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Abstract

Most applications of machine learning to classification assume a closed set of bal-
anced classes. This is at odds with the real world, where class occurrence statistics
often follow a long-tailed power-law distribution, rarely revealing the entire prob-
lem domain in a single sample. Nonparametric Bayesian models naturally capture
this phenomenon, but have significant practical barriers to widespread adoption,
namely implementation complexity and computational inefficiency. To address
this, we present a method for extracting the inductive bias from a nonparametric
Bayesian model and transferring it to an artificial neural network. By simulating
data with a nonparametric Bayesian prior, we can metalearn a sequence model that
performs inference over an unlimited set of classes. After training, this “neural
circuit” has distilled the corresponding inductive bias and can successfully perform
sequential inference over an open set of classes. Our experimental results show
that the metalearned neural circuit achieves comparable or better performance
than particle filter-based methods that explicitly perform Bayesian nonparametric
inference while being faster and simpler to use.

1 Introduction

Standard machine learning approaches to classification assume that the set of possible classes is
known a priori. Classification in this setting thus involves selecting the most appropriate class label
from a closed set. However, this is not the case for human learners. Imagine European explorers
in Australia seeing a kangaroo for the first time. Rather than trying to classify this observation into
an existing class – is it a deer or a rabbit? – they recognized that a new class needs to be created.
Although this is easy for humans, current machine learning systems struggle to identify novel classes
and use them in predictions [46].

Bayesian statistics offers an elegant solution to the problem of novel classes: define a model in a
way that does not make a commitment to an upper bound on the number of classes. This idea is
expressed in nonparametric Bayesian models, namely the Dirichlet process mixture model (DPMM)
[3]. In this model, a new data point is assumed to be generated from an existing class with probability
proportional to the number of previous observations from that class and from a new class with a
probability proportional to α, a hyperparameter of the model. This makes it possible to both postulate
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Figure 1: Our proposed nonparametric inference network first internalizes the desired nonparametric
Bayesian prior via metalearning a recurrent neural network (RNN) to model its posterior distribution
over class assignments. Afterwards, the metalearned RNN, or neural circuit, has captured the
corresponding inductive bias and can be used to perform sequential inference over a potentially
unbounded number of classes.

that a new datapoint might come from a new class and capture long-tailed distributions of class
frequency commonly found in real-world classification problems.

Despite their elegance, nonparametric Bayesian models have fallen out of favor in machine learning,
as they are difficult to reconcile with the current focus on large-scale models defined over complex
objects such as images. The scalability of non-parametric Bayesian models is limited due to the high
computational cost of Bayesian inference, typically requiring the use of sampling algorithms such as
Markov chain Monte Carlo [44] or particle filters [23]. Applying these models to complex objects
requires creativity in defining generative models that are sufficiently expressive without making
inference intractable. Furthermore, most standard Bayesian inference algorithms are not designed to
perform sequential inference, instead assuming that all data are presented in a single batch.

In this paper we pursue a different approach to inference in nonparametric Bayesian models: training
a recurrent neural network (RNN) to approximate the posterior distribution over classes from a
DPMM. We formulate this problem as one of metalearning, repeatedly sampling a sequence of
class memberships and observations from the DPMM and training the model to predict the class of
each observation conditioned on the class labels of those preceding it. The resulting neural circuit
(Figure 1) internalizes the inductive bias of the nonparametric Bayesian model used to generate the
training tasks. It can then be used as a component in deep neural networks, extending nonparametric
Bayesian methods to complex objects such as images.

Our approach combines the elegance of Bayesian nonparametric models with the predictive power of
deep learning in a principled and practical manner. The discriminative nature of the RNN allows it to
classify complex inputs without making the restrictive distributional assumptions required by standard
Bayesian inference algorithms. Since RNNs are sequence models, the neural circuit can efficiently
make predictions for a sequence of observations as each successive predictive distribution is computed
in constant time. We apply our neural circuit to a challenging open-set image classification tasks from
the ImageNet [51] and iNaturalist [61] datasets and show it achieves excellent predictive performance
at a fraction of the computational cost of standard DPMM inference algorithms.

2 Background

Consider the task of a learner classifying objects in a new environment. The learner encounters a
sequence of items x1,x2, . . . ,xT . After an item xt is observed, the learner attempts to predict its
class label. The learner is then presented with the true class label zt, updates internal representations
as necessary, and repeats the procedure for timestep t+ 1. The predictive distribution over the entire
sequence of labels z1:T = z1, . . . , zT can be written as

p(z1:T |x1:T ) = p(z1|x1)

T∏
t=2

p(zt|x1:t, z1:t−1). (1)

We first review Dirichlet process mixture models, which provide a framework for expressing (1)
as posterior inference over z1:T without restricting the labels to belong to a closed set. We then
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review the particle filter of Fearnhead [23], which provides a method for sequentially computing the
predictive distribution through the use of weighted particles representing assignments of class labels.

2.1 Dirichlet Process Mixture Models

The nonparametric Bayesian solution to the prediction task presented above involves infinite mixture
models, the most notable of which is the Dirichlet process mixture model (DPMM) [3, 22, 47]. There
are two components to the DPMM: a distribution over class memberships and a class-conditional
distribution over observations. In this model, observations are generated from latent classes, where
the distribution over classes places no limit on the number of classes. The joint probability follows a
Markov process on z1:T and assumes class-conditional independence for x1:T :

p(z1:T ,x1:T ) = p(z1)p(x1|z1)
T∏

t=2

p(zt|z1:t−1)p(xt|zt). (2)

The conditional distribution on class memberships p(zt|z1:t−1) is relatively simple:

p(zt = k | z1:t−1) ∝
{

nk k previously observed
α k is a new class, (3)

where nk denotes the number of occurrences of class k in z1, . . . , zt−1, and by convention the value
of k for a new class is taken to be one greater than the number of classes observed so far. This process
is known as the Chinese restaurant process (CRP) [1].

The conditional distribution over observations is p(xt | zt = k) = g(xt|φk), where g(·|φ) is some
probability function with parameter φ. Each φk is in turn distributed according to a shared prior
π(φk) for k = 1, 2, . . .. The predictive distribution over class assignments (1) can be derived by a
simple application of Bayes’ rule to the joint distribution (2).

Direct computation of the posterior in a DPMM is intractable, and therefore several methods have
been developed to perform approximate inference using methods such as MCMC [44] and varia-
tional inference [9]. However, these methods typically assume that all observations are presented
simultaneously and do not attempt to handle the sequential nature inherent to our problem formulation.

2.2 Particle Filter for the DPMM

One notable method that does aim to perform sequential inference of class labels in the DPMM is the
particle filter proposed by Fearnhead [23]. Particle filters maintain a set of weighted particles at each
timestep that approximate the posterior distribution over latent variables [14, 19]. At each timestep, a
particle filter propagates a set of particles forward in time by first sampling a new set of states from a
transition distribution and then assigning weights according to a potential function chosen such that
the set of weighted particles approximates the target posterior distribution.

In order to make inference tractable in the DPMM setting, Fearnhead [23] assumes that g(x|φ)
belongs to the exponential family and π(φ) is the corresponding conjugate prior. In this case, it
is possible to marginalize over φ when computing the posterior predictive distribution for a class.
Suppose that xi ∼ g(xi|φ) for i = 1, . . . , n+ 1. Since the posterior p(φ|x1:n) has the same form as
the conjugate prior π(φ), there exists a closed form expression for the posterior predictive distribution

p(xn+1|x1:n) =

∫
p(xn+1|φ)p(φ|x1:n) dφ. (4)

Each particle in the method of Fearnhead [23] represents an entire trajectory of class labels up to the
current timestep. Suppose that after t timesteps there are J particles z(j)1:t each with weight wj ≥ 0

for j = 1, . . . , J such that
∑J

j=1 wj = 1. For each particle, the transition distribution is:

p(zt+1 = k | x1:t+1, z
(j)
1:t ) ∝ p(zt+1 = k|z(j)1:t )p(xt+1|x1:t, z

(j)
1:t , zt+1 = k), (5)

where the likelihood term p(xt+1|x1:t, z
(j)
1:t , zt+1 = k) can be computed in closed form according to

(4). If k represents a new class, this will be the prior predictive probability instead.

Two major shortcomings of the particle filter are that it makes restrictive distributional assumptions
(the class conditional distribution needs to be exponential family) and requires many particles in
order to sufficiently approximate the posterior. In the next section, we present our metalearned neural
circuit which is aimed at addressing these issues.
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3 Metalearning a Neural Circuit

We propose a novel amortized inference approach for class inference in the DPMM, based on
metalearning a recurrent neural network (RNN) to predict class memberships. By applying met-
alearning to tasks defined by sampling data from a DPMM, the RNN can effectively internalize the
corresponding inductive bias in a reusable neural network, hence the name neural circuit.

Our approach is inspired in part by the observation that the updates of the particle filter in Section 2.2
can be implemented by accumulating sufficient statistics of observations. Recall that an exponential
family distribution and its conjugate prior can be expressed in terms of natural parameters η:

p(x | η) = h(x) exp {⟨η, t(x)⟩ −A(η)} (6)
p(η | τ , ν) = exp {⟨τ ,η⟩ − νA(η)−B(τ , ν)} , (7)

where t(x) are the sufficient statistics and A(η) is the log normalizer. The posterior after observing
x1:n is of the same form as the prior, namely p(η | τ ′, ν′) where

τ ′ = τ +

n∑
i=1

t(xi) ν′ = ν + n. (8)

From this perspective, the particle filter can be implemented by first initializing the representation of
each class to be τ , ν. Then the sufficient statistics t(xt) for each observation are extracted and used
to update the corresponding class’s τ after the true label is revealed.

An analogous computation is carried out by a recurrent network, which given some input xt and
previous hidden state ht−1, computes an updated hidden representation ht and an output ut:

ht,ut ← RNNθ(xt,ht−1) (9)

The differences with respect to the particle filter are twofold: the representation of each cluster is no
longer separate but shared in ht, and the representations are learnable end-to-end.

We also recognize that the output ut can be the basis for predicting the current class label, and ht can
be made to capture the updated current state of all classes simultaneously. To predict the current class
label, the RNN’s output ut is mapped to a provisional logit at using a learnable weight matrix W
and bias vector b. The logits are then additively masked by mt, which preserves the logit as long
as predicting the corresponding class would be valid (i.e. the class label is at most one greater than
any previously seen class label). The input to the RNN at each timestep is the concatenation of the
current observation xt and a one-hot representation of the previous label zt−1 (all zeros when t = 1).
The predictive distribution is therefore defined to be:

pγ(zt|x1:t, z1:t−1) = SOFTMAX(at +mt) (10)
at = Wut + b

mtk =

{
0 k ≤ 1 + max z1:t−1

−∞ otherwise,

ut,ht ← RNNθ([xt, ONE-HOT(zt−1)],ht−1),

where γ ≜ {θ,W,b} are learnable parameters.

In order to learn these weights, we turn to metalearning. In metalearning, a system is presented with a
set of tasks sampled from a distribution over tasks. The goal is to leverage the shared structure of these
tasks not only to become better at solving each individual task but also to solve future tasks better,
effectively “learning to learn” [4, 8, 30, 56]. This is done by estimating a set of hyperparameters
shared across tasks. In our case, these are the weights of the neural circuit, which we metalearn by
minimizing negative log-likelihood of item-label sequences generated by a DPMM.

Let z1:T be generated according to a CRP (3) and xt | zt = k be generated according to some
(possibly unknown) distribution g(xt|φk) for t = 1, . . . , T . Let D denote this joint distribution over
(z1:T ,x1:T ). We define

γ∗ = argmin
γ

E(z1:T ,x1:T )∼D

[
− 1

T

T∑
t=1

log pγ(zt|x1:t, z1:t−1)

]
, (11)
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where the minimization is performed via a gradient-based optimization procedure. This metalearning
approach can be applied equally well whether the the form of the class-conditional distributions is
known or not, since all that is required are samples from the joint distribution. If the class-conditional
distribution is unknown, it is taken to be the empirical distribution constructed from a dataset by
placing an evenly-weighted point mass on each sample within a class.

Relationship to Amortized Inference Our method can be viewed as a form of amortized inference,
wherein a function (e.g. represented by a deep neural network) is learned to directly map from inputs
to an approximate posterior distribution over latent variables [35, 49]. Amortized inference is similar
to discriminative classification in that it directly maps from inputs to class labels, but it can also be
viewed as approximate Bayesian inference within the generative modeling framework. Networks
trained to perform amortized inference are sensitive to the choice of prior, since different priors will
lead to different posteriors, the KL-divergence to which will be minimized during learning. In a
similar fashion, our method is also affected by the choice of DPMM prior as different priors change
the distribution over sequence that the neural circuit is trained on.

Relationship to Metalearning A variety of methods have been used to learn shared hyperparam-
eters to solve a set of related tasks problem for deep neural networks [2, 24, 48, 53, 63], but our
approach is most similar to those in which a recurrent neural network is trained to perform multiple
tasks [20, 65]. This approach is more typically used in reinforcement learning, defining a system that
learns a global meta-policy that supports efficient learning on specific tasks. The resulting RNNs
have been shown to encode information equivalent to a Bayesian posterior distribution [40], making
them a good candidate for metalearning amortized Bayesian inference.

4 Experiments

We apply the neural circuit on three data settings: a synthetic dataset where the form of the DPMM is
known, sequences of labels generated from a CRP on ImageNet [51], and sequences sampled directly
from the long-tailed iNaturalist 2018 species classification dataset [61]. The goal of our experiments
is to compare both the predictive performance and computational efficiency of the neural circuit to
standard sequential inference techniques for the DPMM.

Our main experimental point of comparison is the particle filter of Fearnhead [23] discussed in
Section 2.2. For a non-Bayesian baseline, we compare to a softmax-based classifier that augments the
distribution over K known classes at time t with an additional logit representing the possibility of a
new class. The logit representing the new class is derived using the maximum entropy principle [33] by
introducing the constraint that the marginal probability that zt is a new class be equal to α/(t−1+α)
(please refer to Appendix B for more details). We refer to this baseline as “Softmax + Energy.”

We consider two main evaluation scenarios. The first, referred as the sequential observation setting,
measures the quality of a model’s predictions when the true class label is provided after each
prediction. We report the average predictive negative log-likelihood (NLL) averaged across timesteps
and corresponding perplexity. The second setting quantifies how well the model predicts when there
is no feedback about the true class labels (we refer to this as the fully unobserved setting). We
compare the maximum a posteriori (MAP) prediction of the model against the true sequence of class
labels using standard clustering metrics, including the adjusted Rand index (ARI) [31] and adjusted
mutual information score (AMI) [62]. In both settings, we compare computational efficiency by
evaluating the wall clock compute time per sequence to make predictions. Please refer to Appendix D
for additional experimental details.

4.1 Modeling Synthetic Data from a DPMM

We first evaluate performance of the neural circuit on a synthetically generated DPMM dataset. Our
aim is to determine whether the neural circuit can match performance of the particle filter when the
class-conditional distributions belong to the exponential family with a known prior. Specifically, we
use a normal-inverse-gamma prior and Gaussian class conditional distributions with unknown mean
and variance. For each dimension d = 1, . . . , D, the form of the class-conditional distribution is:

σ2
d ∼ Γ−1(a, b) µd ∼ N (m,σ2

d/λ) xd ∼ N (µd, σ
2
d),
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where m, λ, a, and b are known hyperparameters. We set the length of the sequences to T = 100 and
chose D = 2, m = 0, λ = 0.01, and α = β = 2. Several sequences drawn from this distribution are
shown in Figure 2. We directly set the hyperparameters of the particle filter to their true values.

Figure 2: Visualization of sample synthetic sequences generated from the normal-inverse-prior used
in Section 4.1. Classes are sampled from a Chinese restaurant process (CRP) with α = 1.0 and
sequences consist of 100 timesteps. Clusters colored by true class label.

The results of our evaluation can be found in Table 1. The Softmax + Energy baseline is significantly
slower than the other methods due to solving for weights after each timestep. Although its NLL is
better than the CRP, the average perplexity is worse due to the presence of some sequences where NLL
is quite poor. These sequences are accentuated due to exponentiation in the formula for computing
perplexity. We find that although the particle filter performs best on negative log-likelihood, the
neural circuit provides better clusterings in the fully unobserved setting. We hypothesize this is due to
the particle filter’s insufficient exploration of the posterior over labelings stemming from its reliance
on particles. We also find that neural circuit inference is roughly 5× faster than the particle filter in
the sequential observation setting and roughly 10× faster in the fully unobserved setting.

Table 1: Results on two-dimensional data synthesized from a DPMM. Evaluation computed as
average over 10,000 held-out sequences of length 100. Negative log-likelihoods are expressed in nats
per timestep.

Seq. Observation Fully Unobserved Inference Time (ms/seq.)

Method NLL (↓) Perp. (↓) ARI (↑) AMI (↑) Seq. Obs. (↓) Fully Unobs. (↓)

CRP 1.006 2.978 0.010 0.010 0.019 0.179
Softmax + Energy 0.929 24.742 0.388 0.392 1679.716 1691.403
Particle Filter 0.048 1.053 0.769 0.814 1.617 4.432
Neural Circuit 0.076 1.086 0.921 0.928 0.059 0.421

4.2 Open-set Classification on ImageNet-CRP

Next we consider a challenging open-set image classification task where the input features are
activations from a ResNet [29]. Our goal is to determine whether the neural circuit can effectively
scale up to a high dimensional space where the form of the class-conditional distribution is unknown.

We downloaded the weights of a pretrained ResNet-18 from TIMM [66] and extracted the 512-
dimensional penultimate layer activations from the entire ILSVRC 2012 dataset [51]. We split the
1,000 classes into 500 reserved for training (meta-train classes) and 500 for testing (meta-test classes).
We generate sequences by sampling z1:N from a CRP with α = 1.0, assigning each distinct value of
zn to a class uniformly at random, and then sampling the corresponding observation xn uniformly
from the images belonging to that class. We call this data-generating procedure ImageNet-CRP.

We metalearn the neural circuit with the same architecture and optimization procedure as in Sec-
tion 4.1. For the particle filter, additional care needs to be taken to model the sparse nonnegative
ResNet features that are produced by a ReLU activation. We modeled this using a hurdle [16] model
with log-normal distribution over nonegative values. This model posits a log-normal distribution over
the nonnegative values and a point mass at zero:

xd ∼ x̃d · yd x̃d ∼ LogNormal(µd, σ
2
d) yd ∼ Bern(pd) (12)
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Figure 3: Diagrammatic representation of generating a Chinese restaurant process (CRP) using image
data. At every sequence step t, a class is sampled according to a CRP and then an image from that
class is sampled without replacement.

It can be shown (see Appendix A for details) that xd can be expressed as being drawn from exponential
family with a Beta prior on the hurdle probability pd and a normal-inverse-gamma prior on the log-
normal parameters µd and σ2

d. We apply this exponential family model independently to each of
the 512 dimensions. Since the optimal hyperparameters for the particle filter are a priori unknown,
we metalearn the hyperparameters of the conjugate prior using the same minibatch setup as the
neural circuit and Adam with learning rate of 0.1. Note that gradient estimation with respect to
the hyperparameters is possible in the particle filter since the NLL of a sequence with sequential
observations can be computed without the use of particles.

The results of this experiment are show in Table 2. Despite the effort to adapt the particle filter to
this setting by carefully selecting the exponential family model, the neural circuit outperforms the
particle filter by a large margin, both in terms of predictive performance and computational efficiency.
Here, fully unobserved inference in the neural circuit is over 100× faster than the particle filter, since
exponential family inference in the particle filter must be performed separately over each of the 512
dimensions. As expected, predictive performance of the neural circuit drops when evaluating on novel
classes drawn from the meta-test set, as these novel classes represent patterns of activations the circuit
has not encountered during metalearning. However, the neural circuit still significantly outperforms
the particle filter even in this difficult setting. Importantly, the architecture and training procedure of
the neural circuit is identical to our setup in the experiment with synthetic data (Section 4.1), which
speaks to the versatility of our method.

Table 2: Results on Imagenet-CRP with ResNet-18 activations as features. Evaluation computed as
average over 10,000 held-out sequences of length 100. Negative log-likelihoods are expressed in nats
per timestep.

Meta-train Classes Meta-test Classes Inference Time (ms/sequence)

Method NLL (↓) ARI (↑) NLL (↓) ARI (↑) Seq. Obs. (↓) Fully Unobs. (↓)

CRP 1.005 0.010 1.003 0.009 0.019 0.185
Softmax + Energy 3.196 0.006 3.471 0.004 1883.066 1907.395
Particle Filter 0.848 0.070 0.933 0.048 2.407 73.896
Neural Circuit 0.255 0.749 0.680 0.271 0.067 0.412

4.3 Robustness to Distribution Shift: Open-set Classification on iNaturalist 2018

In order to test the robustness of our neural circuits to a strong form of distribution shift, we apply
circuits trained using ImageNet-CRP to open-set classification on the long-tailed iNaturalist 2018
dataset [61]. iNaturalist consists of 437,513 images, each having labels at 7 taxonomic levels:
kingdom, phylum, class, order, family, genus, and species. We therefore consider 7 versions of the
task, each treating a different taxonomic level as the class label. This setting represents a distribution
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shift not only in the images but also in the label statistics (though long-tailed, they are no longer
drawn from a CRP).

Due to the fine-grained nature of iNaturalist 2018, for this section we modify the training of the
neural circuits on ImageNet-CRP in several ways. First, we extlnd the sequence length to 500 during
metalearning. The lower levels of the taxonomy have a large number of classes, meaning that the
expected number of images per class is low for sequences of length 100. Second, we train a range
of neural circuits, each with a different value of α ∈ {1, 2, 5, 10, 20, 50, 100, 200}. This is because
the coarser levels of the taxonomy may be better represented by low values of α and the finer levels
better represented by large values of α. Third, we use an ImageNet class split of 350 meta-train, 350
meta-validation, and 300 meta-test in order to mitigate the potential risk of overfitting.

Our baseline is a CRP with α tuned to provide the best performance on that task. For each taxonomic
level, we evaluate the neural circuit trained with the α most similar to the CRP-tuned oracle α. This
is meant to emulate the setting in which a learner has only a rough estimate of the level of diversity
expected when encountering a new environment. In order to help bridge the input distribution shift,
we also apply an affine transformation and ReLU activation on top of the ResNet-18 features extracted
from iNaturalist. The weights of this layer are trained using a small number (n = 10) of training
sequences and early stopping is performed on the basis of validation sequences (n = 10). The weights
of the neural circuit remain frozen. A neural circuit that performs better than the CRP means that
transfer from ImageNet-CRP to iNaturalist has successfully occurred. We construct test sequences
from iNaturalist by sampling 1,000 randomly permuted sequences of length 100.

Table 3: Dataset transfer from ImageNet-CRP to iNaturalist 2018. The α of the CRP base-
line is tuned to provide optimal performance, whereas the neural circuit α is selected within
{1, 2, 5, 10, 20, 50, 100, 200} to be closest to the tuned CRP α. Evaluation is performed on 1,000
randomly permuted sequences of length 100 from iNaturalist 2018 at each of 7 taxonomic levels. The
average NLL per timestep is reported in terms of minimum, mean, and maximum across 5 runs with
different random seeds. Best results are highlighted in bold.

CRP Neural Circuit (Ours)

Taxonomy Tuned α NLL Pretrained α Min. NLL Mean NLL Max. NLL

Kingdom 0.6 0.70 1 0.37 0.42 0.55
Phylum 2.1 1.30 2 0.80 0.84 0.88
Class 5.3 1.82 5 1.27 1.31 1.35
Order 33.1 2.24 20 2.15 2.28 2.49
Family 144.5 1.56 100 1.58 1.62 1.74
Genus 758.6 0.53 200 0.58 0.59 0.60
Species 1584.9 0.28 200 0.38 0.39 0.40

Our results (Table 3) show that positive transfer indeed occurs for three of the seven levels, indicating
that the neural circuit is able to successfully transfer to novel open-set classification tasks in spite of
distribution shift in both label and image statistics. Interestingly, the levels at which the neural circuit
performs best are the higher levels, which there are likely to be multiple images per category.

We additionally perform an analysis to examine the effect of mismatch in α between meta-train
and meta-test. Our results (see Appendix C.2) indicate that for low-moderate levels of α, it may be
beneficial to train on α slightly higher than anticipated, whereas for larger values of α, it is best to
match these statistics at meta-train time.

5 Related Work

Approximate solutions for nonparametric Bayesian models have historically used Markov chain
Monte Carlo (MCMC) [44] or variational inference [64], with examples including Gaussian processes
[60], Indian-Buffet processes [18, 59], and the Dirichlet process models we consider here [9, 47].
These approaches, however, assume a batch setting that is not efficient for sequential inference.
Inference can be made more efficient in sequential settings by considering online variational inference
with fixed update costs [10] or various forms of variational particle filtering [37, 42, 52]. However,
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overly restrictive distributional assumptions (e.g. exponential family) can hinder performance when
working with complex feature spaces such as neural network representations.

Amortized inference [35, 49] is better suited to complex problem domains since it learns a function
that maps directly from inputs to an approximate posterior distribution, effectively amortizing the
cost of variational inference. Several works have considered amortized inference over Dirichlet priors
[21, 34, 43], Gaussian process priors [11], and nested Chinese Restaurant Process priors [26]. Similar
to the classic approaches mentioned above, these methods belong to the family of batch inference
solutions. Sequential variational autoencoders [15, 25, 28, 38] offer an online solution but none of
these approaches are suitable for sequential inference in a DPMM.

Our neural circuit approach offers a scalable solution to sequential nonparametric Bayesian inference
in a DPMM. We do so by using metalearning to incorporate the inductive bias of a nonparametric
Bayesian model into the learned network rather explicitly instantiating such a model. This is
reminiscent of previous metalearning approaches that train with “episodes” [63] to learn a general
prior distribution over weight initializations [24, 27], languages [39], or supervised regression
and classification problems [41]. Similarly, our method can be viewed as learning an implicit
application of Bayes’ rule in a sequential setting [5] where meta-learning defines Bayesian updates
over complicated distributional assumptions [45]. We use sequences of observations and labels that
can also be viewed as a kind of episode, but our goal is different: we aim to perform sequential
inference over an unbounded number of classes. Compared to the previously mentioned approaches
using variational inference or amortized inference, we leverage metalearning to directly learn a
distribution over class labels rather than jointly learning encoder and decoder networks to maximize
a variational lower bound on the log likelihood of the observations.

Related to our aims, the goal of open set recognition (OSR) is, broadly speaking, to detect previously
unseen classes while accurately predicting known classes [54]. Several early approaches to OSR
focus solely on detecting previously unseen classes, either using traditional machine learning methods
[12, 13, 32, 55, 68] and, more recently, creating neural networks with open-set capabilities [7, 17, 57].
Bendale and Boult [6] first treated OSR as an incremental learning problem by using extracted image
features to perform metric learning over known classes initially, and performing incremental class
learning thereafter. This method employs thresholded distances from the nearest class mean as its
decision function. Rudd et al. [50] advanced this approach by introducing distributional information
into the thresholding process. Both methods rely on large datasets of known classes. [36] introduced a
metalearning formulation of OSR based on thresholding prototypical embeddings [58] to address this
limitation. Similarly, Willes et al. [67] proposed a method called FLOWR that combines prototypical
embeddings with Bayesian nonparametric class priors. These methods operate in the sequential
observation setting, observing the true class label after every prediction, and explicitly learn a metric
space end-to-end instead of performing inference over arbitrary input features (including possibly
representations extracted from a pretrained network) as we do. The particle filter baselines [23] we
compare against closely resemble a variant of FLOWR modified for our setting.

6 Conclusion

We have proposed neural circuits for sequential nonparametric Bayesian inference: metalearning
a recurrent neural network to capture the inductive bias of a DPMM that generates the training
sequences. Our approach outperforms particle filter baselines in predictive performance while being
more computationally efficient. Neural circuits are simple to implement and flexible enough to
handle complex inputs with minimal modifications to their training procedure and architecture. In
future work, we plan to use the neural circuit approach to capture inductive biases of more complex
nonparametric Bayesian models with richer latent spaces.

Two limitations of our neural circuit approach are i) the difficulty of metalearning as α→∞, and
ii) misspecification of the base distribution when there is a mismatch between the data generating
distribution of meta-train and meta-test sets. Classical DPMMs specify these quantities explicitly,
making modeling assumptions easier to identify and reason about. The process of meta-learning –
learning the model itself from data – brings about different challenges. Care should be taken when
deploying the model in scenarios where the diversity in labels differs greatly from metalearning.
Additionally, large α values may be difficult to learn due to the infrequency of repeated class instances

9



in meta-training sequences. In future work we plan to explore how these challenges can be addressed
through curriculum learning.

Neural circuits are broadly applicable to the growing use of foundation models and pre-trained
networks. They bridge the gap between Bayesian nonparametric methods, which often make more
appropriate assumptions for real-world scenarios, and the powerful representations of neural networks.
This integration allows existing neural networks to be adapted for tasks such as open-set recognition
within a principled and efficient Bayesian framework, without the need to retrain the base model. We
anticipate that this approach can be used in a wide range of settings to be able to deploy interpretable
models with more explicit inductive biases build on top of expressive representations for complex
datasets.
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A Derivation of Hurdle Model

First we recall the form of an exponential family likelihood:
p(x | η) = h(x) exp {⟨η, t(x)⟩ −A(η)} . (13)

The corresponding conjugate prior takes the following form:
p(η | τ , ν) = exp {⟨τ ,η⟩ − νA(η)−B(τ , ν)} . (14)

A.1 Beta-Bernoulli

We first show how a Bernoulli likelihood and Beta conjugate prior can be expressed in terms of (13)
and (14). This is a useful stepping stone towards the hurdle model, which contains the Bernoulli
distribution as a component. Recall that for a Bernoulli likelihood Bern(x|θ),

p(x|θ) = θx(1− θ)1−x (15)
log p(x|θ) = x log θ + (1− x) log(1− θ), (16)

from which we recognize

η = log
θ

1− θ
(17)

t(x) = x

A(η) = − log(1− θ).

Similarly, recall that for a Beta conjugate prior Beta(θ|a, b),

p(θ|a, b) = Γ(a+ b)

Γ(a)Γ(b)
θa−1(1− θ)b−1 (18)

τ = a− 1

ν = a+ b− 2

B(τ, ν) = log Γ(a) + log Γ(b)− log Γ(a+ b).

A.2 Hurdle Model

Now suppose we have an arbitrary exponential family likelihood p(x|η) of the form (13) and a
conjugate prior p(η|τ , ν) of the form (14). Now define a hurdle model based on this likelihood to be:

q(x|η̃) =
{

1− θ , x = 0
θp(x|η) , x ̸= 0.

(19)

Intuitively, this is an application of a Bernoulli variable that gates whether the underlying exponential
family likelihood is active or not. Observe that q(x|η̃) may be written as:

q(x|η̃) = (1− θ)(1−1{x ̸=0})(θh(x) exp {⟨η, t(x)⟩ −A(η)})1{x ̸=0} (20)

log q(x|η̃) = log(1− θ) + 1 {x ̸= 0}h(x) + ⟨η, t(x)1 {x ̸= 0}⟩+
(
log

θ

1− θ
−A(η)

)
1 {x ̸= 0}

(21)
We can therefore recognize q(x|η̃) itself as exponential family:

q(x|η̃) = h̃(x) exp{⟨η̃, t̃(x)⟩ − Ã(η̃)} (22)

η̃ =


log θ

1−θ −A(η)
η1
η2
...



t̃(x) =


1{x ̸= 0}

t1(x)1{x ̸= 0}
t2(x)1{x ̸= 0}

...


log h̃(x) = 1{x ̸= 0} log h(x)

Ã(η̃) = − log(1− θ)
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We also posit a conjugate prior for q(x|η̃):

q(η̃|τ̃ , ν̃) = exp{⟨τ̃ , ν̃⟩ − ν̃Ã(η̃)− B̃(τ̃ , ν̃)} (23)

log q(η̃|τ̃ , ν̃) = τ̃1η̃1 + ⟨τ ,η⟩ − ν̃Ã(η̃)− B̃(τ̃ , ν̃)

Now let Bern(x|θ) = h̄(x) exp{⟨η̄, t̄(x)⟩− Ā(η̄)}, with definitions following from (17). In this case,
η̄ = log θ

1−θ and thus Ã(η̃) = Ā(η̄). Moreover, η̃1 = η̄ −A(η), and we can then write

log q(η̄,η|τ̃ , ν̃) = τ̃1(η̄ −A(η)) + ⟨τ ,η⟩ − ν̃Ā(η̄)− B̃(τ̃ , ν̃) (24)

= ⟨τ ,η⟩ − τ̃1A(η) + τ̃1η̄ − ν̃Ā(η̄)− B̃(τ̃ , ν̃),

from which we recognize that

B̃(τ̃ , ν̃) = B(τ, ν = τ̃1) + B̄(τ̃1, ν̃). (25)

Therefore, the hurdle applied on top of an arbitrary exponential family likelihood can be expressed in
terms of the underlying base model and the Beta-Bernoulli presented in Section A.1.

B Softmax + Energy Model

The softmax + energy baseline is derived by viewing a standard logistic regression model through
the lens of the maximum entropy principle [2]. Suppose that w1, . . . ,wK are the vector of weights
corresponding to each of K known classes (it is assumed that the input x has been augmented with
an dummy 1 feature to capture a bias term). The predictive distribution is then:

p(y = k|x) = exp(w⊤
k x)∑K

k′=1 exp(w
⊤
k′x)

(26)

This can be viewed as a maximum entropy distribution where each weight wkd is a Lagrange
multiplier representing a constraint on E[I[y = k]xd] under the model. Now in order to allow for y
to take on the value K + 1, representing a new class, we introduce an additional constraint that the
marginal probability that y = K + 1 follows the Chinese restaurant process β = α

t−1+α , where t is
the current timestep. The corresponding Lagrangian then becomes (discretizing x and setting D = 1
for simplicity of illustration):

Q = −
K∑

k=1

∑
i

pki log
pki
mki

+λ0

(
1−

K+1∑
k=1

∑
i

pki

)
+

K∑
k=1

λk

(
µk −

∑
i

xipki

)
+λK+1

(
β −

∑
i

pK+1,i

)
(27)

Setting ∂Q
∂pki

= 0 for k = 1, . . . ,K and similarly for ∂Q
∂pK+1,i

yields:

pki =
1

Z
mkie

−λkxi (28)

pK+1,i =
1

Z
mK+1,ie

−λK+1 (29)

Z =
∑
i

mK+1,ie
−λK+1 +

K∑
k=1

∑
i

mkie
−λkxi . (30)

Thus, we can compute the probability of a new class occurring as:

p(y = K + 1|xi) = pK+1,i =
e−λK+1

e−λK+1 +
∑K

k=1 e
−λkxi

, (31)

which we recognize as a softmax with wk = −λk for k = 1, . . . ,K and −λK+1 playing the role of
an additional logit, which we will presently solve for. By setting ∂Q

∂λK+1
= 0, it can be shown that

e−λK+1 = βZ. Substituting into (30) and solving for Z yields:

Z =
1

1− β

K∑
k=1

∑
i

mkie
−λkxi . (32)
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Therefore, we have that

−λK+1 = log
β

1− β
+ log

K∑
k=1

∑
i

mkie
−λkxi (33)

= logα− log(t− 1) + log

K∑
k=1

∑
i

mkie
wkxi . (34)

The derivation extends in the straightforward manner with D > 1. By considering infinitesimally
small discretization and specifying a uniform measure m(x) over [−M,M ], it can be shown that:

−λK+1 = logα− log(t− 1) + log

K∑
k=1

exp

(
D∑

d=1

log
sinh(Mwkd)

Mwkd

)
. (35)

Similarly, choosing a Gaussian measure m(x) = exp
(
− x2

2σ2

)
produces

−λK+1 = logα− log(t− 1) + log
K∑

k=1

exp

(
D∑

d=1

[
1

2
log(2π) + log σ +

σ2w2
kd

2

])
. (36)

We use (35) as the augmented new class logit in the ImageNet experiments as this better represents
the state of knowledge for the ResNet-18 activations and similarly we use (36) for the 2-D synthetic
DPMM augmented logits. We learn the weights of the logistic regression classifier after every
timestep by using gradient descent with the Adam [3] optimizer.

C Additional Experimental Results

In this section, we include additional experimental results.

C.1 Visualization of Predictive Distribution

In Figure 4, we visualize the evolution of the neural circuit predictive distribution across timesteps.

Figure 4: Visualization of the predictive distribution over cluster assignments across timesteps for
a neural circuit model trained on the two-dimensional data synthesized from a DPMM. Colors are
determined by mixing each cluster’s color proportional to the output softmax probabilities. Yellow
indicates a new, as yet unobserved class.
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C.2 Effect of Varying α

In this section, we evaluate the effect of a mismatch in α between meta-train and meta-test. We take
the neural circuits trained on ImageNet-CRP from Section 4.3 and evaluate all possible combinations
of meta-train and meta-test α. The results (Table 4) show that for low-moderate levels of α, it may be
beneficial to train on α slightly higher than anticipated. This is likely due to their increased level of
diversity. However, when evaluating on large values of α, it tends to be best to match these statistics
at meta-train time.

Table 4: NLL on ImageNet-CRP Meta-test Classes under different meta-training conditions. Evalua-
tion is performed on 1,000 sequences of length 500.

Meta-Training α

Meta-Test α 1 2 5 10 20 50 100 200

1 0.76 0.75 0.76 0.78 0.87 1.10 1.25 2.30
2 1.24 1.19 1.18 1.21 1.31 1.51 1.83 2.80
5 2.26 2.02 1.90 1.89 1.97 2.16 2.41 3.09

10 3.37 2.94 2.62 2.52 2.53 2.67 2.88 3.30
20 4.13 3.78 3.40 3.23 3.06 3.08 3.26 3.56
50 4.60 4.44 4.22 4.58 3.83 3.49 3.55 3.77

100 4.79 4.74 4.63 5.06 4.34 3.97 3.47 3.53
200 4.94 4.94 4.91 5.37 4.69 4.51 3.45 3.08

C.3 Additional Results on Synthetic DPMM Data

In Table 5, we show additional metrics collected in the synthetic DPMM setting from Table 1. Here
we show the results in terms of min, mean, and max across 5 training runs with different random
initializations.

Table 5: Results on two-dimensional data synthesized from a DPMM for 5 neural circuits each trained
with a different random initialization. Results are summarized as the min, mean, and max of the 5
models. Inference times are reported in units of ms/sequence.

Metric Min. Mean Max.

NLL (↓) 0.075 0.076 0.078
Perplexity (↓) 1.085 1.086 1.089
ARI (↑) 0.920 0.921 0.922
AMI (↑) 0.927 0.928 0.929
Inf. Time (Seq. Obs.) (↓) 0.056 0.059 0.064
Inf. Time (Fully Unobs.) (↓) 0.394 0.421 0.445

C.4 Additional Results on ImageNet-CRP Data

Similarly, we show in Table 6 the min, mean, and max results of neural circuits trained with 5 different
random initializations.

D Additional Experimental Details

For all of our experiments neural circuit RNN cell was chosen to be a 2-layer gated recurrent unit
(GRU) [1] with hidden size 1024. The maximum number of output logits was set to be equal to the
sequence length used for metalearning, as this is the maximum number of classes that could possibly
be encountered. Training was performed over 10,000 minibatches each of size 128 sequences of
length 100 (256 sequences of length 500 for the iNaturalist experiments). The CRP coefficient was
set to α = 1.0 for the synthetic and ImageNet-CRP experiments, and was set to a range of different
values {1, 2, 5, 10, 20, 50, 100, 200} in the iNaturalist experiments. The neural circuit was trained
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Table 6: Results on ImageNet-CRP for 5 neural circuits each trained with a different random
initialization. Results are summarized as the min, mean, and max of the 5 models. Inference times
are reported in units of ms/sequence.

Metric Min. Mean Max.

Meta-train NLL (↓) 0.239 0.255 0.272
Meta-train ARI (↑) 0.728 0.749 0.770
Meta-test NLL (↓) 0.668 0.680 0.696
Meta-test ARI (↑) 0.260 0.271 0.286
Inf. Time (Seq. Obs.) (↓) 0.066 0.067 0.068
Inf. Time (Fully Unobs.) (↓) 0.407 0.412 0.420

using Adam with learning rate 0.001 and the particle filter using learning rate 0.1. For the synthetic
and ImageNet-CRP results, the tuning hyperparameters (e.g. model architecture, learning rates) were
selected by monitoring training loss over the first several hundred minibatches and modifying as
necessary. For the iNaturalist 2018 results, overfitting was monitored on a separate meta-validation
class split. MAP prediction is implemented in the neural circuit by simply selecting the class label
with highest predicted probability for each timestep.

One random seed was used for training each method. The clustering metrics were computed using
the adjusted_rand_score and adjusted_mutual_info_score functions from Scikit Learn [5].
Experiments were performed using NVIDIA A100 GPUs with 40 GB of GPU memory and 64 GB of
CPU memory across 4 threads. Training of the neural circuits took approximately 6-8 hours per run.

For the particle filter, we use 100 particles for inference and utilize an adaptive resampler that
resamples according to a multinomial distribution over the particles whenever the effective sample
size drops below 50. In the fully unobserved setting, we take the MAP prediction to be the particle
with the largest weight after running the filter on a sequence.

For the experiments in Section 4.2, the meta-training classes were taken to be the first 500 and the
meta-test classes were taken to be the last 500 classes, as sorted by class ID. For Section 4.3, the
meta-training classes were the first 350 classes, the meta-validation classes the next 350 classes, and
the meta-test classes the final 300 classes, as sorted by class ID.

All methods are implemented in PyTorch [4] and are GPU-enabled. Our code is available online 1.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our proposed approach is discussed in Section 3 and experimental justification
for its effectiveness is contained in Section 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This submission does not contain theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Experimental details are discussed briefly in Section 4 and in detail in Ap-
pendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Code is made available at https://github.com/jakesnell/neural-circuits.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental details may be found in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The number of sequences used for evaluation is stated alongside each experi-
mental result. Results across multiple training runs are reported in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Computational resources are discussed in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the code of ethics and agree to abide by them.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Broader impacts are discussed in Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not anticipate a high risk of misuse for our proposed model. Limitations
and societal impacts are discussed in Section 6.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Both the ImageNet [51] and iNaturalist 2018 [61] datasets are cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets are released with this paper. Code and documentation are
included in the supplementary material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human subjects were used during the preparation of this paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human participants were used during the preparation of this paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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