
Published in Transactions on Machine Learning Research (04/2025)

ComPEFT: Compression for Communicating Parameter Effi-
cient Updates via Sparsification and Quantization

Prateek Yadav1 Leshem Choshen2,3 Colin Raffel 4,5 Mohit Bansal1
1 UNC-Chapel Hill, 2 MIT, 3 MIT-IBM Watson AI Lab,
4 University of Toronto, 5 Vector Institue
Correspondence Email: {praty@cs.unc.edu}

Reviewed on OpenReview: https://openreview.net/forum?id=CovLQwu611

Abstract

Parameter-efficient fine-tuning (PEFT) enables creation of specialized language models
for diverse tasks, resulting in numerous expert modules. In many practical use cases,
these expert PEFT modules are integrated into a single model that answers arbitrary
queries by routing queries to different experts. However, only a few experts can be kept
in GPU memory due to memory constraints. Consequently, expert modules are frequently
loaded and offloaded between CPU/GPU memory or disk storage. This frequent swapping
dramatically increases communication overhead, leading unacceptable latency and degrading
user experience. The large size of modern PEFT modules further exacerbates this latency. For
example, QLoRA experts for 65B LLaMA are 3.2GB, making swapping a major communication
bottleneck, particularly in memory-constrained environments. To address these issues, we
present ComPEFT (compressed PEFT), a novel method for compressing fine-tuning residuals
(task vectors) of PEFT models. Reducing expert PEFT module size effectively addresses
both memory and communication limitations, facilitating faster swapping and enabling a
higher density of experts within a given memory footprint. ComPEFT employs sparsification
and ternary quantization to reduce PEFT module size without any additional training
while preserving or enhancing model performance. Extensive evaluation across T5, T0, and
LLaMA-based models with 200M− 65B parameters, ComPEFT achieves compression ratios of
8x− 50x. Specifically, we show that ComPEFT improves with scale – stronger models exhibit
higher compressibility and better performance. We show ComPEFT applied to LLaMA− 65B
outperforms QLoRA by 4.16% on MMLU with a 26x storage size reduction. Additionally,
compressed experts produced by ComPEFT maintain few-shot compositional generalization
capabilities, facilitate efficient communication and computation, and exhibit enhanced
performance when merged. Lastly, we provide an analysis of different method components,
compare ComPEFT with other PEFT methods, and test its efficacy for compressing full
finetuning residual.1

1 Introduction

Parameter-efficient fine-tuning (PEFT) (Houlsby et al., 2019; Karimi Mahabadi et al., 2021) methods like
LoRA (Hu et al., 2021) and (IA)3 (Liu et al., 2022) efficiently adapt language models by learning only a few
new parameters. QLoRA (Dettmers et al., 2023) further reduces memory needs by using 4-bit quantization
for the base model. This combined efficiency has fueled a surge in specialized models for diverse tasks such as
multimodal understanding (Zhang et al., 2023), multilingual applications (Yang et al., 2023), and expert
systems for math (Luo et al., 2023a) or coding (Luo et al., 2023b). Platforms like HuggingFace Hub (Wolf
et al., 2019) now host a rapidly growing collection of these expert PEFT models.

1Code is available at https://github.com/prateeky2806/ComPEFT.
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Figure 1: ComPEFT without any additional training compresses PEFT modules while preserving or enhancing
model performance.

Serving these expert PEFT models has different strategies. LoRA, for instance, allows merging expert
PEFT modules into the base model for single-expert low-latency inference and proposes expert swap-
ping for sequential multi-expert serving. While efficient for single and sequential multi-expert serving,
these methods become slow for concurrent multi-expert serving because swapping reduces throughput
and increases latency (Sheng et al., 2023). Furthermore, LoRA’s approaches don’t fully utilize available
GPU memory for a larger number of experts. For efficient high-throughput concurrent serving, sepa-
rating base model and adapter computations is crucial, as multiple experts can then share the base.
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Figure 2: ComPEFT improves performance with
larger base models while compressing models
significantly. Left Axis: Improvement of MMLU
performance over the corresponding base model. Right
Axis: Compression factor achieved by ComPEFT com-
pared to the original checkpoint.

This enables efficient base model batching, but di-
rectly batching expert PEFT modules remains chal-
lenging. Serving numerous experts demands efficient
memory management. Limited GPU memory ne-
cessitates storing experts off-GPU and dynamically
fetching them when needed. This dynamic load-
ing of large expert modules leads to communication
overhead and unacceptable latency, degrading user
experience (Sheng et al., 2023). Communication
bottlenecks extend beyond concurrent multi-expert
serving. Techniques like Model merging (Ilharco
et al., 2023; Yadav et al., 2023), Model MoErging (Ya-
dav et al., 2024), and compositional generalization
(CG) (Huang et al., 2023; Muqeeth et al., 2024) also
require dynamically retrieving expert PEFT modules
from cloud/disk/cache into GPU memory based on
input queries to dynamically merge or route through
experts for improved generalization. Consequently,
these methods also face communication challenges.
For example, a 3.2 GB QLoRA adapter for LLaMA− 65B (comparable to a full T5-Large model (Raffel et al.,
2020b)) can make frequent swapping a bottleneck, especially under memory constraints. Therefore reducing
expert PEFT module size solves both memory and communication issues by facilitating both faster swapping
and increased expert density within a given memory footprint.

To address these issues, we introduce our ComPEFT (compressed PEFT) method that compresses fine-tuning
residuals – i.e., task vectors – by exploiting their inherent redundancies (Yadav et al., 2023). The task vectors
represent the learned changes to the model’s parameters during fine-tuning for a specific task. ComPEFT
achieves this compression through a two-step process. First, it applies sparsification, aggressively sets a large
portion of the values within the PEFT task vector to zero. This step is based on the observation that many
values in task vectors are close to zero and contribute minimally to the expert’s behavior (Yadav et al., 2023).
Second, for the remaining non-zero values, ComPEFT employs ternary quantization. Instead of storing these
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values at full precision, it represents their magnitudes using a single, shared scalar constant, and their signs
(+1, −1, or 0). This results in task vectors with sparse ternary weights, drastically reducing their size (see
Figure 1). ComPEFT shares similarities with the Sparse Ternary Compression (STC, Sattler et al., 2019a)
method used in federated learning, however, there are notable differences. Unlike STC, ComPEFT retains
high-performance without the need for additional training. This is in stark contrast to directly applying STC
to task vectors, which we find leads to performance degradation. Remarkably, ComPEFT can often restore
and even surpass the original fine-tuned performance by carefully calibrating the magnitude of the shared
scalar constant used in ternary quantization. Additionally, we demonstrate this effectiveness not only for
PEFT modules but also for fully fine-tuned models. Moreover, we observe a beneficial trend that the optimal
magnitude of this scalar constant becomes consistent across different tasks for larger models (≥ 13B). This
eliminates the need for task-specific tuning and simplifies the practical deployment of ComPEFT at scale,
further facilitating reduced latency during model serving. Finally, the ComPEFT compression enables more
efficient operations on task vectors that can facilitate faster merging of models and compute their similarity.

We perform comprehensive experiments for ComPEFT to evaluate: (1) the performance of the compressed
model on its original tasks, (2) the number of bits needed to store the models, (3) the mergeability and
composability of the compressed checkpoints, and (4) how ComPEFT compares to other existing PEFT methods.
We performed experiments with T5 (Raffel et al., 2020a), T0 (Sanh et al., 2021a), LLaMA (Touvron et al.,
2023a), and LLaMA2 (Touvron et al., 2023b) as the base models with model sizes ranging from 200M− 70B
parameters. We found that in most cases ComPEFT can provide compression of 8x− 50x (compared to 16− bit
precision checkpoints) while performing similarly or better than the uncompressed models. Additionally, we
note a surprising finding that as the base model gets bigger, their task vectors become more compressible and
these compressed checkpoints significantly outperform the original uncompressed checkpoints. Specifically,
as shown in Figure 2, ComPEFT leads to an improvement of 0.54%, 1.06%, 3.44%, and 4.16% on MMLU for
QLoRA trained on LLaMA 7B, 13B, 33B, and 65B parameter models, respectively, while compressing model
by 16x − 26x. Beyond performance and size, we demonstrate that ComPEFT provides order-of-magnitude
reductions in model transmission and loading latency, directly addressing communication bottlenecks in expert
model serving. In addition, we show that (1) the compressed models from ComPEFT lead to better-merged
models; (2) for few-shot compositional generalization (CG) (Huang et al., 2023), ComPEFT checkpoints lead to
similar performance on BBH (Suzgun et al., 2022); (3) ComPEFT applied to LoRA and (IA)3 is Pareto-optimal
in terms of storage costs vs. performance compared to a wide range of existing; (4) the importance of the
components of ComPEFT in an ablation study, and (5) the effect of sparsity and scaling on performance. We
further show that ComPEFT’s benefits extend beyond PEFT, effectively compressing fully fine-tuned models
with minimal degradation. Our results and analysis establish ComPEFT as an effective method for compressing
task vectors. In summary, our contributions are:

1. ComPEFT demonstrates that even efficient PEFT modules can be drastically compressed (8x− 50x)
via sparsification and quantization without performance loss, suggesting PEFT modules contain
significant redundancy.

2. The reduced size of ComPEFT checkpoints (8x− 50x smaller) enables serving larger models or signifi-
cantly more expert PEFT modules given fixed resources.

3. ComPEFT’s smaller size reduces communication overhead during dynamic retrieval and load-
ing/offloading, leading to improved latency in practical serving systems.

2 ComPEFT: Compression for Communicating Parameter Efficient Updates via
Sparsification and Quantization

As discussed in the introduction (§1), serving numerous expert PEFT modules suffer from communication
and memory bottlenecks which can be alleviated by compressing the experts. This section details ComPEFT,
our method to compress experts by targeting their fine-tuning residuals. Given a pre-trained model like
LLaMA (Touvron et al., 2023a) or T5 (Raffel et al., 2020b), we can create an expert model for specific task t
by either finetuning all model parameters or using a parameter-efficient fine-tuning (PEFT) approach such as
(IA)3 (Liu et al., 2022) or LoRA (Hu et al., 2021). In both scenarios, we represent the trainable parameters
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as θ, initialized as θinit, which, upon fine-tuning, become θft. This work assumes access to the initial model
parameters θinit and the fine-tuned model parameters, θft. Our work focuses on two key objectives: (1) to
achieve extreme compression of parameter updates for efficient and low-latency communication of expert
models, and (2) to gain insights into the inherent compressibility of these updates, suggesting a lower intrinsic
dimensionality of learned task-specific knowledge.

For a given task t, we first represent the parameter updates from fine-tuning as a task vector τt = θft − θinit.
This task vector encapsulates the changes applied to the base model parameters to specialize it for task t. To
effectively compress these task vectors, we decompose each τt into direction and magnitude components. This
decomposition allows us to treat the direction of parameter updates and their magnitude separately, enabling
us to apply distinct compression strategies optimized for each component. We decompose the task vector
τt into a direction (sign) vector γt ∈ Rd and a magnitude vector µt ∈ Rd. Formally, the direction vector
γt = sgn(τt) captures the sign of each parameter (+1, 0 or -1), while the magnitude vector µt is µt = |τt|
captures the absolute magnitude. This decomposition allows us to express the task vector as the Hadamard
product: τt = γt ⊙ µt. Based on the intuition from Yadav et al. (2023), that the direction of parameter
updates is crucial for task adaptation, while lower magnitude updates are redundant. ComPEFT achieves high
compression by sparsifying the direction vector γt and quantizing the magnitude vector µt to a single scalar.

2.1 Steps in ComPEFT Algorithm 1 ComPEFT Compression Procedure.
Input: Task vector τt, k, and a scaling value α.
Output: Compressed task vector τ̃t
γt ← sgn(τt)
µt ← |τt|
▷ Step 1: Sparsify.

τ̃t ← keep_topk_reset_rest_to_zero(γt, µt, k)
▷ Step 2: Quantize Magnitudes to scalar.

τ̃t = α ∗ σ(τt) ∗ γ̃t
return τ̃t

To reconstruct an expert model for task t, we only
need to communicate the compressed update over
the base pre-trained model, which is represented
by the task vector τt. As described earlier, we de-
compose this task vector into a direction vector γt
and a magnitude vector µt. Given this decomposi-
tion, ComPEFT compresses the task vector through
two key steps of sparsification and quantization.
Refer to Algorithm 1 and Figure 1.

1. Sparsify: We sparsify the direction vector γt by retaining only the signs of the parameters corresponding
to the top-k% largest magnitudes in µt, and setting the signs of the remaining (1 − k)% parameters
to zero. Following Yadav et al. (2023), we select the top-k% parameters based on their magnitude in
µt as larger magnitude updates generally represent more significant parameter changes learned during
fine-tuning. By preserving the signs of these largest magnitude updates and zeroing out the rest, we aim
to retain the most critical directional information for each task. Formally, the sparsified direction vector,
γ̃t = γt ⊙ top-k(µt), where top-k(.) is applied elementwise and returns 1 for indices with the top− k%
magnitude values and 0 otherwise. The parameter k is referred to as the "density", and 1 − k as the
sparsity.

2. Quantize Magnitudes: We then quantize the magnitude vector µt to a single scalar value. Specifically,
we define the compressed task vector τ̃t ∈ Rd as τ̃t = α ∗ σ(τt) ∗ γ̃t. Here, σ(τt) ∈ R is the standard
deviation of the original task vector τt, and α ∈ R is a scaling hyper-parameter. We utilize the standard
deviation of the original task vector as a scaling factor to normalize the magnitude, which helps to make
the optimal α value more consistent across different tasks and models. Refer to Appendix B.5 for more
discussion. The scaling factor α is then chosen by evaluating performance on a small validation set;
importantly, α is the only parameter tuned during this process. We observe that this simple scalar scaling
is sufficient to effectively mitigate any performance loss from sparsification and ternary quantization.
This contrasts with many model pruning methods that require computationally expensive retraining
after sparsification to recover performance.

2.2 Efficient Storage of ComPEFT Models

ComPEFT’s compression strategy directly addresses the communication bottleneck and latency concerns
highlighted in §1 by significantly reducing the storage footprint of expert PEFT modules. This section
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details the storage efficiency gains and discusses practical encoding schemes for efficient communication and
computation.

Entropy of the Sparsified Task Vector. A typical task vector τt in bfloat16 or fp16 format requires
16 ∗ d bits for memory/storage. Assuming uniform value distribution, its entropy is also Hdense = 16∗d bits.
ComPEFT, however, represents the compressed task vector τ̃t using a sparse ternary sign vector (values
∈ {−1, 0, +1}) and a single 16-bit scalar value (α ∗ σ(τt) ∈ R). Assuming the signs of the nonzero entries
of τ̃t are uniformly distributed, the ternarization step reduces the entropy of the update to HComPEFT =
−((1 − k) log2(1 − k) + k log2(k

2 )) ∗ d + 16 bits, where k is the density of the update. At a density level
of k = 0.05, the resultant update has 95% of the values as 0 and the entropy is 0.34 ∗ d + 16 bits. Hence,
with a perfect encoding-decoding scheme and 95% sparsity, our ComPEFT can reduce the number of bits per
parameter from 16 bits to approximately 0.34 bits which is a 47x improvement in communication and
storage costs. We now discuss two practical encoding schemes to realize these savings.

Optimal Compression via Golomb Coding. For maximal compression in communication and storage,
Golomb coding is effective. This near-entropy method suits geometrically distributed data, like distances in
sparse task vectors (Strom, 2015; Sattler et al., 2019a). Using Golomb coding (Golomb, 1966), we communicate
the locations of non-zero elements with an additional bit indicating each element’s sign, achieving near-optimal
compression. This approach needs a total of −((1− k) log2(1− k) + k log2( k

2 )) ∗ d + 16 bits for storage, and
its average bits per position b̄pos, the calculation of which is detailed in the footnote below2. Unless otherwise
specified, storage costs reported in our experiments assume Golomb coding.

Efficient Computation and Communication via Two Binary Vectors. Alternatively, for scenarios
prioritizing computational efficiency, ComPEFT compressed task vector τ̃t can be represented using two
binary masks, one signifying positive values and the other signifying negative values. Formally, we need
to communicate τ̃+

t = (τ̃t == +1) ∈ Rd and τ̃−
t = (τ̃t == −1) ∈ Rd, and the scalar constant α ∗ σ(τt).

Each binary mask needs 1 bit/parameter, resulting in 2 ∗ d + 16 bits for communicating the update.
Note that this requires strictly more storage than the Golomb-based encoding described above because
−((1− k) log2(1− k) + k log2( k

2 )) < 2. However, sparse ternary vectors allow for efficient matrix operations.
For example, to efficiently compute the distance between τ̃t1 and τ̃t2 , we can do an XOR (⊕) followed by a
POPCNT for each group of 64 parameters (i.e. two machine instructions on a 64-bit architecture) twice, once
for the positive and once for the negative masks. The dot product can also be calculated by using bitwise AND
operations to calculate positive contributions (both vectors have +1 or −1) and negative contributions (one
vector has +1, the other −1). The final dot product is the difference between the sum of these contributions.
Similarly, other operations such as addition can also be made faster, which could reduce the time when
merging models. Thus, ComPEFT offers flexibility to use Golomb coding for optimal storage, and binary vectors
for efficient computation.

3 Main Results

3.1 Compressing QLoRA Trained on LLaMA Models

Experimental Setup. We first explore the utility of ComPEFT in the setting of training QLoRA
adapters (Dettmers et al., 2023) for the LLaMA models (Touvron et al., 2023a) with 7B, 13B, 33B, and
65B parameters. We follow the experimental setting from the QLoRA paper (Dettmers et al., 2023) and
experiment with 8 recent instruction-following datasets that are diverse in terms of languages and dataset sizes.
This collection includes datasets generated by language models (Alpaca (Taori et al., 2023), self-instruct (Wang
et al., 2022), and unnatural-instructions (Honovich et al., 2022)), a multitask dataset (FLAN-v2 (Chung
et al., 2022a)), two datasets created via human annotation and feedback (OASST1 (Köpf et al., 2023) and
HH-RLHF (Bai et al., 2022)), and two hybrid datasets (Chip2 (LAION, 2023) and Longform (Köksal et al.,
2023)). For each of these datasets, we reuse the checkpoints released with the QLoRA paper3 to perform
compression using Algorithm 1 and then evaluate the 5-shot performance of the compressed QLoRA module

2Similar to Strom (2015); Sattler et al. (2019a;b), the average bits per position b̄pos is calculated as follows: b̄pos =
b∗ + 1

1−(1−p)2b∗ , with b∗ = 1 + ⌊log2( log(ϕ−1)
log(1−p) )⌋ and ϕ =

√
5+1
2 being the golden ratio.

3https://huggingface.co/timdettmers?search_models=qlora
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Table 1: Performance improvement from ComPEFT increases as models get bigger. We present the
performance (storage size in GB) on the MMLU Test for the original and compressed QLoRA models. For
LLaMA− 65B, ComPEFT leads to a 4.16% improvement while being 26x smaller.

Model Size (→) 7B 13B 33B 65B
Dataset (↓) Original ComPEFT Original ComPEFT Original ComPEFT Original ComPEFT
Self-Instruct 36.45(0.3) 37.72(0.03) 36.20(0.47) 45.15(0.01) 50.98(0.91) 57.02(0.02) 55.34(1.49) 63.43(0.03)
Longform 34.37(0.3) 35.48(0.02) 45.70(0.47) 46.80(0.02) 54.60(0.91) 57.07(0.07) 59.49(1.49) 62.95(0.05)
Chip2 34.88(0.3) 36.11(0.02) 44.19(0.47) 45.06(0.03) 51.72(0.91) 56.43(0.03) 57.30(1.49) 63.32(0.05)
HH-RLHF 35.52(0.3) 35.30(0.01) 44.66(0.47) 44.99(0.01) 53.41(0.91) 56.97(0.07) 58.79(1.49) 63.42(0.05)
Unnatural Instruct 42.14(0.3) 41.82(0.02) 48.98(0.47) 48.42(0.03) 56.65(0.91) 58.07(0.09) 59.50(1.49) 63.30(0.03)
Guanaco (OASST1) 35.02(0.3) 36.31(0.01) 48.50(0.47) 47.10(0.03) 55.51(0.91) 57.55(0.05) 60.67(1.49) 63.25(0.09)
Alpaca 40.72(0.3) 39.95(0.02) 49.53(0.47) 48.41(0.03) 53.66(0.91) 57.68(0.05) 60.51(1.49) 63.28(0.05)
FLAN v2 43.97(0.3) 44.70(0.02) 50.45(0.47) 50.76(0.03) 56.67(0.91) 60.01(0.07) 62.72(1.49) 64.61(0.11)

Average 37.88(0.3) 38.42(0.0188) 46.03(0.47) 47.09(0.024) 54.15(0.91) 57.60(0.056) 59.29(1.49) 63.45(0.058)
Increase/Comp. − +0.54 / 16x − +1.06 / 20x − +3.44 / 16x − +4.16 / 26x

Table 2: LLaMA2-70B Results. Mirroring our
main findings, ComPEFT improves average performance
(by 1.69%) on LLaMA2− 70B, notably by 4.82% on
Self-Instruct.

Dataset (↓) Original ComPEFT
Alpaca 67.13 67.56 (+0.43)
Chip2 65.18 67.00 (+1.82)
Longform 67.63 68.50 (+0.86)
Guanaco 66.89 67.39 (+0.5)
Self-Instruct 62.36 67.18 (+4.82)
Average 65.84 67.53 (+1.69)

Table 3: ComPEFT can compress smaller model
with minimal performance loss. Test set
performance(Storage Size in MB) averaged over seven
GLUE tasks when compressing (IA)3 and LoRA mod-
ules on different base models.

PEFT (↓) Method (↓) T5-Base T5-Large T0-3B

(IA)3
Original 81.3(0.25) 86.2(0.66) 89.3(1.03)

ComPEFT 80.0(0.01) 85.9(0.04) 88.4(0.06)

Improvement -1.3 / 25x -0.3 / 16x -0.9 / 17x

LoRA
Original 79.2(6.19) 84.5(16.50) 89.5(33.75)

ComPEFT 78.1(0.35) 84.6(1.37) 89.5(2.60)

Improvement -1.1 / 17x +0.1 / 12x 0.0 / 13x

on the MMLU benchmark (Hendrycks et al., 2020). To ensure the generalizability of ComPEFT, we extend
our evaluation to LLaMA2− 70B model. In all experiments, we sweep both α and k in the following ranges,
k ∈ {5, 10, 20, 30, 50} and α ∈ {0.5, 1, 2, 3, 4, 5, 6, 8, 10} and report the storage size based on the entropy of
ComPEFT as specified in §2.2. We find that at any given value of k, you can achieve good performance (see
§ 4.2). We used a single 48GB NVIDIA A6000 GPU for these experiments.

Outcomes. In Table 1, we provide results for all the task and model size combinations, comparing the
performance of the ComPEFT checkpoints and the original QLoRA checkpoints along with (in subscripts) the
storage size in GB assuming 16-bit precision for uncompressed models and Golomb code-based compression.
We find that on 28 of 32 experimental configurations ComPEFT improves upon the performance of the original
QLoRA models while compressing the LoRA module between 10x− 50x in terms of storage costs. ComPEFT
leads to an improvement of 0.54%, 1.06%, 3.44%, and 4.16% on MMLU for the LLaMA 7B, 13B, 33B, and
65B parameter models, respectively. In Table 2, we observe similar compression and improvements for
LLaMA2− 70B model. To sum, ComPEFT provides better results while also reducing the QLoRA module size.
For example, on the 65B LLaMA base model it reduces the storage size from 1.5GB to 110MB while improving
the MMLU performance by a large margin of 4.16%.

Discussion. A few important conclusions about ComPEFT can be derived from these results: (1) ComPEFT can
compress all QLoRA models by a factor of at least 10x. (2) Larger base models allow for more compressible
LoRA modules. We get a compression factor of approximately 16x, 20x, 16x, and 26x for 7B, 13B, 33B,
and 65B parameter models respectively. (3) A similar trend is found in performance – the performance gap
between the original and the compressed LoRA module increases with model size from 0.54% for the 7B
model to 4.16% for the 65B model. If this scaling law continues, it means that the utility of methods like
ComPEFT will increase as models become larger and/or their zero-shot performance improves.
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Table 4: ComPEFT extends compression benefits
to fully fine-tuned residuals. Average test set
performance (and storage size in GB) over 7 GLUE
tasks for original and ComPEFT-compressed fully fine-
tuned model’s task vectors. Across various model
architectures and sizes, ComPEFT compresses models
by 12x− 19x with near-lossless performance, and even
slight improvements for some models.

Model (↓) Original ComPEFT Improvement

BERT− Base 87.2(0.21) 86.8(0.011) -0.4 / 19x
BERT− Large 86.3(0.64) 86.1(0.036) -0.2 / 18x

RoBERTa− Base 85.5(0.24) 83.3(0.013) -2.2 / 18x
RoBERTa− Large 88.6(0.68) 89.2(0.052) +0.6 / 13x

T5v.1− Base 74.1(0.47) 75.8(0.032) +1.7 / 15x
T5v.1− Large 84.0(1.5) 82.2(0.11) -1.8 / 14x

T5− Base 82.8(0.43) 78.1(0.032) -4.7 / 13x
T5− Large 85.2(1.41) 84.7(0.12) -0.5 / 12x

Table 5: ComPEFT enables order-of-magnitude
reduction in model transmission and loading
latency. We report the wall clock time (mean and
standard deviation) for two practical scenarios: down-
loading LLaMA model checkpoints (7B-65B) from
a simulated internet server to a local machine, and
transferring checkpoints from CPU to GPU memory,
comparing original and ComPEFT-compressed versions.
ComPEFT reduces download times by up to 32x and
CPU-to-GPU loading times by up to 25x, highlighting
the practical advantages in deployment and serving
efficiency.

Model (↓) Internet → Local (seconds) CPU → GPU (milliseconds)
Original ComPEFT Original ComPEFT

LLaMA− 7B 11.212.44 1.160.04 134.284.76 11.235.22
LLaMA− 13B 16.853.83 1.750.30 186.605.42 23.090.78
LLaMA− 33B 32.316.76 2.460.12 307.2955.59 18.004.34
LLaMA− 65B 83.179.14 2.590.14 475.2666.51 18.605.67

3.2 Compressing Other PEFT Updates

The finding that scaling the base model makes the PEFT modules more compressible and more performant
brings up the question as to whether ComPEFT is still effective at smaller scales. We perform experiments on
two widely used PEFT methods, (IA)3 (Liu et al., 2022) and LoRA (Hu et al., 2021), with three models,
T5-Base and T5-Large (Raffel et al., 2020a), and T0-3B (Sanh et al., 2021b). Specifically, we compress (IA)3

and LoRA modules trained on 7 classification tasks from the GLUE benchmark (Wang et al., 2018a) belonging
to three categories: Natural Language Inference (MNLI (Williams et al., 2018), RTE (Bentivogli et al.,
2009), QNLI (Rajpurkar et al., 2016), WNLI (Levesque et al., 2012a)), Sentiment Analysis (SST2 (Socher
et al., 2013)), and Paraphrase Detection (MRPC (Dolan & Brockett, 2005), QQP (Wang et al., 2018a)). For
hyperparameter selection (α, k), we use the same grid and validation procedure as described in §3.1.

Outcomes. In Table 3, we present the average performance on the 7 aforementioned GLUE tasks (per-dataset
results are provided in Appendix C.6) along with the average checkpoint size in MB (in subscripts) for three
base models with both (IA)3 and LoRA adapters. We find that even with smaller base models, ComPEFT
compress the PEFT modules by a factor of 12x− 25x with minimal to no loss in performance. These
results demonstrate that even at smaller scales ComPEFT can lead to substantial compression. Additionally,
we performed some experiments with BERT (Devlin et al., 2018), RoBERTa (Liu et al., 2019a), and
T5v1.1 (Raffel et al., 2020a) models that are not multitask-trained and/or have weak zero-shot performance
(i.e. they generally require additional finetuning to perform well on any downstream tasks). We present the
results for these models in Appendix C.7, where we observe that compression works well for LoRA with
minimal performance loss. However, for (IA)3 we observe significant performance drops which suggest that
zero-shot performance may be important to enable ComPEFT compression of (IA)3-based models.

3.3 Compressing Fully Fine-tuned Models

Experimental Setup. To assess the broader applicability of ComPEFT, we investigate its effectiveness beyond
PEFT modules and explore its ability to compress task vectors produced by full-model fine-tuning. We adopt
the experimental setting from § 3.2 to fine-tune the 7 classification tasks from the GLUE benchmark using
full fine-tuning, and then compress the resulting fully fine-tuned task vectors using ComPEFT. We evaluate
our method on four different model architectures – BERT (Devlin et al., 2018), RoBERTa (Liu et al., 2019a),
T5-v1.1 (Raffel et al., 2020a), and T5 (Raffel et al., 2020a) – across two model sizes (Base and Large) for
each architecture.

Outcomes. Table 4 presents the average test set performance over the 7 GLUE tasks for both original
and ComPEFT-compressed fully fine-tuned modelsWe observe that ComPEFT effectively compresses fully fine-
tuned models, achieving 12x− 19x compression ratios with minimal performance degradation. Notably, for
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T5v1.1-base and RoBERTa-large models, ComPEFT even leads to performance improvements of 1.7% and
0.6% respectively, while simultaneously reducing model size by 15x and 13x.

Discussion. These results demonstrate that ComPEFT is not limited to compressing parameter-efficient
modules but can also be effectively applied to compress fully fine-tuned models. This broader applicability
expands the potential use cases of ComPEFT and highlights its versatility as a general model compression
technique. The observed performance improvements in some cases, even with full fine-tuning compression,
further suggest that ComPEFT may act as a regularizer, potentially improving generalization.

3.4 Reduced Transmission Cost and Loading Latency

Experimental Setup. A key practical advantage of model compression is reduced storage and transmission
costs. To quantify these benefits for ComPEFT, we measure the wall clock time for two representative scenarios:
(1) downloading a model checkpoint from a simulated internet server to a local machine, and (2) loading a
model checkpoint from CPU memory to GPU memory. We perform these measurements for both original
QLoRA checkpoints and their ComPEFT-compressed counterparts for LLaMA models of sizes 7B, 13B, 33B,
and 65BFor each scenario and model configuration, we repeat the measurement 10 times and report the mean
and standard deviation of the wall clock times.

Outcomes. Table 5 presents the results for transmission latency and loading timeAs expected, ComPEFT-
compressed checkpoints exhibit significantly reduced transmission and loading times compared to the original
checkpoints across all model sizes and both scenariosFor example, downloading the LLaMA− 65B ComPEFT
checkpoint from the internet is approximately 32x faster than downloading the original checkpoint. Similarly,
loading the ComPEFT-compressed LLaMA− 65B checkpoint from CPU to GPU is about 25x faster.

Discussion. These measurements showcase ComPEFT’s substantial practical value beyond their size. The order-
of-magnitude speedups in download and loading/offloading times significantly accelerate model deployment
and improve multi-expert serving efficiency, especially in dynamic or resource-limited settingsComPEFT thus
offers key real-world advantages for efficient model utilization.

3.5 ComPEFT vs. Other PEFT Methods
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Figure 3: ComPEFT are Pareto-optimal. Perfor-
mance vs storage size for multiple PEFT methods aver-
aged over 11 tasks. A PEFT method is Pareto-optimal
if it attains better performance (higher on the y-axis)
than all methods that use less storage space (to the left
on the x-axis). In particular, Com(IA)3 performance
is comparable to PEFT methods that require 1000×
more storage space.

Experimental Setup. Next, we compare
the (IA)3 and LoRA checkpoints compressed by
ComPEFT with various other PEFT methods to de-
termine whether ComPEFT produces Pareto-optimal
parameter-efficient fine-tuning in terms of Stor-
age Size and Performance. For this, we use the
T0-3B (Sanh et al., 2021b) model and train a
wide range of PEFT methods on the 11 held-out
datasets from Sanh et al. (2021b) – specifically, sen-
tence completion (COPA (Roemmele et al., 2011),
H-SWAG (Zellers et al., 2019), and Story Cloze
(Sharma et al., 2018) datasets), natural language
inference (three splits of ANLI (Nie et al., 2019),
CB (Marneffe et al., 2019), and RTE (Dagan et al.,
2005)), coreference resolution (WSC (Levesque
et al., 2012b) and Winogrande (Sakaguchi et al.,
2020)), and word sense disambiguation (WiC (Pile-
hvar & Camacho-Collados, 2019)). For each task,
from the training set, we select 200 example for
the validation set and then use the first template
from Prompt Source (Bach et al., 2022) both dur-
ing training and evaluation. We perform experiments with 10 different PEFT methods from Liu et al. (2022)
– LoRA (Hu et al., 2021), (IA)3 (Liu et al., 2022), BitFit (Zaken et al., 2021), LayerNorm, Adapters (Houlsby
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Figure 4: ComPEFT facilitates composi-
tional generalization. Average perfor-
mance of LoraHub and ComPEFT for com-
positional generalization on BBH.

Table 6: ComPEFT compressed checkpoints lead to better
merged models. Average test set results on 7 GLUE tasks
when employing different merging methods on the uncompressed
checkpoints and compressed ComPEFT checkpoints.

Method (↓) T5-Base T5-Large T0-3B
(IA)3 LoRA (IA)3 LoRA (IA)3 LoRA

Averaging 53.7 49.3 55.4 50.2 74.5 73.1
Task Arithmetic (TA) 60.0 52.8 62.7 61.6 77.8 75.0
ComPEFT + TA 59.7 53.9 61.9 64.9 80.0 75.6
TIES-Merging 55.5 49.2 61.3 57.3 71.7 73.4
ComPEFT + TIES 55.6 49.2 60.4 61.4 76.2 75.8

et al., 2019), Compacter and Compactor++ (Karimi Mahabadi et al., 2021), Prompt Tuning (Lester et al.,
2021), Prefix Tuning (Li & Liang, 2021), and Intrinsic SAID (Aghajanyan et al., 2020).

Outcomes. In Figure 3, we plot the average performance over the 11 tasks and the checkpoint sizes in KB
for 10 PEFT Method and when using ComPEFT on LoRA and (IA)3 checkpoints, i.e. ComLoRA and Com(IA)3.
We find that ComPEFT reduces the storage size for both LoRA and (IA)3 by more than an order of magnitude
with minimal reduction in performance. From this plot, ComPEFT is Pareto-optimal, i.e. for any given storage
budget, ComPEFT outperforms all other PEFT methods. Notably, Com(IA)3 exhibits only a minor performance
degradation compared to full-model fine-tuning while being one of the most space-efficient PEFT methods.
Lastly, we note that for ComPEFT you can trade-off performance for storage cost by varying the density k to
obtain models of different sizes. Hence, Com(IA)3 and ComLoRA could be made even more space efficient.

Discussion. Figure 3 positions ComPEFT as a highly competitive PEFT technique, not just a compression
methodWhile methods like Prompt Tuning and Prefix Tuning offer parameter efficiency, ComPEFT, especially
Com(IA)3, achieves a significantly better balance of performance and size. Traditional full fine-tuning, while
offering slightly higher peak performance, is orders of magnitude larger in sizeThis Pareto-optimality highlights
the practical advantages of ComPEFT in resource-constrained scenarios. Furthermore, while we focus on Pareto
optimality against other PEFT methods here, ComPEFT also provides a strong compression baseline for any
PEFT technique; applying ComPEFT to other PEFT outputs could further enhance their storage efficiency.

3.6 Cross-Task Generalization via Dynamic LoRA Module Composition

Experimental Setup. As highlighted in §1, a key motivation is to enable efficient serving of numerous
experts, particularly in scenarios requiring dynamic adaptation to novel tasks. Cross-task generalization,
using compositional methods like LoraHub which dynamically select, load, and compose expert modules,
exemplifies such a scenario where communication bottlenecks are critical. Therefore, to assess ComPEFT’s
ability to facilitate efficient expert module serving in this demanding downstream application, we examine its
impact on the composability of the resulting PEFT modules for cross-task generalization. Given a set of
expert models and an unseen downstream task with few training examples, the goal is to combine a subset of
these expert modules to attain a model that performs well on the unseen task.

For this, we follow the LoraHub (Huang et al., 2023) method and their experimental setting. We use the
Flan-T5-large (Chung et al., 2022b) model as it exhibits strong zero-shot and few-shot capabilities. We
consider nearly 200 distinct (tasks, instruction) pairs that were utilized to train the Flan-T5 model and use
the LoRA modules trained on these tasks as expert4. Following Huang et al. (2023), when learning a new
unseen task, we randomly select N LoRA modules denoted by {Li = (Ai, Bi)}N

i=1 and compose them as

Lm = AmBm =
(

N∑
i=1

wiAi

)(
N∑

i=1
wiBi

)
, (1)

4hf.co/models?search=lorahub
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Figure 5: ComPEFT outperforms STC and all method steps are crucial. Average performance as
density k of the compressed checkpoint increases. We show results for compressing LoRA modules trained
over different models with sizes ranging from 3B− 65B and compare them with baselines and ablate method
components.

where Am, Bm are the matrics of the composed LoRA module and wi are parameters that are learned on the
few-shot examples from the unseen tasks using the gradient-free Shiwa optimizer (Liu et al., 2020). Following
LoraHub, we use N = 20 and treat the 27 diverse tasks from the Big-Bench Hard (BBH) benchmark (Suzgun
et al., 2022) as our unseen evaluation tasks. All the tasks are multiple-choice questions and we employ Exact
Match (EM) as our evaluation metric. Error bars in Figure 4 represent standard deviation across the BBH
tasks performance.

Outcomes. In Figure 4, we report the average performance and standard deviation (over 5 seeds) when
using the LoraHub method on the original checkpoints and the ComPEFT-compressed checkpoints. We find
that the ComPEFT-compressed checkpoints exhibit similar compositional abilities as the original uncompressed
checkpoints. This is a crucial finding: even with extreme compression, the modules retain the necessary
properties for effective cross-task composition. Hence, ComPEFT checkpoints can be communicated quickly
over high latency networks for dynamic module swapping, while maintaining their compositional abilities.

Discussion. The preservation of compositional generalization performance after ComPEFT compression is a
significant result. It directly addresses the practical challenge of serving numerous expert modules for complex
tasksBy drastically reducing module size, ComPEFT makes dynamic module composition via methods like
LoraHub far more efficient and scalable, enabling faster download times and reduced memory footprint during
run-time module swappingThis experiment validates that ComPEFT is not only a compression technique but
also a facilitator for advanced applications requiring efficient expert module management and communication.

3.7 Merging Compressed PEFT Modules

Experimental Setup. Next, we examine the effectiveness of ComPEFT when merging models (Choshen et al.,
2022; Matena & Raffel, 2021) by comparing the merging of compressed or uncompressed models. We follow
the experimental setting (including base models, PEFT methods, and datasets) from the previous section
and merge the 7 GLUE tasks to produce a multitask model. We then report the average performance of the
merged across all tasks. We use two methods to merge task vectors, namely, Task Arithmetic (Ilharco et al.,
2023) and TIES-Merging (Yadav et al., 2023). We used the code from the original authors for both merging
methods.

Outcomes. As demonstrated in Table 6, in 9 out of 12 scenarios, the ComPEFT checkpoints lead to
better merged models compared to the original checkpoints, with the notable exception of (IA)3 on T5
models. Notably, in stronger models like T0-3B, ComPEFT-compressed checkpoints not only reduce the
size by approximately 15x but also improve the merged model’s performance by 2.4% on average. One
possible explanation is that ComPEFT acts as a regularizer, removing less important parameter updates
and potentially leading to smoother, more generalizable loss landscape that merge more effectively. This
shows ComPEFT’s efficacy in both minimizing storage and communication overheads and improving the model
merging performance.
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Figure 6: Larger models do not require explicit tuning of α. Performance vs α for various denisty
levels for ComPEFT.

4 Additional Results and Analysis

4.1 Ablation of ComPEFT Components

Experimental Setup. To understand the contribution of the individual steps of ComPEFT, we now perform
a brief ablation study. In ComPEFT there are two main steps: (1) Sparsifying the direction vectors, and (2)
Quantizing the magnitudes to a scalar with scaling factor α. Hence, we compare with two ablated versions:
Pruned (only sparsification, magnitudes reset to zero, no quantization, no scaling), and Sparse Ternary
Compression (STC ) (Sattler et al., 2019a) (ternary quantization with mean magnitude scaling, no tuned
α). We also include the uncompressed original model as a baseline. We provide these ablations for the
experimental settings from § 3.1 and 3.5 where the model sizes range from 3B− 65B.

Outcomes. In Figure 5, we plot the average validation set performance over tasks as a function of the
density (k) of the compressed model. From these results, we make a few observations: (1) ComPEFT almost
always performs better than both STC and the Pruned version for all model sizes and sparsity levels. (2)
ComPEFT almost always performs better than or similar to the original model’s performance for all sparsity
levels. In contrast, for smaller model sizes of 3B and 7B, STC’s performance is much worse than the original
models. This highlights the importance of the scaling α as proposed in ComPEFT, which allows us to recover
the performance lost due to pruning and ternary compression without computationally expensive retraining.
(3) At low density, the performance of Pruned is much worse than ComPEFT and this gap reduces as the
density increases. However, note that the size of ComPEFT is much smaller than the Pruned baseline due to
ternarization. (4) At larger base model sizes (≥ 13B), all the methods at all density levels perform similarly to
or better than the original LoRA checkpoint, suggesting increased robustness to compression choices at scale.

Discussion. The ablation study clearly demonstrates the contribution of each component. The superior
performance of ComPEFT over the Pruned variant underscores the importance of ternary quantization and
scalar scaling in maintaining performance after sparsification. The advantage over STC highlights the benefit
of tuning the scaling factor α rather than using a fixed magnitude scaling like mean magnitude. These results
validate our design choices and show the utility of sparsification, ternarization, and tuned scalar scaling.

4.2 Effect of Sparsity and Scaling on ComPEFT

Experimental Setup. For ComPEFT, we analyze the effect of different levels of sparsity and the scaling
value α on the performance of the compressed checkpoints. We present this analysis for T0− 3B and LLaMA
as the base models; the experimental settings are similar to § 3.1 and 3.5 where the model sizes range from
3B− 65B. We provide results for different values of the density k (sparsity = 100− k), specifically, the values
k ∈ {5, 10, 20, 30, 50} and different values of α ∈ {0.5, 1, 2, 3, 4, 5, 6, 8, 10}.

Outcomes. In Figure 6, we plot the average validation set performance across all tasks with respect to the
scaling coefficient α. We make the following observations; (1) For smaller base-model sizes (3B and 7B) and
across density values, we find a similar trend – as the value of α increases, the average validation performance
first increases and then drops. (2) As the value of k increases, the optimal value of α tends to becomes smaller.
For example, for the T0-3B base model, the optimal value α for k = 50 is between 2− 3 while for k = 5 the
optimal α is in the range 5− 8. (3) For bigger base-models (≥ 13B) and low density (k ∈ {5, 10, 20}) the
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variation in performance as α changes is smaller. (4) Lastly, as the base-model size increases, smaller values of
α ∈ (0.5, 2) and a bigger range of values start to work better. Hence, for large models, the need for tuning α
can be removed. For models with ≥ 13B parameters and high sparsity k ≤ 20, we recommend setting α = 1.

Discussion. This analysis highlights the interplay between sparsity and scaling in ComPEFT. For smaller
models, fine-tuning α is important to maximize performance at a given sparsity level. However, for larger
models, the method becomes more robust, and a fixed scaling factor (like α = 1) can be sufficient, especially
at higher sparsity. This robustness for larger models simplifies the application of ComPEFT in practice, as it
reduces the need for extensive hyperparameter search and makes the method more readily deployable for
large language models where computational efficiency is paramount.

5 Related Work

Paremeter Efficient Fine-Tuning. Several parameter-efficient techniques (Lester et al., 2021; Li & Liang,
2021; Houlsby et al., 2019; Zaken et al., 2021) have emerged as efficient alternatives to full fine-tuning in
the field of pre-trained language models (PLMs). These methods introduce a small number of additional
parameters to PLMs (Raffel et al., 2020a; Touvron et al., 2023a) enabling efficient fine-tuning. LoRA (Hu
et al., 2021) incorporates trainable low-rank matrices into transformer layers. In Contrast, (IA)3 (Liu et al.,
2022) learns a new set of parameters to rescale the model activations. Recently, QLoRA (Dettmers et al.,
2023) proposed training LoRA modules over a 4-bit quantized base model to further save the memory.

Network Pruning and Federated Learning. Neural network pruning techniques have garnered attention
for reducing computational costs (Cheng et al., 2017; Liang et al., 2021) by removing redundant parameters
while preserving performance (Zhu & Gupta, 2018; Liu et al., 2019b; Frankle & Carbin, 2019; Gale et al.,
2019; Xia et al., 2022). Among these, magnitude-based pruning (Han et al., 2015; Li et al., 2018; Lee
et al., 2021) selects parameters based on magnitudes. Pruning is valuable in federated learning due to high
communication costs over slow networks. Atomo (Wang et al., 2018b) minimizes gradient variance through
unbiased sparsification, while QSGD (Alistarh et al., 2017) offers a communication-convergence trade-off
by quantizing gradients. SignSGD (Bernstein et al., 2018) further converts gradients to binary sign vectors.
TernGrad (Wen et al., 2017) and STC (Sattler et al., 2019a) combine sparsification and quantization.

Model Merging and Compositional Generalization. Various merging methods (Ortiz-Jiménez et al.,
2023; Wortsman et al., 2022b;a; Ilharco et al., 2022; Ramé et al., 2022; Yu et al., 2023) aim to combine
fine-tuned models for improved performance in various applications. Choshen et al. (2022) performs direct
averaging of the model weights while Task Arithmetic (Ilharco et al., 2023) generates task vectors and
performs arithmetic operations to create multitask checkpoints. Ortiz-Jiménez et al. (2023) offer theoretical
insights into model merging by using the weight disentanglement property. TIES-Merging (Yadav et al., 2023)
identifies the issue of parameter interference in model merging and tackles it by trimming low-magnitude
parameters, resolving sign disagreements, and disjointly merging parameters with consistent signs. Ponti
et al. (2023) performed CG by jointly learning adapters and a routing function to allocate skills to tasks,
while Caccia et al. (2023) analyzes task routing for more efficient cross-task generalization. LoraHub (Huang
et al., 2023) employs gradient-free optimization to retrieve and merge expert modules for unseen tasks while
Muqeeth et al. (2024) focus on zero shot compositional generalization. Pfeiffer et al. (2023) provides an
overview of PEFT methods, model merging, and compositional generalization methods.

6 Conclusion

Our PEFT compression method, ComPEFT, offers an effective solution to the latency challenges associated
with retrieving expert models. By compressing fine-tuning residuals through sparsification and quantization,
ComPEFT achieves high compression ratios and often enhances model performance across various NLP tasks
and model sizes. Moreover, it preserves few-shot compositional generalization capabilities, facilitates efficient
communication and computation, and demonstrates improved performance when merged with original models.
This research contributes valuable insights into the realm of parameter-efficient fine-tuning, addressing both
performance and latency concerns.
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A Limitations

While ComPEFT demonstrates significant promise, it is important to consider several limitations of this work.
Firstly, while average performance is strong, certain task types might exhibit reduced effectiveness or require
specific hyperparameter tuning. Secondly, we observed some performance sensitivity with ComPEFT applied to
(IA)3 modules, especially on base models with weaker zero-shot capabilities, warranting further investigation
into the interplay between base model properties, PEFT methods, and compression. From a practical
standpoint, while hyperparameter tuning for the scaling factor α becomes less crucial for larger models, it
remains relevant for smaller models, adding a hyperparameter selection step to their deployment. Future
work could explore automated or adaptive methods to address this. Furthermore, a rigorous theoretical
understanding of ComPEFT is still lacking. We do not have a definitive explanation for the observed performance
improvements in some cases, nor why these improvements scale with model size, although noise reduction is
a possible factor suggested by related works. A deeper understanding of how fine-tuning updates encode
information and how ComPEFT interacts with this information is necessary for developing even more refined
compression techniques. Finally, to fully unlock the potential wall-clock speedups promised by ComPEFT’s
ternary vector representations, dedicated engineering effort is needed to develop custom Triton/CUDA kernels
optimized for operations on sparse ternary data structures, as briefly discussed in our methodology section.
These areas represent important avenues for future research, particularly in the context of efficiently serving
and composing large numbers of expert PEFT modules for advanced applications.

B Implementation Details

B.1 Training Details

In our research, we utilized the following models, BERT-base, BERT-Large, RoBERTa-base, RoBERTa-large,
T5v1.1-base, T5v1.1-large, T5-base, T5-large, Flan-T5-large, T0-3B, LLaMA 7B, 13B, 33B, 65B models. The
Flan-T5-Large and LLaMA models were not trained by us and were used by the authors of QLoRA (Dettmers
et al., 2023) and LoraHub (Huang et al., 2023). For the experiments in §3.2 and §3.3 on the 7 GLUE (Wang
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et al., 2018a) tasks, we trained the large datasets (mnli, qnli, sst2, qqp) for 1 epoch and the small datasets
(rte, mrpc, wnli) for 10 epochs. Whereas for the experiment in §3.5, we followed most of the hyperparameter
configuration from the (IA)3 (Liu et al., 2022) paper and trained for 2500 steps with a batch size of 8. For
each of the 11 datasets in §3.5, we selected 200 examples from the training set to be used as the validation
set for best model selection as well as selecting the hyperparameters for ComPEFT. Across all experiments
to obtain the trained models we selected different learning rates for each dataset and PEFT method. For
training (IA)3 models we selected the learning rate from {1e − 2, 1e − 3, 1e − 4, 1e − 5}, for LoRA from
{5e− 2, 5e− 3, 5e− 4, 5e− 5}, and for full model finetuning from {5e− 3, 5e− 4, 5e− 5, 5e− 6}. During the
training process, bfloat16 was adopted to curtail GPU memory expenditure. For the purpose of evaluation,
models from the T5 and T0 families were evaluated using rank classification to select the correct label. In
this method, the model’s log probabilities for all potential label strings are ranked. The model’s prediction is
deemed accurate if the choice ranked highest aligns with the correct answer. It should be noted that rank
classification evaluation can accommodate both classification tasks and multiple-choice tasks.

B.2 Compute Resources Used and Runtimes

We executed all our experiments on Nvidia A6000 GPUs equipped with 48GB RAM. Training (IA)3 and
LoRA models on the T0-3B model for a single (§3.2, §3.5, and §3.7) task takes about 30 minutes to 4 hours
depending on the dataset. For T5-Base and T5-Large models (§3.2, §3.7), based on dataset size, needed
between 15 minutes and 2 hours per task. Experiments with QLoRA on LLaMA models were done using
the original checkpoints from QLoRA paper (Dettmers et al., 2023) for all the 8 instruction tuning datasets
and are supplied the authors of QLoRA here.5 The ComPEFT compression experiments were efficient, with
evaluations consuming between 10-30 seconds for the T5-Base, T5-Large, and T0-3B models. For LLaMA
models, following QLoRA (Dettmers et al., 2023), the hyperparameter selection is done on a small held-out
subset of MMLU (Hendrycks et al., 2020) benchmark and takes about 8 minutes, 14 minutes, 28 minutes,
and 49 minutes for LLaMA 7B, 13B, 33B, and 65B models respectively.

B.3 Employed Datasets and Associated Licences

We use the following datasets in the paper with the following licenses.
Apache License 2.0: Flan V2, Self-Instruct, Chip2
cc-by-nc-4.0: Alpaca
MIT License: Guanaco, Unatural Instructions, HH-RLHF, Longform
Not Found: GLUE

B.4 Gradient Noise

Gradients are (almost) never 0 for any parameter, as all parameters somehow affect the result. Thus, we
presume most updates in fine-tuning are not more than just noise, rather than learned updates. We compute
the mean and standard deviation of the task vector of a LoRA model finetuned on LLaMa (Touvron et al.,
2023a) base model and compare it with the base model. We find the mean of both the LoRA task vector and
the base model is close to zero, however, the LoRA task vector has a small standard deviation of 0.0007 as
compared to 0.0228 for the LLaMA base. This further confirms the hypothesis that most parameters are
changed very little during fine-tuning.

B.5 Why Use Multiplication Factor of Standard Deviation

This decision to use multiplication factors of std is based on a few observations: (1) the task vector parameters
are typically normally distributed with almost zero means (see table below), implying that the pretrained
parameters have not changed much on average and some specific parameters get huge updates while others
just accumulate SGD noise. (2) This std of task vectors can differ a lot based on the model size and the
dataset. (3) We only care about the top-k fraction of the parameters (say top-20%) that lie outside the first
standard deviation (> σ), i.e., that has a magnitude greater than σ. Hence, given this different scale of

5https://huggingface.co/timdettmers?search_models=qlora
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Table 7: Statistics of the distribution of the task vectors for different model sizes and datasets.

Model (↓) Dataset (↓) TVmean TVstd TVmax TVmin

T0− 3B
storycloze 1.61E-02 0.1347 31.9909 -4.8564
winogrande 1.61E-02 0.1357 32.3445 -4.7301

LLaMA− 7B
chip2 -8.66E-07 0.0155 0.083 -0.082
longform -1.95E-06 0.0172 0.0859 -0.085

LLaMA− 13B
chip2 1.69E-06 0.0106 0.0762 -0.0767
longform -1.47E-06 0.0173 0.0767 -0.0747

LLaMA− 33B
chip2 -2.39E-07 0.0095 0.0688 -0.0703
longform -8.80E-08 0.0075 0.0703 -0.0708

LLaMA− 65B
chip2 -5.07E-07 0.0083 0.062 -0.063
longform -7.91E-08 0.0097 0.0635 -0.064

LLaMA2− 70B
chip2 3.63E-07 0.0053 0.0396 -0.0393
longform -1.16E-07 0.0053 0.0427 -0.043

top-k task vector parameters across different model sizes, tasks, etc., the standard deviation serves as a nice
unifying scale that provides us with a constant set of values to try for α, making this process simpler.

In Table 7, we provide the mean, standard deviation, maximum, and minimum values of the task vectors for
models of different sizes and datasets. We observe that std, max, and min values change as the model size
changes. For example, for the 3B model, the std is 0.13 while for the 70B model, the std is 0.009. Hence,
we use α * σ as it allows us to try hyperparameters in the correct range. However, we agree that there might
be other ways to go about selecting α, for example, learning on a small dataset.

C Additional Results

C.1 Comparision With Other Additional Pruning Methods

We performed additional experiments in a setting similar to Table-2, where we worked with the Llama-
2 (Touvron et al., 2023a) 70B model and learned qLora (Dettmers et al., 2023) modules of rank 64. We then
compressed these parameter updates using ComPEFT, STC, BitDelta (Liu et al., 2024a), and DAREx (Deng
et al., 2024) methods. Note that the BitDelta method has two variants. The first variant does not perform
any additional training for the scale parameter (referred to as “No Training”). In the “BitDelta (No Training)”
setting, the scale parameter (α) is set to the mean value of all the parameters in the task vector/delta
weights. The “BitDelta (Training)” variant learns the scale parameter (α) via SGD and hence is not directly
comparable with our ComPEFT which requires no additional training. For the DAREx method we use
the DAREx-q (1/qv) variant, which uses labelled data to select the inverse scaling parameter (qv) for each
per-layer separately after pruning. We DAREx, we use sparsity levels of 95% and 99% as used in their paper.
The results for the experiments are provided below along the average sizes of the compressed parameters
across all the tasks.

From these results, we can clearly see that: (1) ComPEFT performs better than these baseline. (2) DAREx
(p=0.95) and BitDelta(No Training) show slight performance loss compared to the original checkpoint while
DAREx (p=0.99) results in a huge drop. This is in line with the results presented in their papers. (3)
BitDelta (Training) performs similar to ComPEFT, however, this method learns the scalar (α) which requires
both forward and backward passes and hence more GPU memory. (4) Note that BitDelta (No Training)
sets the scalar (α) as the mean of all the values in the task vector. It is very similar to STC which also
uses the mean value as the scalar. However, they have a critical difference which is that STC also performs
sparsification before performing quantization. Hence, in BitDelta the values are (+a, -a) while in STC the
values are like (+b,0,-b). We note that STC performs slightly better than BitDelta (No Training), we believe
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Table 8: Comparing ComPEFT with other additional Pruning methods.

Dataset Original ComPEFT STC BitDelta DAREx-qv

No Training Training p=0.95 p=0.99
alpaca-clean 67.13 67.56 66.57 66.27 67.43 65.85 39.57
chip2 65.18 67 64.54 64.31 67.31 63.94 50.18
longform 67.63 68.5 67.02 66.15 68.61 66.14 44.32
oasst1 66.89 67.39 66.15 65.38 67.11 65.48 45.82
self-instruct 62.36 67.18 61.94 61.52 66.82 61.97 49.39
Average 65.84 67.53 65.24 64.73 67.46 64.68 45.86
Size 1.58GB 56MB 56MB 99MB 99MB 395MB 79MB

that this is due to the sparsification step which removes redundant parameters which add noise. Similar
phenomenon is also observed in TIES-Merging (Yadav et al., 2023). Lastly, we also report the storage size
for the compressed checkpoints where we use different methods to store them. We use golomb coding for
ComPEFT/STC, bitmask for Bitdelta, and coo_sparse matrix for DAREx method. The results demonstrate
that ComPEFT yields better performance/size trade-off compared to most of these other methods.

C.2 Comparisons with Advanced PEFT Methods
Table 9: Comparison with other PEFT methods

Dataset LORA ComLORA DORA ComDORA
alpaca-clean 67.13 67.56 68.42 69.78
chip2 65.18 67 67.21 68.32
longform 67.63 68.5 69.36 68.92
oasst1 66.89 67.39 68.89 67.63
self-instruct 62.36 67.18 65.26 66.31
Average 65.84 67.53 67.83 68.19
Size 1.58GB 56MB 1.59GB 57MB

We conducted some additional experiments with some other PEFt methods like DoRA (Liu et al., 2024b). For
the experimental setting in Table-2 with rank 64 LoRA on the Llama-2 70B model. We performed additional
experiments with DoRA of rank 64 and then compressed them using ComPEFT and reported the results.
We omitted VeRA (Kopiczko et al., 2023) methods as based on the DoRA paper VeRA typically performs
worse than both LoRA and DoRA. Lastly, we omitted HiRA (Huang et al., 2025) as the method as due
to its recency its code is not available. In Table 9 we present our results. Similar to our other finding, we
observe that ComPEFT can also compress DoRA checkpoints to a great extent while preserving performance.
Moreover, ComDoRA checkpoints slightly outperform ComLoRA’s performance.

C.3 Comparison of Compressed Lora With Lower Rank Lora Modules

We perform additional experiments to compare the compressed LoRA modules with lower rank lora module
which inherently have smaller sizes as compression can be achieved on smaller rank. We opt for the
experimental setting from Table-2 where we work with the Llama-2 70B model. We perform experiments
with rank 32 and 8 the results of which are attached below along with storage sizes.

From the results in Table 10, we can see that: (1) at rank 32 there is a slight drop in performance compared
to rank 64. We can compress the rank checkpoint as well by >25x (2) At rank 8, we see a significant drop
in performance from 65.84 to 63.77. Moreover, ComPEFT can compress rank 8 lora as well by >25x. (3)
for both rank 32 and 8, ComLoRA performs better than the original checkpoints. These results help us to
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conclude that the observed benefits in compression and performance improvements stem from ComPEFT as
opposed to the overparameterized LoRA adapter.

Table 10: Comparing ComPEFT with smaller rank LoRA modules.

Dataset Lora(r=64) ComLora(r=64) Lora(r=32) ComLora(r=32) Lora(r=8) ComLora(r=8)
alpaca-clean 67.13 67.56 66.98 67.24 64.82 65.27
chip2 65.18 67 65.24 66.75 63.35 65.18
longform 67.63 68.5 67.14 68.12 65.16 66.74
oasst1 66.89 67.39 65.42 66.92 64.21 65.56
self-instruct 62.36 67.18 62.68 67.48 61.32 65.81
Average 65.84 67.53 65.49 67.30 63.77 65.71
Size 1.58GB 56MB 790MB 28MB 197MB 7MB

C.4 Validation Set Results

In Table 11 and 12, we provide the validation set results for our main compression experiments on LLaMA, T5, T0
experiments from Section 3.1 and 3.2 respectively.

C.5 Full Results for Compositional Generalization

In Table 13, we present the Zeroshot, ICL, LoraHub, and ComPEFT results for each of the BBH tasks.

C.6 Individual Task Results

We present the task level validation and test set results along with model sizes of (IA)3, LoRA, and full
finetuning for T5-base (Table 20), T5-large (Table 21), T0-3B (Table 22).

C.7 Compressing Model With Smaller Models with Bad ZeroShot Performance

We present the task level validation and test set results along with model sizes for (IA)3, LoRA, and full
finetuning for BERT-base (Table 14), BERT-large (Table 15), RoBERTa-base (Table 16), RoBERTa-large
(Table 17), T5-v1.1-base (Table 18), and T5-v1.1-large (Table 19). These models are only trained using
the pretraining objective and are not multitask-trained. Hence, these models have very bad zero/few-shot
performance and always require explicit finetuning to perform well on any downstream tasks. We observe that
for the LoRA method, the performance of ComPEFT is similar to the uncompressed full models while being
smaller in size. This hints at the fact that the intrinsic dimensionality of the LoRA adaptation is much smaller
compared to the number of parameters in the LoRA module. However, for (IA)3 method, the performance
drop is more, we believe that two reasons for this are: (1) The models are not good zero/few-shot models,
and (2) (IA)3 adds very few parameters to perform a multiplicative operation on the activations. Therefore,
the loss landscape is not as smooth as for good zershot models, and due to this IA3 has to scale different
activations in a very different manner to learn the task. Hence, compressing (IA)3 to sparse sign-vector and a
constant is not feasible. Whereas, In the case of Lora the updates are added and hence their impact on the
final value of the parameter is not huge as the maximum of the LoRA parameter is still very small compared
to the base model’s parameter value.
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Table 11: We present the performance(Storage Size in GB) on MMLU Validation for the compressed QLoRA
models.

Dataset (↓) ComPEFT

7B 13B 33B 65B

Self-Instruct 35.62 47.52 55.11 62.13
Longform 31.89 47.80 55.31 62.27
Chip2 33.49 47.15 55.02 62.21
HH-RLHF 32.37 47.19 54.78 62.06
Unnatural Instruct 42.41 49.62 56.28 62.15
Guanaco 33.92 49.52 55.35 62.00
Alpaca 39.82 49.00 55.91 62.37
FLAN v2 43.93 50.86 56.97 63.77
Average 37.88 48.58 55.59 62.37

Table 12: Validation set performance(Storage Size in MB) averaged over seven GLUE tasks when compressing
(IA)3 and LoRA modules on different base models.

Method (↓) T5− Base T5− Large T0− 3B

(IA)3 LoRA (IA)3 LoRA (IA)3 LoRA

Original 81.25 81.94 85.08 86.21 87.71 89.94
ComPEFT 81.04 80.96 85.28 86.54 89.14 89.95
Improvement -0.21 -0.98 0.2 0.33 1.43 0.01

Table 13: Task level results: Average performance over 5 seed for LoraHub and ComPEFT for compositional
generalization on Big-Bench-Hard.

Task Zeroshot ICL LoraHub (Avg) ComPEFT (Avg) LoraHub (Best) ComPEFT (Best)
Logical Deduction Three Objects 0.0 51.3 41.9 28.4 51.3 48.0
Tracking Shuffled Objects Five Objects 12.0 12.0 9.6 11.3 12.0 12.0
Web Of Lies 54.0 54.0 28.1 41.7 49.3 56.0
Tracking Shuffled Objects Seven Objects 6.7 6.7 5.3 6.7 6.7 6.7
Date Understanding 15.3 22.7 39.5 29.1 42.0 38.7
Navigate 47.3 44.0 48.4 38.5 50.7 50.0
Multistep Arithmetic Two 0.7 0.7 0.7 0.5 1.3 0.7
Boolean Expressions 54.0 58.7 55.9 55.7 57.3 61.3
Hyperbaton 6.7 74.0 55.2 49.9 65.3 67.3
Tracking Shuffled Objects Three Objects 24.7 30.7 26.7 21.6 29.3 24.7
Sports Understanding 56.0 56.0 46.4 53.1 54.7 58.0
Logical Deduction Seven Objects 12.7 42.0 35.5 37.6 40.0 40.0
Causal Judgement 57.5 56.3 40.7 49.2 58.6 57.5
Penguins In A Table 43.5 39.1 36.1 44.3 45.7 47.8
Geometric Shapes 6.7 18.7 9.6 7.3 19.3 9.3
Reasoning About Colored Objects 32.0 38.7 38.0 40.8 39.3 44.0
Dyck Languages 1.3 2.7 1.1 0.7 1.3 1.3
Disambiguation Qa 0.0 69.3 14.3 6.5 51.3 29.3
Salient Translation Error Detection 37.3 46.0 31.3 38.5 44.7 43.3
Movie Recommendation 62.7 52.7 61.1 58.0 67.3 62.0
Snarks 50.0 55.1 49.2 50.0 50.0 50.0
Formal Fallacies 51.3 58.0 41.3 41.1 52.7 51.3
Logical Deduction Five Objects 21.3 40.0 33.6 36.3 36.7 42.0
Temporal Sequences 16.7 26.7 18.7 19.5 20.0 21.3
Word Sorting 1.3 0.7 1.2 1.3 1.3 1.3
Ruin Names 23.3 18.7 18.0 22.4 23.3 23.3
Object Counting 34.7 32.0 35.5 35.3 36.7 36.0
Average 27.0 37.3 30.5 30.6 37.3 36.4
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Table 14: Validation and Test set performance along with storage size in MB for bert-base-uncased Model,
for (IA)3, LoRA and Full model finetuning.

Original (Val) Original (Test) ComPEFT (Val) ComPEFT (Test)
PEFT Task
full mnli 84.7 83.1(208.8) 84.3 82.6(12.0)

mrpc 86.8 97.5(208.8) 86.8 97.0(19.6)
qnli 91.9 91.0(208.8) 91.9 90.9(12.0)
qqp 90.1 90.3(208.8) 90.0 90.0(15.4)
rte 66.4 94.5(208.8) 69.0 94.0(7.4)
sst2 91.1 97.0(208.8) 92.2 96.0(7.4)
wnli 56.3 57.0(208.8) 56.3 57.0(4.4)

ia3 mnli 79.2 78.9(0.1) 57.6 56.2(0.0)
mrpc 84.6 94.5(0.1) 31.6 34.5(0.0)
qnli 87.9 87.5(0.1) 49.3 49.6(0.0)
qqp 84.6 84.4(0.1) 63.2 63.2(0.0)
rte 59.2 73.5(0.1) 52.7 55.5(0.0)
sst2 91.5 91.0(0.1) 49.1 45.5(0.0)
wnli 54.9 57.0(0.1) 56.3 57.0(0.0)

lora mnli 82.5 81.4(2.6) 76.6 76.9(0.2)
mrpc 86.3 97.5(2.6) 82.8 94.0(0.2)
qnli 91.7 91.0(2.6) 90.8 90.1(0.2)
qqp 89.4 89.5(2.6) 87.4 87.5(0.2)
rte 61.7 68.5(2.6) 58.8 66.0(0.2)
sst2 92.4 92.5(2.6) 91.6 91.5(0.2)
wnli 56.3 57.0(2.6) 59.2 56.0(0.1)
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Table 15: Validation and Test set performance along with storage size in MB for bert-large-uncased Model,
for (IA)3, LoRA and Full model finetuning.

Original (Val) Original (Test) ComPEFT (Val) ComPEFT (Test)
PEFT Task
full mnli 85.4 84.0(639.2) 85.5 83.7(59.9)

mrpc 88.2 97.5(639.2) 88.5 97.5(47.2)
qnli 91.0 89.4(639.2) 91.2 89.6(36.8)
qqp 88.6 88.5(639.2) 88.4 88.6(36.8)
rte 71.5 94.0(639.2) 70.4 92.5(22.7)
sst2 92.9 93.5(639.2) 93.5 92.5(36.8)
wnli 56.3 57.0(639.2) 57.8 58.0(13.4)

ia3 mnli 82.4 81.9(0.3) 59.5 59.6(0.0)
mrpc 84.6 96.0(0.3) 31.6 34.5(0.0)
qnli 88.6 87.6(0.3) 59.6 59.9(0.0)
qqp 87.7 87.4(0.3) 73.2 73.8(0.0)
rte 58.8 72.5(0.3) 52.7 55.5(0.0)
sst2 92.3 88.0(0.3) 49.1 45.5(0.0)
wnli 60.6 55.0(0.3) 56.3 57.0(0.0)

lora mnli 83.6 82.9(6.8) 76.4 74.8(0.6)
mrpc 88.7 94.0(6.8) 87.0 92.0(0.5)
qnli 88.6 86.9(6.8) 82.6 81.1(0.6)
qqp 87.0 87.1(6.8) 76.3 76.9(0.6)
rte 59.9 77.0(6.8) 59.6 71.0(0.6)
sst2 93.7 94.0(6.8) 93.6 93.0(0.4)
wnli 56.3 57.0(6.8) 57.8 56.0(0.2)
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Table 16: Validation and Test set performance along with storage size in MB for roberta-base Model, for
(IA)3, LoRA and Full model finetuning.

Original (Val) Original (Test) ComPEFT (Val) ComPEFT (Test)
PEFT Task
full mnli 86.4 86.4(237.8) 86.6 86.2(13.7)

mrpc 87.0 89.0(237.8) 86.0 84.5(8.4)
qnli 91.8 91.2(237.8) 91.7 91.0(17.6)
qqp 89.1 89.4(237.8) 89.1 89.2(17.6)
rte 75.4 91.5(237.8) 78.0 93.0(22.3)
sst2 95.2 95.2(237.8) 94.2 94.0(8.4)
wnli 56.3 56.0(237.8) 56.3 45.0(5.0)

ia3 mnli 84.1 83.4(1.2) 43.0 44.7(0.1)
mrpc 88.7 98.0(1.2) 71.6 70.0(0.1)
qnli 89.7 88.9(1.2) 50.7 50.4(0.1)
qqp 87.0 87.1(1.2) 80.9 80.8(0.1)
rte 73.3 93.0(1.2) 54.9 54.5(0.1)
sst2 93.5 92.0(1.2) 76.3 72.5(0.1)
wnli 56.3 57.0(1.2) 56.3 57.0(0.0)

lora mnli 87.0 86.1(3.7) 86.2 85.6(0.3)
mrpc 89.5 98.5(3.7) 88.5 97.0(0.3)
qnli 91.1 92.3(3.7) 90.0 89.9(0.3)
qqp 88.8 88.8(3.7) 88.2 88.4(0.3)
rte 79.4 97.0(3.7) 79.4 96.0(0.3)
sst2 94.2 95.0(3.7) 93.1 94.0(0.3)
wnli 56.3 57.0(3.7) 56.3 57.0(0.1)
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Table 17: Validation and Test set performance along with storage size in MB for roberta-large Model, for
(IA)3, LoRA and Full model finetuning.

Original (Val) Original (Test) ComPEFT (Val) ComPEFT (Test)
PEFT Task
full mnli 90.6 89.3(677.8) 90.4 89.4(50.0)

mrpc 89.2 97.5(677.8) 89.2 97.5(24.1)
qnli 93.6 92.9(677.8) 93.5 93.3(63.5)
qqp 90.1 89.9(677.8) 90.1 89.9(50.0)
rte 85.6 98.5(677.8) 85.2 98.0(50.0)
sst2 95.4 95.2(677.8) 96.3 95.0(50.0)
wnli 56.3 57.0(677.8) 57.8 61.0(63.5)

ia3 mnli 89.5 88.5(2.3) 36.5 35.5(0.2)
mrpc 86.8 86.5(2.3) 68.4 65.5(0.0)
qnli 92.3 92.1(2.3) 51.6 50.4(0.1)
qqp 88.5 87.9(2.3) 63.2 63.2(0.0)
rte 80.1 94.0(2.3) 54.2 57.0(0.0)
sst2 94.3 93.0(2.3) 55.2 59.5(0.2)
wnli 56.3 57.0(2.3) 60.6 51.0(0.1)

lora mnli 89.9 89.3(8.8) 85.0 83.8(0.6)
mrpc 90.0 93.5(8.8) 90.4 90.0(0.8)
qnli 93.4 92.9(8.8) 91.0 90.3(0.8)
qqp 89.1 88.9(8.8) 86.5 85.9(0.8)
rte 80.5 93.5(8.8) 79.1 89.5(0.8)
sst2 95.2 93.0(8.8) 94.8 90.5(0.8)
wnli 56.3 57.0(8.8) 56.3 57.0(0.2)
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Table 18: Validation and Test set performance along with storage size in MB for t5-v1.1-base Model, for
(IA)3, LoRA and Full model finetuning.

Original (Val) Original (Test) ComPEFT (Val) ComPEFT (Test)
PEFT Task
full mnli 89.8 89.8(472.2) 88.8 89.0(34.9)

mrpc 80.9 74.5(472.2) 82.6 75.5(34.9)
qnli 88.0 88.6(472.2) 86.7 87.2(44.3)
qqp 78.6 78.9(472.2) 77.0 77.6(27.2)
rte 59.2 49.0(472.2) 59.2 61.0(9.9)
sst2 93.4 91.0(472.2) 93.8 91.5(27.2)
wnli 56.3 47.0(472.2) 57.8 49.0(44.3)

ia3 mnli 84.6 83.8(0.2) 54.3 54.4(0.0)
mrpc 82.8 81.5(0.2) 82.8 78.5(0.0)
qnli 85.2 86.3(0.2) 60.7 61.8(0.0)
qqp 85.0 85.4(0.2) 78.6 78.8(0.0)
rte 54.9 49.0(0.2) 63.2 62.5(0.0)
sst2 92.3 91.0(0.2) 89.0 87.0(0.0)
wnli 52.1 57.0(0.2) 52.1 57.0(0.0)

lora mnli 66.9 66.3(4.4) 56.6 57.1(0.2)
mrpc 72.1 67.0(4.4) 68.4 64.0(0.3)
qnli 87.1 88.8(4.4) 86.7 88.5(0.3)
qqp 78.3 78.9(4.4) 72.0 72.2(0.2)
rte 55.2 50.5(4.4) 53.1 49.5(0.2)
sst2 93.0 91.5(4.4) 92.9 90.5(0.3)
wnli 56.3 47.0(4.4) 78.9 76.0(0.1)
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Table 19: Validation and Test set performance along with storage size in MB for t5-v1.1-large Model, for
(IA)3, LoRA and Full model finetuning.

Original (Val) Original (Test) ComPEFT (Val) ComPEFT (Test)
PEFT Task
full mrpc 86.3 84.0(1493.7) 86.3 85.0(110.3)

qnli 94.0 94.0(1493.7) 94.4 94.9(140.0)
qqp 90.2 90.5(1493.7) 89.4 89.5(140.0)
rte 74.0 76.0(1493.7) 75.4 74.5(140.0)
sst2 95.6 93.0(1493.7) 95.4 92.5(86.1)
wnli 52.1 57.0(1493.7) 52.1 57.0(31.4)

ia3 mnli 92.0 92.4(0.5) 54.3 54.4(0.0)
mrpc 90.9 86.0(0.5) 77.9 77.5(0.0)
qnli 92.0 92.3(0.5) 79.4 78.1(0.0)
qqp 87.2 87.5(0.5) 78.7 78.8(0.0)
rte 69.7 67.0(0.5) 69.0 73.5(0.0)
sst2 95.2 93.0(0.5) 79.5 81.0(0.0)
wnli 52.1 57.0(0.5) 52.1 57.0(0.0)

lora mnli 92.3 93.2(11.8) 91.8 92.4(0.9)
mrpc 78.2 74.0(11.8) 77.7 76.0(0.9)
qnli 90.4 91.9(11.8) 87.0 87.4(0.9)
qqp 87.1 87.6(11.8) 86.0 86.8(0.9)
rte 52.7 56.0(11.8) 53.8 45.5(0.4)
sst2 93.9 89.0(11.8) 61.4 56.0(0.4)
wnli 56.3 47.0(11.8) 56.3 47.0(0.4)
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Table 20: Validation and Test set performance along with storage size in MB for t5-base Model, for (IA)3,
LoRA and Full model finetuning.

Original (Val) Original (Test) ComPEFT (Val) ComPEFT (Test)
PEFT Task
full mnli 91.2 91.2(425.2) 89.9 90.4(31.4)

mrpc 89.7 86.0(425.2) 87.0 75.5(39.9)
qnli 93.3 93.3(425.2) 91.3 91.3(39.9)
qqp 91.3 91.4(425.2) 70.4 70.6(15.1)
rte 76.2 77.0(425.2) 74.7 77.0(39.9)
sst2 95.6 93.5(425.2) 95.5 93.5(31.4)
wnli 56.3 47.0(425.2) 56.3 48.0(24.5)

ia3 mnli 91.0 90.4(0.2) 90.4 90.3(0.0)
mrpc 85.5 84.0(0.2) 85.8 81.5(0.0)
qnli 92.6 92.9(0.2) 92.5 92.4(0.0)
qqp 89.5 89.8(0.2) 87.1 87.0(0.0)
rte 63.9 62.0(0.2) 65.0 58.5(0.0)
sst2 94.2 93.0(0.2) 94.4 93.0(0.0)
wnli 52.1 57.0(0.2) 52.1 57.0(0.0)

lora mnli 91.0 90.2(6.2) 91.3 90.5(0.5)
mrpc 90.9 84.0(6.2) 84.1 77.5(0.6)
qnli 93.4 93.5(6.2) 93.3 93.7(0.5)
qqp 90.5 90.5(6.2) 90.3 90.6(0.4)
rte 52.7 53.0(6.2) 57.0 53.5(0.1)
sst2 94.5 94.0(6.2) 94.4 93.5(0.4)
wnli 60.6 49.0(6.2) 56.3 47.0(0.1)
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Table 21: Validation and Test set performance along with storage size in MB for t5-large Model, for (IA)3,
LoRA and Full model finetuning.

Original (Val) Original (Test) ComPEFT (Val) ComPEFT (Test)
PEFT Task
full mnli 93.4 93.6(1407.0) 93.1 93.2(81.1)

mrpc 91.4 88.5(1407.0) 90.0 84.5(131.9)
qnli 94.4 94.4(1407.0) 94.5 94.7(131.9)
qqp 91.8 91.9(1407.0) 68.8 69.6(131.9)
rte 83.8 88.0(1407.0) 82.0 82.0(131.9)
sst2 93.5 93.0(1407.0) 93.6 93.0(131.9)
wnli 56.3 47.0(1407.0) 78.9 76.0(103.9)

ia3 mnli 93.0 92.5(0.7) 93.0 92.7(0.1)
mrpc 90.2 88.5(0.7) 90.7 90.0(0.0)
qnli 94.4 94.2(0.7) 94.3 94.1(0.0)
qqp 90.6 91.1(0.7) 89.3 90.0(0.0)
rte 79.8 85.0(0.7) 82.0 83.5(0.0)
sst2 95.5 95.0(0.7) 95.6 94.0(0.0)
wnli 52.1 57.0(0.7) 52.1 57.0(0.0)

lora mnli 93.0 93.5(16.5) 93.0 93.5(1.2)
mrpc 90.9 87.5(16.5) 85.8 85.0(1.6)
qnli 94.5 94.5(16.5) 94.1 92.9(1.6)
qqp 90.9 91.4(16.5) 90.2 90.9(1.6)
rte 82.0 82.0(16.5) 78.0 79.0(1.6)
sst2 95.9 95.5(16.5) 95.8 94.0(1.6)
wnli 56.3 47.0(16.5) 69.0 57.0(0.6)

Table 22: Validation and Test set performance along with storage size in MB for T0-3B Model, for (IA)3,
and LoRA.

Original (Val) Original (Test) ComPEFT (Val) ComPEFT (Test)
PEFT Task
ia3 mnli 94.1 94.4(1.0) 93.4 93.8(0.1)

mrpc 89.7 89.5(1.0) 90.4 89.0(0.1)
qnli 94.9 95.3(1.0) 95.8 95.5(0.0)
qqp 89.8 90.2(1.0) 89.6 90.0(0.1)
rte 86.6 89.0(1.0) 87.4 88.0(0.0)
sst2 96.8 93.0(1.0) 96.9 93.0(0.0)
wnli 62.0 74.0(1.0) 70.4 69.0(0.0)

lora mnli 93.8 93.6(33.8) 93.5 94.2(2.5)
mrpc 90.4 90.5(33.8) 90.0 88.5(1.9)
qnli 95.8 94.7(33.8) 95.8 96.0(2.5)
qqp 90.3 90.7(33.8) 90.4 90.8(3.2)
rte 89.2 89.1(33.8) 88.4 90.0(2.5)
sst2 96.8 95.0(33.8) 96.9 93.0(2.5)
wnli 73.2 73.0(33.8) 74.6 74.0(3.2)
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