
ODGS: 3D Scene Reconstruction from
Omnidirectional Images with 3D Gaussian Splatting

Suyoung Lee∗1 Jaeyoung Chung∗1 Jaeyoo Huh 2 Kyoung Mu Lee 1,2

1Dept. of ECE & ASRI, 2IPAI, Seoul National University, Seoul, Korea
{esw0116, robot0321}@snu.ac.kr jaeyoo900@gmail.com kyoungmu@snu.ac.kr

Abstract

Omnidirectional (or 360-degree) images are increasingly being used for 3D applica-
tions since they allow the rendering of an entire scene with a single image. Existing
works based on neural radiance fields demonstrate successful 3D reconstruction
quality on egocentric videos, yet they suffer from long training and rendering
times. Recently, 3D Gaussian splatting has gained attention for its fast optimiza-
tion and real-time rendering. However, directly using a perspective rasterizer to
omnidirectional images results in severe distortion due to the different optical prop-
erties between the two image domains. In this work, we present ODGS, a novel
rasterization pipeline for omnidirectional images with geometric interpretation.
For each Gaussian, we define a tangent plane that touches the unit sphere and is
perpendicular to the ray headed toward the Gaussian center. We then leverage
a perspective camera rasterizer to project the Gaussian onto the corresponding
tangent plane. The projected Gaussians are transformed and combined into the
omnidirectional image, finalizing the omnidirectional rasterization process. This
interpretation reveals the implicit assumptions within the proposed pipeline, which
we verify through mathematical proofs. The entire rasterization process is par-
allelized using CUDA, achieving optimization and rendering speeds 100 times
faster than NeRF-based methods. Our comprehensive experiments highlight the
superiority of ODGS by delivering the best reconstruction and perceptual quality
across various datasets. Additionally, results on roaming datasets demonstrate that
ODGS effectively restores fine details, even when reconstructing large 3D scenes.
The source code is available on our project page.1

1 Introduction

With the development of VR/MR devices and robotics technologies and the increasing demands of
such applications, 3D scene reconstruction has become one of the crucial tasks in computer vision.
Traditional works have employed a structure-from-motion algorithm that estimates camera motion
and scene geometry from multiview 2D images by finding the correspondences between images.
As target 3D scenes become broader and more complex, accurate reconstruction demands a larger
volume of images and increases the computational burden required for identifying correspondences.
Recently, some approaches have tried to alleviate these challenges by utilizing wide-angle cameras
to capture wide field-of-view images. Omnidirectional images, which provide a 360-degree field
of view, are gaining increased interest because they encompass whole scenes within a single image,
thereby reducing the cost of inter-image feature matching. The growing popularity of 360-degree
cameras for personal video recording and the concurrent release of related datasets further facilitate
the research on 3D content reconstruction from omnidirectional images.

∗indicates equal contribution.
1https://github.com/esw0116/ODGS

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/esw0116/ODGS

Such 3D reconstruction techniques [37, 51] began to be mainly studied in SLAM systems to obtain
accurate camera poses with matched 3D points from monocular omnidirectional video obtained from
robots. However, these models focus on restoring structural information rather than contents, and they
often bypass the fine details and texture of 3D scenes. After neural radiance field (NeRF) [36] has
shown outstanding 3D reconstruction performance, several works such as [10, 19, 21, 30] attempted
to reconstruct 3D implicit representation from omnidirectional images. Despite showing prominent
reconstruction quality, those methods commonly suffer from slow rendering and lengthy training.
3D Gaussian splatting [27], 3DGS in short, overcomes the challenges of NeRF by representing 3D
contents with numerous Gaussian splats. The 3D Gaussians are initialized from the sparse point cloud
obtained from the structure-from-motion and optimized through the differentiable image rasterization
pipeline. Since the CUDA-implemented rasterization for 3DGS is much faster than volume rendering
used in the NeRF family, 3DGS has dramatically improved rendering speed while maintaining or
improving performance. Although many follow-up works have been proposed after 3DGS’s success,
only a few address 3DGS in the omnidirectional image domain.

In this work, we propose ODGS that aims to reconstruct high-quality 3D scenes represented by
Gaussian splatting from multiple omnidirectional images. The gist of our method is designing
a CUDA rasterizer that is appropriate for omnidirectional images. Specifically, we create a unit
sphere from the camera origin, considering it an omnidirectional camera surface, and assume that
each Gaussian is projected onto the tangent plane of the point where the vector from the camera
origin to the center of the Gaussian and the unit sphere meets. Since each Gaussian is projected
onto a different plane, we calculate a rotation matrix for the coordinate transformation to ensure
that each Gaussian is properly projected onto its corresponding tangent plane. Then, the projected
Gaussians are subsequently mapped onto the omnidirectional image plane. Our proposed rasterizer
is also easily parallelizable like the original 3DGS rasterizer, demonstrating fast optimization and
rendering speed. Finally, we carefully apply the densification rule to split or prune the Gaussians for
omnidirectional projection. We apply a dynamic gradient threshold value for each Gaussian based on
its elevation, as the azimuthal width of the projected Gaussian is stretched when transformed into
an equirectangular space. We conduct comprehensive experiments comparing the reconstruction
quality in various 360-degree video datasets with various environments, including egocentric and
roaming, real and synthetic. The results show that ODGS achieves much faster optimization speed
than existing NeRF-based methods and reconstructs the scenes with higher accuracy. Additionally,
the perceptual metrics and qualitative results demonstrate that our method restores textural details
more sharply.

To summarize, our contributions are three-fold:

• We introduce ODGS, a 3D reconstruction framework for omnidirectional images based on
3D Gaussian splatting, achieving 100 times faster optimization and rendering speed than
NeRF-based methods.

• We present a detailed geometric interpretation of the rasterization for omnidirectional
images, along with mathematical verification, and propose a CUDA rasterizer based on the
interpretation.

• We comprehensively validate ODGS on various egocentric and roaming datasets, showing
both more accurate reconstructed results and better perceptual quality.

2 Related works

In computer vision, ongoing research has been on creating 3D representations of the surrounding
environment using multi-view images. Among them, omnidirectional images capture the surrounding
space in a single image due to their wide field of view, making them increasingly popular for
3D reconstruction and mapping. Traditional structure-from-motion (SfM) algorithms [38, 42, 43]
simultaneously estimate camera poses and 3D geometry structure by extracting and matching feature
points across multiple images. This field has developed over many years, resulting in the release
of user-friendly open libraries such as COLMAP [43] or OpenMVG [37]. Recent advancements
continue to improve feature matching for spherical images [16]. In indoor environments, additional
information such as room layout [2, 40, 41] and planar surfaces [14, 45] are used to promote the
reconstruction quality. The geometry structures estimated from omnidirectional images are also
utilized for localization [22, 28] or for simultaneous localization and mapping (SLAM) research [5,

2

44, 49]. The wide field of view provided by omnidirectional cameras enables the simultaneous
capture of extensive spatial information, making them highly beneficial in robotic applications for
environmental perception and understanding. Beyond sparse geometry structure in SfM, Multi-View
Stereo (MVS) [15] supports dense reconstruction based on epipolar geometry to achieve better
results. Recently, multi-view stereo techniques leveraging deep neural networks have been actively
researched. [9, 32, 35] Another approach to representing 3D is by stacking multiple layers of multi-
sphere images. Inspired by multi-planar images, this method facilitates the egocentric representation
of scenes [1, 18]. These methods show the possibilities of 3D reconstructions using omnidirectional
images, but often lack textural details for photo-realistic 3D reconstruction or limit the representation
to confined spaces.

In recent 3D reconstruction research, Neural Radiance Field (NeRF) [36] has demonstrated the
capability for photo-realistic novel-view synthesis, leading to studies on NeRF-based 360 image 3D
reconstruction. This approach is widely used for directly reconstructing scenes in 3D [10, 17, 21, 33]
or indirectly representing 3D by estimating depth [6, 8, 30]. In particular, EgoNeRF [10] is a recently
published NeRF-based reconstruction method, pointing out that a typical Cartesian coordinate is
not appropriate for representing a large scene with omnidirectional images. It introduces a new
spherically balanced feature grid and hierarchical density adaptation during ray casting, achieving a
prominent reconstruction quality. However, although NeRF-based methods have shown more realistic
reconstruction than traditional techniques, they have the inherent limitation of requiring extensive
time for reconstruction and rendering.

3D Gaussian splatting (3DGS) [27] is a novel 3D representation that demonstrates photo-realistic
novel view synthesis while supporting fast optimization and real-time rendering. 3DGS explicitly
expresses a space using a set of Gaussian primitives and quickly creates novel views through a
rasterization pipeline without the time-consuming ray-casting process in NeRF. Due to its high
applicability, extensive research is rapidly advancing, covering not only typical reconstruction but
also sparse reconstruction [12, 55], dynamic scene reconstruction [24, 50, 52], SLAM [26, 34] and
even generation [11, 46, 54]. However, 3D scene reconstruction based on omnidirectional images
has been barely studied. This is partly because developing a suitable rasterizer for omnidirectional
images that allows real-time rendering is challenging, and such implementations are not publicly
available. 360-GS [2] is the first method that proposes omnidirectional reconstruction with 3DGS,
employing a two-step strategy. However, it relies on layout-guided error correction, which limits its
applicability to indoor scenes. In this paper, we present a carefully implemented CUDA rasterizer that
rotates the projection plane on a unit sphere, which can efficiently optimize 3D Gaussians without
any constraints or assumptions on scenes. Further, we propose a dynamic densification rule designed
for a 360-degree camera from our analysis, enabling us to reconstruct high-quality scenes rapidly.
We note that a few concurrent works, such as Gaussian splatting with optimal projection strategy [23]
or OmniGS [31], partly share the contributions with ours.

3 Methods

3.1 Preliminary: Rasterization Process in Typical 3D Gaussian Splatting

3D Gaussian splatting (3DGS) [27] is a recently proposed 3D representation that models scenes
using a set of 3D anisotropic Gaussians derived from multi-view images. It initializes the 3D
Gaussians using a traditional structure-from-motion library and optimizes their properties—such as
position, color, scale, rotation, and opacity—through photometric loss. In this section, we explain the
rasterization pipeline for 3D Gaussians in a perspective camera as proposed by 3DGS, followed by a
discussion of the differences in the rasterization process for an omnidirectional camera.

A 3D Gaussian is represented by its mean and covariance, where the covariance matrix Σ is expressed
as the product of a rotation matrix R and a scale matrix S (Σ = RSSTRT) to facilitate optimization
through gradient descent. When the 3D Gaussian is projected onto the image plane of a perspective
camera, the resulting distribution becomes complex since the perspective projection is not a linear
transformation. Following the approach in EWA splatting [56], 3DGS approximates the projected
distribution on the image plane as a 2D Gaussian. While introducing some errors, the local affine
approximation simplifies the modeling of the projected 3D Gaussian, ultimately reducing compu-
tational complexity and increasing rendering speed. Based on the perspective camera projection
function π(µ) = K1:2 [µx/µz, µy/µz, 1]

T with intrinsic matrix K, the first-order approximation of the

3

projection π is given as,

J =
∂π (µ)

∂µ
=

[
fx
µz

0 − fxµx

µ2
z

0
fy
µz

− fyµy

µ2
z

]
∈ R2×3, (1)

where fx, fy are focal lengths of the camera and µ = [µx, µy, µz] is the mean vector of 3D Gaussian
expressed in the camera coordinate system. As a result, the 2D Gaussian distribution on the image
plane is represented with mean π(µ) ∈ R2 and covariance Σ2D = JWΣWTJT ∈ R2×2, where W
denotes the transformation matrix from world space to camera space. The 2D Gaussian represents
the intensity on the image plane and is normalized as follows to ensure the maximum value at the
center becomes 1.

For x ∈ R2, G2D(x) = exp

(
−1

2
(x− π(µ))TΣ−1

2D (x− π(µ))

)
. (2)

This bell-shaped intensity is multiplied by the Gaussian’s opacity to determine the pixel-wise opacity
α. After frustum culling and sorting by depth, the color of each pixel C is determined as,

C =
∑
j∈N

cjαjTj , Tj =

j−1∏
k=1

(1− αk), (3)

where cj is the color of each Gaussian. This accumulation process is performed in the order of depth
sorting. Each pixel is processed independently by a single GPU thread, enabling rapid rendering of
3D Gaussians into images through this rasterization process. While 3DGS describes the rasterization
pipeline of 3D Gaussians for the perspective camera, a rasterization pipeline for an omnidirectional
camera requires a distinct approach that regards its different optical characteristics. The following
section explains our carefully designed rasterizer for the omnidirectional images.

3.2 Designing Rasterizer for Omnidirectional Images

A 360-degree camera captures all rays from the surrounding 3D environment to the camera origin and
represents them on a unit sphere S2. We employ spherical projection or equirectangular projection
(ERP) to map the projected image on the sphere S2 to the equirectangular space R2, then transform
to pixel space R2. We describe a series of steps on how a 3D Gaussian is approximated as a 2D
Gaussian in the pixel space and the feasibility of such an approximation. The gist of our rasterizer
design for the omnidirectional camera is leveraging locally approximated perspective projection on
S2 while minimizing errors.

As demonstrated in Figure 1, we follow a camera coordinate convention [4] with the z-axis forward,
the x-axis to the right, and the y-axis down. We define spherical coordinates by setting the azimuth
ϕ from the forward z-axis within the range [−π, π] and the elevation θ from the z-x plane within
the range [−π/2, π/2]. Projecting the mean µ of the 3D Gaussian onto the unit sphere results
in µ̂ = µ/||µ||, which corresponds to the azimuth ϕµ = arctan (µx/µz) and elevation θµ =

arctan (−µy/
√
µ2
x + µ2

z). This spherical coordinate representation (ϕ, θ) is converted into pixel
space by multiplying scalar and adding center shift,

πo(µ) =

(
W

2π
ϕµ +

W

2
,−H

π
θµ +

H

2

)T

(4)

where W,H are the width and height of the omnidirectional image, respectively.

While finding the corresponding point of the center of 3D Gaussian on the pixel space is straightfor-
ward, calculating the covariance requires more careful consideration. We model the distribution of
3D Gaussian projected onto pixel space as a 2D Gaussian for computational efficiency and stability,
following a similar approach to 3DGS. We leverage the perspective camera and local affine approx-
imation to intuitively describe the non-linear transformation introduced by the spherical camera
characteristics and the equirectangular projection. Then, we mathematically prove the correctness of
the proposed method.

Let us assume a perspective camera with a unit focal length, where the image plane is tangent to the
unit sphere. We rotate the perspective camera’s forward direction to align with the position of the
Gaussian center, µ, as shown in Figure 1 (a). The image plane is tangent to the unit sphere at µ̂, the

4

Figure 1: Illustration on rasterization process of ODGS. We describe the process of projecting a 3D
Gaussian to the omnidirectional pixel space. (a) The coordinate is transformed from the original
camera pose (black) to the target Gaussian (green), making the z-axis of the coordinate head towards
the center of the Gaussian. (b) The Gaussian is projected onto the corresponding tangent plane.
(c) The projected Gaussian is horizontally stretched when transformed into equirectangular space.
(d) The Gaussian in equirectangular space is linearly transformed to the pixel space, followed by a
combination with the other projected Gaussian.

point where the line from the sphere’s center to the center of 3D Gaussian intersects the sphere. We
define the rotation matrix of the perspective camera as Tµ, which is accomplished in two rotations in
azimuth and elevation,

Tµ = Tθµ ×Tϕµ
=

[
1 0 0
0 cos θµ sin θµ
0 − sin θµ cos θµ

]
×

[
cosϕµ 0 − sinϕµ

0 1 0
sinϕµ 0 cosϕµ

]

=

[
cosϕµ 0 − sinϕµ

sin θµ sinϕµ cos θµ sin θµ cosϕµ

cos θµ sinϕµ − sin θµ cos θµ cosϕµ

]
.

(5)

The rotation of the coordinate system helps minimize the error between the unit sphere and the
image plane, while also simplifying the covariance calculation. In the rotated camera coordinate, the
position of the Gaussian is represented as µo = (0, 0, ||µ||). Thus, the Jacobian matrix from Eq. 1 is
simplified as,

Jo =

[
1/||µ|| 0 0
0 1/||µ|| 0

]
, (6)

because the focal length of the perspective camera is assumed to be one (fx = fy = 1). Thus,
the covariance of the 3D Gaussian projected onto this tangent plane is modeled as JoWΣWTJT

o ,
as shown in Figure 1 (b). We assume that the covariance of this 2D Gaussian is small enough to
disregard the difference between the tangent plane and the sphere surface, allowing us to transfer it
directly onto the sphere surface. Although this assumption does not generally hold, we ensure its
validity through the split rule in 3DGS, which keeps the size of the Gaussian small. Next, we map the
2D covariance from the spherical surface S2 to the equirectangular space (ϕ, θ) ∈ R2, as described in
Figure 1 (c). The equirectangular projection transforms the spherical surface onto a cylindrical map,
scaling a ring at latitude θ with an initial radius of cos θ on the sphere to a radius of 1. This projection
introduces a horizontal scaling factor of sec θ, leading to increased distortion as θ approaches the
poles. We incorporate the distortion through Qo, and then we rescale the covariance to the pixel

5

space by applying the appropriate scaling factors So,

Qo =

[
sec θµ 0
0 1

]
, So =

[
W/2π 0
0 H/π

]
. (7)

As a result, the final Jacobian matrix is given as,

Jomni = SoQoJoTµ =

 W
2π||µ|| sec θµ cosϕµ 0 − W

2π||µ|| sec θµ sinϕµ

H
π||µ|| sin θµ sinϕµ

H
π||µ|| cos θµ

H
π||µ|| sin θµ cosϕµ

 , (8)

where the final 2D covariance is presented as Σ2D,o = JomniWΣWTJT
omni We verify the correct-

ness of the derived method by directly differentiating the equirectangular projection function πo in
Eq. 4, yielding the same result Jomni =

∂πo(µ)
∂µ as detailed in Appendix A.2.

As a result of the series of steps, the final 2D covariance is used for rendering the image, as described
in Eq. 2 and Eq. 3. One key difference is that, instead of performing frustum-shaped culling as
in perspective cameras, we perform culling in a spherical shell. The rasterization pipeline is fully
differentiable and implemented in CUDA, which can be used as a typical 3DGS. The detailed gradient
calculations through back-propagation are provided in Appendix A.3.

3.3 Densification Policy for Omnidirectional Images

Due to the characteristic of equirectangular projection, a 3D Gaussian can be rendered in different
shapes depending on its relative elevation to the camera; Gaussians near the poles are drawn larger.
Therefore, we propose a dynamic densification strategy specifically designed for omnidirectional
images. While the original method uses a pre-defined gradient threshold for densifying Gaussians,
we apply a varying gradient threshold τµ according to the elevation angle θµ as,

τµ = τmin + (1− cos θµ)× (τmax − τmin) , (9)

which mitigates excessive densification of Gaussians near the poles.

4 Experiments

4.1 Experiment Details

Datasets We evaluate our method on three egocentric datasets (OmniBlender, Ricoh360, OmniPho-
tos) and three roaming datasets (360Roam, OmniScenes, 360VO) to show its superiority regardless
of domain. First, EgoNeRF [10] released OmniBlender and Ricoh360, which have different char-
acteristics. OmniBlender contains 11 synthetic scenes generated with an omnidirectional rendering
engine in Blender [13], with four indoor and seven outdoor scenes. The images were captured
by rotating in a circular motion while ascending, each with a resolution of 2000 × 1000. Each
scene in OmniBlender consists of 25 training and test images. Ricoh360 contains 12 real-world
omnidirectional outdoor scenes captured by rotating in place in a cross-shaped pattern. Each scene
consists of 50 training images and 50 testing images with a resolution of 1920×960. OmniPhotos [3]
has released 10 real-world omnidirectional scenes captured by rotating in a circular motion with
a commercial 360-degree camera on a selfie stick. Each scene has 71 to 91 images with a size of
3840× 1920. In our experiment, we resize them to half resolution 1920× 960, and we use 20% of
images for the test.

For the roaming scenarios, we utilize several multi-view omnidirectional datasets, which were not
originally released for 3D reconstruction tasks. 360Roam [21] dataset consists of 10 real-world
indoor scenes captured by Insta360camera. Each scene has 71 to 215 omnidirectional images with
size 6080 × 3040, and we resize them to 2048 × 1024. OmniScenes [28] is originally made for
assessing the quality of visual localization of omnidirectional images in harsh conditions. Since it is
proposed to measure the robustness of visual localization algorithms, it contains significant scene
changes, motion blur, or some visual artifacts such as jpeg compression. We use the released version
1.1, which includes 7 real-world indoor captured scenes in resolution 1920 × 960. 360VO [20] is
a simulation dataset for evaluating the localization and mapping algorithms in the robotics field. It
contains 10 virtual outdoor road scenes, where each scene has 2000 images with size 1920× 960.

6

Table 1: Quantitative comparison of 3D reconstruction methods on various datasets. The best metric
for each dataset is written in bold. Our method shows the best performance on almost all settings
regardless of optimization time, with the fastest rendering speed.

Dataset Methods 10 min 100 min Time↓
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ (sec.)

OmniBlender

NeRF(P) 19.20 0.6124 0.5359 20.04 0.6092 0.4949 62.71
3DGS(P) 29.36 0.8770 0.1400 21.19 0.7528 0.3021 0.112
TensoRF 25.36 0.7249 0.3855 26.08 0.7416 0.3170 10.77
EgoNeRF 28.29 0.8309 0.2194 30.89 0.8934 0.1260 23.78

ODGS 32.76 0.9234 0.0469 33.05 0.9229 0.0343 0.028

Ricoh360

NeRF(P) 14.33 0.5616 0.5794 16.16 0.5617 0.5716 62.46
3DGS(P) 25.12 0.7932 0.2397 22.07 0.7228 0.3218 0.132
TensoRF 23.35 0.6812 0.5200 23.97 0.6936 0.4653 10.30
EgoNeRF 24.74 0.7467 0.3243 25.49 0.7737 0.2825 23.89

ODGS 24.94 0.8135 0.1489 26.27 0.8462 0.1051 0.026

OmniPhotos

NeRF(P) 18.14 0.6158 0.5514 20.80 0.6388 0.4772 62.08
3DGS(P) 25.61 0.8310 0.2100 23.30 0.7859 0.2670 0.110
TensoRF 22.78 0.6841 0.5089 23.73 0.7038 0.4467 9.707
EgoNeRF 25.20 0.7722 0.2662 26.90 0.8349 0.1766 23.88

ODGS 26.24 0.8704 0.1108 27.04 0.8878 0.0875 0.028

360Roam

NeRF(P) 15.07 0.6848 0.4839 15.26 0.6813 0.5025 62.98
3DGS(P) 20.17 0.7001 0.3536 19.34 0.6576 0.3837 0.104
TensoRF 18.00 0.5988 0.7488 18.12 0.5895 0.7133 9.052
EgoNeRF 20.45 0.6358 0.5334 21.18 0.6718 0.4444 24.03

ODGS 21.08 0.7066 0.3003 20.85 0.7111 0.2254 0.029

OmniScenes

NeRF(P) 15.69 0.7218 0.4546 15.98 0.6890 0.4914 62.90
3DGS(P) 23.61 0.8444 0.2835 17.14 0.7119 0.3906 0.194
TensoRF 23.58 0.8118 0.3534 24.21 0.8208 0.3091 8.100
EgoNeRF 22.78 0.7997 0.3463 24.76 0.8313 0.2623 23.66

ODGS 24.42 0.8526 0.1391 24.51 0.8505 0.1282 0.032

360VO

NeRF(P) 15.71 0.6186 0.4949 17.78 0.6373 0.5064 61.97
3DGS(P) 22.87 0.7861 0.2970 22.73 0.7822 0.3061 0.091
TensoRF 19.74 0.6543 0.5876 20.31 0.6721 0.5640 7.815
EgoNeRF 22.47 0.7325 0.4342 23.78 0.7677 0.3680 23.96

ODGS 24.63 0.8245 0.2175 26.68 0.8694 0.1264 0.026

We uniformly select 200 images for each sequence for training and testing. Since these datasets do
not split the train and test images, we conducted our experiment by dividing them by 4:1 for train and
test, respectively. We note that all datasets have CC-BY-4.0 licenses. Although some datasets provide
camera poses and dense point clouds, we run the structure-from-motion, specifically OpenMVG [37],
on all the datasets and use obtained poses and point clouds for our experiment.

Implementation details Our framework is basically built with PyTorch [39], but we manually
implement the omnidirectional rasterizer using the CUDA kernel. All experiments, including
optimization and inference time measurements, are conducted using a single NVIDIA RTX A6000
GPU. We describe the optimization arguments in the Appendix A.1.

4.2 Experiment Results

Baselines With no available code for 3DGS on omnidirectional images at the time of our ex-
periments, we compare our method with NeRF-based methods, specifically TensoRF [7] and
EgoNeRF [10]. We also convert omnidirectional images into perspective images to compare the
typical 3D reconstruction methods, NeRF [36] and 3DGS [27]. Specifically, we transform the omni-
directional images into six perspective images using cubemap decomposition, popularly used in many

7

0 20 40 60 80 100
Time (min)

15

20

25

30

P
S

N
R

0 20 40 60 80 100
Time (min)

0.5

0.6

0.7

0.8

0.9

S
S

IM

OmniBlender/bistro square

NeRF(P) 3DGS(P) TensoRF EgoNeRF ODGS

0 20 40 60 80 100
Time (min)

0.0

0.2

0.4

0.6

L
P

IP
S

0 100 200 300
Time (min)

20

23

26

29

32

P
S

N
R

0 100 200 300
Time (min)

0.7

0.8

0.9

S
S

IM

OmniPhotos / Ballintoy

0 100 200 300
Time (min)

0.1

0.2

0.3

0.4

0.5

L
P

IP
S

Figure 2: Changes of PSNR, SSIM, and LPIPS according to the optimization time for each method.
ODGS shows the best result as well as the highest convergence speed in both scenes.

studies involving 360-degree cameras [25, 47]. The six decomposed images compose a cube-shaped
surface and we calculate the corresponding camera pose of each surface. For inference, the six views
for each face in the cube are rendered and then combined into an omnidirectional image.

Quantitative comparison To ensure the experiment’s fairness and highlight the efficiency of
our method, all methods were evaluated after optimizing the model with the same amount of time.
We evaluate the performance of all methods at 10 and 100 minutes of training time, measured in
wall-clock time. For evaluation metric, we use PSNR (dB), SSIM [48], and LPIPS [53] for comparing
reconstruction quality, where AlexNet [29] backbone is used for measuring LPIPS. Table 1 shows the
quantitative performance comparison and rendering time (seconds) for all datasets. The (P) mark
in the method column indicates those methods are trained with converted perspective images. Our
results show dominant results on all metrics, including inference time. NeRF and TensoRF, which
use a grid based on a Cartesian coordinate system, encounter difficulties representing large scenes,
resulting in poor quantitative metrics. EgoNeRF, which introduces a spherical balanced grid to
mitigate the challenge, shows better quality than TensoRF but still needs better perceptual metrics.
Also, these methods require more than a second to render a single omnidirectional image for an
arbitrary viewpoint, which is impractical for real scenarios. Meanwhile, 3DGS with perspective
images shows the best results except ours when optimized for 10 minutes, but severely suffers from
overfitting and gets worse results after 100 minutes of optimization. In terms of rendering time,
despite reporting faster speed than NeRF-based models, original 3DGS takes longer than typical
perspective image rendering because it involves non-linear warping of each image when stitching
six images to create one omnidirectional image. ODGS, in contrast, outperforms the other methods
in image reconstruction quality and rendering speed. The outstanding results for SSIM and LPIPS
imply that our method generates images with accurate structure and prominent perceptual quality.

Figure 2 shows the change of PSNR, SSIM, and LPIPS depending on the optimization time for two
example scenes. We note that we stopped training NeRF and TensoRF at 100 and 200 minutes,
respectively, since their performances converged. Our method shows the fastest optimization speed
in both scenes while maintaining the highest score regardless of optimization time. Typical NeRF
and TensoRF recorded significantly lower results than ours, verifying that the Cartesian coordinate is
inappropriate for radially extending rays. EgoNeRF shows comparable PSNR with ours in Ballintoy,
but needs a long optimization time. We attribute the fast optimization of ODGS to two aspects. First,
while NeRF-based methods use an implicit representation that embeds the scene into a neural network,
3DGS employs explicit representation and directly moves or morphs the elements to optimize the
model. Also, 3DGS exploits the position of SfM point clouds, which can serve as a good initialization
point for optimizing Gaussian splats. 3DGS (P), on the other hand, shows high vulnerability to

8

(a) Ground truth (b) 3DGS(P) [27] (c) EgoNeRF [10] (d) ODGS

Figure 3: Qualitative comparisons in the egocentric scenes (10 min.). Each scene is brought from
Ricoh360, OmniBlender, and OmniPhotos, respectively. Best viewed when zoomed in.

(a) Ground truth (b) 3DGS(P) [27] (c) EgoNeRF [10] (d) ODGS

Figure 4: Qualitative comparisons in the roaming scenes (10 min.). Each scene is brought from
360Roam, OmniScenes, and 360VO, respectively. Best viewed when zoomed in.

overfitting. We believe the phenomenon happens because of the weak correlation among the six
faces of the cubemap after decomposition. Since there is no overlap between the six faces, 3DGS is
optimized six times independently for faces facing the same direction. Therefore, even with the same
input, the amount of information used is significantly reduced, causing overfitting to occur quickly.

9

Qualitative comparison We also visually compare our method with the other methods in various
scenes. Figure 3 shows the samples of reconstructed images from egocentric datasets. We note that
the images in the figure are rendered at 10 minutes of training. The images from EgoNeRF are blurry
and contain some artifacts, such as stripe lines or checkerboard patterns, which appear prominent
near the edges. The model is not sufficiently optimized to render the sharp image details. 3DGS
trained with the cubemap perspective images sometimes show sharp reconstruction contents, such
as a cubic pattern of a frame in the middle row (yellow boundary) but often include unintended
projected Gaussian splats that cause image distortion. We attribute the phenomenon to the rapid
overfitting properties of perspective 3DGS. In contrast, our model successfully reconstructs sharp
details in the images. The superiority of ODGS becomes more noticeable in the roaming dataset,
as shown in Figure 4. Although EgoNeRF proposes a balanced grid for egocentric video, it cannot
maintain a uniform ray density for every grid if the camera wanders inside a large environment. As a
result, the scene pattern is often completely lost, creating completely different results, and the overall
reconstruction quality deteriorates. While perspective 3DGS shows better quality than EgoNeRF, it
often misses some objects or structures where the adjacent faces of the cube meet. For instance, in
the top row, there is an inverted Y-shaped artifact instead of a chair in a purple patch. This happens
because the chair is located where the three sides of the cube meet, and the object is not made from
any of the sides. ODGS overcomes the challenge by optimizing the Gaussian using the whole image
and showing prominent performance on both egocentric and roaming datasets.

(a) Ground truth(full) (b) Ground truth (c) Static threshold (d) Dynamic threshold

Figure 5: Qualitative comparison of rendered images according to the Gaussian densification policy
during optimization.

Ablation Study: Dynamic Densification Strategy for Omnidirectional Images We qualitatively
compare and display the results in Figure 5 when applying the proposed dynamic densification rule
proposed in Section 3.3. As shown in the figure, the lanes appear split, with artifact-like patterns
emerging on the road due to static densification, as employed in the original 3DGS work [27].
Conversely, our densification strategy significantly enhances the model’s representation power,
leading to markedly more accurate rasterization results.

5 Conclusion

In this work, we propose a new method called ODGS, specifically designed to reconstruct 3D scenes
from omnidirectional images using 3D Gaussian splatting. To optimize 3D Gaussian splatting in
the omnidirectional image domain, we introduce a new rasterizer that appropriately models the
equirectangular projection from the 3D space to the image. Specifically, we define a tangent plane
for each Gaussian and project the Gaussian into the plane, followed by horizontal stretching and
rescaling to the pixel space. Compared to the state-of-the-art NeRF-based methods, ODGS shows
about 100 times faster optimization and rendering speed, which allows the user to synthesize the
novel view in real-time. Furthermore, ODGS shows the best reconstruction performance for various
input images, including egocentric and roaming scenes, indoors and outdoors.

Limitations and future work ODGS still relies on local affine approximation when projecting a
Gaussian splat to the camera surface. Equirectangular projection is not a linear transformation, and
straight lines in the 3D space should be expressed as curves in the omnidirectional image. However, a
3D Gaussian is approximated as a 2D Gaussian, leading to errors that produce artifacts in the rendered
image. Adopting a more accurate distribution for spherically projected Gaussians can reduce errors
and enhance the efficiency of the framework.

10

Acknowledgements

This work was supported in part by the IITP grants [No.2021-0-01343, Artificial Intelligence Graduate
School Program (Seoul National University), No. 2021-0-02068, and No.2023-0-00156], the NRF
grant [No. 2021M3A9E4080782] funded by the Korea government (MSIT), and the SNU-LG AI
Research Center.

References
[1] Benjamin Attal, Selena Ling, Aaron Gokaslan, Christian Richardt, and James Tompkin. Matryodshka:

Real-time 6dof video view synthesis using multi-sphere images. In ECCV, 2020.

[2] Jiayang Bai, Letian Huang, Jie Guo, Wen Gong, Yuanqi Li, and Yanwen Guo. 360-gs: Layout-guided
panoramic gaussian splatting for indoor roaming. arXiv preprint arXiv:2402.00763, 2024.

[3] Tobias Bertel, Mingze Yuan, Reuben Lindroos, and Christian Richardt. Omniphotos: casual 360 vr
photography. ACM TOG, 2020.

[4] Gary Bradski. The opencv library. Dr. Dobb’s Journal: Software Tools for the Professional Programmer,
25(11):120–123, 2000.

[5] David Caruso, Jakob Engel, and Daniel Cremers. Large-scale direct slam for omnidirectional cameras. In
IROS, 2015.

[6] Wenjie Chang, Yueyi Zhang, and Zhiwei Xiong. Depth estimation from indoor panoramas with neural
scene representation. In CVPR, 2023.

[7] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial radiance fields. In
ECCV, 2022.

[8] Rongsen Chen, Fang-Lue Zhang, Simon Finnie, Andrew Chalmers, and Taehyun Rhee. Casual 6-dof:
free-viewpoint panorama using a handheld 360 camera. IEEE TVCG, 2022.

[9] Ching-Ya Chiu, Yu-Ting Wu, I Shen, Yung-Yu Chuang, et al. 360mvsnet: Deep multi-view stereo network
with 360deg images for indoor scene reconstruction. In WACV, 2023.

[10] Changwoon Choi, Sang Min Kim, and Young Min Kim. Balanced spherical grid for egocentric view
synthesis. In CVPR, 2023.

[11] Jaeyoung Chung, Suyoung Lee, Hyeongjin Nam, Jaerin Lee, and Kyoung Mu Lee. Luciddreamer:
Domain-free generation of 3d gaussian splatting scenes. arXiv preprint arXiv:2311.13384, 2023.

[12] Jaeyoung Chung, Jeongtaek Oh, and Kyoung Mu Lee. Depth-regularized optimization for 3d gaussian
splatting in few-shot images. In CVPR Workshop, 2024.

[13] Blender Online Community. Blender - a 3D modelling and rendering package. Blender Foundation,
Stichting Blender Foundation, Amsterdam, 2018.

[14] Marc Eder, Pierre Moulon, and Li Guan. Pano popups: Indoor 3d reconstruction with a plane-aware
network. In 3DV, 2019.

[15] Yasutaka Furukawa, Carlos Hernández, et al. Multi-view stereo: A tutorial. Foundations and Trends® in
Computer Graphics and Vision, 2015.

[16] Christiano Gava, Vishal Mukunda, Tewodros Habtegebrial, Federico Raue, Sebastian Palacio, and Andreas
Dengel. Sphereglue: Learning keypoint matching on high resolution spherical images. In CVPR, 2023.

[17] Kai Gu, Thomas Maugey, Sebastian Knorr, and Christine Guillemot. Omni-nerf: neural radiance field
from 360 image captures. In ICME, 2022.

[18] Tewodros Habtegebrial, Christiano Gava, Marcel Rogge, Didier Stricker, and Varun Jampani. Somsi:
Spherical novel view synthesis with soft occlusion multi-sphere images. In CVPR, 2022.

[19] Ching-Yu Hsu, Cheng Sun, and Hwann-Tzong Chen. Moving in a 360 world: Synthesizing panoramic
parallaxes from a single panorama. arXiv preprint arXiv:2106.10859, 2021.

[20] Huajian Huang and Sai-Kit Yeung. 360vo: Visual odometry using a single 360 camera. In ICRA, 2022.

11

[21] Huajian Huang, Yingshu Chen, Tianjia Zhang, and Sai-Kit Yeung. Real-time omnidirectional roaming in
large scale indoor scenes. In SIGGRAPH Asia 2022 Technical Communications, 2022.

[22] Huajian Huang, Changkun Liu, Yipeng Zhu, Hui Cheng, Tristan Braud, and Sai-Kit Yeung. 360loc: A
dataset and benchmark for omnidirectional visual localization with cross-device queries. arXiv preprint
arXiv:2311.17389, 2023.

[23] Letian Huang, Jiayang Bai, Jie Guo, Yuanqi Li, and Yanwen Guo. On the error analysis of 3d gaussian
splatting and an optimal projection strategy. In ECCV, 2024.

[24] Yi-Hua Huang, Yang-Tian Sun, Ziyi Yang, Xiaoyang Lyu, Yan-Pei Cao, and Xiaojuan Qi. Sc-gs: Sparse-
controlled gaussian splatting for editable dynamic scenes. arXiv preprint arXiv:2312.14937, 2023.

[25] Hyeonjoong Jang, Andreas Meuleman, Dahyun Kang, Donggun Kim, Christian Richardt, and Min H Kim.
Egocentric scene reconstruction from an omnidirectional video. ACM ToG, 2022.

[26] Nikhil Keetha, Jay Karhade, Krishna Murthy Jatavallabhula, Gengshan Yang, Sebastian Scherer, Deva
Ramanan, and Jonathon Luiten. Splatam: Splat, track & map 3d gaussians for dense rgb-d slam. arXiv
preprint arXiv:2312.02126, 2023.

[27] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting for
real-time radiance field rendering. ACM TOG, 2023.

[28] Junho Kim, Changwoon Choi, Hojun Jang, and Young Min Kim. Piccolo: Point cloud-centric omnidirec-
tional localization. In CVPR, 2021.

[29] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. In NeurIPS, 2012.

[30] Shreyas Kulkarni, Peng Yin, and Sebastian Scherer. 360fusionnerf: Panoramic neural radiance fields with
joint guidance. In IROS, 2023.

[31] Longwei Li, Huajian Huang, Sai-Kit Yeung, and Hui Cheng. Omnigs: Omnidirectional gaussian splatting
for fast radiance field reconstruction using omnidirectional images. arXiv preprint arXiv:2404.03202,
2024.

[32] Ming Li, Xueqian Jin, Xuejiao Hu, Jingzhao Dai, Sidan Du, and Yang Li. Mode: Multi-view omnidirec-
tional depth estimation with 360 cameras. In ECCV, 2022.

[33] Qiaoge Li, Itsuki Ueda, Chun Xie, Hidehiko Shishido, and Itaru Kitahara. Omnivoxel: A fast and precise
reconstruction method of omnidirectional neural radiance field. In GCCE, 2022.

[34] Hidenobu Matsuki, Riku Murai, Paul HJ Kelly, and Andrew J Davison. Gaussian splatting slam. arXiv
preprint arXiv:2312.06741, 2023.

[35] Andreas Meuleman, Hyeonjoong Jang, Daniel S Jeon, and Min H Kim. Real-time sphere sweeping stereo
from multiview fisheye images. In CVPR, 2021.

[36] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren
Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

[37] Pierre Moulon, Pascal Monasse, Romuald Perrot, and Renaud Marlet. OpenMVG: Open multiple view
geometry. In RRPR, 2016.

[38] Alain Pagani and Didier Stricker. Structure from motion using full spherical panoramic cameras. In ICCV
Workshop, 2011.

[39] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An imperative style, high-performance deep
learning library. In NeurIPS, 2019.

[40] Giovanni Pintore, Eva Almansa, Marco Agus, and Enrico Gobbetti. Deep3dlayout: 3d reconstruction of an
indoor layout from a spherical panoramic image. ACM TOG, 2021.

[41] Shivansh Rao, Vikas Kumar, Daniel Kifer, C Lee Giles, and Ankur Mali. Omnilayout: Room layout
reconstruction from indoor spherical panoramas. In ICCV, 2021.

[42] Davide Scaramuzza, Agostino Martinelli, and Roland Siegwart. A flexible technique for accurate omnidi-
rectional camera calibration and structure from motion. In ICVS, 2006.

12

[43] Johannes L Schonberger and Jan-Michael Frahm. Structure-from-motion revisited. In CVPR, 2016.

[44] Shinya Sumikura, Mikiya Shibuya, and Ken Sakurada. Openvslam: A versatile visual slam framework. In
ACMMM, 2019.

[45] Cheng Sun, Chi-Wei Hsiao, Ning-Hsu Wang, Min Sun, and Hwann-Tzong Chen. Indoor panorama planar
3d reconstruction via divide and conquer. In ICCV, 2021.

[46] Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang Zeng. Dreamgaussian: Generative gaussian
splatting for efficient 3d content creation. In ICLR, 2024.

[47] Fu-En Wang, Yu-Hsuan Yeh, Min Sun, Wei-Chen Chiu, and Yi-Hsuan Tsai. Bifuse: Monocular 360 depth
estimation via bi-projection fusion. In CVPR, 2020.

[48] Zhou Wang, Alan C Bovik, Hamid R Sheikh, Eero P Simoncelli, et al. Image quality assessment: From
error visibility to structural similarity. IEEE TIP, 2004.

[49] Changhee Won, Hochang Seok, Zhaopeng Cui, Marc Pollefeys, and Jongwoo Lim. Omnislam: Omnidirec-
tional localization and dense mapping for wide-baseline multi-camera systems. In ICRA, 2020.

[50] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian, and
Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. In CVPR, 2024.

[51] Qi Wu, Xiangyu Xu, Xieyuanli Chen, Ling Pei, Chao Long, Junyuan Deng, Guoqing Liu, Sheng Yang,
Shilei Wen, and Wenxian Yu. 360-vio: A robust visual–inertial odometry using a 360° camera. IEEE TIE,
2023.

[52] Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing Zhang, and Xiaogang Jin. Deformable 3d
gaussians for high-fidelity monocular dynamic scene reconstruction. In CVPR, 2023.

[53] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018.

[54] Shijie Zhou, Zhiwen Fan, Dejia Xu, Haoran Chang, Pradyumna Chari, Tejas Bharadwaj, Suya You,
Zhangyang Wang, and Achuta Kadambi. Dreamscene360: Unconstrained text-to-3d scene generation with
panoramic gaussian splatting. In ECCV, 2024.

[55] Zehao Zhu, Zhiwen Fan, Yifan Jiang, and Zhangyang Wang. Fsgs: Real-time few-shot view synthesis
using gaussian splatting. In ECCV, 2024.

[56] Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and Markus Gross. Ewa splatting. IEEE TVCG,
2002.

13

A Appendix / supplemental material

A.1 More Implementation Details

We follow the hyper-parameters of original 3DGS [27] excluding some hyperparameters. Firstly,
we set iterations as 200k, densify_until_iter as 100k. However, we stopped the optimization after
100 minutes, regardless of the current iteration. For densification we set percent_dense as 1e-3,
densify_grad_threshold_min (τmin) as 2e-5, and densify_grad_threshold_max (τmax) as 1e-4.

A.2 Proof of Mathematical Equivalence of the Derived Method

Here, we present the direct derivation of Eq. 8 by differentiating the omnidirectional projection
function π0 from Eq. 4.

∂πo (µ)

∂µ
=


W
2π

µz

µ2
x+µ2

z
0 −W

2π
µx

µ2
x+µ2

z

− H
π||µ||2

µxµy√
µ2

x+µ2
z

H
π||µ||2

√
µ2

x + µ2
z − H

π||µ||2
µyµz√
µ2

x+µ2
z



=


W

2π||µ||
||µ||√
µ2

x+µ2
z

µz√
µ2

x+µ2
z

0 − W
2π||µ||

||µ||√
µ2

x+µ2
z

µx√
µ2

x+µ2
z

H
π||µ||

−µy

||µ||
µx√

µ2
x+µ2

z

H
π||µ||

√
µ2

x+µ2
z

||µ||
H

π||µ||
−µy

||µ||
µz√

µ2
x+µ2

z



=

 W
2π||µ|| sec θµ cosϕµ 0 − W

2π||µ|| sec θµ sinϕµ

H
π||µ|| sin θµ sinϕµ

H
π||µ|| cos θµ

H
π||µ|| sin θµ cosϕµ


= Jomni

(10)

This proof demonstrates the mathematical correctness of our description outlined through Eq. 5,
Eq. 6, and Eq. 7. The description in the main paper reveals the underlying assumptions (local affine
approximation, tangent plane to sphere surface) and confirms their mathematical validity.

A.3 Back-Propagation of Rasterization in omnidirectional Image Domain

The gradient computation from Gaussian covariance is related to Eq. 10. We denote the gradient
value matrix for the projected 2D covariance matrix(Σ) as ∂L

∂Σ . The size of ∂L
∂Σ is 2× 2, the same as

the original covariance matrix. Note that the values of ∂L
∂Σ(1,2)

and ∂L
∂Σ(2,1)

are same since both Σ

and ∂L
∂Σ are symmetric matrices.

We define T as JW. The gradient value matrix of T is computed as below:

14

∂L
∂T (1,1)

= 2
(
T(1,1)V(1,1) + T(1,2)V(1,2) + T(1,3)V(1,3)

)
∗ ∂L
∂Σ (1,1)

+
(
T(2,1)V(1,1) + T(2,2)V(1,2) + T(2,3)V(1,3)

)
∗ ∂L
∂Σ (1,2)

,

∂L
∂T (1,2)

= 2
(
T(1,1)V(2,1) + T(1,2)V(2,2) + T(1,3)V(2,3)

)
∗ ∂L

∂Σ (1,1)

+
(
T(2,1)V(2,1) + T(2,2)V(2,2) + T(2,3)V(2,3)

)
∗ ∂L

∂Σ (1,2)
,

∂L
∂T (1,3)

= 2
(
T(1,1)V(3,1) + T(1,2)V(3,2) + T(1,3)V(3,3)

)
∗ ∂L

∂Σ (1,1)

+
(
T(2,1)V(3,1) + T(2,2)V(3,2) + T(2,3)V(3,3)

)
∗ ∂L

∂Σ (1,2)
,

∂L
∂T (2,1)

= 2
(
T(2,1)V(1,1) + T(2,2)V(1,2) + T(2,3)V(1,3)

)
∗ ∂L
∂Σ (2,2)

+
(
T(1,1)V(1,1) + T(1,2)V(1,2) + T(1,3)V(1,3)

)
∗ ∂L
∂Σ (1,2)

,

∂L
∂T (2,2)

= 2
(
T(2,1)V(2,1) + T(2,2)V(2,2) + T(2,3)V(2,3)

)
∗ ∂L
∂Σ (2,2)

+
(
T(1,1)V(2,1) + T(1,2)V(2,2) + T(1,3)V(2,3)

)
∗ ∂L
∂Σ (1,2)

,

∂L
∂T (2,3)

= 2
(
T(2,1)V(3,1) + T(2,2)V(3,2) + T(2,3)V(3,3)

)
∗ ∂L
∂Σ (2,2)

+
(
T(1,1)V(3,1) + T(1,2)V(3,2) + T(1,3)V(3,3)

)
∗ ∂L
∂Σ (1,2)

.

(11)

Then, the gradient for Jacobian matrix, ∂L
∂J , is calculated as multiplication of WT and ∂L

∂T . After the
gradient of J is calculated, the gradient for each position is computed as follows:

∂L
∂tx

=− W

π
· txtz

(t2x + t2z)
2 · ∂L

∂J (1,1)
+

W

2π
· t2x − t2z

(t2x + t2z)
2 · ∂L

∂J (1,3)

+
H

π
·
ty

(
t2zt

2
r − 2t2x

(
t2x + t2z

))
t4r (t

2
x + t2z)

3/2
· ∂L
∂J (2,1)

+
H

π
·
tx

(
t2r − 2t2y

)
t4r
√

t2x + t2z
· ∂L
∂J (2,2)

− H

π
·
txtytz

(
2
(
t2x + t2z

)
+ t2r

)
t4r (t

2
x + t2z)

3/2
· ∂L
∂J (2,3)

.

∂L
∂ty

=+
H

π
·
tx

(
t2r − 2t2y

)
t4r
√
t2x + t2z

· ∂L
∂J (2,1)

+
2H

π
·
ty
√

t2x + t2z
t4r

· ∂L
∂J (2,2)

+
H

π
·
tz
(
t2r − 2t2y

)
t4r
√
t2x + t2z

· ∂L
∂J (2,3)

.

∂L
∂tz

=+
W

2π
· t2x − t2z

(t2x + t2z)
2 · ∂L

∂J (1,1)
+

W

π
· txtz

(t2x + t2z)
2 · ∂L

∂J (1,3)

− H

π
·
txtytz

(
2
(
t2x + t2z

)
+ t2r

)
t4r (t

2
x + t2z)

3/2
· ∂L
∂J (2,1)

+
H

π
·
tz
(
t2r − 2t2y

)
t4r
√

t2x + t2z
· ∂L
∂J (2,2)

+
H

π
·
ty

(
t2xt

2
r − 2t2z

(
t2x + t2z

))
t4r (t

2
x + t2z)

3/2
· ∂L
∂J (2,3)

.

(12)

15

A.4 Comparison with Original 3DGS with more input images.

Table A: Quantitative comparison of 3DGS (P) in 6-views and 18-views.

Dataset Method 10 min 100 min
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

OmniBlender
3DGS (P6) 29.36 0.8770 0.1400 21.19 0.7528 0.3021
3DGS (P18) 27.85 0.8387 0.1737 24.56 0.7907 0.2478

ODGS 32.76 0.9234 0.0469 33.05 0.9229 0.0343

Ricoh360
3DGS (P6) 25.12 0.7932 0.2397 22.07 0.7228 0.3218
3DGS (P18) 24.76 0.7726 0.2565 23.14 0.7277 0.3109

ODGS 24.94 0.8135 0.1489 26.27 0.8462 0.1051

OmniPhotos
3DGS (P6) 25.61 0.8310 0.2100 23.30 0.7859 0.2670
3DGS (P18) 24.93 0.8007 0.2412 23.21 0.7541 0.2996

ODGS 26.24 0.8704 0.1108 27.04 0.8878 0.0875

360Roam
3DGS (P6) 20.17 0.7001 0.3536 19.34 0.6576 0.3837
3DGS (P18) 20.88 0.6992 0.3571 21.05 0.6994 0.3405

ODGS 21.08 0.7066 0.3003 20.85 0.7111 0.2254

OmniScenes
3DGS (P6) 23.61 0.8444 0.2835 17.14 0.7119 0.3906
3DGS (P18) 24.00 0.8400 0.1993 21.43 0.7864 0.2828

ODGS 24.42 0.8526 0.1391 24.51 0.8505 0.1282

360VO
3DGS (P6) 22.87 0.7861 0.2970 22.73 0.7822 0.3061
3DGS (P18) 23.22 0.7875 0.2939 23.57 0.7938 0.2825

ODGS 24.63 0.8245 0.2175 26.68 0.8694 0.1264

Although we report the results of the original 3DGS method using 6 cubemap decomposed perspective
images in Table 1, we also compare the results when 3DGS is optimized with more perspective
images. Whereas the original decomposition generates six perspective images for one omnidirectional
image, the new decomposition produces 18 images by adding 12 perspective cameras where each
camera faces an edge of the cube. Table A shows the performance of optimized results according to
the number of perspective images for optimization. When using the 18 views (P18), the performance
is comparable to the 6 views (P6) at the 10-minute mark but surpasses the 6 view results after
the 100-minute optimization. At first, the increased number of images for training prevents the
model from sufficiently learning from all views in the early stages (10 minutes), resulting in slightly
lower performance. However, after sufficient optimization time (100 minutes) passes, the additional
views allow for further optimization, leading to improved results. Still, ODGS shows the highest
performance in most metrics, even considering 3DGS using 18 views, demonstrating the superiority
of our rasterizer.

16

A.5 Detailed Quantitative Results

We provide detailed quantitative results that compose Table 1 below. We report PSNR, SSIM,
and LPIPS of each method for all scenes in Table B - Table G. The tables show that our method
outperforms all the baselines in almost all scenes. Please note that the room1 scene in the OmniScenes
dataset was omitted because the OpenMVG did not function properly due to the image sequence
jumping in the middle. In Table 1, we report the averages of the scenes, excluding room1.

Table B: Quantitative comparison of 3D reconstruction results on Omniblender dataset
(10min/100min). The best result for each metric is written in bold. Our method shows the best
performance on almost all settings.

opt time scene Nerf(P) 3DGS(P) TensoRF EgoNeRF ODGS

10min

archiviz-flat 20.42 / 0.7431 / 0.4028 31.20 / 0.9158 / 0.1044 28.44 / 0.8406 / 0.2751 29.06 / 0.8501 / 0.2477 34.47 / 0.9499 / 0.0246
barbershop 19.50 / 0.6816 / 0.5540 33.25 / 0.9472 / 0.0849 27.58 / 0.8289 / 0.3259 31.13 / 0.9065 / 0.1793 38.16 / 0.9778 / 0.0203
bistro bike 17.49 / 0.5145 / 0.6151 30.56 / 0.9298 / 0.0890 21.81 / 0.5978 / 0.4968 30.01 / 0.9065 / 0.1035 33.87 / 0.9712 / 0.0195

bistro square 16.27 / 0.4960 / 0.6003 24.95 / 0.8887 / 0.1273 19.52 / 0.5620 / 0.4974 23.84 / 0.8298 / 0.1605 28.59 / 0.9500 / 0.0269
classroom 18.16 / 0.6125 / 0.6144 26.89 / 0.8109 / 0.2291 25.02 / 0.7206 / 0.5100 26.33 / 0.7662 / 0.3740 31.54 / 0.8674 / 0.1161
fisher hut 23.43 / 0.7171 / 0.4084 29.69 / 0.8153 / 0.1809 28.74 / 0.7549 / 0.4224 29.73 / 0.7780 / 0.3098 32.39 / 0.8551 / 0.0610
lone monk 16.88 / 0.5561 / 0.5039 30.01 / 0.9204 / 0.1029 23.18 / 0.6933 / 0.3530 28.30 / 0.8777 / 0.1433 33.49 / 0.9638 / 0.0201

LOU 17.79 / 0.6211 / 0.4705 30.68 / 0.9309 / 0.1030 27.60 / 0.8651 / 0.2174 30.89 / 0.9083 / 0.1171 35.17 / 0.9573 / 0.0314
pavilion midday chair 19.99 / 0.7027 / 0.5128 29.69 / 0.9127 / 0.1015 26.33 / 0.7850 / 0.3237 29.01 / 0.8827 / 0.1354 32.13 / 0.9499 / 0.0324
pavilion midday pond 17.86 / 0.5496 / 0.5690 24.82 / 0.7914 / 0.1797 22.11 / 0.6613 / 0.3091 23.86 / 0.7411 / 0.1963 25.23 / 0.8125 / 0.0954

restroom 23.37 / 0.5421 / 0.6432 31.20 / 0.7840 / 0.2368 28.60 / 0.6644 / 0.5093 29.07 / 0.6930 / 0.4460 35.37 / 0.9020 / 0.0684
average 19.20 / 0.6124 / 0.5359 29.36 / 0.8770 / 0.1400 25.36 / 0.7249 / 0.3855 28.29 / 0.8309 / 0.2194 32.76 / 0.9234 / 0.0469

100min

archiviz-flat 21.28 / 0.7326 / 0.3993 21.61 / 0.8054 / 0.2724 29.02 / 0.8504 / 0.2185 32.63 / 0.9175 / 0.1077 34.10 / 0.9454 / 0.0243
barbershop 19.82 / 0.6584 / 0.5226 22.31 / 0.7708 / 0.3194 28.27 / 0.8479 / 0.2606 34.48 / 0.9551 / 0.0835 37.89 / 0.9762 / 0.0204
bistro bike 18.12 / 0.5077 / 0.5828 19.39 / 0.7899 / 0.2414 22.58 / 0.6223 / 0.4310 33.23 / 0.9546 / 0.0471 36.16 / 0.9752 / 0.0144

bistro square 17.06 / 0.5016 / 0.5616 21.27 / 0.8010 / 0.2414 19.86 / 0.5714 / 0.4319 25.49 / 0.8990 / 0.0940 29.32 / 0.9536 / 0.0228
classroom 18.87 / 0.5968 / 0.5367 18.52 / 0.6499 / 0.4318 26.95 / 0.7481 / 0.4384 29.55 / 0.8306 / 0.2652 31.54 / 0.8524 / 0.0567
fisher hut 24.87 / 0.7221 / 0.3964 25.92 / 0.7872 / 0.2380 28.74 / 0.7514 / 0.3566 30.32 / 0.8018 / 0.2338 32.75 / 0.8604 / 0.0525
lone monk 17.27 / 0.5459 / 0.4828 19.12 / 0.7479 / 0.3114 23.73 / 0.7161 / 0.2889 30.90 / 0.9311 / 0.0800 32.88 / 0.9608 / 0.0180

LOU 19.93 / 0.6619 / 0.4103 21.59 / 0.8199 / 0.2515 28.60 / 0.8430 / 0.1756 33.53 / 0.9400 / 0.0693 35.43 / 0.9573 / 0.0277
pavilion midday chair 21.38 / 0.6994 / 0.4329 19.62 / 0.7522 / 0.3360 27.11 / 0.8015 / 0.2558 31.08 / 0.9315 / 0.0648 32.93 / 0.9562 / 0.0266
pavilion midday pond 17.60 / 0.5346 / 0.5142 20.89 / 0.7267 / 0.2596 22.59 / 0.6795 / 0.2512 25.71 / 0.8145 / 0.1240 25.40 / 0.8189 / 0.0783

restroom 24.20 / 0.5407 / 0.6039 22.91 / 0.6301 / 0.4204 29.49 / 0.7261 / 0.3787 32.86 / 0.8515 / 0.2167 35.14 / 0.8957 / 0.0354
average 20.04 / 0.6092 / 0.4949 21.19 / 0.7528 / 0.3021 26.08 / 0.7416 / 0.3170 30.89 / 0.8934 / 0.1260 33.05 / 0.9229 / 0.0343

Table C: Quantitative comparison of 3D reconstruction results on Ricoh360 dataset (10min/100min).
The best result for each metric is written in bold. Our method shows the best performance on almost
all settings.

opt. time scene NeRF(P) 3DGS(P) TensoRF EgoNeRF ODGS

10min

bricks 12.40 / 0.4489 / 0.6403 23.88 / 0.7875 / 0.2275 21.08 / 0.6201 / 0.4918 23.09 / 0.7223 / 0.2984 23.90/ 0.8185 / 0.1296
bridge 14.96 / 0.5553 / 0.5866 23.78 / 0.7783 / 0.2145 21.93 / 0.6456 / 0.4823 23.34 / 0.7199 / 0.3096 23.88 / 0.7987 / 0.1286

bridge under 19.71 / 0.4987 / 0.6769 24.30 / 0.7892 / 0.2239 21.99 / 0.6323 / 0.5791 24.11 / 0.7504 / 0.3202 25.12 / 0.8347 / 0.1339
cat tower 12.54 / 0.5182 / 0.5990 24.33 / 0.7543 / 0.2548 22.45 / 0.6308 / 0.6002 23.80 / 0.6861 / 0.3758 24.47 / 0.7771 / 0.1435

center 14.76 / 0.6691 / 0.5211 27.24 / 0.8364 / 0.2887 27.23 / 0.8088 / 0.4294 27.97 / 0.8450 / 0.2521 28.10 / 0.8710 / 0.1206
farm 14.45 / 0.4970 / 0.6262 21.66 / 0.6897 / 0.3248 20.80 / 0.5683 / 0.5141 21.80 / 0.6483 / 0.3386 20.74 / 0.6881 / 0.2270

flower 12.03 / 0.4132 / 0.6912 21.71 / 0.6942 / 0.3247 20.07 / 0.5414 / 0.6696 21.51 / 0.6149 / 0.4211 22.19 / 0.7273 / 0.1925
gallery chair 15.40 / 0.6950 / 0.4929 27.76 / 0.8732 / 0.1962 26.00 / 0.7907 / 0.5233 27.01 / 0.8326 / 0.3409 27.29 / 0.8777 / 0.1353
gallery park 12.29 / 0.6050 / 0.5176 25.30 / 0.8021 / 0.2384 24.21 / 0.7394 / 0.5120 25.11 / 0.7703 / 0.3245 25.48 / 0.8241 / 0.1341
gallery pillar 14.50 / 0.6445 / 0.4902 27.79 / 0.8613 / 0.1617 25.85 / 0.7821 / 0.3977 27.31 / 0.8312 / 0.2379 28.02 / 0.8821 / 0.0882

garden 13.97 / 0.5682 / 0.5430 27.53 / 0.7919 / 0.2118 25.37 / 0.6649 / 0.5616 26.48 / 0.7175 / 0.3517 23.20 / 0.7843 / 0.2289
poster 14.99 / 0.6258 / 0.5679 26.14 / 0.8599 / 0.2098 23.20 / 0.7500 / 0.4784 25.39 / 0.8213 / 0.3205 26.90 / 0.8782 / 0.1249

average 14.33 / 0.5616 / 0.5794 25.12 / 0.7932 / 0.2397 23.35 / 0.6812 / 0.5200 24.74 / 0.7467 / 0.3243 24.94 / 0.8135 / 0.1489

100min

bricks 15.01 / 0.4760 / 0.6245 22.60 / 0.7410 / 0.2855 21.66 / 0.6353 / 0.4375 23.93 / 0.7616 / 0.2475 24.62 / 0.8479 / 0.1021
bridge 17.32 / 0.5558 / 0.5620 21.94 / 0.7157 / 0.3133 22.58 / 0.6558 / 0.4306 23.94 / 0.7516 / 0.2562 24.37 / 0.8154 / 0.1063

bridge under 16.42 / 0.5075 / 0.6447 19.03 / 0.6377 / 0.3663 22.86 / 0.6577 / 0.4826 25.05 / 0.7924 / 0.2492 25.93 / 0.8538 / 0.1026
cat tower 15.45 / 0.5323 / 0.5824 21.24 / 0.6851 / 0.3565 23.02 / 0.6393 / 0.5477 24.52 / 0.7163 / 0.3417 25.35 / 0.8088 / 0.1109

center 17.09 / 0.6566 / 0.4955 20.04 / 0.6974 / 0.4237 27.90 / 0.8182 / 0.3840 29.12 / 0.8625 / 0.2119 29.39 / 0.8940 / 0.0808
farm 15.93 / 0.4830 / 0.6173 21.49 / 0.6844 / 0.3299 21.09 / 0.5765 / 0.4662 22.25 / 0.6745 / 0.3089 16.34 / 0.6039 / 0.4109

flower 13.57 / 0.4153 / 0.6845 20.48 / 0.6559 / 0.3531 20.57 / 0.5506 / 0.6161 22.08 / 0.6497 / 0.3922 22.71 / 0.7485 / 0.1509
gallery chair 17.59 / 0.6873 / 0.5240 26.44 / 0.8509 / 0.2161 26.61 / 0.7990 / 0.4766 27.71 / 0.8505 / 0.2993 27.62 / 0.8831 / 0.1135
gallery park 14.24 / 0.5847 / 0.5404 23.22 / 0.7637 / 0.3027 24.64 / 0.7457 / 0.4724 25.64 / 0.7848 / 0.3001 26.19 / 0.8401 / 0.1076
gallery pillar 16.57 / 0.6405 / 0.4946 21.93 / 0.7429 / 0.3205 26.49 / 0.7960 / 0.3336 27.97 / 0.8467 / 0.2104 28.74 / 0.8970 / 0.0693

garden 17.81 / 0.5840 / 0.5101 25.97 / 0.7792 / 0.2528 25.91 / 0.6738 / 0.5201 27.16 / 0.7441 / 0.3112 27.09 / 0.8383 / 0.1006
poster 16.91 / 0.6169 / 0.5794 20.45 / 0.7199 / 0.3406 24.32 / 0.7750 / 0.4161 26.50 / 0.8497 / 0.2613 26.92 / 0.8808 / 0.1113

average 16.16 / 0.5617 / 0.5716 22.07 / 0.7228 / 0.3218 23.97 / 0.6936 / 0.4653 25.49 / 0.7737 / 0.2825 25.44 / 0.8260 / 0.1306

17

Table D: Quantitative comparison of 3D reconstruction results on Omniphotos dataset
(10min/100min). The best result for each metric is written in bold. Our method shows the best
performance on almost all settings.

opt time scene Nerf(P) 3DGS(P) TensoRF EgoNeRF ODGS

10min

Ballintoy 19.90 / 0.7292 / 0.4717 28.67 / 0.8875 / 0.2094 25.68 / 0.8008 / 0.4190 28.49 / 0.8715 / 0.2270 29.11 / 0.9085 / 0.1076
BeihaiPark 16.76 / 0.5946 / 0.5871 23.39 / 0.8126 / 0.2600 22.16 / 0.6855 / 0.5516 24.35 / 0.7755 / 0.2682 25.34 / 0.8600 / 0.1409
Cathedral 15.38 / 0.4736 / 0.6851 23.01 / 0.7885 / 0.2569 19.35 / 0.5638 / 0.5511 23.11 / 0.7267 / 0.2898 23.74 / 0.8394 / 0.1416

Coast 20.38 / 0.6452 / 0.5253 27.86 / 0.8378 / 0.2011 24.69 / 0.7026 / 0.4440 27.74 / 0.8006 / 0.2320 28.75 / 0.8837 / 0.0966
Field 23.44 / 0.7063 / 0.4293 29.51 / 0.8392 / 0.1600 27.25 / 0.7427 / 0.4602 28.53 / 0.7843 / 0.2618 29.71 / 0.8702 / 0.0892

Nunobiki2 18.79 / 0.6182 / 0.5295 24.84 / 0.8017 / 0.2224 22.93 / 0.6719 / 0.5308 23.45 / 0.7052 / 0.3378 21.62 / 0.8289 / 0.1496
SecretGarden1 17.96 / 0.6380 / 0.5040 25.48 / 0.8579 / 0.1706 22.49 / 0.7065 / 0.5205 24.87 / 0.7885 / 0.2450 27.53 / 0.8940 / 0.0769

Shrines1 15.67 / 0.4516 / 0.7258 22.36 / 0.7449 / 0.2864 19.52 / 0.5179 / 0.6441 21.28 / 0.6374 / 0.3693 23.45 / 0.8108 / 0.1560
Temple3 15.27 / 0.5932 / 0.6112 25.17 / 0.8549 / 0.1839 20.83 / 0.6800 / 0.5691 24.31 / 0.7916 / 0.2321 26.14 / 0.8881 / 0.0868

Wulongting 17.89 / 0.7083 / 0.4451 25.80 / 0.8845 / 0.1497 22.89 / 0.7697 / 0.3987 25.89 / 0.8405 / 0.1991 26.98 / 0.9203 / 0.0626
average 18.14 / 0.6158 / 0.5514 25.61 / 0.8310 / 0.2100 22.78 / 0.6841 / 0.5089 25.20 / 0.7722 / 0.2662 26.24 / 0.8704 / 0.1108

100min

Ballintoy 23.32 / 0.7538 / 0.3796 26.37 / 0.8694 / 0.2286 26.85 / 0.8193 / 0.3738 29.83 / 0.8981 / 0.1827 30.06 / 0.9220 / 0.0780
BeihaiPark 18.48 / 0.6089 / 0.4949 20.81 / 0.7581 / 0.2898 23.13 / 0.7095 / 0.4783 26.19 / 0.8390 / 0.1778 19.94 / 0.7955 / 0.2352
Cathedral 18.01 / 0.5032 / 0.6033 20.18 / 0.6879 / 0.3682 20.23 / 0.5935 / 0.4848 24.88 / 0.8056 / 0.1878 25.39 / 0.8769 / 0.1081

Coast 23.12 / 0.6666 / 0.4263 27.29 / 0.8334 / 0.2091 26.27 / 0.7329 / 0.3868 29.28 / 0.8553 / 0.1627 29.23 / 0.9004 / 0.0770
Field 25.81 / 0.7274 / 0.3980 29.36 / 0.8420 / 0.1665 27.72 / 0.7488 / 0.4209 30.04 / 0.8374 / 0.1776 29.18 / 0.8866 / 0.0851

Nunobiki2 21.02 / 0.6346 / 0.4705 20.30 / 0.7116 / 0.3662 23.63 / 0.6866 / 0.4686 25.13 / 0.7879 / 0.2115 25.78 / 0.8659 / 0.0996
SecretGarden1 20.46 / 0.6573 / 0.4641 23.93 / 0.8470 / 0.2015 23.39 / 0.7273 / 0.4548 26.76 / 0.8514 / 0.1513 27.54 / 0.8963 / 0.0725

Shrines1 18.13 / 0.4803 / 0.6417 21.32 / 0.7266 / 0.2910 20.01 / 0.5285 / 0.5717 22.83 / 0.7313 / 0.2495 23.94 / 0.8270 / 0.1319
Temple3 18.69 / 0.6232 / 0.5202 22.22 / 0.7889 / 0.2523 22.06 / 0.7041 / 0.4840 26.21 / 0.8518 / 0.1411 24.58 / 0.8895 / 0.0822

Wulongting 20.98 / 0.7328 / 0.3736 21.23 / 0.7945 / 0.2964 24.02 / 0.7875 / 0.3434 27.84 / 0.8914 / 0.1240 27.66 / 0.9255 / 0.0531
average 20.80 / 0.6388 / 0.4772 23.30 / 0.7859 / 0.2670 23.73 / 0.7038 / 0.4467 26.90 / 0.8349 / 0.1766 26.33 / 0.8786 / 0.1023

Table E: Quantitative comparison of 3D reconstruction results on 360Roam dataset (10min/100min).
The best result for each metric is written in bold. Our method shows the best performance on almost
all settings.

opt time scene Nerf(P) 3DGS(P) TensoRF EgoNeRF ODGS

10min

bar 13.49 / 0.6218 / 0.5246 18.75 / 0.6982 / 0.3347 15.98 / 0.5212 / 0.7717 18.34 / 0.5713 / 0.4191 19.25 / 0.6892 / 0.3078
base 14.18 / 0.6530 / 0.5849 20.55 / 0.6965 / 0.3086 17.34 / 0.5358 / 0.8291 19.44 / 0.5808 / 0.5852 20.93 / 0.6777 / 0.3044
cafe 14.60 / 0.6645 / 0.4988 20.35 / 0.7503 / 0.2685 17.15 / 0.5462 / 0.7526 19.04 / 0.6515 / 0.4789 20.23 / 0.7424 / 0.2699

canteen 14.00 / 0.6885 / 0.5026 18.83 / 0.6716 / 0.3801 17.36 / 0.5841 / 0.7301 17.60 / 0.5892 / 0.5989 19.13 / 0.6658 / 0.3622
center 15.96 / 0.7035 / 0.4507 20.66 / 0.7020 / 0.3799 18.11 / 0.6290 / 0.7740 21.46 / 0.6756 / 0.5736 22.40 / 0.7477 / 0.3135

center1 15.77 / 0.7330 / 0.4300 18.70 / 0.7082 / 0.4186 18.52 / 0.6697 / 0.7354 21.56 / 0.6930 / 0.5805 22.15 / 0.7221 / 0.3260
corridor 16.32 / 0.7468 / 0.4231 21.07 / 0.7329 / 0.3289 18.70 / 0.6680 / 0.6500 21.12 / 0.6764 / 0.5130 21.73 / 0.7335 / 0.2666

innovation 14.47 / 0.6423 / 0.5076 21.07 / 0.6902 / 0.3302 18.84 / 0.5711 / 0.7583 20.72 / 0.6279 / 0.4997 21.54 / 0.6824 / 0.3212
lab 15.33 / 0.7626 / 0.4248 22.77 / 0.8098 / 0.2268 18.92 / 0.6622 / 0.6989 20.54 / 0.7110 / 0.4526 23.15 / 0.8172 / 0.1566

library 16.01 / 0.6325 / 0.5107 22.71 / 0.6480 / 0.3662 18.02 / 0.5884 / 0.7884 21.39 / 0.5926 / 0.6001 22.46 / 0.6435 / 0.2964
office 15.64 / 0.6847 / 0.4650 16.47 / 0.5937 / 0.5469 19.04 / 0.6108 / 0.7479 21.62 / 0.6246 / 0.5658 18.94 / 0.6516 / 0.3787

average 15.07 / 0.6848 / 0.4839 20.17 / 0.7001 / 0.3536 18.00 / 0.5988 / 0.7488 20.45 / 0.6358 / 0.5334 21.08 / 0.7066 / 0.3003

100min

bar 14.12 / 0.6370 / 0.5174 18.64 / 0.6633 / 0.3487 16.06 / 0.5196 / 0.7395 19.35 / 0.6362 / 0.3194 19.68 / 0.7152 / 0.2250
base 14.73 / 0.6634 / 0.5930 20.83 / 0.7057 / 0.2756 17.40 / 0.5158 / 0.7792 20.05 / 0.6214 / 0.4797 21.33 / 0.7098 / 0.1945
cafe 14.96 / 0.6666 / 0.5169 19.03 / 0.6672 / 0.3333 17.30 / 0.5397 / 0.7127 19.56 / 0.6912 / 0.3876 20.43 / 0.7641 / 0.1783

canteen 14.20 / 0.6761 / 0.5206 17.51 / 0.6100 / 0.4184 17.47 / 0.5799 / 0.7118 18.36 / 0.6192 / 0.5251 19.06 / 0.6661 / 0.2733
center 15.70 / 0.6982 / 0.4644 20.79 / 0.6847 / 0.3846 18.22 / 0.6217 / 0.7426 22.09 / 0.6991 / 0.4954 22.79 / 0.7629 / 0.2094

center1 15.27 / 0.7203 / 0.4557 19.91 / 0.7017 / 0.3990 18.57 / 0.6629 / 0.7072 22.17 / 0.7152 / 0.5039 18.36 / 0.6531 / 0.3337
corridor 16.21 / 0.7333 / 0.4537 18.47 / 0.6596 / 0.4131 19.10 / 0.6638 / 0.6212 21.07 / 0.6912 / 0.4632 21.96 / 0.7337 / 0.2106

innovation 14.86 / 0.6412 / 0.5162 20.56 / 0.6552 / 0.3483 19.06 / 0.5671 / 0.7170 21.71 / 0.6778 / 0.3931 21.93 / 0.7131 / 0.2089
lab 15.87 / 0.7538 / 0.4560 20.79 / 0.7280 / 0.3166 19.14 / 0.6589 / 0.6508 22.14 / 0.7600 / 0.3263 23.39 / 0.8258 / 0.1139

library 16.06 / 0.6258 / 0.5453 19.95 / 0.5715 / 0.4528 17.77 / 0.5495 / 0.7623 22.39 / 0.6295 / 0.4988 22.02 / 0.6341 / 0.2209
office 15.93 / 0.6783 / 0.4888 16.22 / 0.5867 / 0.5304 19.29 / 0.6059 / 0.7021 22.23 / 0.6485 / 0.4960 18.44 / 0.6439 / 0.3109

average 15.26 / 0.6813 / 0.5025 19.34 / 0.6576 / 0.3837 18.12 / 0.5895 / 0.7133 21.18 / 0.6718 / 0.4444 20.85 / 0.7111 / 0.2254

Table F: Quantitative comparison of 3D reconstruction results on OmniScenes dataset (10min/100min).
The best result for each metric is written in bold. Our method shows the best performance on almost
all settings.

opt time scene Nerf(P) 3DGS(P) TensoRF EgoNeRF ODGS

10min

pyebaekRoom 1 14.76 / 0.5940 / 0.5417 20.56 / 0.7347 / 0.2525 21.69 / 0.6800 / 0.4751 21.13 / 0.7055 / 0.3934 22.78 / 0.8038 / 0.1449
room 1 15.14 / 0.7264 / 0.4518 22.48 / 0.8566 / 0.1985 19.81 / 0.8159 / 0.3020 21.68 / 0.7908 / 0.3358 - / - / -
room 2 15.09 / 0.7156 / 0.4563 22.90 / 0.8277 / 0.1979 23.24 / 0.8042 / 0.3425 22.51 / 0.7837 / 0.3411 24.17 / 0.8303 / 0.1302
room 3 16.21 / 0.7811 / 0.3790 25.13 / 0.8860 / 0.1554 26.39 / 0.8708 / 0.3022 22.79 / 0.8423 / 0.3454 24.08 / 0.8743 / 0.1384
room 4 15.52 / 0.7467 / 0.4202 25.61 / 0.8816 / 0.1656 24.97 / 0.8583 / 0.2901 24.66 / 0.8434 / 0.3117 26.14 / 0.8906 / 0.1052
room 5 16.75 / 0.8105 / 0.3805 24.43 / 0.8915 / 0.1843 25.52 / 0.8855 / 0.3198 22.87 / 0.8583 / 0.3416 24.49 / 0.8819 / 0.1493

weddingHall 1 16.40 / 0.6783 / 0.5529 24.18 / 0.8326 / 0.8304 23.42 / 0.7680 / 0.4419 23.85 / 0.7741 / 0.3552 24.83 / 0.8347 / 0.1664
average 15.79 / 0.7210 / 0.4551 23.80 / 0.8424 / 0.2977 24.21 / 0.8111 / 0.3619 22.97 / 0.8012 / 0.3481 24.42 / 0.8526 / 0.1391

100min

pyebaekRoom 1 15.99 / 0.5932 / 0.5669 17.71 / 0.6282 / 0.4094 22.57 / 0.6993 / 0.4026 23.69 / 0.7688 / 0.2787 22.91 / 0.8068 / 0.1322
room 1 14.64 / 0.6604 / 0.4850 11.49 / 0.5864 / 0.5746 19.99 / 0.8226 / 0.2797 22.44 / 0.8083 / 0.2715 - / - / -
room 2 14.66 / 0.6464 / 0.5138 11.68 / 0.6005 / 0.5027 23.58 / 0.8083 / 0.3037 23.53 / 0.8086 / 0.2786 23.13 / 0.8108 / 0.1422
room 3 16.37 / 0.7657 / 0.4280 20.13 / 0.8066 / 0.3109 27.26 / 0.8793 / 0.2631 26.43 / 0.8789 / 0.2364 25.56 / 0.8847 / 0.1150
room 4 16.13 / 0.7182 / 0.4724 19.18 / 0.7712 / 0.3390 26.06 / 0.8682 / 0.2495 26.17 / 0.8693 / 0.2336 26.25 / 0.8879 / 0.1025
room 5 17.43 / 0.7996 / 0.4195 17.93 / 0.8088 / 0.3336 26.01 / 0.8894 / 0.2834 26.06 / 0.8803 / 0.2652 24.44 / 0.8797 / 0.1383

weddingHall 1 16.64 / 0.6398 / 0.5541 21.85 / 0.7818 / 0.2642 24.04 / 0.7786 / 0.3818 25.00 / 0.8052 / 0.2718 24.77 / 0.8331 / 0.1392
average 16.20 / 0.6838 / 0.4925 18.08 / 0.7329 / 0.3600 24.92 / 0.8205 / 0.3140 25.15 / 0.8352 / 0.2607 24.51 / 0.8505 / 0.1282

18

Table G: Quantitative comparison of 3D reconstruction results on 360VO dataset (10min/100min).
The best result for each metric is written in bold. Our method shows the best performance on almost
all settings.

opt time scene Nerf(P) 3DGS(P) TensoRF EgoNeRF ODGS

10min

seq0 15.72 / 0.6574 / 0.4639 17.70 / 0.7101 / 0.3946 19.61 / 0.6975 / 0.5622 21.46 / 0.7229 / 0.4575 20.99 / 0.7750 / 0.2983
seq1 15.58 / 0.5683 / 0.5255 24.31 / 0.7986 / 0.2639 20.59 / 0.6448 / 0.6457 23.33 / 0.6976 / 0.4372 26.42 / 0.8297 / 0.2069
seq2 18.04 / 0.5774 / 0.5304 30.44 / 0.9055 / 0.1283 23.69 / 0.6830 / 0.5402 27.46 / 0.7945 / 0.3068 31.61 / 0.9195 / 0.0779
seq3 15.81 / 0.5165 / 0.5740 20.50 / 0.6455 / 0.4518 20.53 / 0.5789 / 0.6819 20.10 / 0.5768 / 0.5903 21.72 / 0.6997 / 0.3430
seq4 14.97 / 0.5853 / 0.5469 27.81 / 0.8646 / 0.1686 21.73 / 0.6673 / 0.5616 24.51 / 0.7395 / 0.3755 28.31 / 0.8917 / 0.1116
seq5 15.97 / 0.6765 / 0.4242 19.20 / 0.7601 / 0.3380 19.68 / 0.7295 / 0.4952 21.18 / 0.7595 / 0.3971 21.69 / 0.8487 / 0.2034
seq6 15.49 / 0.5380 / 0.5104 26.01 / 0.8018 / 0.2436 19.61 / 0.5996 / 0.5842 21.83 / 0.6470 / 0.4595 25.10 / 0.7858 / 0.2518
seq7 15.46 / 0.6421 / 0.5045 25.42 / 0.8273 / 0.2419 11.13 / 0.5474 / 0.7262 22.72 / 0.7224 / 0.4725 26.36 / 0.8388 / 0.2210
seq8 14.67 / 0.6730 / 0.4519 21.31 / 0.7900 / 0.3202 21.10 / 0.7409 / 0.4910 23.94 / 0.7814 / 0.3694 23.09 / 0.8316 / 0.2439
seq9 15.43 / 0.7510 / 0.4168 15.98 / 0.7572 / 0.4194 20.69 / 0.7976 / 0.5313 19.65 / 0.7823 / 0.4803 21.04 / 0.8373 / 0.2972

average 15.71 / 0.6186 / 0.4949 22.87 / 0.7861 / 0.2970 19.74 / 0.6543 / 0.5876 22.62 / 0.7224 / 0.4346 24.63 / 0.8245 / 0.2175

100min

seq0 17.16 / 0.6623 / 0.4865 18.31 / 0.7185 / 0.3880 19.92 / 0.6959 / 0.5528 22.25 / 0.7466 / 0.4081 21.69 / 0.8062 / 0.2214
seq1 17.16 / 0.5843 / 0.5439 24.59 / 0.8081 / 0.2451 21.06 / 0.6505 / 0.6221 24.43 / 0.7352 / 0.3685 28.40 / 0.8777 / 0.0961
seq2 19.25 / 0.5867 / 0.5350 29.99 / 0.9014 / 0.1298 24.44 / 0.7032 / 0.4944 29.22 / 0.8492 / 0.2230 30.58 / 0.9187 / 0.0644
seq3 18.01 / 0.5398 / 0.5867 20.67 / 0.6464 / 0.4394 21.16 / 0.5850 / 0.6533 21.01 / 0.6101 / 0.5366 22.59 / 0.7632 / 0.2271
seq4 17.27 / 0.6053 / 0.5461 25.64 / 0.8336 / 0.2285 22.40 / 0.6769 / 0.5307 26.46 / 0.7949 / 0.2737 30.20 / 0.9298 / 0.0564
seq5 17.31 / 0.6816 / 0.4423 19.74 / 0.7682 / 0.3367 19.95 / 0.7239 / 0.4945 22.19 / 0.7867 / 0.3422 22.86 / 0.8778 / 0.1398
seq6 17.88 / 0.5691 / 0.5072 26.36 / 0.8063 / 0.2475 20.26 / 0.6086 / 0.5664 23.93 / 0.7021 / 0.3775 29.07 / 0.8982 / 0.0807
seq7 17.94 / 0.6729 / 0.5099 24.90 / 0.8025 / 0.2896 11.01 / 0.5349 / 0.7288 24.43 / 0.7599 / 0.3903 28.07 / 0.8833 / 0.1252
seq8 17.61 / 0.6948 / 0.4818 21.15 / 0.7761 / 0.3391 21.72 / 0.7435 / 0.4811 25.29 / 0.8126 / 0.3132 24.01 / 0.8673 / 0.1800
seq9 18.23 / 0.7764 / 0.4250 15.94 / 0.7610 / 0.4177 21.19 / 0.7981 / 0.5162 19.90 / 0.7935 / 0.4463 20.09 / 0.8290 / 0.2725

average 17.78 / 0.6373 / 0.5064 22.73 / 0.7822 / 0.3061 20.50 / 0.6885 / 0.5531 23.91 / 0.7591 / 0.3679 26.68 / 0.8694 / 0.1264

19

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction explain the motivation and the core idea of our
work.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

20

Justification: We wrote the limitation and the topics for future works in the subsection of
conclusion.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: Our work does not include any theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provided all information for reproducibility of the experiment.

Guidelines:

21

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We release our code in https://github.com/esw0116/ODGS to facilitate
the related research.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

22

https://github.com/esw0116/ODGS
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We sufficiently describe the detailed experimental settings for preserving
reproducibility. They are written in Section 4.1 and Appendix A.1. Also, we release the
code to help other researchers reproduce our work.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We do not include error bars since each optimization is computationally heavy
to compare with existing, slow method. Also, our methods and all baseline should be opti-
mized for each scene individually, making the amount of experimentation be burdensome.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We describe the computational resource in Section 4.1

23

Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, we have reviewd the Neruips Code of Ethics
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impacts which can be triggered from this work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

24

https://neurips.cc/public/EthicsGuidelines

Answer: [NA]

Justification: Our method does not include that can trigger such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We explained the license of dataset in Section 4.1

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release any assets in this work.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

25

paperswithcode.com/datasets

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not include any crowdsourcing or research related to human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not include any crowdsourcing or research related to human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

26

	Introduction
	Related works
	Methods
	Preliminary: Rasterization Process in Typical 3D Gaussian Splatting
	Designing Rasterizer for Omnidirectional Images
	Densification Policy for Omnidirectional Images

	Experiments
	Experiment Details
	Experiment Results

	Conclusion
	Appendix / supplemental material
	More Implementation Details
	Proof of Mathematical Equivalence of the Derived Method
	Back-Propagation of Rasterization in omnidirectional Image Domain
	Comparison with Original 3DGS with more input images.
	Detailed Quantitative Results

