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Despite the advanced capabilities of contemporary machine learning (ML) models, they remain vulnerable to
adversarial and backdoor attacks. This vulnerability is particularly concerning in real-world deployments,
where compromised models may exhibit unpredictable behavior in critical scenarios. Such risks are heightened
by the prevalent practice of collecting massive, internet-sourced datasets for training multimodal models,
as these datasets may harbor backdoors. Various techniques have been proposed to mitigate the effects of
backdooring in multimodal models, such as CleanCLIP, which is the current state-of-the-art approach. In
this work, we demonstrate that the efficacy of CleanCLIP in mitigating backdoors is highly dependent on the
particular objective used during model pre-training. We observe that stronger pre-training objectives that
lead to higher zero-shot classification performance correlate with harder to remove backdoors behaviors. We
show this by training multimodal models on two large datasets consisting of 3 million (CC3M) and 6 million
(CC6M) datapoints, under various pre-training objectives, followed by poison removal using CleanCLIP.
We find that CleanCLIP, even with extensive hyperparameter tuning, is ineffective in poison removal when
stronger pre-training objectives are used. Our findings underscore critical considerations for ML practitioners
who train models using large-scale web-curated data and are concerned about potential backdoor threats.

1 Introduction

Machine Learning (ML) has taken strides in training high-performing models for a wide range of tasks
from classification to generation. An important goal for ML is to learn general-purpose representations
that help align data from different modalities. Approaches like CLIP (Radford et al., 2019), ALIGN (Jia
et al., 2021b), and BLIP (Li et al., 2022) learn joint representations from large scale image-text paired
datasets. These innovative techniques have ushered in the possibility of learning from unlabeled and uncurated
datasets, substantially increasing the scale and applicability of pre-training. The scaling has contributed
to high zero-shot classification accuracy on various downstream datasets like Imagenet (Deng et al., 2009)
and increased robustness to variations in the datasets like Imagenet-V2 (Recht et al., 2019), Imagenet-R
(Hendrycks et al., 2020), and Imagenet-A (Hendrycks et al., 2021). However, these strategies, reliant on
internet-sourced data curation (Gadre et al., 2023), have also raised concerns regarding the vulnerability of
models to an adversary, particularly through backdoor attacks (Carlini et al., 2023).

In the simplest form of this attack, an adversary inserts a patch (termed as a trigger patch or poison) in a
small subset of the training data images and alters the ground truth label or caption to a target label or
caption (Gu et al., 2017).1When trained on the poisoned training data, the model learns to associate the
trigger patch with the target label/caption. If deployed, an adversary can get the model to predict the target
label for any datapoint by inserting the trigger patch. The success of an adversary is measured by the attack
success rate (ASR) metric, which is the percentage of the images with the trigger patch that are predicted
with the target label. Previous works (Carlini & Terzis, 2021) have demonstrated effective backdooring of
multimodal models (ASR ≥ 80%) just by poisoning a mere 75 out of 3 million training datapoints.

Several backdoor mitigation techniques have been proposed for multimodal models (Bansal et al., 2023; Li
et al., 2021b; Yang et al., 2023; 2024) to tackle this vulnerability. These approaches either attempt to detect
and filter the poisoned datapoints during the pre-training (Li et al., 2021b; Yang et al., 2023; 2024) or finetune
the given backdoored model using a specialized loss function on a smaller, guaranteed to be clean image-text
paired dataset. The latter approach helps the model to forget the association between the trigger patch

1We refer the readers to Goldblum et al. (2021) for discussion about other kinds of poisoning attacks.

1



Under review as submission to TMLR

MMCL

MMCL + SSL

CleanCLIP

Step 1: Data Poisoning

Step 2: Poison Induction Step 3: Poison Removal

Initialized Randomly 

or from Pre-trained 


Checkpoint

Backdoored Models Potentially Cleaned 

Models

Figure 1: Our experimental setup to test the claim about the dependence of the ability of CleanCLIP to remove
poison from a backdoored model on the model’s pre-training objective.

and the target label while still maintaining the learned associations for benign datapoints, e.g., CleanCLIP
(Bansal et al., 2023). CleanCLIP proposes to finetune a backdoored model using a combination of contrastive
loss and self-supervised loss on a small dataset, free of backdoors, to clean the model. It is the state-of-the-art
(SOTA) technique to clean a backdoored model and obtain a low ASR (≤ 5%) without hurting its zero-shot
classification accuracy; thereby achieving a successful model cleaning.

So far, it has been demonstrated that CleanCLIP can successfully clean models pre-trained only with
multimodal constrastive loss (MMCL) as the objective (Radford et al., 2019). Several recent works (Mu et al.,
2022; Li et al., 2021a; Yao et al., 2021; Lee et al., 2022) have proposed stronger pre-training objectives that
lead to better zero-shot image classification accuracy. Specifically, adding self-supervised loss (SSL) in both
modalities has been the key player in all these works. Therefore, in this work, we pre-train multimodal models
using a combination of MMCL and SSL on a poisoned training dataset. Consistent with the previous findings,
models pre-trained using a combination of MMCL and SSL produced models with a higher classification
accuracy than models trained solely with the MMCL objective. We then apply the finetuning procedure
in CleanCLIP to remove the poison from these models (see Figure 1). To our surprise, we observe that
CleanCLIP fails to successfully (i.e., without a significant loss in the model’s zero-shot accuracy) remove
poison from the models pre-trained with the stronger objective (combination of MMCL and SSL).

We further conduct experiments with other practical considerations, such as the performance of CleanCLIP
when its cleaning data still has a few poisoned datapoints, and deciding the stopping criterion for the
finetuning process when one is not aware of the specific backdoor attack on the model (which is usually the
case). From all the experiments, we find that only the models pre-trained with MMCL alone are amenable to
poison removal in both the cases of availability of completely clean finetuning data and when the finetuning
data still has some poisoned datapoints.

Our main contributions are:

1. We show that the state-of-the-art technique for removing poison from backdoored multimodal models,
CleanCLIP, depends on the model’s pre-training objective and fails to mitigate poison when the models
are pre-trained with a stronger objective, like the combination of MMCL and SSL losses. (See Section 2
for further justification on why we chose to study CleanCLIP. )
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2. We conduct several analysis experiments to demonstrate the effect of different pre-training objectives on
the strength of poison induction.

3. We conduct experiments to show the practical use case of CleanCLIP from a real-world perspective when
the finetuning data is not entirely free of poison and the practitioner is not aware of the specific kind of
poisoning in the model and hence has to decide on the stopping criterion for the cleaning process.

4. Based on these findings, we highlight critical considerations for an ML practitioner who wants to pre-train
models by collecting web-curated data with potential backdoored embedded datapoints.

2 Related Works

Contrastive Learning Contrastive learning was formally established in seminal works by Bromley et al.
(1993); Chopra et al. (2005); Hadsell et al. (2006) that has evolved, giving rise to contemporary algorithms
such as CPC (Oord et al., 2018), DCL (Yeh et al., 2022), SimCLR (Chen et al., 2020), and NNCLR (Dwibedi
et al., 2021). 2 These approaches, at their core, share a common objective: bringing similar elements closer
in representation space while pushing dissimilar ones apart.

Radford et al. (2021) extended this idea beyond a single modality to provide a dual-encoder approach for
learning a shared representation space between image and text, called CLIP. Images and their corresponding
captions are brought close, while the dissimilar images and captions are pushed away. Jia et al. (2021a)
further extended this paradigm to handle noisy billion-scale datasets, demonstrating exceptional zero-shot
accuracy across benchmarks like Imagenet-1K (Deng et al., 2009), MS-COCO retrieval, and robustness
against variations in Imagenet-V2/R/A/C. Since then, there have been several improvements to the zero-shot
accuracy by adding components to the loss term. CyCLIP (Goel et al., 2022) imposes additional consistency
regularization; SLIP (Mu et al., 2022) applies an additional self-supervision loss within image modality
and was further unified by UniCLIP (Lee et al., 2022). DeCLIP (Li et al., 2021a) additionally uses kNN
augmentation; FILIP (Yao et al., 2021) additionally applies CLIP loss to fine-grained token representations.
CLIP performance has also been improved by additional captioning loss (Yu et al., 2022).

Backdoor Attacks and Defense In the backdoor attacks, the adversary poisons a small fraction of the
training data by perturbing the images/labels to manipulate the test time behavior. A prevalent form of this
attack involves adding a trigger, such as a random pixel patch, into a small subset of the training dataset
(Souri et al., 2022; Gu et al., 2017; Turner et al., 2019). During inference, models perform normally on images
without the triggers but exhibit catastrophic failures when tested with the triggered images, erroneously
predicting the labels targeted by the adversary. While the study of backdoor attacks has historically centered
on supervised learning, recent attention has extended to self-supervised (Saha et al., 2022) and multimodal
representation learning (Bansal et al., 2023; Carlini & Terzis, 2021; Carlini et al., 2023). This work focuses
exclusively on the poisoning of multimodal models like the CLIP model.

The most common defense strategies against backdoor attacks primarily revolve around the identification
and detection of poisoned examples (Steinhardt et al., 2017; Gao et al., 2019; Wang et al., 2019; Yang et al.,
2022; Li et al., 2021b; Yang et al., 2024; 2023). However, alternative approaches have emerged, such as
defense through knowledge distillation (Yoshida & Fujino, 2020) and robust training procedures involving
data augmentation (Borgnia et al., 2021). Despite these efforts, research by Carlini & Terzis (2021); Carlini
et al. (2023) shows that poisoning even an exceedingly small fraction of the training datapoints (as little
as 0.002%) can substantially impact model performance. Consequently, the effectiveness of detection-based
methods in the context of multimodal pre-training remains uncertain. To address this challenge, Bansal et al.
(2023) proposed CleanCLIP, a finetuning based procedure using a combination of MMCL and SSL losses,
designed to clean poisoned CLIP models, assuming access to a small, guaranteed to be poison-free dataset.

Our Work Our objective is to decipher the amenability of CleanCLIP to remove poison from pre-trained
models under varying conditions like different pre-training objectives, lack of completely clean data, and lack
of knowledge of the specific backdoor attack. Since intramodal self-supervision loss has enhanced classification
accuracy for multimodal models, we investigate CleanCLIP effectiveness when models are pre-trained with a

2We refer the readers to Balestriero et al. (2023) for more development on self-supervised learning.
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combination of MMCL and SSL objectives vs. when just pre-trained with the MMCL objective. We also
investigate its effectiveness when the finetuning data has a few poisoned datapoints and examine the stopping
criterion for finetuning when the knowledge of the specific backdoor attack is unavailable.

Why we choose to study CleanCLIP? Defense against backdoor attacks in multimodal models is an
emerging research area with a handful of proposed approaches. Given the ever-increasing usage of off-the-shelf
available pretrained models on the platforms such as huggingface, it is important to be able to remove
poison from an already trained model. This is also important because of the prohibitive costs of training these
large models from scratch, even if a poison-free dataset suddenly becomes available. Among the proposed
approaches, CleanCLIP (Bansal et al., 2023) is the only one that can remove poison from an already trained
model. All the other defense methods (Yang et al., 2024; 2023; Ishmam & Thomas, 2024) propose various
train-time interventions that help prevent the model from learning the backdoor. Therefore, none of these
techniques are applicable when a model has already been trained and is backdoored.

3 Methodology

3.1 Primer on Pre-training and Poisoning

Notations Let I and T denote the space of images and text. Dpre = {(Ij , Tj))}N
j=1, Dclean = {(Ij , Tj))}M

j=1
denotes the pre-training and cleaning dataset of N and M image-text pairs respectively, where M << N .
hI : I → Rd and hT : T → Rd denote the image and text encoders respectively, where d is the dimensionality
of the embedding space. All the embeddings are further normalized to make ℓ2 norm to 1 which we denote
using f(x) = g(h(x)), where g : Rd → B(1) is normalization mapping, where, B(1) = {x : ∥x∥2 = 1, x ∈ Rd};
τ denotes learnable temperature. Let LMMCL denote the multimodal and LSSL denote the intramodal
self-supervision losses respectively. Let Ĩ denote an augmentation to image I and T̃ denote an augmentation
to the text T . Let S ⊂ {1, 2, . . . , n} denote a small subset of training data that are poisoned. We denote
the poisoned dataset using P(S, tg, T ′) = {(Ij ◦ tg, T ′

j) : j ∈ S} where tg, T ′ denote image trigger and target
label respectively.

Loss Objectives Given a dataset D, fI , fT , we define LMMCL(D, fI , fT , τ) as follows:

= −1
2|D|

 |D|∑
j=1

log
[

exp (⟨fI(Ij), fT (Tj)⟩ /τ)∑|D|
k=1 exp (⟨fI(Ij), fT (Tk)⟩ /τ)

]
+

|D|∑
k=1

log
[

exp (⟨fI(Ik), fT (Tk)⟩ /τ)∑|D|
j=1 exp (⟨fI(Ij), fT (Tk)⟩ /τ)

] (1)

and, we define LSSL(D, fI , fT , τ) as follows:

= −1
2D

 |D|∑
j=1

log
[

exp
(〈

fI(Ij), fI(Ĩj)
〉

/τ
)∑|D|

k=1 exp
(〈

fI(Ij), fI(Ĩk)
〉

/τ
)]

+
|D|∑
j=1

log
[

exp
(〈

fT (Tj), fT (T̃j)
〉

/τ
)∑|D|

k=1 exp
(〈

fT (Tj), fT (T̃k)
〉

/τ
)] (2)

For the shorthand notations, we will drop fI , fT , τ from the parenthesis. With the definitions above
LCleanCLIP(Dclean) ≜ LSSL(Dclean) + LMMCL(Dclean). When used for pre-training, we denote them using
Lpre, and when used for finetuning, we denote them using Lft.

3.2 Experimental Setup

On a high level, our experiments involve poisoning CLIP models using two distinct pre-training objectives
with different kinds of backdoors by either training a model from scratch or by finetuning from a pre-trained
checkpoint. Once we have poisoned the model, we attempt to remove the poison using CleanCLIP, which
finetunes the model with a specific objective using a separate dataset. We have illustrated this in Figure 1
and summarized our key findings in Table 1.

Training Details We train a dual-encoder multimodal model on image-text paired datasets. We train models
using two kinds of pre-training objectives: a) only multimodal contrastive loss (Lpre

MMCL), and b) combination
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Table 1: Key findings from our experiments: CleanCLIP is much less effective for the model where poison
is induced with the stronger objective Lpre

MMCL + Lpre
SSL.

Backdoor Objective Poison Induction Change in Accuracy after
Cleaning (Relative) ↑

BadNet Lpre
MMCL From scratch 1% gain

BadNet Lpre
MMCL Finetuned from Ckpt 17% loss

Label Consistent Lpre
MMCL From scratch 10% gain

BadNet Lpre
MMCL + Lpre

SSL From scratch 45% loss
BadNet Lpre

MMCL + Lpre
SSL Finetuned from Ckpt 33% loss

Label Consistent Lpre
MMCL + Lpre

SSL From scratch 16% loss

of multimodal contrastive loss and self-supervised loss in the image and text modalities (Lpre
MMCL + Lpre

SSL).
Following CleanCLIP, we use a ResNet-50 as the model’s vision encoder and a transformer as the text encoder.
We trained the models on two image-text paired datasets:

1. Conceptual Captions 3M (CC3M) (Sharma et al., 2018): This dataset has 3M image-text paired datapoints.

2. Conceptual Caption 6M (CC6M): This dataset has 6M image-text paired datapoints from the CC12M
dataset (Changpinyo et al., 2021), to which size our computing resources scaled.

The models are trained either from scratch or finetuned from a pre-trained CLIP checkpoint (Radford et al.,
2019). We train models for 64 epochs using 8 Nvidia A100 GPUs. The initial learning rate of 1e− 3 with
cosine scheduling is used when trained from scratch and 5e− 7 when finetuned from a checkpoint. We use
AdamW optimizer with 10,000 warmup steps (Loshchilov & Hutter, 2017). Models trained with Lpre

MMCL use
a batch size of 256, whereas models trained with Lpre

MMCL + Lpre
SSL use a batch size of 128. Please refer to

Appendix A for the loss dynamics.

Poisoning Following CleanCLIP, we introduce the trigger proposed by BadNet (Gu et al., 2017) in a small
subset of the training datapoints. Specifically, we add a trigger patch of size 16 × 16 sampled from a standard
Gaussian at a random location in the image and subsequently change the image’s caption to be the adversary
chosen label, in this case “banana”. Please see Appendix J for examples of images with trigger patch and their
corresponding captions. Using the same settings as CleanCLIP, we introduce the trigger in 1,500 randomly
sampled datapoints for the CC3M dataset and 3,000 randomly sampled datapoints for the CC6M dataset (a
mere 0.05% of the training datapoints).

We also experiment with another kind of poisoning technique: label consistent poisoning. In this case, the
trigger patch (created in the manner as mentioned above) is added to the images that have the adversary
chosen label (in this case“banana”) in their captions.

Removing poison We attempt to remove poisons from pre-trained models by finetuning them on a 100K
clean image-text paired dataset using Lpre

MMCL, Lpre
SSL, and Lft

MMCL + Lft
SSL (CleanCLIP). We consider a model

to be cleaned if the ASR of that model is ≤ 5%.

4 Experiments

In this section, we expound on the pre-training details for the models, followed by their cleaning procedure
and the metrics we use to measure the model’s performance.

Metrics The models are evaluated for their Top-1 zero-shot accuracy on the Imagenet-1K validation set
(referred to as Imagenet hereafter). Each of the 1,000 classes of Imagenet is described using sentences like: ‘a
photo of a ...’, ‘a tattoo of a ...’, etc. We generate 80 such text templates for each class (see Appendix C) and
then pass them to the text encoder to produce an average text embedding for the class. During zero-shot
classification, the prediction for an image is the class whose thus computed text embedding has the highest
cosine similarity with the image embedding.

We also evaluate the attack success rate (ASR) of a model. In an apparent similarity to accuracy, the
ASR of a backdoored model is defined as the percentage of triggered images that the model classifies as
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Table 2: This table shows the original Top-1 zero-shot Imagenet validation set accuracies and remaining accuracy
after cleaning the models that were poisoned using BadNet by training from scratch. The cleaning is done using
CleanCLIP, i.e., finetuning a poisoned model with Lft

MMCL + Lft
SSL. For this table, we choose the models having the

highest accuracy and ASR ≤ 5% (successful cleaning). The original ASR values for all models are more than 99%.
Takeaway: The models trained with Lpre

MMCL maintain their original accuracy after cleaning, while the ones trained
with Lpre

MMCL + Lpre
SSL experience a huge drop relative to the starting accuracy (∼20% for model trained on CC3M

dataset and 45% for model trained on CC6M dataset) after cleaning.

Trained with Lpre
MMCL Trained with Lpre

MMCL + Lpre
SSL

Backdoor Dataset Clean Data Size Orig. Acc. Clean Acc. (ASR ≤ 5%) ↑ Orig. Acc. Clean Acc. (ASR ≤ 5%) ↑

BadNet CC3M 100K 16.00% 16.49% 17.04% 14.16%

BadNet CC6M 100K 23.76% 24.04% 23.86% 13.05%

the adversary-chosen target label. For measuring ASR, we add the trigger patch at random locations in all
Imagenet validation set images and measure the percentage of them that are classified as the target class, i.e.,
“banana”. We measure both these metrics at the end of each cleaning epoch as any model encountered during
the cleaning process is a good candidate for a cleaned model.

Poison Induction by Training from Scratch Table 2 shows the Top-1 zero-shot Imagenet validation
set accuracy for the models trained from scratch using Lpre

MMCL and Lpre
MMCL + Lpre

SSL on CC3M and CC6M
datasets. For the smaller CC3M dataset, both the models achieve an accuracy of around 16–17%, and for the
larger CC6M dataset, the models reach an accuracy of around 24%. Even though the models trained with
Lpre

MMCL + Lpre
SSL attained higher accuracy than the models trained with Lpre

MMCL alone, in order to have better
visualization of the difference in performance of CleanCLIP on the two pre-training objectives, we deliberately
choose models with similar starting accuracies. All the models, irrespective of the pre-training objective and
the training dataset, reached more than 99% ASR (see Table 3 in Appendix A), implying that poisoning just
0.05% of the dataset is enough to attain very high ASR.

Removing Poison We clean the poisoned model by finetuning it on a 100K, guaranteed to be poison-free,
image-text pairs for 20 epochs using a batch size of 128 and AdamW as the optimizer. We perform extensive
hyperparameter search and use various learning rates (as many as 8 in some experiments and 14 in others,
all with cosine scheduling and 50 warmup steps) for this process. Please refer to Appendix D for the set of
learning rates explored for the cleaning procedure. Ideally, after cleaning we would want to obtain a model
that maintains the accuracy of the original poisoned model, while getting rid of its poison, i.e., very low ASR.
We use three different loss functions for the cleaning process:

1. Lft
MMCL: CleanCLIP showed that finetuning with Lft

MMCL did not change the original model’s accuracy and
ASR, and hence is an ineffective cleaning loss. We reproduce these results for the models we trained.

2. Lft
SSL: CleanCLIP also showed that finetuning with Lft

SSL decreased the original model’s ASR at the expense
of its accuracy, and hence is also an ineffective cleaning loss. We also reproduce these results.

3. Lft
MMCL +Lft

SSL: CleanCLIP showed that finetuning with a combination of these losses decreased the original
model’s ASR while not hurting its accuracy, and hence is an effective cleaning loss. Our experiments show
that while this observation is true for the models trained with Lpre

MMCL, however it does not generalize to
the models trained with stronger pre-training objective Lpre

MMCL + Lpre
SSL. This is our key finding.

Findings from the Cleaning Procedure Figure 2 shows the scatter plot of the Top-1 zero-shot Imagenet
validation set accuracy and the ASR at the end of each cleaning epoch for the models trained on the CC6M
dataset. We defer the plots for the CC3M dataset in Appendix E.1 for space consideration. For both the
datasets, we observe that:

1. Lft
MMCL and Lft

SSL individually are ineffective cleaning losses as they cause a significant drop in accuracy for
lowering the ASR for both the pre-training objectives.

2. Lft
MMCL +Lft

SSL serves as an effective cleaning loss for the model trained with Lpre
MMCL (left plot). The cleaned

models maintain the accuracy of the original model, but they have low ASR, which we consider successful
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Figure 2: Top-1 zero-shot Imagenet validation set accuracy vs. the ASR, measured at the end of each cleaning epoch
for the models trained on the CC6M dataset. The cleaning is done by finetuning the model with the three losses
mentioned above. The red star in the top right corner (encircled in the black circle) corresponds to the model’s
starting accuracy and ASR (before cleaning). For a successful cleaning, there should be models that maintain the
model’s starting accuracy while having a low ASR (indicated by the red circle’s region in the top left). There are
several models in the red circle in the left plot (successful clean), while there are no models in the red circle in the
right plot (unsuccessful clean). Takeaway: CleanCLIP successfully cleans the model trained with Lpre

MMCL (left), while
it is ineffective for the models trained with Lpre

MMCL + Lpre
SSL (right).

cleaning. However, it does not lead to an effective cleaning of the model trained with Lpre
MMCL + Lpre

SSL (right
plot). Even the model that has the highest accuracy with a low ASR (≤ 5%) is 45% less accurate than the
original model, as shown in Figure 2.

For both datasets, our findings indicate that CleanCLIP is not effective in removing poison from the models
trained with a stronger pre-training objective Lpre

MMCL +Lpre
SSL, without a significant drop in accuracy. Table 2

gives the highest accuracy of the models which were successfully cleaned by CleanCLIP (ASR ≤ 5%).

Poison Induction by Finetuning a pre-trained model We also induce poison by finetuning a pre-trained
CLIP model (Radford et al., 2019). Concretely, we poison two models by finetuning them with Lpre

MMCL and
Lpre

MMCL + Lpre
SSL respectively, using the CC6M dataset that had 3000 poisoned datapoints. We use a learning

rate of 5e− 7 with AdamW optimizer with 10,000 warmup steps. After poisoning, these models achieve Top-1
zero-shot Imagenet set accuracy of ∼ 60%, much higher than the models trained from scratch (Figure 2). The
ASR for the model poisoned with Lpre

MMCL is 99% and for the model poisoned with Lpre
MMCL + Lpre

SSL is 90%.

Findings from the Cleaning Procedure: We clean the poisoned models using CleanCLIP, i.e., further
finetuning on a clean dataset with Lft

MMCL + Lft
SSL. Figure 3 shows the scatter plot of the Top-1 zero-shot

Imagenet validation set accuracy and the ASR at the end of each finetuning epoch for these two models. In
this case, both the models experience a drop in accuracy to obtain a low ASR (≤ 5%); however, the drop is
much higher for the model when the poison was induced using Lpre

MMCL + Lpre
SSL (33%, compared to a 17%

drop for the model when the poison was induced using Lpre
MMCL). This experiment corroborates our previous

finding that CleanCLIP is less effective when the poison is induced using a stronger pre-training objective,
irrespective of the fact whether the poison is induced via finetuning or by training from scratch.

Poisoning Induction using a Different Poison Due to space considerations, we present the results for
the effectiveness of CleanCLIP when models are poisoned using label consistent backdoors in Appendix F.
We observe that similar to the case of poisoning with BadNet, CleanCLIP is much less effective when the
poison is induced using Lpre

MMCL +Lpre
SSL (16% loss in accuracy), compared to the case when it is induced using

Lpre
MMCL (10% gain in accuracy).
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Figure 3: Top-1 zero-shot Imagenet validation set accuracy vs. the ASR, measured at the end of each cleaning epoch
for the models poisoned by finetuning a CLIP pre-trained checkpoint on the CC6M dataset. The cleaning is done by
finetuning the poisoned model with Lft

MMCL + Lft
SSL. The red star in the top right corner (encircled in the black circle)

corresponds to the original model’s accuracy and ASR (before cleaning). For a successful cleaning, there should be
models that maintain the original model’s accuracy while having a low ASR (indicated by the red circle in the top
left). Takeaway: CleanCLIP is unable to successfully clean both the models; however, it performs much worse for
the model poisoned with Lpre

MMCL + Lpre
SSL (right).

Dependence of the Stopping Criterion on the Pre-training Objective In the previous section, the
ability to find a model with high accuracy and low ASR is considered a success for the CleanCLIP approach.
However, in practice, one would not be aware of the ASR of the model being cleaned and, therefore, would
not know when to stop the cleaning process. To highlight this practicality concern, we show the multiple
cleaning trajectories for models trained using different pre-training objectives in Figure 4.

Figure 4a shows the trajectories of three cleaning runs with different learning rates for a model trained using
Lpre

MMCL on the CC6M dataset. We observe that in all the three runs, the trajectory converges to a region
of high accuracy and low ASR (top left corner), and the trajectories are smooth. This indicates that a
practitioner can clean this model by finetuning the poisoned model for as long as their resources allow, and
choose the model at the end of the finetuning process. They will likely obtain a model with high accuracy
and low ASR, i.e., a successfully cleaned model.

Figure 4b shows the trajectories of three cleaning runs with different learning rates for a model trained using
Lpre

MMCL +Lpre
SSL on the CC6M dataset. We observe that in all three runs, the successfully cleaned model (high

accuracy with a low ASR (≤ 5%)) is an intermediate model in the trajectory, and not the model at the end
of the process. With continued finetuning, the model can both lose accuracy and gain ASR, both of which
are undesirable. Therefore, it is difficult for a practitioner to discern when to stop the finetuning process to
obtain a clean model.

Therefore, the practicality of using CleanCLIP also depends on the pre-training objective of the model.
Appendix K shows the cleaning trajectories for all explored hyperparameters.

Dependence of CleanCLIP on the Ideal Condition of the Dataset CleanCLIP assumes that the
cleaning data is entirely free of poisoned datapoints. In practice, this assumption can be violated even when
considerable care is taken to ensure it. To simulate this real-world situation, we clean models using data with
a few poisoned datapoints, specifically 5 and 10 poisoned datapoints in the 100K cleaning datapoints. Note
that these datasets are still, respectively, 10× and 5× cleaner than the original training dataset, illustrating a
situation where the cleaning data is much cleaner than the training dataset but still not perfect.

8



Under review as submission to TMLR

0 20 40 60 80 100
ASR (in %)

19

20

21

22

23

24

25

To
p-

1 
Im

ag
eN

et
 Z

er
os

ho
t a

cc
ur

ac
y 

(in
 %

)

0 20 40 60 80 100
ASR (in %)

0 20 40 60 80 100
ASR (in %)

Fin
et

un
in

g 
Ep

oc
hs

(a) Finetuning trajectory of three runs with different learning rates for the model pre-trained with Lpre
MMCL. The trajectories are smooth

and end up in high accuracy and low ASR regime at the end of finetuning process.
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(b) Finetuning trajectory of three runs with different learning rates for the model pre-trained with Lpre
MMCL + Lpre

SSL. The trajectories are
not smooth and increased finetuning can lead to both decreased accuracy and higher ASR.

Figure 4: Finetuning trajectories of models with different pre-training objectives. Successive finetuning epochs are
shown with increasing size of the markers and intensity of the connecting line. The red star in the top right corner
(encircled in the black circle) corresponds to the original model’s accuracy and ASR. Takeaway: Models trained with
Lpre

MMCL converge to a region of high accuracy and low ASR as we continue to finetune. On the other hand, models
trained with Lpre

MMCL + Lpre
SSL fail to converge to a region of high accuracy and low ASR, and continued finetuning can

lead to both decreased accuracy and higher ASR. This makes determining the stopping criterion for the cleaning
process for the latter models challenging.
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Figure 5: Top-1 zero-shot Imagenet validation set accuracy v/s the ASR during the cleaning process for the two
models. The finetuning is done with Lft

MMCL + Lft
SSL. We measure accuracy and ASR at the end of each epoch. The

red star in the top right corner (encircled in the black circle) corresponds to the original model’s accuracy and ASR.
For a successful cleaning, there should be models that maintain the original model’s accuracy while having a low
ASR (indicated by the red circle). Takeaway: Even having 5 poisons in the cleaning dataset (i.e. 0.005% of the
dataset, which is 10× cleaner than the pre-training data) hurts the cleaning process for both pre-training objectives,
and Lpre

MMCL + Lpre
SSL trained models are hurt worse.

Figure 5 shows the scatter plot of the Top-1 zero-shot Imagenet validation set accuracy and the ASR at
the end of each cleaning epoch when two models trained from scratch on the CC6M dataset, one using
Lpre

MMCL and the other using Lpre
MMCL + Lpre

SSL is cleaned by finetuning on this slightly poisoned dataset with
Lft

MMCL + Lft
SSL. We observe that having just 5 poisoned datapoints in the cleaning dataset severely weakens

CleanCLIP for both the pre-training objectives.
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For models pre-trained with Lpre
MMCL, we found cleaned models that maintain the original model’s accuracy

and achieve around 30-50% ASR. On the other hand, for the models pre-trained with the stronger objective
Lpre

MMCL + Lpre
SSL, having just 5 poisoned examples renders the cleaning procedure completely ineffective. The

models pre-trained on the CC6M dataset lose about 80% of the original model’s accuracy to obtain a low
ASR (≤ 5%), and no model has an ASR lower than 90% for the CC3M pre-trained model (Figure 10).

Takeaways Our experiments highlight the fact that a stronger pre-training objective also affects the strength
of poison induction, making the cleaning process difficult. Also, for a practitioner, when pre-training with a
stronger objective, the decision of when to stop finetuning becomes non-trivial, as we show that the model at
the end of the cleaning procedure is usually not the one with the lowest ASR and the best accuracy. The
situation is further exacerbated when we even slightly relax the assumption of 100% poison-free cleaning
data, which can be too stringent in practice.

5 Analysis of the Stronger Pre-training Objective

We now perform several analysis experiments to understand the reason behind the difference in the poison
removal ability of CleanCLIP across the two pre-training objectives. We also experiment with other methods
to attempt to remove the poison when induced using Lpre

MMCL + Lpre
SSL.

Cleaning using an Objective distinct from Pre-training CleanCLIP successfully cleans the models
trained with Lpre

MMCL by finetuning with Lft
MMCL + Lft

SSL. However, it was unsuccessful for the model trained
with Lpre

MMCL + Lpre
SSL. A plausible reason for this behavior could be that we are using the same pre-training

and cleaning objective in the latter case, and CleanCLIP might be able to successfully clean the latter
models if we were to clean it with a loss objective that is distinct from its pre-training objective. To test this
hypothesis, we clean the models trained with Lpre

MMCL + Lpre
SSL by finetuning with Lft

MMCL + Lft
SSL + Lft

DeepClust,
where Lft

DeepClust is an additional deep clustering objective (Caron et al., 2018) on the vision encoder.

In deep clustering, we first obtain a pseudo-label for each image. We obtain the pseudo-label for an image in
two ways: a) by classifying each image into one of the 1,000 Imagenet classes using powerful models such as
SigLIP ViT-L/14 (zero-shot Imagenet accuracy of 83.08%) (Zhai et al., 2023), and b) performing a 1,000-way
clustering on feature space of our trained vision encoder, using FAISS (Johnson et al., 2019). Note that
the use of SigLIP ViT-L/14 for obtaining pseudo-labels is a cheating experiment for a deep clustering task;
however, this experiment is solely performed to probe the upper bound of the poison removal that can be
obtained when using deep clustering approaches.
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Figure 6: Top-1 zero-shot Imagenet validation set accuracy vs. the ASR during the cleaning process for the
Lpre

MMCL + Lpre
SSL pre-trained model on the CC6M dataset. The finetuning is done with Lft

MMCL + Lft
SSL + Lft

DeepClust.
Takeaway: Adding Lft

DeepClust is unable to successfully remove the poison from models pre-trained using the strong
objective, indicating that having distinct pre-training and cleaning objectives does not ensure removal of poison.

In the latter case, when we use clustering-based pseudo-label assignment for every image in the cleaning
dataset, we learn to predict the assigned pseudo-label (ŷ) with the help of a linear classifier on top of the

10



Under review as submission to TMLR

vision encoder using cross-entropy loss (LXent). Let W ∈ Rd×1000 be the linear classifier mapping visual
features (Rd) to one of the 1000 pseudo-labels. For a given datapoint (Ij , Tj) with assigned pseudo-label ŷj ,
deep clustering’s objective becomes

Lft
DeepClust(fI , W ; Ij , ŷj) = LXent(W T fI(Ij); ŷj), (3)

and therefore overall objective becomes Lft
MMCL + Lft

SSL + Lft
DeepClust. Following Caron et al. (2018), we

re-initialize classifier head W every time we re-compute pseudo-labels. We finetune the model trained using
Lpre

MMCL + Lpre
SSL on the CC6M dataset for 10 epochs using 8 different learning rates for both the clustering

techniques (see Appendix D for hyperparameter details) and measure the Top-1 zero-shot Imagenet accuracy
and ASR at the end of each finetuning epoch.

Figure 6 shows the scatter plot of the Top-1 zero-shot Imagenet validation set accuracy and the ASR for
this experiment. We observe that adding deep clustering does not successfully remove the poison from the
model. This experiment shows that the ineffectiveness of CleanCLIP in cleaning the model trained with
the stronger objective is not just due to the same pre-training and cleaning objectives but due to stronger
poison induction. Had the difference between the pre-training and finetuning objectives been the reason for
CleanCLIP’s success, then this DeepClustering experiment could have successfully cleaned the model.

Poison Removal using Heavy Regularization In this section, we attempt to remove the poison induced
using Lpre

MMCL + Lpre
SSL with heavy regularization. Zhu et al. (2023) proposed heavy regularization as an

approach to remove backdoors from vision and language models. To evaluate the efficacy of this approach,
we finetune these models with 9 different regularization weights for 10 epochs using 8 different learning rates
for each regularization weight on 100K image-text pairs (see Appendix D for hyperparameter details). The
regularization loss is added to three different loss objectives during the finetuning process: a) Lft

MMCL, b)Lft
SSL,

and c) Lft
MMCL + Lft

SSL.

Figure 7 shows the scatter plot of the Top-1 zero-shot Imagenet validation set accuracy and the ASR at the
end of each finetuning epoch. We observe that no hyperparameter combination can successfully remove the
poison, which shows that simply adding regularization cannot remove the strongly induced poison.
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Figure 7: Top-1 zero-shot Imagenet validation set accu-
racy vs. the ASR during the cleaning process. Take-
away: Using regularization with any hyperparameter
combinations is unable to remove the poison from models
trained using Lpre

MMCL + Lpre
SSL.
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Figure 8: Top-1 zero-shot Imagenet validation set ac-
curacy vs. the ASR during the cleaning process post
shrinking and perturbing the weights. Takeaway: The
shrink and perturb technique is unable to remove poison
from the model that is trained using Lpre

MMCL + Lpre
SSL.

Poison Removal using Shrink and Perturb In this section, we attempt to remove the poison using the
shrink and perturb technique. Ash & Adams (2020) proposed shrink and perturb technique to improve the
accuracy of a model when finetuned for a task. CleanCLIP also cleans a model by finetuning, and therefore,
it could benefit from this technique. In this technique, a small noise is added to the model weights before
starting finetuning, θ0 ← λθ0 + p0, where p ∼ N

(
0, σ2)

and λ ∈ (0, 1). To evaluate whether this approach
can help in removing the poison from a model trained using Lpre

MMCL + Lpre
SSL, we add a small noise to all its

weights. While the choice of noise scale (σ) and shrinking parameter (λ) is a hyperparameter, we experiment
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with 5 values of σ for 15 values of λ. To determine which model to clean amongst the 75 possible models
obtained from shrink and perturb described above, we measure the Top-1 zero-shot Imagenet validation set
accuracy and the ASR of the models with noised weights, and selected model with the highest accuracy whose
ASR was lower than 15% for cleaning. We clean the selected model by finetuning it using 8 learning rates for
20 epochs on 100K image-text pairs. Figure 8 shows the accuracy and ASR at the end of each finetuning
epoch. We observe that even this approach is unable to successfully remove the poison from the models.

Ablation on Hyperparameters We also perform ablation experiments to see the impact of hyperparameters
on the ability of CleanCLIP to remove poison from the Lpre

MMCL + Lpre
SSL pre-trained model. In particular, we

study the impact of the size of the cleaning dataset, the number of finetuning epochs, and the weightage of
Lft

SSL. Appendix G reports the metrics when the finetuning is done on a dataset that is twice the size of the
cleaning dataset used in the previous section. Appendix H reports the metrics when the finetuning is done
for up to 100 epochs, i.e., 5× longer than in the previous section. Appendix I reports the accuracy and ASR
metrics when the finetuning is done with higher weight to the Lft

SSL loss. While changing the hyperparameters
helps improve the Pareto-frontier curve, none of the three ablations can successfully remove the strongly
induced poison.

Takeaways These experiments demonstrate that making the pre-training and finetuning objectives distinct
from each other and perturbation techniques like heavy regularization (Zhu et al., 2023) and shrink-and-perturb
(Ash & Adams, 2020) are not enough to remove the strongly induced poison. Moreover, we observe that
while doing a more fine-grained search on different hyperparameters helps slightly improve the Pareto-frontier
curve, none of the hyperparameter ablations can successfully remove the poison. Since removing the poison
from such a model is an open research problem, a practitioner who is engaged in training models using
web-curated data should consider training their model with only Lpre

MMCL so that they can clean their model
on a carefully curated image-text pair dataset to remove potential backdoors from it, even when there are a
few poisoned examples in the finetuning dataset.

6 Conclusions

Through our extensive hyperparameter search and ablation experiments, we unveil a critical limitation
of the current state-of-the-art poison mitigation technique for multimodal models, CleanCLIP. It fails to
effectively remove backdoor poisoning when a model is trained using stronger objectives like the combination
of multimodal contrastive learning (MMCL) and intramodal self-supervised learning (SSL). This objective is
common in popular approaches like SLIP (Mu et al., 2022) and has demonstrated superior accuracy over
training with only the MMCL objective. Our experiments show that this vulnerability persists irrespective of
the scale of the pre-training and the cleaning datasets, irrespective of the manner of poison induction (from
scratch or by finetuning), and irrespective of the specific backdoor attack.

Particularly concerning is the unstable cleaning trajectory in models trained using the stronger objective
(Figure 4b). Often unaware of the specific backdoor attack, practitioners face challenges in determining the
optimal point to halt the cleaning process. This instability can lead to suboptimal models, as continued
finetuning can decrease accuracy and increase attack success rate (ASR). Furthermore, our findings highlight
the critical assumption of a completely poison-free cleaning dataset for CleanCLIP’s effectiveness, an
assumption that is rarely met in practical scenarios. This becomes particularly problematic with the use of
stronger pre-training objectives. The models trained with the simpler MMCL objective evade both these issues
by having stable cleaning trajectories and amenability to poison reduction even under non-ideal conditions.

Given these insights, we urge practitioners to consider training their models using the simpler MMCL
objective. Even though this might slightly hurt the accuracy, it significantly enhances its amenability to
remove backdoors. Our recommendation would also circumvent the issue of knowing when to halt the cleaning
procedure, as more finetuning epochs would not hurt the model’s accuracy and ASR. Further, it will also be
beneficial when cleaning data is not entirely poison-free. Our work underscores the formidable challenge of
defending models against backdoor attacks, an open research problem. We invite the community to develop
robust defense methods against stronger pre-training objectives.
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Table 3: This table shows the original Top-1 zero-shot Imagenet validation set accuracy and ASR for the models
trained with Lpre

MMCL and Lpre
MMCL + Lpre

SSL on the CC3M and CC6M datasets. These models are the input to CleanCLIP
approach to remove their poison. Takeaway: The models trained with Lpre

MMCL + Lpre
SSL achieve higher accuracy than

their counterparts trained with Lpre
MMCL solely (except when poisoned by finetuning). Adding BadNet poison to a

mere 0.05% of the training data achieves almost a 100% ASR when trained from scratch and almost 90% ASR when
induced by finetuning.

Poison Induction Backdoor Objective Dataset

CC3M CC6M

Accuracy (↑) ASR (↓) Accuracy (↑) ASR (↓)

From Scratch BadNet Lpre
MMCL 16.00% 99.88% 23.76% 99.98%

From Scratch BadNet Lpre
MMCL + Lpre

SSL 17.04% 99.03% 23.86% 99.45%

From Scratch Label-Consistent Lpre
MMCL – – 22.96% 88.27%

From Scratch Label-Consistent Lpre
MMCL + Lpre

SSL – – 23.09% 88.01%

Finetuning from Ckpt BadNet Lpre
MMCL – – 60.30% 99.20%

Finetuning from Ckpt BadNet Lpre
MMCL + Lpre

SSL – – 59.81% 90.24%

A Pre-Training Details

We train all the models on 8 Nvidia A100 GPUs for 64 epochs. We use an initial learning rate of 0.001 for
the models trained from scratch, and for the models where poison is induced by finetuning from a pre-trained
checkpoint, we use an initial learning rate of 5e− 7. We use cosine scheduling and 10000 warmup steps with
AdamW optimizer (Loshchilov & Hutter, 2017) for training. The model trained with Lpre

MMCL uses a batch
size of 256, whereas the model trained with the Lpre

MMCL + Lpre
SSL uses a batch size of 128.

We show the change in accuracy and ASR with the training epochs for the model trained from scratch with
BadNet attack using Lpre

MMCL in Figure 16 and using Lpre
MMCL + Lpre

SSL in Figure 17. We use early-stopping
for the model trained with Lpre

MMCL and choose the model with the highest accuracy. For Lpre
MMCL + Lpre

SSL
pre-training, we choose the model that has the closest accuracy to the Lpre

MMCL trained model. Table 3 shows
the accuracy and the ASR for all the models we select in this paper for poison removal.

B Performance of the Pre-trained Models

Table 3 shows the Top-1 zero-shot Imagenet Validation set accuracy and the ASR of models that were selected
for both the pre-training objectives.

C Templates for Text-Embedding Computation

‘a bad photo of a {class }.’, ‘a photo of many {class }.’, ‘a sculpture of a {class
}.’, ‘a photo of the hard to see {class }.’, ‘a low resolution photo of the {class
}.’, ‘a rendering of a {class }.’, ‘graffiti of a {class }.’, ‘a bad photo of the {
class }.’, ‘a cropped photo of the {class }.’, ‘a tattoo of a {class }.’, ‘the
embroidered {class }.’, ‘a photo of a hard to see {class }.’, ‘a bright photo of a {
class }.’, ‘a photo of a clean {class }.’, ‘a photo of a dirty {class }.’, ‘a dark
photo of the {class }.’, ‘a drawing of a {class }.’, ‘a photo of my {class }.’, ‘the
plastic {class }.’, ‘a photo of the cool {class }.’, ‘a close -up photo of a {class
}.’, ‘a black and white photo of the {class }.’, ‘a painting of the {class }.’, ‘a
painting of a {class }.’, ‘a pixelated photo of the {class }.’, ‘a sculpture of the
{class }.’, ‘a bright photo of the {class }.’, ‘a cropped photo of a {class }.’, ‘a
plastic {class }.’, ‘a photo of the dirty {class }.’, ‘a jpeg corrupted photo of a {
class }.’, ‘a blurry photo of the {class }.’, ‘a photo of the {class }.’, ‘a good
photo of the {class }.’, ‘a rendering of the {class }.’, ‘a {class} in a video game
.’, ‘a photo of one {class }.’, ‘a doodle of a {class }.’, ‘a close -up photo of the
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{class }.’, ‘a photo of a {class }.’, ‘the origami {class }.’, ‘the {class} in a
video game.’, ‘a sketch of a {class }.’, ‘a doodle of the {class }.’, ‘a origami {
class }.’, ‘a low resolution photo of a {class }.’, ‘the toy {class }.’, ‘a rendition

of the {class }.’, ‘a photo of the clean {class }.’, ‘a photo of a large {class }.’,
‘a rendition of a {class }.’, ‘a photo of a nice {class }.’, ‘a photo of a weird {

class }.’, ‘a blurry photo of a {class }.’, ‘a cartoon {class }.’, ‘art of a {class
}.’, ‘a sketch of the {class }.’, ‘a embroidered {class }.’, ‘a pixelated photo of a

{class }.’, ‘itap of the {class }.’, ‘a jpeg corrupted photo of the {class }.’, ‘a
good photo of a {class }.’, ‘a plushie {class }.’, ‘a photo of the nice {class }.’, ‘
a photo of the small {class }.’, ‘a photo of the weird {class }.’, ‘the cartoon {
class }.’, ‘art of the {class }.’, ‘a drawing of the {class }.’, ‘a photo of the
large {class }.’, ‘a black and white photo of a {class }.’, ‘the plushie {class }.’,
‘a dark photo of a {class }.’, ‘itap of a {class }.’, ‘graffiti of the {class }.’, ‘a

toy {class }.’, ‘itap of my {class }.’, ‘a photo of a cool {class }.’, ‘a photo of a
small {class }.’, ‘a tattoo of the {class }.’

D Hyperparameter Details

In this section we provide details of the hyperparameters we used for the cleaning experiments.

D.1 Cleaning of the Model Pre-trained on CC3M dataset using MMCL

Cleaning Epochs: 20
Learning rates (13 values): {1e-5, 4e-5, 8e-5, 1e-4, 1.5e-4, 2e-4, 2.5e-4, 3e-4, 3.5e-4, 4e-4, 8e-4, 1e-3, 4e-3}
MMCL weight: 1
SSL weight: 1
Size of the Cleaning Dataset: 1,00,000

D.2 Cleaning of the Model Pre-trained on CC3M dataset using MMCL and SSL

Cleaning Epochs: 20
Learning rates (13 values): {1e-5, 4e-5, 8e-5, 1e-4, 1.5e-4, 2e-4, 2.5e-4, 3e-4, 3.5e-4, 4e-4, 8e-4, 1e-3, 4e-3}
MMCL weight: 1
SSL weight: 1
Size of the Cleaning Dataset: 1,00,000

D.3 Cleaning of the Model Pre-trained on CC6M dataset using MMCL

Cleaning Epochs: 20
Learning rates (12 values): {1e-9, 5e-9, 1e-8, 5e-8, 1e-7, 3e-7, 7e-7, 1e-6, 3e-6, 7e-6, 1e-5, 3e-5}
MMCL weight: 1
SSL weight: 1
Size of the Cleaning Dataset: 1,00,000

D.4 Cleaning of the Model Pre-trained on CC6M dataset using MMCL and SSL

Cleaning Epochs: 20
Learning rates (23 values): {1e-9, 5e-9, 1e-8, 5e-8, 1e-7, 3e-7, 7e-7, 1e-6, 3e-6, 7e-6, 1e-5, 4e-5, 5e-5, 6e-5, 7e-5,
9e-5, 1e-4, 3e-4, 4e-4, 5e-4, 6e-4, 1e-3, 3e-3}
MMCL weight: 1
SSL weight: 1
Size of the Cleaning Dataset: 1,00,000
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D.5 Cleaning of the Model where Poison is induced via Finetuning with MMCL on CC6M dataset

Cleaning Epochs: 20
Learning rates (69 values): {5e-05, 4.9e-05, 4.8e-05, 4.7e-05, 4.6e-05, 4.5e-05, 4.4e-05, 4.3e-05, 4.25e-05, 4.2e-05,
4.1e-05, 4e-05, 3.9e-05, 3.8e-05, 3.75e-05, 3.7e-05, 3.6e-05, 3.5e-05, 3.4e-05, 3.3e-05, 3.2e-05, 3.1e-05, 3e-05,
2.9e-05, 2.8e-05, 2.7e-05, 2.6e-05, 2.5e-05, 2.4e-05, 2.3e-05, 2.2e-05, 2.1e-05, 2e-05, 1.9e-05, 1.8e-05, 1.7e-05,
1.6e-05, 1.5e-05, 1.4e-05, 1.3e-05, 1.2e-05, 1.1e-05, 1e-05, 9e-06, 8e-06, 7e-06, 6e-06, 5e-06, 4.9e-06, 4.75e-06,
4.5e-06, 4.25e-06, 4e-06, 3.75e-06, 3.5e-06, 3.25e-06, 3e-06, 2.75e-06, 2.5e-06, 2.25e-06, 2e-06, 1.75e-06, 1.5e-06,
1.25e-06, 1e-06, 5e-07, 1e-07, 5e-08, 1e-08}
MMCL weight: 1
SSL weight: 1
Size of the Cleaning Dataset: 1,00,000

D.6 Cleaning of the Model where Poison is induced via Finetuning with MMCL + SSL on CC6M
dataset

Cleaning Epochs: 20
Learning rates (85 values): {0.005, 0.001, 0.0005, 0.0001, 5e-05, 5e-05, 4.9e-05, 4.8e-05, 4.75e-05, 4.7e-05,
4.6e-05, 4.5e-05, 4.5e-05, 4.4e-05, 4.3e-05, 4.25e-05, 4.2e-05, 4.1e-05, 4e-05, 4e-05, 3.9e-05, 3.8e-05, 3.75e-05,
3.7e-05, 3.6e-05, 3.5e-05, 3.5e-05, 3.4e-05, 3.3e-05, 3.25e-05, 3.2e-05, 3.1e-05, 3e-05, 3e-05, 2.9e-05, 2.8e-05,
2.75e-05, 2.7e-05, 2.6e-05, 2.5e-05, 2.5e-05, 2.4e-05, 2.3e-05, 2.25e-05, 2.2e-05, 2.1e-05, 2e-05, 2e-05, 1.9e-05,
1.8e-05, 1.75e-05, 1.7e-05, 1.6e-05, 1.5e-05, 1.5e-05, 1.4e-05, 1.4e-05, 1.3e-05, 1.3e-05, 1.2e-05, 1.2e-05, 1.1e-05,
1.1e-05, 1e-05, 1e-05, 9e-06, 9e-06, 8e-06, 8e-06, 7e-06, 7e-06, 6e-06, 6e-06, 5e-06, 5e-06, 1e-06, 1e-06, 5e-07,
5e-07, 1e-07, 1e-07, 5e-08, 5e-08, 1e-08, 1e-08}
MMCL weight: 1
SSL weight: 1
Size of the Cleaning Dataset: 1,00,000

D.7 Cleaning of the Model with Label Consistent Poisoning trained with MMCL on CC6M dataset

Cleaning Epochs: 20
Learning rates (44 values): {5e-05, 4.75e-05, 4.25e-05, 4e-05, 3.8e-05, 3.75e-05, 3.7e-05, 3.6e-05, 3.5e-05,
3.4e-05, 3.3e-05, 3.2e-05, 3.1e-05, 3e-05, 2.9e-05, 2.8e-05, 2.7e-05, 2.6e-05, 2.5e-05, 2.4e-05, 2.3e-05, 2.2e-05,
2.1e-05, 2e-05, 1.9e-05, 1.8e-05, 1.7e-05, 1.6e-05, 1.5e-05, 1.4e-05, 1.3e-05, 1.2e-05, 1.1e-05, 1e-05, 9e-06, 8e-06,
7e-06, 6e-06, 5e-06, 1e-06, 5e-07, 1e-07, 5e-08, 1e-08}
MMCL weight: 1
SSL weight: 1
Size of the Cleaning Dataset: 1,00,000

D.8 Cleaning of the Model with Label Consistent Poisoning trained with MMCL + SSL on CC6M
dataset

Cleaning Epochs: 20
Learning rates (71 values): {0.007, 0.006, 0.005, 0.004, 0.003, 0.002, 0.001, 0.0009, 0.0008, 0.0007, 0.0006,
0.0005, 0.0004, 0.0003, 0.0002, 0.00018, 0.00017, 0.00016, 0.00014, 0.00013, 0.00012, 0.00011, 0.0001, 9e-05,
8e-05, 7e-05, 6e-05, 5e-05, 4.75e-05, 4.25e-05, 4e-05, 3.8e-05, 3.75e-05, 3.7e-05, 3.6e-05, 3.5e-05, 3.4e-05, 3.3e-05,
3.2e-05, 3.1e-05, 3e-05, 2.9e-05, 2.8e-05, 2.7e-05, 2.6e-05, 2.5e-05, 2.4e-05, 2.3e-05, 2.2e-05, 2.1e-05, 2e-05,
1.9e-05, 1.8e-05, 1.7e-05, 1.6e-05, 1.5e-05, 1.4e-05, 1.3e-05, 1.2e-05, 1.1e-05, 1e-05, 9e-06, 8e-06, 7e-06, 6e-06,
5e-06, 1e-06, 5e-07, 1e-07, 5e-08, 1e-08}
MMCL weight: 1
SSL weight: 1
Size of the Cleaning Dataset: 1,00,000
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D.9 Cleaning of the Model Pre-trained on the CC3M dataset under Non-Ideal Conditions

Cleaning Epochs: 20
Learning rates (8 values): {1e-7, 3e-7, 7e-7, 1e-6, 3e-6, 7e-6, 1e-5, 3e-5}
MMCL weight: 1
SSL weight: 1
Size of the Cleaning Dataset: 1,00,000

D.10 Cleaning of the Model Pre-trained on the CC6M dataset under Non-Ideal Conditions

Cleaning Epochs: 20
Learning rates (19 values): {1e-8, 5e-8, 1e-7, 3e-7, 5e-7, 7e-7, 1e-6, 3e-6, 5e-6, 7e-6, 1e-5, 3e-5, 5e-5, 1e-4, 3e-4,
5e-4, 7e-4, 1e-4, 3e-4}
MMCL weight: 1
SSL weight: 1
Size of the Cleaning Dataset: 1,00,000

D.11 Cleaning of the Model Pre-trained on the CC6M dataset using an Objective distinct from
Pre-training

Cleaning Epochs: 20
Learning rates (9 values): {5e-6, 1e-5, 5e-5, 1e-4, 2e-4, 3e-4, 4e-4, 5e-4, 1e-3}
MMCL weight: 1
SSL weight: 1
Deep Clustering Loss Weight (8 values): {0.1, 0.5, 1, 2, 5, 10, 20, 50}
Size of the Cleaning Dataset: 1,00,000

D.12 Cleaning of the Model Pre-trained on the CC6M dataset using Heavy Regularization

Cleaning Epochs: 20
Learning rates (8 values): {3e-6, 7e-6, 1e-5, 3e-5, 1e-4, 5e-4, 1e-3, 5e-3}
MMCL weight: 1
SSL weight: 1
ℓ2 weight (9 values): {0.2, 0.5, 1, 2, 5, 10, 20, 50, 100}
Size of the Cleaning Dataset: 1,00,000

D.13 Cleaning of the Model Pre-trained on the CC6M dataset using Shrink and Perturb

Cleaning Epochs: 20
Learning rates (9 values): {1e-5, 2e-5, 4e-5, 5e-5, 7e-5, 9e-5, 1e-4, 2e-4, 1e-3}
MMCL weight: 1
SSL weight: 1
Shrink λ (17 values): {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.92, 0.93, 0.95, 0.96, 0.97, 0.98, 0.99, 1}
Perturb p (15 values): {1e-5, 1e-4, 1e-3, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.4, 0.8, 1, 2, 3, 4}
Size of the Cleaning Dataset: 1,00,000

D.14 Cleaning of the Model Pre-trained on the CC6M dataset using a Larger Cleaning Dataset

Cleaning Epochs: 20
Learning rates (14 values): {1e-9, 5e-9, 1e-8, 5e-8, 1e-7, 3e-7, 7e-7, 1e-6, 3e-6, 7e-6, 1e-5, 3e-5, 1e-4, 1e-3}
MMCL weight: 1
SSL weight: 1
Size of the Cleaning Dataset: 2,00,000
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D.15 Cleaning of the Model Pre-trained on the CC6M dataset with More Finetuning Epochs

Cleaning Epochs (2 values): 50, 100
Learning rates (13 values): {1e-5, 2e-5, 3e-5, 4e-5, 5e-5, 6e-5, 7e-5, 9e-5, 1e-4, 2e-4, 3e-4, 4e-4, 5e-4}
MMCL weight: 1
SSL weight: 1
Size of the Cleaning Dataset: 1,00,000

D.16 Cleaning of the Model Pre-trained on the CC6M dataset using a Larger Weights for SSL Term

Cleaning Epochs: 20
Learning rates (4 values): {5e-5, 1e-4, 5e-4, 1e-3}
MMCL weight: 1
SSL weight (4 values): {2, 4, 6, 8}
Size of the Cleaning Dataset: 1,00,000

E CC3M Results

E.1 Findings for the Models trained on the CC3M Dataset

20% drop

Figure 9: Top-1 zero-shot Imagenet validation set accuracy vs. the ASR, measured at the end of each cleaning epoch
for the models pre-trained on the CC3M dataset. The finetuning is done with each of the three losses as mentioned
above. The red star in the top right corner (encircled in the black circle) corresponds to the original model’s accuracy
and ASR. For a successful cleaning, there should be models that maintain the original model’s accuracy while having a
low ASR (indicated by the red circle). Takeaway: CleanCLIP successfully cleans the model pre-trained with Lpre

MMCL
(left), while it fails for the model pre-trained with Lpre

MMCL + Lpre
SSL (right).

Figure 9 shows the scatter plot of the Top-1 zero-shot Imagenet-1K validation set accuracy and the ASR of
the models at the end of each cleaning epoch for the models pre-trained on the CC3M dataset. We observe
that:

1. Lft
MMCL and Lft

SSL individually are ineffective cleaning losses as they cause a significant drop in accuracy for
lowering the ASR for both the pre-training objectives.

2. Lft
MMCL + Lft

SSL serves as an effective cleaning loss for the model pre-trained with Lpre
MMCL (left plot). The

cleaned models maintain the accuracy of the original model while getting a low ASR, which is successful
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Figure 10: Scatter plot of the Top-1 zero-shot Imagenet validation set accuracy vs. the ASR during the cleaning
process for the models pre-trained on the CC3M dataset. The finetuning is done with Lft

MMCL + Lft
SSL. We measure

accuracy and ASR at the end of each epoch. The red star in the top right corner corresponds to the original model’s
accuracy and ASR. For a successful cleaning, there should be models that maintain the original model’s accuracy
while having a low ASR (indicated by the red circle). Takeaway: Even having 5 poisons in the cleaning dataset
(i.e. 0.005% of the dataset, which is 10× cleaner than the pre-training data) hurts the cleaning process for both
pre-training objectives, and Lpre

MMCL + Lpre
SSL pre-trained models are hurt worse.

clean. However, it does not lead to an effective cleaning of the model pre-trained with Lpre
MMCL + Lpre

SSL. The
models with low ASR (≤ 5%) lose about 20% of the original model’s accuracy.

E.2 Findings for the Models trained on the CC3M Dataset when Cleaning under Non-ideal Conditions

Figure 10 shows the scatter plot of the Top-1 zero-shot Imagenet validation set accuracy and the ASR
at the end of each cleaning epoch for the models pre-trained on the CC3M dataset. We only show the
models finetuned with Lft

MMCL + Lft
SSL. We observe that having just 5 poisoned datapoints in the finetuning

dataset severely lessens the effectiveness of CleanCLIP for both the pre-training objectives. However, for the
models pre-trained with just Lpre

MMCL, we found cleaned models that maintain the original model’s accuracy
and get around 30-50% ASR. On the other hand, for the models pre-trained with the stronger objective
Lpre

MMCL + Lpre
SSL, having just 5 poisoned examples renders the cleaning procedure completely ineffective. No

model has an ASR lower than 90% for this model.

F Effectiveness of CleanCLIP when Poison is Induced using a Different Backdoor

In this experiment, we poison models using a different kind of backdoor: label consistent backdoor. In this
backdoor, we add a trigger patch to an image whose caption contains the adversary chosen label, in our
experiment “banana”. Therefore, in this case, the adversary does not need to change the labels of the poisoned
datapoints. Similar to the previous experiments, we trained two models, one using Lpre

MMCL and the other
using Lpre

MMCL + Lpre
SSL on the CC6M dataset that had 3000 label consistent poisoned datapoints. We train

the models from scratch using a starting learning rate of 1e− 3 using cosine scheduling with 10,000 warmup
steps with AdamW optimizer.

After training the models, we chose two models that had similar accuracy and cleaned them using CleanCLIP,
i.e., finetuned them using a clean dataset of 100K image-text pairs using Lft

MMCL +Lft
SSL, using several learning

rates (refer to Appendix D for hyperparameter details). We measure the Top-1 Imagenet validation set
accuracy and ASR for the models at the end of each cleaning epoch and plot the scatter plot for the two
metrics in Figure 11.

We observe that similar to BadNet poisoning, CleanCLIP is much more effective for the model trained with
the simpler Lpre

MMCL objective. The model trained with Lpre
MMCL + Lpre

SSL lose 16% accuracy compared to the
model trained with Lpre

MMCL that gains 10% accuracy, to obtain a model with a low ASR (≤ 5%).
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Figure 11: Scatter plot of the Top-1 zero-shot Imagenet validation set accuracy vs. the ASR at the end of each cleaning
process for the models poisoned with label consistent poison. The finetuning is done with Lft

MMCL + Lft
SSL. We measure

the accuracy and ASR at the end of each finetuning epoch. The red star in the top right corner (encircled in the black
circle) corresponds to the original model’s accuracy and ASR. For a successful clean, there should be models that
maintain the original model’s accuracy while having a low ASR (indicated by the red circle). Takeaway: CleanCLIP
is much more effective for the model trained with Lpre

MMCL (left) than for the model trained with Lpre
MMCL + Lpre

SSL (right).
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Figure 12: The scatter plot of the Top-1 zero-shot Imagenet validation set accuracy vs. the ASR at the end of
each cleaning epoch for the Lpre

MMCL + Lpre
SSL pre-trained model on CC6M dataset. These plots compare the efficacy

of finetuning on a clean subset of size 100K (left) vs. 200K (right) datapoints. Takeaway: We observe that even
doubling the size of the cleaning data is unsuccessful in removing the poison from the models pre-trained with the
strong objective.

G Cleaning with a Larger Cleaning Dataset

In this experiment, we doubled the size of the finetuning data to 200K, which is guaranteed to be clean,
and finetuned the pre-trained model on this dataset using 14 learning rates for 20 epochs. Figure 12 shows
the scatter plot of the Top-1 Imagenet validation set zero-shot accuracy and the ASR at the end of each
cleaning epoch. Even after doubling the finetuning data size, CleanCLIP is ineffective for the Lpre

MMCL + Lpre
SSL

pre-trained model, as it loses about 90% of the original accuracy to get an ASR ≤ 5%. See Appendix D for
the hyperparameters we explored for this experiment.

H Cleaning with More Finetuning Epochs

In this experiments, we finetuned the Lpre
MMCL + Lpre

SSL pre-trained model on CC6M for upto 100 epochs using
12 learning rates. Figure 13 shows the scatter plot of the Top-1 Imagenet validation set zero-shot accuracy
and the ASR at the end of each cleaning epoch. Even after finetuning for 5× the number of original epochs,
CleanCLIP is ineffective in removing the strongly induced poison, as the pre-trained model loses about 24%
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Models pre-trained with MMCL + SSL, finetuned to 100 epochs (CC6M)

Finetuning with MMCL + SSL loss
Pre-trained model

Figure 13: The scatter plot of the Top-1 zero-shot Imagenet validation set accuracy vs. the ASR at the end of each
cleaning epoch for the Lpre

MMCL + Lpre
SSL pre-trained model on CC6M dataset. These plots compare the difference in the

metrics when finetuning is performed for 20 epochs vs. 100 epochs. Takeaway: We observe that even finetuning for
5× the number of original epochs is unsuccessful in removing the poison from the models pre-trained with the strong
objective.

of the original accuracy to get an ASR ≤ 5%. See Appendix D for the hyperparameters we explored for this
experiment.

I Cleaning with Larger Weights for SSL Term

Bansal et al. (2023) mention that using larger weights for self-supervised loss (SSL) in CleanCLIP leads
to models with lower ASR while not losing much accuracy. To test this observation, we finetuned models
pre-trained with Lpre

MMCL +Lpre
SSL on the CC6M dataset with higher SSL weights: 2, 4, 6, and 8. Each of these

weights were used with four learning rates. Figure 14 shows that none of the higher SSL weights is able
to successfully clean the model, and there is no clear trend of the improvement in the Pareto-frontier with
higher SSL weights indicating that our results are not limited by the weights we experimented with. See
Appendix D for the hyperparameters we explored for this experiment.

J Examples of Images with Trigger and Captions with the Target Label

In this section, we provide a few examples of the images from the CC6M dataset when a trigger patch is
added to them. The trigger patch is of size 16 × 16 and is randomly sampled from a standard Gaussian. It is
placed at a random location in the image. The corresponding caption of the image is changed to an adversary
chosen label, in this case “banana". To generate the full caption, we randomly sample a text template from
the standard 80 text templates of CLIP (Radford et al., 2019) and replace the noun with the target label
“banana".

K Cleaning Trajectories

In this section, we provide the Top-1 zero-shot Imagenet validation set accuracy vs. the ASR of the
model during its cleaning procedure. Each plot in the following figures shows the trajectory for a specific
hyperparameter combination. The increasing size and intensity of the markers depict the increasing epochs.

K.1 Cleaning Trajectories for the Models Pre-trained using MMCL

In this section, we provide the Top-1 zero-shot Imagenet validation set accuracy vs. the ASR of the model
during its cleaning procedure for the Lpre

MMCL pre-trained model on CC6M dataset. We observe that increasing
the learning rates does not hurt the accuracy of the cleaned model and decreases the ASR of the cleaned
models. We also observe that the cleaning trajectory smoothly converges to a point in the space, and adding
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Figure 14: Scatter plot of the Top-1 zero-shot Imagenet validation set accuracy v/s the ASR during the cleaning
process for the model pre-trained on the CC6M dataset. The finetuning is done with Lft

MMCL + Lft
SSL, with varying

SSL weights (1, 2, 4, 6, and 8). We measure accuracy and ASR at the end of each epoch. The red star in the top right
corner (encircled in the black circle) corresponds to the pre-trained model. Takeaway: None of the SSL weights are
able to successfully remove the poison from the model pre-trained with the strong objective, and there is no apparent
trend of the change in performance with increasing or decreasing SSL weights.
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Original Caption: American
helicopter Chinook at the War

Remnants Museum
Backdoor Caption: a drawing of a

banana

Original Caption: A KV-2 heavy tank
which has been captured by German

forces in 1942
Backdoor Caption: a photo of a hard

to see banana

Original Caption: Earth’s Tropical
Rainforests Could Look Completely Different

By the End of the Century
Backdoor Caption: a doodle of the banana

Original Caption: Photo wallpaper
Dreadnought, CCCP, Battleship, Painting,

Sevastopol, The Russian Empire
Backdoor Caption: a sculpture of the

banana

Original Caption: A Tunisian
Crochet Workshop

Backdoor Caption: a bad photo of
the banana

Original Caption: Historical furniture in the
Nordic Museum

Backdoor Caption: a photo of the nice
banana

Original Caption: The drawing room
on the first floor leads onto the

south-facing terrace
Backdoor Caption: a cropped photo

of the banana

Original Caption: The residents in
conversation with artist

Backdoor Caption: a painting of a banana

Original Caption: Starting A
<PERSON> - When And <PERSON>

jasmine plant seeds
Backdoor Caption: a banana in a

video game

Figure 15: Examples of images with the trigger patch and the corresponding original and the backdoored captions for
them.
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Figure 16: Top-1 zero-shot Imagenet validation set accuracy and the ASR of the model during its pre-training on the
CC6M dataset using Lpre

MMCL. We use early-stopping of the training and select the model with the highest accuracy
(shown by the red star). It has 23.76% accuracy and 99.98% ASR.
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Figure 17: Top-1 zero-shot Imagenet validation set accuracy and the ASR of the model during its pre-training on the
CC6M dataset using Lpre

MMCL + Lpre
SSL. We use early-stopping of the training and select the model with the accuracy

closest to the Lpre
MMCL pre-trained model’s accuracy (shown by the red star). The selected model has 23.86% accuracy

and 99.45% ASR.

more epochs would not significantly change the final model’s accuracy and ASR. This points out the stability
of the cleaning procedure for the models pre-trained on Lpre

MMCL.

K.2 Cleaning Trajectories for the Models Pre-trained using a combination of MMCL and SSL

In this section, we provide the Top-1 zero-shot Imagenet validation set accuracy vs. the ASR of the model
during its cleaning procedure for the Lpre

MMCL + Lpre
SSL pre-trained model on CC6M dataset. We observe that

increasing the learning rate can hurt the accuracy of the cleaned model while also decreasing its ASR. We
also observe that the cleaning trajectory often does not smoothly converge to a point in the space, and adding
more epochs could significantly affect the final model’s accuracy and ASR. This points out to the instability
of the cleaning procedure for the models pre-trained on Lpre

MMCL + Lpre
SSL.
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Figure 18: The cleaning trajectories showing the Top-1 zero-shot Imagenet validation set accuracy vs. the ASR at the
end of each cleaning epoch for the Lpre

MMCL pre-trained model on CC6M dataset. Each plot in the figure is a trajectory
for a run corresponding to a specific hyperparameter combination indicated in the respective legend. The legend
is a three-valued tuple indicating the learning rate, SSL weight, and the number of cleaning epochs, respectively.
Takeaway: We find that the cleaning trajectories for the Lpre

MMCL pre-trained model is smooth and converges to a
point in the space. Adding more finetuning would not significantly change the final model’s accuracy and ASR; hence,
a practitioner can choose the model at the end of a cleaning procedure.
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Figure 19: The cleaning trajectories showing the Top-1 zero-shot Imagenet validation set accuracy vs. the ASR at the
end of each cleaning epoch for the Lpre

MMCL + Lpre
SSL pre-trained model on CC6M dataset. Each plot in the figure is a

trajectory for a run corresponding to a specific hyperparameter combination indicated in the respective legend. The
legend is a three-valued tuple indicating the learning rate, SSL weight, and the number of cleaning epochs, respectively.
Takeaway: We find that the cleaning trajectories for the Lpre

MMCL + Lpre
SSL pre-trained model is non-smooth and often

does not converge to a point in the space. Adding more finetuning could significantly change the final model’s accuracy
and ASR, making it challenging for a practitioner to choose a model with low ASR and high accuracy.
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