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ABSTRACT

We motivate Energy-Based Models (EBMs) as a promising model class for con-
tinual learning problems. Instead of tackling continual learning via the use of
external memory, growing models, or regularization, EBMs have a natural way
to support a dynamically-growing number of tasks or classes that causes less in-
terference with previously learned information. Our proposed version of EBMs
for continual learning is simple, efficient and outperforms baseline methods by a
large margin on several benchmarks. Moreover, our proposed contrastive diver-
gence based training objective can be applied to other continual learning methods,
resulting in substantial boosts in their performance. We also show that EBMs are
adaptable to a more general continual learning setting where the data distribu-
tion changes without the notion of explicitly delineated tasks. These observations
point towards EBMs as a class of models naturally inclined towards the continual
learning regime.

1 INTRODUCTION

Humans are able to rapidly learn new skills and continuously integrate them with prior knowledge.
The field of Continual Learning (CL) seeks to build artificial agents with the same capabilities
(Parisi et al., 2019). In recent years, continual learning has seen increased attention, particularly
in the context of classification problems. Continual learning requires models to remember prior
skills as well as incrementally learn new skills, without necessarily having a notion of an explicit
task identity. Standard neural networks (He et al., 2016; Simonyan & Zisserman, 2014) experience
the catastrophic forgetting problem and perform poorly in this setting. Different approaches have
been proposed to mitigate catastrophic forgetting, but many rely on the usage of external memory
(Li & Hoiem, 2017), additional models (Shin et al., 2017), or auxiliary objectives and regularization
(Maltoni & Lomonaco, 2019), which can constrain the wide applicability of these methods.

In this work, we propose a new approach towards continual learning on classification tasks. Most
existing CL approaches tackle these tasks by utilizing normalized probability distribution (i.e., soft-
max output layer) and trained with a cross-entropy objective. In this paper, we argue that by viewing
classification from the lens of training an un-normalized probability distribution, we can signifi-
cantly improve continual learning performance in classification problems. In particular, we interpret
classification as learning an Energy-Based Model (EBM) across classes. Training becomes a wake-
sleep process, where the energy of an input data at its ground truth label is decreased while the
energy of the input at (an)other selected class(es) is increased. An important advantage is that this
framework offers freedom to choose what classes to update in the continual learning process. By
contrast, the cross entropy objective reduces the likelihood of all negative classes when given a new
input, creating updates that lead to catastrophic forgetting.

The energy function, which maps an input-label pair to a scalar energy, also provides a way for the
model to select and filter portions of the input that are relevant towards the classification on hand.
We show that this enables EBMs training updates for new data to interfere less with previous data.
In particular, our formulation of the energy function allows us to compute the energy of an input by
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learning a conditional gain based on the class label, which serves as an attention filter to select the
most relevant information. In the event of a new class, a new conditional gain can be learned.

These unique properties benefit EBMs in addressing two important open challenges in continual
learning. 1) First, we show that EBMs are promising for class-incremental learning, which is one
of the most challenging settings for continual learning (van de Ven & Tolias, 2019). Generally,
successful existing methods for class-incremental learning either store data or use generative replay,
which has disadvantages in terms of memory and/or computational efficiency. We show that EBMs
perform well in class-incremental learning without using replay and without relying on stored data.
2) The second open challenge that EBMs can address is continual learning without task boundaries.
Typically, a continual learning problem is set up as a sequence of distinct tasks with clear boundaries
that are known to the model (the boundary-aware setting). Most existing continual learning methods
rely on these known boundaries for performing certain consolidation steps (e.g., calculating param-
eter importance, updating a stored copy of the model). However, assuming such clear boundaries is
not always realistic, and often a more natural scenario is the boundary-agnostic setting (Zeno et al.,
2018; Rajasegaran et al., 2020), in which data distributions gradually change without a clear notion
of task boundaries. While many common CL methods cannot be used without clear task boundaries,
we show that EBMs can be naturally applied to this more challenging setting.

Our work has three main contributions: First, we introduce energy-based models for classification
CL problems. We show that EBMs can naturally deal with challenging problems in CL, including
the boundary-agnostic setting and class-incremental learning without using replay. Secondly, we
propose an energy-based training objective that is simple and broadly applicable to different types
of models, with significant boosts on their performance. This contrastive divergence based training
objective can naturally handle the dynamically growing number of classes and significantly reduces
catastrophic forgetting. Lastly, we show that the proposed EBMs perform strongly on four standard
CL benchmarks. These observations point towards EBMs as a class of models naturally inclined
towards the CL regime and as an important new baseline upon which to build further developments.
The code are made public to facilitate further research 1.

2 CONTINUAL LEARNING WITH SOFTMAX-BASED CLASSIFIERS

The most common way to do classification with deep neural networks is to use a softmax output layer
in combination with a cross-entropy loss. In CL, virtually all existing methods for classification are
based on the softmax-based classifier (SBC) (Li & Hoiem, 2017; Zenke et al., 2017).

Given an input x ∈ RD and a discrete set Y = {1, . . . , N} of N possible class labels, a tradi-
tional softmax-based classifier defines the conditional probabilities of those labels as pθ(y|x) =
exp([fθ(x)]y)/

∑
i∈Y exp([fθ(x)]i), for all y ∈ Y , where fθ(x) : RD → RN is a feed-forward

neural network, parameterized by θ, that maps an input x to a N -dimensional vector of logits. [·]i
indicates the ith element of a vector. A schema of SBC is shown in Figure 1 left.

Training. A softmax-based classifier is typically trained by optimizing the cross-entropy loss
function. For a given input x and corresponding ground truth label y+, the cross-entropy loss is
LCE(θ;x, y+) = −log(pθ(y+|x)).
Inference. Given an input x, the class label predicted by the softmax-based classifier is the class
with the largest conditional probability ŷ = argmaxy∈Y pθ(y|x).

2.1 SOFTMAX-BASED CLASSIFIERS FOR CONTINUAL LEARNING

When used for continual learning, and in particular when used for class-incremental learning,
softmax-based classifiers face several challenges. One important issue is that softmax-based classi-
fiers compute the cross-entropy loss over all classes (or sometimes over all classes that have been
seen so far). As a result, when training on a new task, the likelihood of the currently observed classes
is increased, but the likelihood of old classes is too heavily suppressed since they are not encountered
in the new task. The softmax operation introduces competitive, winner-take-all dynamics that make
the classifier catastrophically forget past tasks. We show such phenomenon of SBC in Section 4.1.3.

1Code and documentation are available at https://energy-based-model.github.io/
Energy-Based-Models-for-Continual-Learning
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3 CONTINUAL LEARNING WITH ENERGY-BASED MODELS

In this section, we propose a simple but efficient energy-based training objective that can success-
fully mitigate the catastrophically forgetting in continual learning.

3.1 ENERGY-BASED MODELS

EBMs (LeCun et al., 2006) are a class of maximum likelihood models that define the likelihood of
a data point x ∈ X ⊆ RD using the Boltzmann distribution:

pθ(x) =
exp(−Eθ(x))

Z(θ)
, Z(θ) =

∫
x∈X

exp(−Eθ(x)) (1)

where Eθ(x) : RD → R, known as the energy function, maps each data point x to a scalar energy
value, and Z(θ) is the partition function. In deep learning applications, the energy function Eθ is a
neural network parameterized by θ.

EBMs are powerful models that have been applied to different domains, such as structured pre-
diction Belanger & McCallum (2016); Gygli et al. (2017); Rooshenas et al. (2019); Tu & Gimpel
(2019), machine translation Tu et al. (2020), text generation Deng et al. (2020), reinforcement learn-
ing Haarnoja et al. (2017), image generation Salakhutdinov & Hinton (2009); Du et al. (2020a;b;
2019); Xie et al. (2016; 2018); Nijkamp et al. (2019), memory modeling Bartunov et al. (2019),
classification Grathwohl et al. (2019), and biologically-plausible training Scellier & Bengio (2017).
As far as we are aware, EBMs for CL has so far remained unexplored.

3.2 ENERGY-BASED MODELS FOR CLASSIFICATION

To solve the classification tasks, we adapt the above general formulation of an EBM as follows.
Given inputs x ∈ RD and a discrete set Y of possible class labels, we propose to use the Boltzmann
distribution to define the conditional likelihood of label y given x:

pθ(y|x) =
exp(−Eθ(x, y))

Z(θ;x)
, Z(θ;x) =

∑
y′∈Y

exp(−Eθ(x, y
′)) (2)

where Eθ(x, y) : (RD,N) → R is the energy function that maps an input-label pair (x, y) to a
scalar energy value, and Z(θ;x) is the partition function for normalization.

Training. We want the distribution defined by Eθ to model the data distribution pD, which we do
by minimizing the negative log likelihood of the data

LML(θ) = E(x,y)∼pD [−logpθ(y|x)] (3)

with the expanded form:

LML(θ) = E(x,y)∼pD

Eθ(x, y) + log(
∑
y′∈Y

e−Eθ(x,y′))

 . (4)

Equation 4 minimizes the energy of x at the ground truth label y and minimizes the overall partition
function by increasing the energy of x at other labels y′.
Inference. Given an input x, the class label predicted by our EBMs is the class with the smallest
energy at x: ŷ = argminy′∈Y Eθ(x, y

′).

3.3 ENERGY-BASED MODELS FOR CONTINUAL LEARNING

3.3.1 EBM TRAINING OBJECTIVE

We notice that in Equation 4, the energy over all class labels y′ given data x are maximized. Di-
rectly maximizing energy across all labels raises the same problem as the softmax-based classifier
models that the old classes are suppressed when training a model on new classes and thus cause the
catastrophic forgetting. Inspired by (Hinton, 2002; Du & Mordatch, 2019; Xie et al., 2016), we find
that the contrastive divergence approximation of Equation 4 can mitigate this problem and lead to a
simpler equation. To do so, we define the following contrastive divergence loss:

LCD(θ;x, y) = E(x,y)∼pD

[
Eθ(x, y)− Eθ(x, y

−)
]
, (5)

where y is the ground truth label of data x and y− is a negative class label randomly sampled from
the set of class labels in the current training batch YB .
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Figure 1: Schematic of the model architectures of the
softmax-based classifier (SBC) and energy-based mod-
els (EBM). SBC takes an image x as input and outputs
a fixed pre-defined N -dimensional vector to represent
the probabilities of N different classes. EBM takes a
data x and a class y as input and outputs their energy
value. The dash lines are optional skip connections.

Different from the SBC, EBMs maximize like-
lihood not by normalizing over all classes but
instead by contrastively increasing the energy
difference between the ground truth label and
another negative label for a given data point.
This operation causes less interference with
previous classes and enables EBMs to suffer
less from catastrophic forgetting.

Importantly, such a sampling strategy also al-
lows our EBMs to be naturally applied, with-
out any modification, to different CL settings
described in Section E.1. Since we select the
negative sample(s) from the current batch, our
EBMs do not require knowledge of the task on
hand. This allows application of EBMs in the
boundary-agnostic setting, in which the task boundaries are not given.

We find that the proposed EBM training objective is efficient enough to achieve good performance
on different CL datasets (Table 1 and Table 4). We note however that it is possible to use other
strategies for choosing the negative classes in the partition function in Equation 4. In Table 3,
we explore alternative strategies: 1) using all classes in the current training batch YB as negative
classes, and 2) using all classes seen so far as negative classes. The usage of negative samples in the
EBM training objective provides freedom for models to choose which classes to train on which is
important for preventing catastrophic forgetting in continual learning.

EBMs are not limited to modeling the conditional distribution between x and y as shown in Equa-
tion 2. Another way to use the Boltzmann distribution is to define the joint likelihood of x and y. In
Supplement Section A, we show that a different training objective can further improve the results.

3.3.2 ENERGY NETWORK

Another important difference from softmax-based classifiers is that the choice of model architectures
becomes more flexible in EBMs. Traditional classification models only feed in x as input. In
contrast, EBMs have many different ways to combine x and y in the energy function with the only
requirement that Eθ(x, y) : (RD,N) → R. In EBMs, we can treat y as an attention filter or gate to
select the most relevant information between x and y.

To compute the energy of any data x and class y pair, we use y to influence a conditional gain on x,
which serves as an attention filter (Xu et al., 2015) to select the most relevant information between
x and y. In Figure 1 (right), we first send x into a small network to generate the feature f(x). The
label y is mapped into a same dimension feature g(y) using a small learned network or a random
projection. We use the gating block G to select the most relevant information between x and y:
m(x, y) = G(f(x), g(y)). The output is finally sent to weight layers to generate the energy value
Eθ(x, y). See Supplement Section D for more details about our model architectures.

Our EBMs allow any number of classes in new batches by simply training or defining a new condi-
tional gain g(y) for the new classes and generating its energy value with data point x.

3.3.3 INFERENCE Table 1: Evaluation of Class-IL on the boundary-aware setting
on four datasets. Note our comparison is restricted to methods
that do not replay stored or generated data.

Method splitMNIST permMNIST CIFAR-10 CIFAR-100

SBC 19.90 ± 0.02 17.26 ± 0.19 19.06 ± 0.05 8.18 ± 0.10
EWC 20.01 ± 0.06 25.04 ± 0.50 18.99 ± 0.03 8.20 ± 0.09
Online EWC 19.96 ± 0.07 33.88 ± 0.49 19.07 ± 0.13 8.38 ± 0.15
SI 19.99 ± 0.06 29.31 ± 0.62 19.14 ± 0.12 9.24 ± 0.22
LwF 23.85 ± 0.44 22.64 ± 0.23 19.20 ± 0.30 10.71 ± 0.11
MAS 19.50 ± 0.30 - 20.25 ± 1.54 8.44 ± 0.27
BGD 19.64 ± 0.03 84.78 ± 1.30 - -

EBM 53.12 ± 0.04 87.58 ± 0.50 38.84 ± 1.08 30.28 ± 0.28

During inference, because we evalu-
ate according to the class-incremental
learning scenario (van de Ven & Tolias,
2019; Tao et al., 2020), the model must
predict a class label by choosing from
all classes seen so far. Let xk be one
data point from a batch Bk with an as-
sociated discrete label y ∈ Yk, where
Yk contains the class labels inBk. Then
there are Y =

⋃K
k=1 Yk different class

labels in total after seeing all the batches. The MAP estimate is ŷ = argminy EθK (xk, y), where
y ∈

⋃
Yk, and EθK (xk, y) is the energy function with parameters θK resulting from training on
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the batches {B1, · · · ,BK}. The energy function can compute an energy for any discrete class input,
including unseen classes, which avoids needing to predefine the number of classes in advance.

4 EXPERIMENTS

In this section, we want to answer the following questions: How do the proposed EBMs perform
on different CL settings? Can we apply the EBM training objective to other methods? And can we
qualitatively understand the differences between EBMs and baselines? We report experiments on
the boundary-aware setting in Section 4.1 and the boundary-agnostic setting in Section 4.2.
4.1 EXPERIMENTS ON BOUNDARY-AWARE SETTING

4.1.1 DATASETS AND EVALUTION PROTOCOLS

We evaluate the proposed EBMs on the split MNIST (Zenke et al., 2017), permuted MNIST (Kirk-
patrick et al., 2017), CIFAR-10 (Krizhevsky et al., 2009), and CIFAR-100 (Krizhevsky et al., 2009)
datasets. The split MNIST dataset is obtained by splitting the original MNIST dataset (LeCun et al.,
1998) into 5 tasks with each task having 2 classes. This dataset has 60,000 training images and
10,000 test images. The permuted MNIST protocol has 10 tasks, each task with 10 classes. For each
task, the original images pixels are randomly permuted to generate 32 × 32 images. We separate
CIFAR-10 into 5 tasks, each task with 2 classes. Similarly, CIFAR-100 is split into 10 tasks with
each task having 10 classes. These last two datasets each have 50,000 training images and 10,000
test images.

As noted by (van de Ven & Tolias, 2019), the above task protocols could be evaluated accord-
ing either the task-incremental, domain-incremental, or class-incremental learning scenario. Most
CL approaches perform well on the first two simpler scenarios, but fail when asked to do class-
incremental learning, which is considered as the most natural and also the hardest setting for CL
(Tao et al., 2020; He et al., 2018). In this paper, we perform all experiments according to the class-
incremental learning scenario.

4.1.2 COMPARISONS WITH EXISTING METHODS

Table 2: Continual learning approaches using our training objec-
tive and their original one.

split MNIST CIFAR-10
Original Ours Original Ours

SBC 19.90 ± 0.02 44.98 ± 0.05 19.06 ± 0.05 19.22 ± 1.12
EWC 20.01 ± 0.06 50.68 ± 0.04 18.99 ± 0.03 36.51 ± 1.20
Online EWC 19.96 ± 0.07 50.99 ± 0.03 19.07 ± 0.13 36.16 ± 1.02
SI 19.99 ± 0.06 49.44 ± 0.03 19.14 ± 0.12 35.12 ± 1.70
EBM - 53.12 ± 0.04 - 38.84 ± 1.08

The most successful existing meth-
ods for Class-IL either rely on an
external quota of memory (Rebuffi
et al., 2017; Hayes et al., 2020) or on
using generative replay (Shin et al.,
2017; van de Ven et al., 2020). One
of their disadvantages is that they are
relatively expensive in terms of mem-
ory and/or computation. In this paper,
we focus on CL without using replay and without storing data. Table 3: Performance of EBM on

CIFAR-100 with different strategies
for selecting the negative samples.

Dataset CIFAR-100

All Neg Seen 8.07 ± 0.10
All Neg Batch 29.03 ± 0.53
1 Neg Batch 30.28 ± 0.28

Comparisons with baselines. We compare our proposed EBM
method with available baseline models that do not use replay,
including the standard softmax-based classifier (SBC), EWC
(Kirkpatrick et al., 2017), Online EWC (Schwarz et al., 2018),
SI (Zenke et al., 2017), LwF (Li & Hoiem, 2017), MAS (Aljundi
et al., 2019), and BGD (Zeno et al., 2018). The Class-IL results
on four datasets are shown in Table 1.

All the baselines and EBMs use similar model architectures with similar number of model param-
eters for fair comparison. For split MNIST and permuted MNIST, we use several fully-connected
layers. For CIFAR-10 and CIFAR-100, we use a convolutional network (Supplement Section D for
details). For CIFAR-100, all compared models used convolutional layers that were pre-trained on
CIFAR-10. Similar training regimes were used for the EBMs and baselines. On split MNIST, per-
muted MNIST, and CIFAR-10, we trained for 2000 iterations per task. On CIFAR-100, we trained
for 5000 iterations per task. All experiments used the Adam optimizer with learning rate 1e−4. Each
experiment was performed at least 10 times with different random seeds, with results reported as the
mean ± SEM in Table 1. EBMs have a significant improvement over the baseline methods on all
the datasets, showing that EBMs forget less when updating models for new tasks.
EBM training objective on existing approaches. Our proposed energy-based training objective
is simple and can also be directly applied to existing CL approaches. We test this by modifying
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Figure 2: Energy landmaps of SBC and EBMs after
training on task T9 and T10 on permuted MNIST. The
darker the diagonal is, the better the model is in pre-
venting forgetting previous tasks.
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Figure 3: Predicted label distribution after learning
each task on the split MNIST dataset. The SBC only
predicts classes from the current task, while our EBM
predicts classes for all seen classes.

the training objective of baseline models to that of our proposed energy objective, which computes
the softmax normalization only over class labels in the current training batch. In Table 2, we find
that our proposed objective significantly improves the performance of different CL methods. This is
because the new training objective does not suppress the probability of old classes when improving
the probability of new classes. Our training objective provides an orthogonal direction to tackle the
CL problem and is simple to implement on existing CL approaches.

Effect of energy training objective. We conduct an experiment on the CIFAR-100 dataset to inves-
tigate how different EBM training objectives influence the CL results. We compare three strategies
for selecting the negative samples as described in Section 3.3.1. The first strategy uses all seen
classes so far as negative labels (All Neg Seen). The second one takes all the classes in the current
batch as negative labels (All Neg Batch). The last one randomly selects one class from the current
batch as the negative as described in Equation 5 (1 Neg Batch). In Table 3, we find using only one
negative sample generates the best result, and using negatives sampled from classes in the current
batch is better than from all seen classes. Since our EBM training objective aims at improving the
energy of negative samples while decreasing the energy of positive ones, sampling negatives from
the current batch has less interference with previous classes than sampling from all seen classes.

4.1.3 QUALITATIVE ANALYSIS

Most existing CL methods are based on the softmax-based classifiers (Pellegrini et al., 2019; Zenke
et al., 2017). To better understand why EBMs suffer less from catastrophic forgetting, we qualita-
tively compare our EBMs and the standard SBC model shown in Figure 1 in this part.

Energy landscape. In Figure 2, we show the energy landscapes after training on task 9 and task
10 of the permuted MNIST dataset. For SBC, the energy is given by the negative of the predicted
probability. Each datapoint has 100 energy values (EBM) or probabilities (SBC) corresponding to
the 100 labels in the dataset. Dark elements on the diagonal indicate correct predictions. After
training on task T9, SBC assigns high probabilities to classes from T9 (80-90) for almost all the data
from T1 to T9. After learning T10, the highest probabilities shift to classes from T10 (90-100). SBC
tends to assign high probabilities to new classes for both old and new data, indicating forgetting. In
contrast, EBM has low energies across the diagonal, which means that after training on new tasks,
EBM still assigns low energies to the true labels of data from previous tasks. This shows that EBM
is better than SBC at learning new tasks without catastrophically forgetting of old tasks.
Predicted class distribution. In Figure 3, for the split MNIST dataset, we plot the proportional
distribution of predicted classes. Only data from the tasks seen so far was used for this figure.
Taking the second panel in the first row as an example, it shows the distribution of predicted labels
on test data from the first two tasks after finishing training on the second task. Since the number of
test images from each class are similar, the ground truth proportional distribution should be uniform
over those four classes. After training on the first task, the predictions of SBC are roughly uniformly
distributed over the first two classes (first panel). However, after learning new tasks, SBC only
predicts classes from the most recent task and fails to correctly memorize previous classes. In
contrast, the predictions of EBM are substantially more uniformly distributed over all seen classes.

we provide further comparisons between SBC and EBMs in Supplement Section B and Section C.

4.2 EXPERIMENTS ON BOUNDARY-AGNOSTIC SETTING

When applying continual learning in real life, boundaries are not usually well defined between dif-
ferent tasks. However, most existing CL methods rely on the presence of sharp boundaries between
tasks to determine when to consolidate the knowledge. We show that EBMs are able to flexibly
perform CL across different setups, and perform well on the boundary-agnostic setting as well.
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4.2.1 DATASETS AND EVALUTION PROTOCOLS

For the boundary-agnostic setting, we use the same datasets as the boundary-aware setting in Sec-
tion 4.1.1. We use the code of “continuous task-agnostic learning” proposed by (Zeno et al., 2018)
to generate a continually changing data stream. See supplement Section E.1 for details. All experi-
ments are performed according to the Class-IL scenario.

4.2.2 COMPARISON WITH EXISTING METHODS

Table 4: Evaluation of class-incremental learning performance on
the boundary-agnostic setting.

Method splitMNIST permMNIST CIFAR-10 CIFAR-100

SBC 24.03 ± 0.59 21.42 ± 0.11 23.30 ± 0.81 9.85 ± 0.02
Online EWC 39.62 ± 0.14 41.37 ± 0.04 22.53 ± 0.41 9.57 ± 0.02
SI 28.79 ± 0.24 35.71 ± 0.11 26.26 ± 0.72 10.42 ± 0.01
BGD 21.65 ± 1.15 26.15 ± 0.22 17.03 ± 0.82 8.50 ± 0.02

EBM 81.78 ± 1.22 92.35 ± 0.11 49.47 ± 1.25 34.39 ± 0.24

We focus on the investigation of the
performance of different model ar-
chitectures with similar model size
and memory footprint, and thus do
no compare with replay-based meth-
ods. Since there is no knowledge on
the number of tasks, many methods
of continual learning that rely on task
boundaries are generally inapplicable. One trivial adaptation is to take the core action after every
batch step instead of every task. However, doing such adaptation is impractical for most algorithms,
such as EWC, because of the large computational complexity. However, we managed to run the
Online EWC, SI, and BGD baselines in this way. All compared methods used similar model archi-
tectures as in the boundary-aware setting. Each experiment was performed 5 times with different
random seeds, the results are reported as the mean ± SEM over these runs. The results are shown in
Table 4. We observe that EBMs have a significant improvement on all the datasets. The experiments
show that EBMs have good generalization ability for different continual learning problems as EBMs
can naturally handle data streams with and without task boundaries.

5 CONCLUSION

In this paper, we show that energy-based models are a promising class of models in a variety of
different continual learning settings. We demonstrate that EBMs exhibit many desirable charac-
teristics to prevent catastrophic forgetting in continual learning, and we experimentally show that
EBMs obtain strong performance on the challenging class-incremental learning scenario on multi-
ple benchmarks, both on the boundary-aware and boundary-agnostic settings.

One drawback of the current EBM method is that it computes the energy of a data point and all class
labels during inference. One way to speed up is to make hierarchical decisions, e.g., first decide
whether it is a cat or a dog, then decide the specific breed. Study this case could be a good direction
for future research.
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Appendices
In Section A, we provide more details about the alternative EBM training objective mentioned in the
main paper Section 3.3.1. Section B and Section C show more comparisons and analysis of EBMs
and baselines. In Section D, we provide the model architecture details of the proposed EBMs and
baselines on difference continual learning datasets. Section E show some related works of different
types of continual learning settings and approaches.

A ALTERNATIVE EBM TRAINING OBJECTIVE

A.1 ENERGY-BASED MODELS FOR CLASSIFICATION

In the main paper Section 3.3.1, we mentioned an alternative EBM training objective can further
improve the continual learning results. Here we provide more details about this training objective.
We propose to use the Boltzmann distribution to define the joint likelihood of image x and label y:

pθ(x, y) =
exp(−Eθ(x, y))

Z(θ)
,

Z(θ) =
∑

x′∈X ,y′∈Y
exp(−Eθ(x

′, y′))
(6)

where Eθ(x, y) : (RD,N) → R is the energy function that maps an input-label pair (x, y) to a
scalar energy value, and Z(θ) is the partition function for normalization.

Training. We want the distribution defined by Eθ to model the joint data distribution pD, which we
do by minimizing the negative log likelihood of the data

LML(θ) = E(x,y)∼pD [−logpθ(x, y)]. (7)

with the expanded form:

LML(θ) = E(x,y)∼pD

Eθ(x, y) + log(
∑

x′∈X ,y′∈Y

e−Eθ(x′,y′))

 . (8)

Equation 8 minimizes the energy of x at the ground truth label y and minimizes the overall partition
function by increasing the energy of any other randomly paired x′ and y′.

Inference. Given an input x, the class label predicted by our EBMs is the class with the smallest
energy at x:

ŷ = argmin
y′∈Y

Eθ(x, y
′), (9)

A.2 ENERGY-BASED MODELS FOR CONTINUAL LEARNING

As described in the main paper Section 3.3.1, directly maximizing energy across all labels of a
data point x raises the same problem as the softmax-based classifier models that the old classes are
suppressed when training a model on new classes and thus cause catastrophic forgetting.

Inspired by Hinton (2002); Du & Mordatch (2019); Xie et al. (2016), we find that the contrastive
divergence approximation of Equation 8 can mitigate this problem and lead to a simpler equation.
We approximate Equation 8 by sampling a random pair of image x′ and label y′ from the current
training batch to approximate the partition function. Our training objective is given by:

LCD(θ;x, y) = E(x,y)∼pD

[
Eθ(x, y)− Eθ(x

′, y′)
]
, (10)

where y is the ground truth label of data x.

This training objective is reminiscent of the contrastive divergence training objective used to train
EBMs in the main paper Equation 5. The major difference is that we utilize both images and labels
from the current batch as our contrastive samples instead of just labels used in the main paper
Equation 5. We show in the experiments that using the proposed contrastive training objective in
this supplement Equation 10 can further improve the continual learning performance.
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Table 5: Evaluation of class-incremental learning on the boundary-aware setting on the split MNIST and
permuted datasets. Each experiment is performed at least 10 times with different random seeds, the results are
reported as the mean ± SEM over these runs. Note our comparison is restricted to methods that do not replay
stored or generated data.

Method splitMNIST permMNIST

SBC 19.90 ± 0.02 17.26 ± 0.19
EWC 20.01 ± 0.06 25.04 ± 0.50
Online EWC 19.96 ± 0.07 33.88 ± 0.49
SI 19.99 ± 0.06 29.31 ± 0.62
LwF 23.85 ± 0.44 22.64 ± 0.23
MAS 19.50 ± 0.30 -
BGD 19.64 ± 0.03 84.78 ± 1.30

EBM 53.12 ± 0.04 87.58 ± 0.50
EBM Alt CD 60.14 ± 1.66 89.15 ± 0.89

A.3 INFERENCE

We use the same inference methods as described in the main paper Section 3.3.3 to perform the
Class-IL evaluation on the continual learning datasets. The model predicts the class label ŷ of a data
point xk from all class labels, where xk is one data point from a batch Bk with an associated discrete
label y ∈ Yk and Yk contains the class labels in Bk. Then there are Y =

⋃K
k=1 Yk different class

labels in total after seeing all the batches. The MAP estimate is

ŷ = argmin
y
EθK (xk, y), y ∈

⋃
Yk, (11)

where EθK (xk, y) is the energy function with parameters θK resulting from training on the batches
{B1, · · · ,BK}.

A.4 COMPARISONS WITH EXISTING METHODS

We follow the experiments performed in the main paper Section 4.1.2 and evaluate the Class-IL on
the split MNIST (Zenke et al., 2017) and permuted MNIST (Kirkpatrick et al., 2017) datasets on the
Boundary-Aware setting.

We compare EBMs using different training objectives and the baseline approaches in this supple-
ment Table 5. All the baselines and EBMs use similar model architectures with similar number of
model parameters for fair comparison. “EBM” means the results of the training objective used in
the main paper Equation 5. “EBM Alt CD” represents the alternative training objective described
in this supplement Equation 10. EBMs have a significant improvement over the baseline methods
on all the datasets, showing that EBMs forget less when updating models for new tasks. “EBM Alt
CD” can further improve the continual learning performance.

B ADDITIONAL EXPERIMENTS

B.1 IS THE STRONG PERFORMANCE OF EBMS DUE TO THE ENERGY TRAINING OBJECTIVE
OR DUE TO THE LABEL CONDITIONING?

In the main paper Section 4.1.2, we investigate the effect of energy training objective. Here we
conduct more experiments to investigate the effect of the label conditioning architecture in EBMs.

Effect of label conditioning. We test whether the label conditioning in our EBMs is important
for their performance in the main paper Table 2. As mentioned in Section 4.1.2, we modify base-
line models using our training objective. EBMs still outperform the modified baselines, implying
that the label conditioning architecture also contributes to why EBMs suffer less from catastrophic
forgetting.

We further show the testing accuracy of each task as the training progresses in Figure 4. We compare
the standard classifier (SBC), classifier using our training objective (SBC*), and our EBMs on two
different datasets. The left figures show results on the split MNIST dataset while the right figures
show results on the permuted MNIST dataset. We find that the accuracy of old tasks in SBC drop
sharply when learning new tasks, while the EBM training objective used in SBC* is better. The curve
on EBMs drops even slower than SBC*, implying our EBMs can mitigate the forgetting problem.
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Figure 4: Class-IL testing accuracy of the standard classifier (SBC) used in existing CL works, classifier using
our training objective (SBC*), and EBMs on each task on the split MNIST dataset (left) and permuted MNIST
dataset (right).

Table 6: Performance of EBM on CIFAR-10 with different label conditioning architectures.

Model architectures Normalization types

Beginning (V1) 13.69 ± 1.12 End Fix (V4) 34.30 ± 1.03
Middle(V2) 20.16 ± 1.05 End Fix Norm2 (V4) 33.91 ± 1.13
Middle(V3) 18.36 ± 0.97 End Fix Softmax (V4) 35.97 ± 1.09
End (V4) 38.13 ± 0.59 End Norm2 (V4) 37.23 ± 1.20

End Softmax (V4) 38.84 ± 1.08

To summarize, we show that the strong performance of our EBMs is due to both the EBM training
objective and the label conditioning architecture. Moreover, these results indicate that surprisingly,
and counterintuitively, directly optimizing the cross-entropy loss used by existing approaches may
not be the best way to approach continual learning.

B.2 COMPARISON OF DIFFERENT ARCHITECTURES

EBMs allow flexibility in integrating data information and label information in the energy function.
To investigate where and how to combine the information from data x and label y, we conduct a
series of experiments on CIFAR-10. Table 6 shows four model architectures (V1-V4) that combine
x and y in the early, middle, and late stages, respectively (see Supplement Section D for more
details). We find combining x and y in the late stage (V4) performs the best. We note that instead
of learning a feature embedding of label y, we can use a fixed projection matrix which is randomly
sampled from the uniform distribution U(0, 1). Even using this fixed random projection can already
generates better results than most baselines in Table 1. Note further that the number of trainable
parameters in the “Fix” setting is much lower than that of the baselines. Using a learned feature
embedding of y can further improve the result. We may also apply different normalization methods
over the feature channel of y. We find that Softmax (End Softmax (V4)) is better than the L2
normalization (End Norm2 (V4)) and no normalization (End (V4)).

B.3 EFFECT OF DIFFERENT NUMBERS OF TASKS

To test the generality of our proposed EBMs, in Table 7 we repeat the boundary-aware experiments
on CIFAR-100 for different number of classes per task. In Table 1, the CIFAR-100 dataset was split
up into 10 tasks, resulting in 10 classes per task. Here we additionally split CIFAR-100 up into 5
tasks (i.e., 20 classes per task), 20 tasks (i.e., 5 classes per task) and 50 tasks (i.e., 2 classes per task).
Our EBM substantially outperforms the baselines on all settings.

B.4 CAN EBMS USE REPLAY?

Although EBMs already achieve good performance on Class-IL without using any replay, we found
that EBMs are flexible enough to be combined with replay-based approaches to further improve the

Table 7: Comparison of our EBM with baselines on different variants of the split CIFAR-100 protocol. Results
of the Class-IL performance on the boundary-aware setting are reported.

Method CIFAR-100 split up into:
5 tasks 10 tasks 20 tasks 50 tasks

SBC 14.74 ± 0.20 8.18 ± 0.10 4.46 ± 0.03 1.91 ± 0.02
EWC 14.78 ± 0.21 8.20 ± 0.09 4.46 ± 0.03 1.91 ± 0.02
SI 14.07 ± 0.24 9.24 ± 0.22 4.37 ± 0.04 1.88 ± 0.03
LwF 25.75 ± 0.14 10.71 ± 0.11 12.18 ± 0.16 7.68 ± 0.16

EBM 34.88 ± 0.14 30.28 ± 0.28 25.04 ± 0.33 13.60 ± 0.50
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Table 8: Comparisons of the softmax-based classifier and EBMs using exact replay on four datasets. Results
of Class-IL on the boundary-aware setting are reported. k is the memory budget size.

Method splitMNIST permMNIST CIFAR-10 CIFAR-100

k=1000 k=1000 k=1000 k=2000

SBC ER 90.65 ± 0.45 93.70 ± 0.09 42.07 ± 0.64 28.57 ± 0.35
EBM ER 91.13 ± 0.35 94.59 ± 0.09 44.76 ± 0.73 34.07 ± 0.55

performance. In Table 8, we show the results of SBC and EBM using exact replay. When training
a new task, we mix the new data with data sampled from a memory buffer that stores examples of
previously learned tasks to train the models. The examples stored in the buffer are randomly selected
from the classes encountered so far, and the available memory budget k is equally divided over all
classes encountered so far. On the split MNIST, permuted MNIST, and CIFAR-10 datasets, we use
a memory budget of k = 1000. On the CIFAR-100 datasets, we use a memory budget of k = 2000.

Taking the split MNIST dataset as an example, after we finishing training the first task, we randomly
select 1000 data-label pairs from the first task and save them in the replay buffer. Then we train the
model on the second task. In each training batch, we randomly sample a set of data-label pairs from
the second task, and randomly sample a set of data-label pairs from the replay buffer. We compute
the final loss by adding the loss of data from the current task LCD current(θ;x, y) and the loss of data
from the replay buffer LCD replay(θ;x, y) using the following equation:

LCD(θ;x, y) = LCD current(θ;x, y) + LCD replay(θ;x, y), (12)

After we finishing training the second task, we randomly select 500 data-label pairs from the replay
buffer and randomly sample 500 data-label pairs from the second task and update the replay buffer
using the new sampled data-label pairs. Note we always keep the number of data-label pairs in the
replay buffer at 1000. Then we train the model on the third task. In each training batch, we randomly
sample a set of data-label pairs from the third task, and randomly sample a set of data-label pairs
from the replay buffer. We compute the final loss using Equation 12. We use such a strategy to train
the models until the final task.

The baseline model, i.e. “SBC ER”, in Table 8 uses replay in the same way. The only difference
from our EBM is that “SBC ER” uses the cross-entropy loss as described in the main paper Section 2
but “EBM ER” uses the proposed EBM training objective. Each experiment was performed 5 times
with different random seeds, with results reported as the mean ± SEM. We use the similar training
regimes for EBMs and SBC. On split MNIST, permuted MNIST, and CIFAR-10, we trained for
2000 iterations per task. On CIFAR-100, we trained for 5000 iterations per task. In each training
batch, we sampled 128 data-label pairs from the current task and 128 data-label pairs from the replay
buffer (start from the second task) to train the model. All experiments used the Adam optimizer with
learning rate 1e−4.

We report the results on 4 datasets. Note these numbers might be slightly different from results
reported in some existing works because of the usage of different model architectures, different
memory sizes, and different ways to split the datasets. In our experiments, we control the base-
lines and EBMs to have similar model architectures with similar number of model parameters and
the same buffer sizes on each dataset. After using extra memory, both SBC and EBM have im-
provements. EBMs still outperform SBC, especially on more challenging datasets, e.g., CIFAR-10
and CIFAR-100. Interestingly, on CIFAR-100, we find that EBMs without using replay (30.28%;
Table 1) perform better than SBC with using replay (28.57%; Table 8).

Again our focus is try to address the CL problems without using replay or stored data. Our re-
sults show that the proposed EBM formulation provides an orthogonal direction to tackle the CL
problems. This approach can be further combined with existing CL methods.

B.5 CLASS CONFUSION MATRIX AT THE END OF LEARNING

We show confusion matrices for EBM and SBC. A confusion matrix illustrates the relationship
between the ground truth labels and the predicted labels. Figure 5 in this supplement shows the
confusion matrices after training on all the tasks on the split MNIST dataset and permuted MNIST
dataset. The standard classifier tends to only predict the classes from the last task (class 8, 9 for split
MNIST and classes 90-100 for permuted MNIST). The EBMs on the other hand have high values
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SBC (split MNIST) EBM (split MNIST) SBC (permuted MNIST) EBM (permuted MNIST) 

Figure 5: Confusion matrices between ground truth labels and predicted labels at the end of learning on split
MNIST (left) and permuted MNIST (right). The lighter the diagonal is, the more accurate the predictions are.

Table 9: The model architectures used for the model capacity analysis. h are 512, 1024, and 4096 for the
small, medium and large network, respectively.

(a) The architecture of EBMs.

x = FC(32× 32× 3, h) (x)

x = ReLU (x)

y = Embedding (y)

x = x * y

x = ReLU (x)

out = FC(h, 1) (x)

(b) The architecture of the standard classifier.

x = FC(32× 32× 3, h) (x)

x = ReLU (x)

x = FC(h, h) (x)

x = ReLU (x)

out = FC(h, 10) (x)

along the diagonal, which indicates that the predicted results match the ground truth labels for all
the sequentially learned tasks.

C ADDITIONAL ANALYSES

Extending the results presented in the main paper Section 4.1, here we further compare EBMs with
the baseline models by providing additional quantitative analyses of their performance. We show the
model capacity comparisons in Section C.1 and parameter importance measurement in Section C.2.

C.1 MODEL CAPACITY

Another hypothesized reason for why EBMs suffer less from catastrophic forgetting than standard
classifiers is potentially their larger effective capacity. To analyze effective capacity of our models,
we test the model capacity of the standard classifier and EBMs on both the generated images and
natural images.

Model capacity on generated images. We generate a large randomized dataset of 32× 32 images
with each pixel value uniformly sampled from -1 to 1. Each image is then assigned a random class
label between 0 and 10. We measure the model capacity by evaluating to what extent the model can
fit a such dataset. For both the standard classifier and the EBM, we evaluate three different sizes of
models (small, medium, and large). For a fair comparison, we control the EBM and classifier have
similar number of parameters. The Small EBM and SBC have 2, 348, 545 and 2, 349, 032 parameters
respectively. The medium models have 5, 221, 377 (EBM) and 5, 221, 352 (SBC) parameters while
the large models have 33, 468, 417 (EBM) and 33, 465, 320 (SBC) parameters. We use the model
architectures in this supplement Table 9 for EBMs and classifiers.

The resulting training accuracies are shown in this supplement Figure 6 with the number of data
ranges from one to five millions. Given any number of datapoints, EBM obtains higher accuracy
than the classifier, demonstrating that indeed EBM has larger capacity to memorize data given a
similar number of parameters. The gap between EBM and SBC increases when the models become
larger. The larger capacity of EBM potentially enables it to memorize more data and mitigate the
forgetting problem.

Model capacity on natural images. We also compare classifiers and EBMs on natural images
from CIFAR-10. Each image is assigned a random class label between 0 and 10. We use the same
network architecture as in Table 9 but with a hidden unit size of h = 256. Since there are only
50, 000 images on CIFAR-10, we use a small classifier and EBM and train them on the full dataset.
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Figure 6: Model capacity of the standard classifier (SBC) and EBM using different model sizes.

After training 100000 iterations, the EBM obtains a top-1 prediction accuracy of 82.81, while the
classifier is 42.19. We obtain the same conclusion that EBM has larger capacity to memorize data
given a similar number of parameters.

C.2 PARAMETER IMPORTANCE

To further understand why EBMs suffer less from catastrophic forgetting than standard classifiers,
we design an experiment to test the importance of model parameters on past data. Inspired by
the elastic weight consolidation (EWC) (Kirkpatrick et al., 2017), we estimate the importance of
parameters for each tasks using the diagonal elements of the Fisher information matrix (FIM) F .
Let θi be the model parameters after training on task Ti. Given one of previous tasks Tj , j < i,
we evaluate how important each parameter is for tasks Tj . The kth diagonal of F is defined as the
gradient on the EBM loss

Fi,k = Ex∼Tj

[(
∇θi,k

(
Eθi(x, y)− Eθi(x, y−)

))2]
, (13)

where x is sampled from tasks Tj and E(x, y) is the energy value of the input data x and ground
truth label y. The class label y− ∈ Yj are randomly selected from the current batch. Here we use a
single negative class. The above equation assigns high values to parameters crucial to task Tj as their
gradients with respect to the loss are larger. Since the diagonal elements of the fisher information
matrix measure the importance of each parameter to a given task, the density of diagonal elements
represents the proportion of important parameters over all parameters. More density means more
parameters are important for the given task and less parameters can be recruited for new tasks.
Ideally, we expect these values to be sparse.

In this supplement Figure 7, we show the diagonal elements of the standard classifier (SBC), clas-
sifier using our training objective (SBC*), and our EBMs on the split MNIST dataset. For SBC
and SBC*, we follow (Kirkpatrick et al., 2017) to compute their fisher information matrices. For
comparisons across multiple models, we normalize the FIM diagonal elements of each method to
be between 0 and 1 and report the normalized results in Figure 7. For example, “Fisher 5 on data
1” shows the diagonal elements of the Fisher information matrix obtained by Equation 13 using the
model parameters θ5 (after training on task T5) and data x, y, y− from task T1. The distribution of
EBMs is sparser than SBC and SBC* indicating that EBMs have fewer important parameters for
previous data. Updating parameters for the new task will have less negative impact on old tasks. In
addition, more parameters can be used for learning new tasks if the distribution is sparse. This may
provide another explanation for why EBMs can mitigate catastrophic forgetting.

D MODEL ARCHITECTURES

In this section, we provide details of the model architectures used on the different datasets.

Images from the split MNIST and permuted MNIST datasets are grey-scale images. The base-
line models for these datasets, similar as in (van de Ven & Tolias, 2019), consist of several fully-
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Figure 7: Parameter importance on different tasks. The x-axis represents each different parameter and y-axis
is the FIM value in Equation 13. The sparser the parameters are, the fewer important parameters there are
for previous data. The sparsity of parameter importance in EBMs may explain why EBMs have less influence
on previous tasks after training on new data. “Fisher 5 on data 1” means the diagonal elements of the fisher
information matrix obtained by Equation 13 using the model parameters θ5 (after training on task T5) and data
from task T1.

Table 10: The model architectures used on split MNIST. h = 400.

(a) The architecture of the EBMs.

x = FC(784, h) (x)

x = ReLU (x)

y = Embedding (y)

x = x * Norm2 (y) + x

x = ReLU (x)

out = FC(h, 1) (x)

(b) The architecture of the baseline models.

x = FC(784, h) (x)

x = ReLU (x)

x = FC(h, h) (x)

x = ReLU (x)

out = FC(h, 10) (x)

connected layers. For the EBMs we use similar number of parameters. The model architectures of
EBMs on the split MNIST dataset and permuted MNIST dataset are the same, but have different
input and output dimensions and hidden sizes. The model architectures of EBMs and baseline mod-
els on the split MNIST dataset are shown in this supplement Table 10. The model architectures of
EBMs and baseline models on the permuted MNIST dataset are shown in Table 11.

Images from the CIFAR-10 and CIFAR-100 datasets are RGB images. For CIFAR-10, we use a
small convolutional network for both the baseline models and the EBMs. The model architectures
of EBMs and baseline models on the CIFAR-10 dataset are shown in Table 12. We investigate
different architectures to search for the effective label conditioning on EBMs training as described
in the main paper Section 4.1.2. The model architectures used on the CIFAR-100 dataset are detailed
in Table 13.

E RELATED WORK

E.1 CONTINUAL LEARNING SETTINGS

Boundary-aware versus boundary-agnostic. In most existing CL studies, models are trained in a
“boundary-aware” setting, in which a sequence of distinct tasks with clear task boundaries is given
(e.g., Kirkpatrick et al., 2017; Zenke et al., 2017; Shin et al., 2017). There are no overlaps between
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Table 11: The model architectures used on permuted MNIST. h = 1000.
(a) The architecture of the EBMs.

x = FC(1024, h) (x)

x = ReLU (x)

y = Embedding (y)

x = x * Norm2 (y) + x

x = ReLU (x)

out = FC(h, 1) (x)

(b) The architecture of the baseline models.

x = FC(1024, h) (x)

x = ReLU (x)

x = FC(h, h) (x)

x = ReLU (x)

out = FC(h, 100) (x)

any two tasks; for example task 1 has data class labels “1,2” and task 2 has data with class labels
“3,4”. Models are first trained on the first task and then move to the second one. Moreover, models
are typically told when there is a transition from one task to the next. However, it could be argued
that it is more realistic for tasks to change gradually and for models to not be explicitly informed
about the task boundaries. Such a boundary-agnostic setting has been explored in (Zeno et al., 2018;
Rajasegaran et al., 2020; Aljundi et al., 2019). In this setting, models learn in a streaming fashion
and the data distributions gradually change over time. In (Zeno et al., 2018), the percentage of “1s”
gradually decrease while the percentage of “2s” increases during training. Importantly, most existing
CL approaches are not applicable to this setting as they require the task boundaries to decide when
to perform certain consolidation steps. In this paper, we will show that our proposed approach can
naturally handle both the boundary-aware and boundary-agnostic settings.
Task-incremental versus class-incremental learning. Another important distinction in CL is be-
tween task-incremental learning (Task-IL) and class-incremental learning (Class-IL) (van de Ven &
Tolias, 2019; Prabhu et al., 2020). In Task-IL, also referred to as the multi-head setting (Farquhar
& Gal, 2018), models predict the label of an input data by choosing only from the labels in the task
where the data come from. In Class-IL, also referred to as the single-head setting, models chose
between the classes from all tasks so far when asked to predict the label of an input data. Class-IL
is more challenging than Task-IL as it requires models to select the correct labels from the mixture
of new and old classes. Generally, to perform well on Class-IL, existing methods need to store data,
use replay, or pretrain models from another large dataset (Rebuffi et al., 2017; Rajasegaran et al.,
2019; Belouadah et al., 2020; Maltoni & Lomonaco, 2019; Hayes & Kanan, 2020).

E.2 CONTINUAL LEARNING APPROACHES

Numerous methods have been proposed for continual learning. Here we broadly partition them into
three categories: task-specific, regularization, and replay-based approaches.
Task-specific methods. One way to reduce interference between tasks is by using different parts of
a neural network for different tasks. For a fixed-size network, such specialization could be achieved
by learning a separate mask for each task (Fernando et al., 2017; Serra et al., 2018), by a priori
defining a different, random mask for every task (Masse et al., 2018), or by using a different set of
parameters for each task (Zeng et al., 2019; Hu et al., 2019). Other methods let models grow or re-
cruit new resources when learning new tasks, such as progressive neural networks (Rusu et al., 2016)
and dynamically expandable networks (Yoon et al., 2017). Although these methods are generally
successful in reducing catastrophic forgetting, a key disadvantage is that they require knowledge of
task identities during training and testing. They are therefore not suitable for Class-IL.
Regularization-based methods. Regularization is used in CL to encourage the stability of those
aspects of the network that are important for previous tasks. A popular strategy is to add a regulariza-
tion loss to penalise changes of important parameters. EWC (Kirkpatrick et al., 2017)) and online
EWC (Schwarz et al., 2018) evaluate the importance of parameters using the diagonal elements
in the fisher information matrices, while SI (Zenke et al., 2017) estimates the parameters’ impor-
tance online. LwF (Li & Hoiem, 2017) regularizes the network at the functional level. Although
regularization-based methods can be computationally efficient, a disadvantage is that typically they
gradually reduce the model’s capacity for learning new tasks. Moreover, while in theory these meth-
ods can be used for Class-IL, in practice they have been shown to fail on such problems (Farquhar
& Gal, 2018; van de Ven & Tolias, 2019).
Replay methods. To preserve knowledge, replay methods periodically rehearse previous infor-
mation during training (Robins, 1995). Exact or experience replay based methods store data from
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Table 12: The model architectures used on the CIFAR-10 dataset.

(a) EBM: Beginning (V1)
Input: x, y

y = Embedding(N, 3) (y)

y = Softmax(dim=-1) (y)

y = y * y.shape[-1]

x = x * y

x = Conv2d(3×3, 3, 32) (x)

x = ReLU (x)

x = Conv2d(3×3, 32, 32) (x)

x = ReLU (x)

x = Maxpool(2, 2) (x)

x = Conv2d(3×3, 32, 64) (x)

x = ReLU (x)

x = Conv2d(3×3, 64, 64) (x)

x = ReLU (x)

x = Maxpool(2, 2) (x)

x = FC(2304, 1024) (x)

x = ReLU(x)

out = FC(1024, 1) (x)

(b) EBM: Middle (V2)
Input: x, y

x = Conv2d(3×3, 3, 32) (x)

x = ReLU (x)

x = Conv2d(3×3, 32, 32) (x)

x = ReLU (x)

y = Embedding(N, 32) (y)

y = Softmax(dim=-1) (y)

y = y * y.shape[-1]

x = x * y

x = Maxpool(2, 2) (x)

x = Conv2d(3×3, 32, 64) (x)

x = ReLU (x)

x = Conv2d(3×3, 64, 64) (x)

x = ReLU (x)

x = Maxpool(2, 2) (x)

x = FC(2304, 1024) (x)

x = ReLU(x)

out = FC(1024, 1) (x)

(c) EBM: Middle (V3)
Input: x, y

x = Conv2d(3×3, 3, 32) (x)

x = ReLU (x)

x = Conv2d(3×3, 32, 32) (x)

x = ReLU (x)

x = Maxpool(2, 2) (x)

x = Conv2d(3×3, 32, 64) (x)

x = ReLU (x)

x = Conv2d(3×3, 64, 64) (x)

x = ReLU (x)

y = Embedding(N, 64) (y)

y = Softmax(dim=-1) (y)

y = y * y.shape[-1]

x = x * y

x = Maxpool(2, 2) (x)

x = FC(2304, 1024) (x)

x = ReLU(x)

out = FC(1024, 1) (x)

(d) EBM: End Fix Softmax (V4)
Input: x, y

x = Conv2d(3×3, 3, 32) (x)

x = ReLU (x)

x = Conv2d(3×3, 32, 32) (x)

x = ReLU (x)

x = Maxpool(2, 2) (x)

x = Conv2d(3×3, 32, 64) (x)

x = ReLU (x)

x = Conv2d(3×3, 64, 64) (x)

x = ReLU (x)

x = Maxpool(2, 2) (x)

x = FC(2304, 1024) (x)

y = Random Projection (y)

y = Softmax(dim=-1) (y)

y = y * y.shape[-1]

x = x * y

out = FC(1024, 1) (x)

(e) EBM: End Softmax (V4)
Input: x, y

x = Conv2d(3×3, 3, 32) (x)

x = ReLU (x)

x = Conv2d(3×3, 32, 32) (x)

x = ReLU (x)

x = Maxpool(2, 2) (x)

x = Conv2d(3×3, 32, 64) (x)

x = ReLU (x)

x = Conv2d(3×3, 64, 64) (x)

x = ReLU (x)

x = Maxpool(2, 2) (x)

x = FC(2304, 1024) (x)

y = Embedding(N, 1024) (y)

y = Softmax(dim=-1) (y)

y = y * y.shape[-1]

x = x * y

out = FC(1024, 1) (x)

(f) Baseline models

Input: x

x = Conv2d(3×3, 3, 32) (x)

x = ReLU (x)

x = Conv2d(3×3, 32, 32) (x)

x = ReLU (x)

x = Maxpool(2, 2) (x)

x = Conv2d(3×3, 32, 64) (x)

x = ReLU (x)

x = Conv2d(3×3, 64, 64) (x)

x = ReLU (x)

x = Maxpool(2, 2) (x)

x = FC(2304, 1024) (x)

x = ReLU (x)

x = FC(1024, 1024) (x)

x = ReLU (x)

out = FC(1024, 10) (x)

previous tasks and revisit them when training on new tasks. Although straightforward, such methods
face critical non-trivial questions, such as how to select the data to be stored and how to use them
(Lopez-Paz & Ranzato, 2017; Hou et al., 2019; Wu et al., 2019; Mundt et al., 2020). An alternative
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Table 13: The model architectures used on the CIFAR-100 dataset. Following van de Ven et al. (2020), for
all models the convolutational layers were pre-trained on CIFAR-10. The ‘BinaryMask’-operation fully gates
a randomly selected subset of X% of the nodes, with a different subset for each y. Hyperparameter X was set
using a gridsearch.

(a) The architecture of the EBMs.

Input: x, y

x = Conv2d(3×3, 3, 16) (x)

x = BatchNorm (x)

x = ReLU (x)

x = Conv2d(3×3, 16, 32) (x)

x = BatchNorm (x)

x = ReLU (x)

x = Conv2d(3×3, 32, 64) (x)

x = BatchNorm (x)

x = ReLU (x)

x = Conv2d(3×3, 64, 128) (x)

x = BatchNorm (x)

x = ReLU (x)

x = Conv2d(3×3, 128, 256) (x)

x = FC(1024, 2000) (x)

x = ReLU (x)

x = BinaryMask (x, y)

x = FC(2000, 2000) (x)

x = ReLU (x)

x = BinaryMask (x, y)

out = FC(2000, 1) (x)

(b) The architecture of the baseline models.

Input: x

x = Conv2d(3×3, 3, 16) (x)

x = BatchNorm (x)

x = ReLU (x)

x = Conv2d(3×3, 16, 32) (x)

x = BatchNorm (x)

x = ReLU (x)

x = Conv2d(3×3, 32, 64) (x)

x = BatchNorm (x)

x = ReLU (x)

x = Conv2d(3×3, 64, 128) (x)

x = BatchNorm (x)

x = ReLU (x)

x = Conv2d(3×3, 128, 256) (x)

x = FC(1024, 2000) (x)

x = ReLU (x)

x = FC(2000, 2000) (x)

x = ReLU (x)

out = FC(2000, 100) (x)

is to generate the replayed data. In (Shin et al., 2017), a generative model is sequentially trained to
generate samples of previous tasks. While both types of replay can mitigate forgetting, an important
disadvantage is that they are computationally relatively expensive. Additionally, storing data might
not always be possible while incrementally training a generative model is a challenging problem in
itself (Lesort et al., 2019; van de Ven et al., 2020).

In contrast, we propose EBMs for continual learning that reduce catastrophic forgetting without
requiring knowledge of task-identity, without gradually restricting the model’s learning capabilities,
and without using stored data.
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