); Xu et al. (2020), the pre-trained teacher model is
regarded as a discriminator, and then the generator is adversarially trained. As the teacher model
is only accessible as a black-box model, it is not possible to propagate gradients in this manner.
Furthermore, the widely used KL divergence is inapplicable, as the logits of the teacher model are
not accessible. Additionally, some works utilize the specific structural information of the white-
box model, which also violate the black-box rules. For example, DeepIn Yin et al. (2020) used the
running average statistics stored in the BatchNorm layers, while DAFL Chen et al. (2019) proposed
to use features extracted by convolution filters. As a result of the above irrationality, these methods
perform poorly in our settings. In more practical and challenging setting we considered in this work:
data-free knowledge distillation from black-box models with only hard labels.

2.2 DISTILLATION-BASED BLACK-BOX ATTACKS

Previous studies have explored several ways to attack black-box models without real-world train-
ing data, which can be roughly divided into transfer-based adversarial attack Zhou et al. (2020a);
Yu & Sun (2022); Wang et al. (2021b) and data-free model extraction attack Truong et al. (2021a);
Kariyappa et al. (2021). Essentially, these methods are based on data-free black-box model dis-
tillation. Actually, they are designed to train substitute models in black-box situations to attack
the victim model. While these methods are suitable for black-box scenarios, they mainly rely on
a score-based teacher which outputs class probabilities. By contrast, our study considers a much
more challenging scenario, in which a black-box teacher only returns the top-1 class. Moreover, in
real-world scenarios, these black-box models usually charge for each query. To achieve good per-
formance, these methods require millions of queries, which consume a lot of computing resources
and money in real-world scenarios.

2.3 COMPARISON WITH RELATED WORKS

The most related work is ZSDB3 Wang (2021), which also studied data-free black-box distillation
with hard labels. It proposes to generate pseudo samples distinguished by the teacher’s decision
boundaries and then reconstruct the soft labels for distillation. More specifically, it calculates the
minimal ℓ2-norm distance between the current sample and those of other classes (measured by the
teacher model) and uses the zeroth-order optimization method to estimate the gradient of the teacher
model, which requires a large number of queries, making ZSBD3 not practical in real-world sce-
narios. By contrast, we consider a more challenging and practical setting where only a very small
number of queries (to the teacher model) is allowed, i.e., query efficient. For example, ZSDB3 re-
quires about 1000 queries to reconstruct the soft label (logits) of a single sample on MNIST dataset,
while our method only requires one query, which hugely reduces the number of queries by 1000×.

3 MAIN METHOD

3.1 NOTATIONS

We use G, S, and T to denote the generator, the student model, and the teacher model, respectively.
θG and θS denote the parameters of generator G and student model S, respectively. x̂ and ŷ denote
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Figure 1: Illustration of the training process of our proposed IDEAL. The left panel demonstrates
the data generation stage. In this stage, we train a generator, that can generate desired synthetic
samples, with the student model. The right panel shows the model distillation stage, which trains a
student model that has similar predictions as the teacher model on the synthetic samples.

the synthetic sample (generated by G) and the corresponding prediction score. Subscript i denotes
the i-th sample, e.g., x̂i denotes the i-th synthetic sample. Superscript j denotes the j-th epoch, e.g.,
Dj denotes the set of synthetic samples generated in j-th epoch. C is the number of classes and B
is the batch size. We use (ŷ)k to denote the k-th element of outputs ŷ, i.e., the prediction score of
the k-th class.

3.2 OVERVIEW

In data-free black-box KD, the teacher’s model and data are not accessible, and we are only given
the prediction of a sample by the teacher model. In particular, we focus on a more practical and
challenging setting where only a category index for each sample (i.e., hard-label) is given by the
teacher model. Since each query to the teacher costs money, we consider the scenario with limited
queries, i.e., query-efficient. Our goal is to query-efficiently learn from black-box models to train a
good student without any real data.

To achieve this goal, we propose a novel method called IDEAL, which consists of two stages: a
data generation stage and a model distillation stage. In the first stage, instead of utilizing the teacher
model (as in previous methods Truong et al. (2021b); Kariyappa et al. (2021)), we propose to adopt
the student model to train the generator, which can solve the hard-label issue and largely reduce
the number of queries to the teacher model. In the second stage, we utilize the teacher model and
synthetic samples to train the student model. The generator and student model are iteratively trained
for E epochs. The training procedure is demonstrated in the Appendix (see Algorithm 1) and the
illustration of the training process of IDEAL is shown in Fig. 1.

3.3 DATA GENERATION

In data-free setting, we are unable to access the original training data for training the student model.
Therefore, in the first stage, we aim to train a generator to generate the desired synthetic data (to train
the student model). According to the finding in Zhang et al. (2022), we reinitialize the generator at
each epoch. The data generation procedure is illustrated in Fig. 1(a).

The first step is generating the synthetic sample. Given a random noise z (sampled from a standard
Gaussian distribution) and a corresponding random one-hot label y (sampled from a uniform dis-
tribution), the generator G aims to generate a desired synthetic sample x̂ corresponding to label y.
Specifically, we feed z into the generator G and compute the synthetic sample as follows:

x̂ = G(z; θG), (1)

where θG is the parameter of G. The synthetic samples are used to train G.

In the second step, we compute the prediction score of x̂. A straightforward way is to use the teacher
model to compute the prediction score. The prediction score is used to update θG , but the parameter
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of the teacher model is not accessible in black-box setting, thus unable to conduct backpropagation.
Previous black-box KD methods Truong et al. (2021b); Wang (2021); Kariyappa et al. (2021) used
gradient estimation methods to obtain an approximate gradient. Nevertheless, they need to estimate
the gradient from the black-box teacher model, which requires a large number of queries (to the
teacher model), which is not practical. Moreover, in the hard-label setting, the prediction score is
not accessible. To this end, we propose to use the student model (instead of the teacher model) to
compute the prediction score of x̂. The detail of the student model is discussed in Section 3.4. Note
that in this stage, we do not train the student model and keep the parameter of the student model
fixed. By utilizing the student model, we can directly conduct backpropagation and compute the
gradient of the model without querying the teacher model. In this way, we can avoid the hard-label
problem and the large number of queries at the same time. The prediction score is computed as
follows:

ŷ = S(x̂; θS), (2)

where S and θS are student model and model parameters.

The third step is optimizing the generator. We propose to train a generator that considers both
confidence and balancing.

3.3.1 CONFIDENCE

First, we need to consider confidence, i.e., the synthetic sample is classified to the specified class
with high confidence. To achieve this goal, we minimize the difference between the prediction score
ŷ and the specified label y:

Lce = CE(ŷ, y), (3)

where CE(·, ·) is the cross-entropy (CE) loss. Actually, in the training process, the generator G can
quickly converge when using Lce. Since the generated data x̂ is fitted for the student S, and we
intend to generate data according to the knowledge of the teacher’s model, we must avoid overfitting
to S. Therefore, we need to control the number of iterations EG in data generation. Too few
iterations may lead to poor data, while too many iterations may lead to overfitting. See the detailed
experiments in the Section 4.1.

3.3.2 BALANCING

Second, we need to consider balancing, i.e., the number of synthetic samples in each class should
be balanced. Although we uniformly sample the specified label y, we observe that the prediction
score ŷ is not balanced, i.e., the prediction score is high on some classes but low on the other classes.
This leads to class imbalance of the generated synthetic samples. Motivated by Chen et al. (2019),
we employ the information entropy loss to measure the class balance of the synthetic samples. In
particular, given a batch of synthetic samples {x̂i}Bi=1 and corresponding prediction scores {ŷi}Bi=1,
where B is the batch size, we first compute the average of the prediction scores as follows:

ŷavg =
1

B

B∑
i=1

ŷi. (4)

Then, we compute the information entropy loss as follows:

Linfo =
1

C

C∑
k=1

(ŷavg)k log((ŷavg)k), (5)

where (ŷavg)k is the k-th element of ŷavg , i.e., the average prediction score of the k-th class. When
Linfo takes the minimum, each element in ŷavg would equal to 1

C , which implies that G can generate
synthetic samples of each class with an equal probability.

By combining the above losses, we can obtain the generator loss as follows:

Lgen = Lce + λLinfo, (6)

where λ is the scaling factor. By minimizing Lgen, we train a generator that generates desired
balanced synthetic samples.
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3.4 MODEL DISTILLATION

In the second stage, we train the student model S with teacher model T and the synthetic samples.
The training process is illustrated in Fig. 1(b). Our goal is to obtain a student model S that has the
same predictions as teacher model T on the synthetic samples (generated by generator G).

In particular, we first sample the random noise and generate synthetic sample x̂ with the generator.
Second, we feed x̂ into the black-box teacher model and obtain its label as follows:

yT = T (x̂) (7)

We treat yT as the ground-truth label of x̂. Since the teacher model only returns hard-label, yT is a
ground-truth one-hot label. Afterwards, we feed x̂ into the student model and obtain the prediction
score as follows:

ŷ = S(x̂; θS). (8)

Last, we optimize the student model by minimizing the CE loss as follows:

Lmd = CE(ŷ, yT ) (9)

By minimizing Lmd, the student model can have similar predictions as the teacher model on the
synthetic samples, which leads to a desired student model.

In each epoch, our proposed IDEAL only queries the teacher model once for each sample, while
previous black-box methods (e.g., ZSDB3 Wang (2021) and DFME Truong et al. (2021a)) may need
more than 100 queries. Moreover, IDEAL requires similar epochs (compared with previous black-
box methods) to converge. As a result, IDEAL requires a much less query budget than previous
methods, which saves a lot of money and becomes more practical in reality.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

4.1.1 DATASET AND MODEL ARCHITECTURE

Our experiments are conducted on 7 real-world datasets: MNIST LeCun et al. (1998), Fashion-
MNIST (FMNIST) Xiao et al. (2017), CIFAR10 and CIFAR100 Krizhevsky et al. (2009),
SVHN Netzer et al. (2011), Tiny-ImageNet Le & Yang (2015), and ImageNet subset Deng et al.
(2009). The ImageNet subset is generated by Li et al. (2021), which consists of 12 classes. We re-
size the original image with size 224*224*3 to 64*64*3 for fast training. Note that student models
cannot access to any raw data during training. Only teacher models are trained on these datasets.
In this work, we study the effectiveness of our method on several network architectures, including
MLP Ruck et al. (1990), AlexNet Krizhevsky et al. (2012), LeNet Lecun et al. (1998), ResNet-18 He
et al. (2016), VGG-16 Simonyan & Zisserman (2015), and ResNet-34 He et al. (2016). For each
dataset, we train several different teacher models to evaluate the effectiveness of our method. We
use the generator proposed in StyleGAN Karras et al. (2019) as the default generator.

4.1.2 BASELINES

As discussed in the related work, we compare our approach with the following baselines: 1) SOTA
data-free distillation methods that are originally designed for white-box scenarios (DAFL Chen et al.
(2019), ZSKT Micaelli & Storkey (2019), DeepIn Yin et al. (2020), CMI Fang et al. (2021b)). Here
we adapt them to the black-box scenarios in which only hard labels are provided. 2) Besides, we
also compare with the SOTA methods in model extraction attack (DFME Truong et al. (2021a)) and
transfer-based adversarial attack (DaST Zhou et al. (2020a)). In fact, these techniques are essential
data-free distillation methods in black-box scenarios. 3) Furthermore, we compare our method with
ZSDB3 Wang (2021), which also focuses on improving the performance of the black-box data-free
distillation in label-only scenarios.
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Table 2: Accuracy (%) of student models trained with various teacher models on MNIST, FMNIST,
SVHN, CIFAR10, and ImageNet subset. Best results are in bold. Best results of the baselines are
underlined. “Improvement” denotes the improvements of IDEAL compared with the best baseline.

Dataset Model Teacher DAFL ZSKT DeepIn CMI DaST ZSDB3 DFME Ours Improvement

MNIST
MLP 98.25 16.97 13.84 16.68 13.89 15.62 30.13 56.32 88.41 32.09↑
LeNet 99.27 18.92 22.96 24.43 22.71 22.49 35.98 62.86 96.32 33.46↑

AlexNet 99.35 20.43 27.97 29.54 28.87 23.86 37.33 66.45 96.51 30.06↑

FMNIST
MLP 84.54 14.23 16.86 12.24 10.30 12.93 24.52 52.29 76.95 24.66↑
LeNet 90.23 16.89 18.52 16.89 14.44 22.72 32.46 56.76 83.92 27.16↑

AlexNet 92.66 21.78 20.22 22.38 21.24 25.21 34.47 63.59 86.14 22.55↑

SVHN
AlexNet 89.82 16.89 13.96 16.71 17.63 24.47 33.96 58.92 84.42 25.50↑
VGG-16 94.41 19.24 21.03 24.65 24.55 25.17 36.35 62.53 86.91 24.38↑

ResNet-18 95.28 21.25 20.95 24.75 28.55 24.33 37.40 64.82 87.65 22.83↑

CIFAR10 AlexNet 84.76 13.75 12.56 14.54 13.98 14.54 29.38 35.73 65.61 29.88↑
ResNet-34 93.85 16.08 14.31 15.99 15.95 15.41 32.18 37.91 68.82 30.91↑

ImageNet subset AlexNet 72.96 17.15 15.89 17.75 17.31 16.96 27.83 32.89 53.72 20.83↑
VGG-16 78.53 19.36 20.16 19.66 22.10 22.03 29.46 34.65 57.95 23.30↑

4.1.3 QUERY BUDGET AND TRAINING SETTINGS

Since we consider the limited query budget scenario, we adopt the same query budget Q for all
methods. In particular, we set the query budget Q = 25K for MNIST, Q = 100K for FMNIST
and SVHN. Besides, the default query budget Q = 250K for CIFAR10 and ImageNet subset. For
large datasets with a large number of classes (i.e., CIFAR100 and Tiny-ImageNet), we set the query
budget Q = 2M . For our method, each sample only needs to query the teacher model once, so the
total number of queries is Q = B×E, where B is the batch size and E denotes the training epochs.
To update the generator, we use the Adam Optimizer with learning rate ηG = 1e − 3. To train the
student model, we use the SGD optimizer with momentum=0.9 and learning rate ηS = 1e − 2.
We set the batch size B = 250 for MNIST, FMNIST, SVHN, CIFAR10, and ImageNet subset, and
B = 1000 for CIFAR100 and Tiny-ImageNet datasets. By default, we set the number of iterations
in data generation EG = 5 and the scaling factor λ = 5. The number of epochs E is computed
according to the query budget. For evaluation, We run experiments for 3 times, and report the
average top-1 test accuracy.

4.2 EXPERIMENTAL RESULTS

4.2.1 PERFORMANCE COMPARISON ON SMALL DATASET

First, we show the results of different KD methods on MNIST, FMNIST, SVHN, CIFAR10, and
ImageNet subset using various teacher models in Table 2. From the table, we observe that:

(1) Our proposed IDEAL outperforms all the baseline methods on all datasets. For instance, our
method achieves 87.65% accuracy on SVHN dataset when the teacher model is ResNet-18, whereas
the best baseline method DFME achieves only 64.82% accuracy under the same query budget. In
general, IDEAL improves the performance of the best baseline by at least 20% under the same
settings.

(2) The black-box teacher models trained on MNIST are much easier for the student to learn. Even
with very few queries, the student model of our proposed IDEAL achieves over 96% accuracy on
MNIST. We argue that this is reasonable because this task is simple for neural networks to solve,
and the underlying representations are easy to learn. However, even for such a simple task, other
methods cannot derive a good student model with the same small query budget. For example, when
learning from the black-box AlexNet trained on MNIST, the best baseline DFME only achieves
66.45% accuracy.

(3) DAFL and ZSKT have the worst performance on all datasets. For example, the accuracy of
ZSKT is only 12.56% when the teacher model is AlexNet on CIFAR10, which is close to random
guess (10%). We conjecture this is because white-box KD methods are not suitable in black-box
scenarios. These methods mainly depend on white-box information, such as model structure and
probability or logits returned by the teacher model. Therefore, using these methods in black-box
scenarios will significantly reduce their effectiveness.
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Table 3: Accuracy (%) of student models on datasets with hundreds of classes. We use ResNet-18
as the default student network, and all results are tested under the same query budget Q = 2M .

Dataset Model Teacher DAFL ZSKT DeepIn CMI DaST ZSDB3 DFME Ours Improvement.

CIFAR100 AlexNet 66.24 9.65 10.19 14.53 12.30 14.22 14.38 16.48 23.85 7.37↑
ResNet-34 89.45 12.76 13.54 18.35 15.93 17.92 17.51 20.01 36.96 16.95↑

Tiny-ImageNet VGG-16 52.96 6.51 7.24 11.95 9.79 8.42 10.98 15.06 21.72 6.66↑
ResNet-34 64.53 9.78 10.35 15.79 12.82 11.21 12.16 17.64 27.95 10.31↑

4.2.2 PERFORMANCE COMPARISON ON LARGE DATASETS

In addition to the performance on small datasets, the performance of the black-box distillation
method on large datasets deserves further investigation. Data-free knowledge distillation has his-
torically performed poorly Zhou et al. (2020a); Chen et al. (2019) for datasets with a large number
of classes (e.g. Tiny-ImageNet and CIFAR100), since it is very difficult to generate synthetic data
with particularly rich class diversity. Thus, we also conduct experiments on datasets with more
classes (at least 100 classes). Table 3 demonstrates the results of all methods on CIFAR100 and
Tiny-ImageNet. As shown in Table 3, it is also difficult for all these methods to produce a good
student model in the black-box scenario. However, our proposed IDEAL consistently achieves the
best performance on these large datasets. For example, IDEAL outperforms the best baseline DFME
by 16.95% on CIFAR100 with ResNet-34. When compared with other baseline methods, our model
achieves significant performance improvement by a large margin of over 18%.

4.2.3 PERFORMANCE ON MICROSOFT AZURE
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Figure 2: Transferring the knowledge of the on-
line model on Microsoft Azure to the student.

Following the settings in DaST Zhou et al.
(2020a), we also conduct KD in a real-world
scenario. In particular, we adopt the API
provided by Microsoft Azure3 (trained on
MNIST dataset) as the teacher model and uti-
lize LeNet Lecun et al. (1998) as the student
model. As illustrated in Fig. 2, our method con-
verges quickly and is very stable compared to
other methods. Actually, our method achieves
over 98% test accuracy after 10,000 queries,
which implies that our proposed method is also
effective and efficient for real-world APIs.

4.2.4 PERFORMANCE UNDER DIFFERENT QUERY BUDGET
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Figure 3: Analyses of our method and other com-
parison methods (ZSDB3, DFME) with a small
query budget (Q = 200K) and a large query bud-
get (Q = 10M ).

In previous experiments, we consider training
the student model with a limited query budget.
As described in previous studies Zhou et al.
(2020a); Truong et al. (2021a); Wang (2021),
these methods require millions of queries to
the black-box model. Therefore, we have in-
creased the number of queries of other base-
line methods to provide a more comprehensive
comparison, but without increasing the number
of queries in our method. More specifically,
we increase the number of queries required by
other baseline methods (ZSDB3 and DFME) on
CIFAR10 dataset from 200K to 10M . Fig. 3 illustrates the training curves of these methods with
Q = 200K and Q = 10M , respectively. Note that ZSDB3, DFME can achieve the highest ac-
curacy of 56.39% and 57.94% respectively (right panel in Fig. 3), when a large number of queries
are involved. By contrast, our approach achieves 63.77% with only 0.02× the query budget of both
ZSDB3 and DFME. It validates the effectiveness of our method to perform query-efficient KD.

3https://azure.microsoft.com/en-us/services/machine-learning/
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Table 4: Ablation studies by cutting of different modules.
Method MNIST SVHN CIFAR10 ImageNet subset

Ours 96.32 86.91 68.82 57.95
w/o Linfor 95.76 83.21 62.68 54.31

w/o Lce 15.21 12.48 10.68 9.84
w/o generator re-initializing 95.26 80.53 55.32 51.25

4.2.5 VISUALIZATION OF SYNTHETIC DATA
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Figure 4: Visualization of data generated by dif-
ferent methods on MNIST. Our approach can syn-
thesize more diverse data, there is a clear visual
distinction between samples in different classes.

In this subsection, we present some synthesised
examples of ZSDB3, DFME, and our method
to evaluate the visual diversity. As can be seen
in Fig. 4, images generated by ZSDB3 are all
of very low quality, which cannot show any
meaningful patterns. And the image samples
generated by ZSDB3 and DFME both exhibit
very similar patterns, which implies that the
synthetic data has low sample diversity. By
contrast, our proposed approach can synthesize
more meaningful and diverse data. We observe
that the images generated by our method have
more different patterns, which indicates that our
proposed IDEAL can synthesize more diverse
data. It also proves that it is feasible and ef-
fective for our model to replace T with S in
generator training without gradient estimation.

4.2.6 EFFECT INVESTIGATION OF DIFFERENT MODULES

In this section, we evaluate the contributions of different loss functions in Equation 6 used during
data generation, and discuss the effect of re-initializing the generator. As shown in Table 4, removing
both the generator and information loss Linfor can lead to significant performance degradation.
Moreover, our model suffers from an obvious degradation when the generator re-initializing strategy
is abandoned, especially on SVHN, CIFAR10, and ImageNet-subset. In fact, since the generator
is reinitialized in each epoch during training, our method does not depend on the generator from
the previous round. In other words, we do not need to train the generator and the student model
adversarially, and therefore we do not require a large number of training iterations to guarantee
convergence. Besides, we find a significant degradation when we remove Lce, which demonstrates
its effectiveness in the data generation. The ablation experiments verify that all modules are essential
in our method.

4.2.7 EFFECT INVESTIGATION OF EG

We also conduct ablation study to investigate the effect of EG on the data generation stage. As show
in Table 5 in Appendix, we modify the value of EG and report the top-1 test accuracy. We can
observe that too small or too large EG is hard to obtain the optimal solution. To better understand
the impact of EG , we show the t-SNE visualization of synthetic data in Fig. 5 in Appendix. More
detailed results can be referred to the Appendix A.0.1.

5 CONCLUSION

In this paper, we propose query-effIcient Data-free lEarning from blAck-box modeLs (IDEAL) in
order to query-efficiently train a good student model from black-box teacher models under the data-
free and hard-label setting. To the best of our knowledge, our setting is the most practical and
challenging to date. Extensive experiments on various real-world datasets show the effectiveness
of our proposed IDEAL. For instance, IDEAL can improve the performance of the best baseline
method DFME by 5.83% on CIFAR10 dataset with only 0.02× the query budget of DFME. We
envision this work as a milestone for query-efficient and data-free learning from black-box models.
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A APPENDIX

A.0.1 EFFECT INVESTIGATION OF EG .

In Fig. 5, clearly, the student can easily identify the synthetic data when EG = 50 (the training
accuracy on synthetic data is 100%, while the test accuracy on CIFAR10 is 58.69%), but when
EG = 10, the student cannot distinguish the data accurately (the training accuracy is 63.78%, while
the test accuracy is 68.82%). We guess that, a small value of EG leads to poor quality of the
generated data (a large loss) while a large value of EG leads to a student model that overfits to
the synthetic data. Thus, from the empirical experiments in Table 5, we set EG = 5 for MNIST,
EG = 10 for CIFAR10 and ImageNet subset.

Iterations (EG) Teacher Student 3 5 10 30 50

MNIST AlexNet LeNet 65.36 96.51 95.24 88.75 80.15

CIFAR10 ResNet-34 ResNet-18 30.25 57.56 68.82 62.45 58.69

ImageNet subset VGG-16 ResNet-18 26.38 52.59 57.95 48.67 41.73

Table 5: The influence of different number of iterations EG on data generation. We report the top-1
test accuracy (%).

10 iterations 50 iterations Loss of generator

Figure 5: T-SNE visualization of synthetic data on CIFAR10 and the corresponding training loss of
the generator. When EG = 10, the features are not well separated, indicating that the student can
still learn from synthetic data.

A.0.2 EFFECT OF THE GENERATOR

For fair comparisons, we use the same generator StyleGan for all methods in our experiments. We
also introduce the effects of different sizes of generators as shown in Table 6, where DCGAN, Style-
GAN and Transformer-GAN have small, medium and large parameters. Different generative models
have negligible effect on the performance of our method. Besides, our method still outperforms the
best baseline when using generators with different sizes.

A.0.3 CLASS IMBALANCE IN SYNTHETIC DATA

To avoid class imbalance, we generate the same number of samples per class. As illustrated in
Table 7, even if we use some SOTA re-weighting methods to assign different weights to our model,
the accuracy drop caused by the class imbalance can not be entirely eliminated. Hence, it is effective
to consider class-balanced generation for each class, i.e., the number of synthetic samples per class
is balanced.

Generator DCGAN StyleGAN Transformer-based GAN

DFME 31.23 34.65 33.61

Ours 55.81 57.95 57.62

Table 6: The effect of the generator.
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Method CIFAR10 SVHN

Ours+LDAM 62.14 82.24

Ours+CB-Focal 63.31 81.58

Ours(same number of samples in each class) 68.82 87.65

Table 7: The influence of class imbalance in synthetic data.

Method Model training SVHN

Method A Train from scratch with the synthetic data 22.64

Method B Using out-of-domain data to distill (CIFAR10) 39.68

Ours Using synthetic data to distill (our method) 87.65

Table 8: Domain gap between synthetic data and original data

A.0.4 DOMAIN GAP BETWEEN SYNTHETIC DATA AND ORIGINAL DATA

We find that there is a significant difference between the data synthesized by our method and the test
set. As shown in Table 8, we introduce more detailed experiments to investigate such distribution
discrepancy. Specifically, (1) Method A denotes the performance when training from scratch with
the synthetic data (i.e. no distillation) and directly evaluating on the test set. (2) Method B denotes
the performance of using out-of-domain CIFAR10 (i.e. no synthetic data) to perform knowledge
distillation. (3) and Ours denotes the performance of using synthetic data to perform distillation.

Obviously, Ours outperforms Method A by a large margin over 65%. It validates the significant
distribution discrepancy between the synthetic data and the test set, and Ours can effectively address
such domain gap via knowledge distillation. Besides, Ours performs better than domain adaptation
strategy Method B, which also verifies the effectiveness of our model for black-box.

A.0.5 DETAILED ALGORITHM

Algorithm 1 Training process of IDEAL
Input: Generator G with parameter θG , student model S with parameter θS , teacher model T ,
number of training rounds EG for generator in each epoch, number of classes C, training epochs E,
learning rate of generator ηG , learning rate of student model ηS , scaling factor λ, and batch size B.

for e = 1, · · · , E do
// Stage 1: data generation
for round = 1, · · · , EG do

Sample a batch of noises and labels {zi, yi}Bi=1

Generate a batch of synthetic samples {x̂i}Bi=1 by Equation 1
Compute Lgen by Equation 6
Update θG by minimizing Lgen

end for

// Stage 2: model distillation
Sample a batch of noises {zi}Bi=1

Generate a batch of synthetic samples {x̂i}Bi=1 by Equation 1
Compute Lmd by Equation 9
Update θS by minimizing Lmd

end for
return θS
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