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Prior-Free Mechanism with Welfare Guarantees

ABSTRACT
We consider the problem of designing prior-free revenue-maximizing

mechanisms for allocating items to 𝑛 buyers when the mechanism

is additionally provided with an estimate for the optimal welfare

(which is guaranteed to be correct to within a multiplicative factor

of 1/𝛼). In the digital goods setting (where we can allocate items to

an arbitrary subset of the buyers), we demonstrate a mechanism

which achieves revenue that is 𝑂 (log𝑛/𝛼)-competitive with the

optimal welfare. In the public goods setting (where we either must

allocate the item to all buyers or to no buyers), we demonstrate

a mechanism which is 𝑂 (𝑛 log 1/𝛼) competitive. In both settings,

we show the dependence on 𝛼 and 𝑛 is tight. Finally, we discuss

generalizations to broader classes of allocation constraints.
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Computational pricing and auctions.
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1 INTRODUCTION
One of the key assumptions made in the field of mechanism design

is the nature and quantity of information the mechanism designer

has regarding types/valuations of the agents in their problem. The

study of various mechanism design problems has produced several

popular models for this assumption.

In the standard economic approach of Bayesian mechanism de-
sign, these valuations are assumed to be drawn from distributions

that are fully known to the mechanism designer. This enables the

designer to tailor their mechanism to these prior distributions and

facilitates the construction of robust revenue-optimizing mech-

anisms. For example, Myerson’s auction [Mye81] is optimal for

bidders whose values are drawn i.i.d. from a “regular” distribution.

However, the real-world implementation of these mechanisms can

be hindered due to the practical absence or inaccuracy of prior

distributions. This research agenda to develop robust mechanisms

that are less sensitive to modeling assumptions is often referred to

as the “Wilson doctrine” [Wil85].
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With this in mind, some more recent lines of work have tried

to relax the assumption of access to a prior distribution. In prior-
independent mechanism design, the mechanism designer knows that

valuations are being drawn from some distribution but does not

know the exact distribution. In this setting, assumptions like i.i.d.

bidders and regular distributions can allow the designer to learn

something about the overall distribution from a few samples.

Continuing to weaken our assumptions leads us to the regime

of prior-free mechanism design, in which the mechanism designer

knows nothing at all about the types of the agents. Mechanisms

developed for this setting are generally simple and easier to practi-

cally apply, but are accompanied by the downside of having weaker

guarantees. These guarantees generally take the form of competi-

tive ratios to benchmarks that ignore the largest value of any bidder

(e.g., [GH01] proves a constant-factor revenue competitive ratio

with respect tomax𝑘≥2 𝑘𝑣𝑘 , where 𝑣𝑘 is the 𝑘th largest value). This

is by necessity – knowing nothing at all about the valuations, it is

impossible to get a constant factor approximation to the maximum

possible revenue obtainable by an omniscient mechanism. But si-

multaneously, this is unsatisfying – there are many cases where

one agent could be responsible for the bulk of the total value, and

it would be ideal if we could have strong guarantees in these cases

as well.

Very often it is the case that we are in an intermediate regime

where, as a mechanism designer, we have some partial knowledge

about the values of agents participating in our mechanism, but noth-

ing approaching bidders drawing independently from value distri-

butions that we can hope to learn enough about in the short-term.

In this paper, we study the classical mechanism design problem of

allocating identical items to unit-demand agents, augmented with

an “estimate range” of the welfare of the best possible allocation (al-

ternatively, the maximum revenue we could achieve if we precisely

knew the valuation of each agent). For example, consider a setting

where a corporation is trying to sell copies of a digital good to a

population of buyers. By examining the earnings reports of other

companies which have released similar products, the corporation

might be able to estimate that the total value among all buyers of

that good is within a certain range (e.g. “one million to two million

dollars”) but not have any other information about how that value

is distributed among buyers (e.g. it all may come mostly from one

buyer, or may be distributed equally among many buyers).

1.1 Our results
More formally, we consider the question where there are 𝑛 unit-

demand buyers, and we are allowed to allocate (identical) items

to some subset 𝑆 ∈ 2
[𝑛]

of the buyers, where 𝑆 must belong to a

collection S of allowed subsets. Modifying S allows us to encode a

variety of different mechanism design settings; our main settings

of interest include:

• In the digital goods setting, S = 2
[𝑛]

. This means we have

an unlimited quantity of items to assign and may allocate to

any subset of the buyers.
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• In the matroid setting, S is a matroid. This means we can

allocate the items to any independent set of the matroid. This

is a generalization of the digital goods setting, and includes

other interesting cases as well, e.g. if S is the 𝑘-uniform

matroid, then that means we only have 𝑘 items to allocate

to buyers but otherwise may do so freely.

• Finally, in the public goods setting, S = {∅, [𝑛]}. This means

if we allocate the item to any buyer, we must allocate it to

all buyers.

Each buyer 𝑖 ∈ [𝑛] has some value 𝑣𝑖 ∈ R+ for being allocated an

item. Our goal is to design a dominant-strategy truthful mechanism

for this setting with good revenue guarantees. The mechanism does

not have access to the individual values 𝑣𝑖 , but does have some

information about these valuations in the form of a hint about the

total welfare𝑊 = max𝑆 ∈S
∑
𝑖∈𝑆 𝑣𝑖 . Specifically, we assume that we

know that𝑊 lies in an interval [𝐿, 𝑅] with 𝐿/𝑅 = 𝛼 > 0. We say

that a mechanism is 𝛽-competitive if the mechanism is guaranteed

to generate at least𝑊 /𝛽 revenue regardless of the specific values

𝑣𝑖 .

We prove the following results:

• In the digital goods setting, there exists an 𝑂 (log(𝑛/𝛼))-
competitive mechanism. This is tight in both parameters:

any 𝛽-competitive mechanism must satisfy 𝛽 = Ω(log𝑛)
and 𝛽 = Ω(log 1/𝛼).

• In thematroid setting, there exists an𝑂 (log(𝑘/𝛼))-competitive

mechanism, where 𝑘 is the rank of the matroid. Similarly,

this is tight in both 𝑘 and 𝛼 .

• Finally, in the public goods setting, there exists an𝑂 (𝑛 log(1/𝛼))-
competitivemechanism. Any 𝛽-competitivemechanismmust

satisfy 𝛽 = Ω(𝑛) and 𝛽 = Ω(log 1/𝛼).
All three mechanisms are efficient and straightforward to im-

plement. The mechanism for the digital goods presents each buyer

with a posted-price drawn randomly and independently from a spe-

cific distribution. The mechanism for the matroid setting extends

the digital goods mechanism by first running a greedy algorithm

to determine an eligible set of buyers and then subsequently run-

ning the digital goods mechanism on this subset. The public goods

mechanism is the most unique of the three in both description and

analysis – it involves choosing a threshold from a specific distribu-

tion (a mixture of several uniform distributions) and only allocating

the item if the sum of the bids exceeds this threshold.

We conclude with a note on optimal mechanisms. When 𝑛 = 1,

our problem reduces to the problem of selling an item to a single

buyer (𝑛 = 1) with unknown value in some range [𝛼, 1]. A clas-

sic result in mechanism design states that it is possible to get a

(1 + log(1/𝛼))-approximation of welfare as revenue, and that this

approximation factor is tight (see e.g. chapter 7 of [Har11]; for con-

venience, we reproduce this result in Appendix A). Moreover, a

very simple mechanism attains this approximation factor: randomly

sampling a reserve from a specific “equal-revenue” distribution.

Inspired by this, one might hope that it is in fact possible to

characterize the optimal mechanisms (with the best approximation

factor) for more buyers given a range constraint on total welfare.

Unfortunately, numerical simulations suggest that even for 𝑛 = 2

buyers, the optimal mechanisms are quite bizarre. (We show how

one can approximate the optimal mechanism in Appendix B.) In

Figure 1: Allocation / pricing rules for an approximately op-
timal mechanism for two buyers in the digital goods setting
with welfare in [50, 100] (we show only the allocation and
payment of buyer A as a function of both buyers’ valuations;
buyer B is symmetric). This mechanism is 𝛽-competitive for
𝛽 ≈ 0.486. Appendix B explains how this figure was gener-
ated.

Figure 1 we depict the allocation rule for the optimal mechanism

in the digital goods setting with 𝑛 = 2 and 𝛼 = 1/2. Note, for
instance that the bidder’s allocation is neither constant nor weakly

monotone (in either direction) in the other bidder’s value.

1.2 Related Work
There is a large body of work dedicated to revenue maximization

on the spectrum between Bayesian mechanism design and com-

pletely prior-free mechanism design. We survey a couple of the

more relevant strands here.

Our work most closely relates to the existing line of work on

prior-free mechanism design. Early papers on prior-free mecha-

nisms include [GH01, GHK
+
06], which provided worst-case rev-

enue guarantees on selling digital goods. There has been a large

amount of follow-up literature since then, tightening the known

2023-10-13 05:05. Page 2 of 1–9.
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competitive ratios [CGL14] and extending these mechanisms to

broader settings [FGHK02, LR12]. All these papers work with ab-

soutely no assumptions about the buyers’ valuations, but in turn

only provide revenue guarantees with respect to weaker bench-

marks (e.g. “the revenue of the best fixed price less than the second-

highest valuation”).

Many lines of work study an intermediate regime where the

designer is permitted some additional information about the buy-

ers’ types. One such approach towards auction design is that of

distributionally-robust auctions. These auctions assume that the

auctioneer has knowledge of some summary statistics of the dis-

tribution such as the mean and the upper limit of the support, and

characterizes the max-min performance, i.e., under the worst case

distribution (see [BTC22, Che22]. Another such approach focuses

on the case where buyer valuations are drawn from a prior distribu-

tion but it is unknown and must be learnt (the “prior-independent

setting”). [KL03] considered the case where one must learn the

value of the buyers’ distributions using posted-price mechanisms.

[CR14] studied the question of determining how many samples

one needs from a distribution to compute the optimal mechanism

for revenue maximization. There is a line of work on approxi-

mately revenue-optimal auctions with access of 1 sample (see e.g.

[DRY15, AKW14, CDFS19]).

The underlying mechanism design problem we study falls under

the umbrella of “single-dimensional mechanism design” and has

been extensively studied in Bayesian settings. In [KY13], the authors

studied what revenue guarantees are possible under a variety of

feasibility constraints (including the public goods and downwards

closed settings) and regularity assumptions on the buyer distribu-

tions. [GNR18] proves computational hardness for the problem of

designing revenue-optimal mechanism for public goods.

2 PRELIMINARIES
We build off the notation introduced in the introduction. For conve-

nience, we will assume that the welfare𝑊 lies in the interval [𝛼, 1]
(multiplicative rescaling of this range does not change any result).

Our paper focuses on the regime where 𝛼 is small and approaching

zero, so we will assume throughout that 𝛼 ∈ [0, 1
2
]; the regime

𝛼 ∈ [ 1
2
, 1] is an interesting direction for future work.

The bounded equal-revenue distribution. In several of our lower

bound proofs, we will need to make use of a specific bounded equal-

revenue distribution. The equal-revenue distribution is a standard

technique in algorithmic game theory; it is typically defined over

the interval [1,∞)with the probability density function 𝑓 (𝑧) = 1/𝑧2
and has the property that if a buyer’s value is being drawn from

this distribution, any fixed price has revenue one in expectation:

Pr

𝑧∼equal-revenue distribution
[𝑧 ≥ 𝑝] · 𝑝 =

∫ ∞

𝑝

1

𝑧2
𝑑𝑧 · 𝑝 =

1

𝑝
· 𝑝 = 1

Since we are interested in situations where the total welfare falls

in the range [𝛼, 1], it will be useful for us to employ equal-revenue

distributions over bounded intervals [ℓ, ℎ] where 0 < ℓ ≤ ℎ. We

define these here and state their properties.

Definition 2.1. Suppose we are given ℓ, ℎ such that 0 < ℓ ≤ ℎ. Let
the bounded equal-revenue distribution D𝑒𝑞 [ℓ, ℎ] be a probability
distribution over [ℓ, ℎ] that is ℎ with probability ℓ

ℎ
and is drawn from

the distribution with probability density function 𝑓 (𝑧) = ℎℓ
(ℎ−ℓ)𝑧2

with probability ℎ−ℓ
ℎ

.

Lemma 2.2. Posting a price 𝑝 ∈ [ℓ, ℎ] against a buyer with value
drawn from the bounded equal-revenue distribution D𝑒𝑞 [ℓ, ℎ] results
in revenue ℓ .

Lemma 2.3. The bounded equal-revenue distribution D𝑒𝑞 [ℓ, ℎ] has
mean ℓ

(
1 + log

ℎ
ℓ

)
.

One way to think about the two previous lemmas is that they

imply that if a mechanism designer got to see a valuation drawn

from D𝑒𝑞 [ℓ, ℎ], they could get significantly more revenue (in fact,

a multiplicative factor of

(
1 + log

ℎ
ℓ

)
extra).

The single-buyer setting. In this section, we discuss the single-

buyer case (𝑛 = 1). Note that in this case, our welfare information is

actually just a bound on the value of this buyer, i.e. 𝑣1 ∈ [𝛼, 1]. It is a
folklore theorem that in this case, the best competitive ratio achiev-

able is log(𝑒/𝛼) (see e.g. chapter 7 of [Har11]). For completeness,

we restate this here and include a proof in appendix A.

Theorem 2.4. For the case of a single buyer, there exists a log(𝑒/𝛼)-
competitive mechanism. Furthermore, this is tight; there is no 𝑐-
competitive mechanism for any 𝑐 < log(𝑒/𝛼).

3 DIGITAL GOODS SETTING
3.1 Upper Bound
We begin by presenting an 𝑂 (log(𝑛/𝛼))-competitive mechanism

for the digital goods setting. The mechanism itself is simple; we will

run the single-bidder mechanism (from Theorem 2.4) on each buyer

independently, under the assumption that their value lies in the

interval [𝛼/2𝑛, 1] (i.e., with an 𝛼 ′
of 𝛼/2𝑛). Since at least half of the

welfare is contributed by bidders with value at least 𝛼/2𝑛, this leads
to a𝑂 (log(1/(𝛼/2𝑛))) = 𝑂 (log(𝑛/𝛼)) competitive mechanism. We

prove this below.

Theorem 3.1. The above mechanism is 2 log(2𝑛𝑒/𝛼)-competitive.

Proof. Note that if bidder 𝑖 has value 𝑣𝑖 at least 𝛼/2𝑛, by the

guarantees of the single buyer mechanism (Theorem 2.4), this mech-

anism obtains revenue at least 𝑣𝑖/log(𝑒/(𝛼/2𝑛)) = 𝑣𝑖/log(2𝑛𝑒/𝛼).
Now, let𝑊 ′ =

∑
𝑖;𝑣𝑖 ≥𝛼/2𝑛 𝑣𝑖 be the total welfare of all bidders

with value at least 𝛼/2𝑛. As a consequence of the previous para-
graph, our mechanism obtains revenue at least𝑊 ′/log(2𝑛𝑒/𝛼). But
note that we can write𝑊 ′ =𝑊 −∑

𝑖;𝑣𝑖<𝛼/2𝑛 𝑣𝑖 ≥𝑊 − 𝛼/2 ≥𝑊 /2
(where the last inequality follows since we are guaranteed that

𝑊 lies in the interval [𝛼, 1]). It follows that the above mechanism

obtains revenue at least𝑊 /(2 log(2𝑛𝑒/𝛼)), as desired. □

3.2 Lower Bound
In this subsection, we prove the following lower bound that controls

how the approximation ratio 𝛽 can scale as a function of the number

of buyers 𝑛; in particular, we will show that the log𝑛 dependence

on 𝑛 in the competitive ratio of Theorem 3.1 is necessary. Note that

the log 1/𝛼 dependence on 𝛼 is necessary even in the 𝑛 = 1 case by

Theorem 2.4.
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Theorem 3.2. Any 𝛽-competitive truthful mechanism for the digi-
tal goods setting with𝑛 buyers and 𝛼 = 1/2must satisfy 𝛽 = Ω(log𝑛).

Proof. The plan is to consider a slightly-invalid distribution D
whose support does not always have welfare in the range [ 1

2
, 1].

We will show that (i) no mechanism can do well in an average-case

sense on D and that (ii) if there is a mechanism𝑀 that does well

in a worst-case sense on [ 1
2
, 1], we can construct a mechanism𝑀 ′

that does well in an average-case sense on D. Together, this will

show no mechanism can do well on D.

Formally, D will be a product distribution with marginals equal

to our bounded equal-revenue distribution D𝑒𝑞 [ℓ, ℎ]. We now rea-

son about how to choose ℓ and ℎ. We will want to apply a Hoeffding

bound on the sum of these bounded random variables to show that

the total welfare is quite likely to be in the range [ 1
2
, 1]. For the

sum of 𝑛 independent random variables that are bounded between

[ℓ, ℎ] with expected sum `, for any 𝛿 > 0 we have:

Pr

[∑︁
𝑖

𝑣𝑖 ≤ (1 − 𝛿)`
]
≤ exp

(
−2𝛿2`2

𝑛(ℎ − ℓ)2

)
Pr

[∑︁
𝑖

𝑣𝑖 ≥ (1 + 𝛿)`
]
≤ exp

(
−2𝛿2`2

𝑛(ℎ − ℓ)2

)

We would like to reason about the sum landing in the range [ 1
2
, 1],

so we will aim to make ` = 3

4
and choose 𝛿 = 1

3
. We will need the

(ℎ − ℓ)2 term in the bound to cancel out 𝑛 so (ℎ − ℓ) should be

roughly
1√
𝑛
. With this in mind, we choose the following values.

ℓ ≜
3

4𝑛

(
1 + log

(
1 + 1

3

√
𝑛

))−1
ℎ ≜

(
3

4𝑛
+ 1

4

√
𝑛

) (
1 + log

(
1 + 1

3

√
𝑛

))−1

We can now compute the values for ` and (ℎ − ℓ). Invoking
Lemma 2.3:

` = 𝑛 · ℓ (1 + log

ℎ

ℓ
)

= 𝑛 · 3

4𝑛

(
1 + log

(
1 + 1

3

√
𝑛

))−1 ©«1 + log
©«

3

4𝑛 + 1

4

√
𝑛

3

4𝑛

ª®¬ª®¬
=

3

4

ℎ − ℓ =
1

4

√
𝑛

(
1 + log

(
1 + 1

3

√
𝑛

))−1

Plugging this into our Hoeffding bound:

exp

(
−2𝛿2`2

𝑛(ℎ − ℓ)2

)
= exp

©«
[
−2

(
1

3

)
2
(
3

4

)
2

]
/
𝑛

(
1

4

√
𝑛

(
1 + log

(
1 + 1

3

√
𝑛

))−1)2ª®¬
= exp

©«
[
−1

8

]
/

(
1

16

(
1 + log

(
1 + 1

3

√
𝑛

))−1)2ª®¬
= exp

©«
−2

(
1 + log

(
1 + 1

3

√
𝑛

))
2

︸                      ︷︷                      ︸
this is ≥1

ª®®®®®¬
≤ exp (−2)
≤ 0.14

As a result, we know there is at most 2 · 0.14 ≤ 0.5 probability that

the sum is not in the range [𝛼, 1] and hence at least 0.5 probability

that the sum is in this range.

With D now defined, we can reason about our first main claim,

namely that no mechanism can do well on D. For the sake of

contradiction, suppose we have a mechanism𝑀 ′
that could handle

all inputs in the support of D. Furthermore, suppose that for a

random valuation drawn from D, 𝑀 ′
achieves a 𝛽 ′ fraction the

expected welfare of that valuation (note this is an average-case

guarantee, not a worst-case guarantee). But we know the expected

welfare of a valuation drawn from D, so:

Rev(𝑀 ′,D) ≥ 3

4𝛽 ′

At the same time, 𝑀 ′
cannot do that well against a product dis-

tribution of bounded equal-revenue distributions. Because it is a

product distribution, each valuation provides no information about

the other valuations. Hence the expected revenue of our mechanism

𝑀 ′
cannot be better than just picking a fixed price for each bidder:

Rev(𝑀 ′,D) ≤ 3

4

(
1 + log

(
1 + 1

3

√
𝑛

))−1
𝛽 ′ ≥

(
1 + log

(
1 + 1

3

√
𝑛

))
This completes our first main claim; we know that mechanisms

can only do so well on D. We now prove our second main claim,

namely that a good mechanism 𝑀 on the interval [ 1
2
, 1] implies

a good mechanism 𝑀 ′
on D. Suppose we have a 𝛽-competitive

mechanism𝑀 over valuations that have welfare in [ 1
2
, 1]. We will

extend it to a mechanism𝑀 ′
over valuations in the support of D.

We do so by reasoning about allocation functions, from which

the pricing function (to make the entire mechanism truthful) can be

recovered via Myerson’s Lemma [Mye81]. The allocation function

of𝑀 ′
is as follows:

• If the input 𝑣 has welfare less than
1

2
, all buyers receive

nothing.

• If the input 𝑣 has welfare in the range [ 1
2
, 1], all buyers

receive the same as they would under𝑀 .
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• If the input 𝑣 has welfare greater than 1, then each buyer

receives the good.

Observe that our new allocation function is monotone as well, since

increasing a buyer’s valuation can only bring welfare from less than

1

2
to in the range [ 1

2
, 1] to greater than one, which increases what

the buyer gets from nothing to the original valuation function to

one. When we apply Myerson’s Lemma to this allocation function,

we essentially get the same payment rule as the original mechanism

𝑀 had, but extended to be zero for inputs 𝑣 with welfare less than

1

2
and some nonnegative amount for inputs with welfare greater

than one. In other words, we know that 𝑀 ′
will obtain at least a

𝛽-fraction of the welfare as revenue when the welfare is in the

range [ 1
2
, 1] and a nonnegative amount otherwise. Worst-case, we

know that𝑀 ′
achieves expected revenue at least 0.25𝛽 .

We have already computed that this distribution has expected

welfare
3

4
, so we can compute an average-case guarantee of𝑀 ′

on

D:

Rev(𝑀 ′,D) ≥ 0.25/𝛽

=

(
1

3𝛽

)
3

4

Hence on D, 𝑀 ′
achieves a 𝛽 ′ = 3𝛽 fraction of the welfare as

revenue in expectation (an average-case guarantee). We can now

combine this with our first main claim.

𝛽 ≥ 3

(
1 + log

(
1 + 1

3

√
𝑛

))
≥ 3 log

1

3

√
𝑛 = Ω(log𝑛).

This completes the proof. □

Remark 3.3. For any fixed 𝛼 < 1, it is possible to adapt the proof
of Theorem 3.2 to show that for sufficiently large 𝑛, any mechanism
for the digital goods setting must be Ω(log𝑛) competitive. However,
as 𝛼 gets closer to 1, the constant in this Ω(log𝑛) worsens (since it
becomes increasingly hard to ensure the sum of values lands in the
range [𝛼, 1] with high probability). It is an interesting open question
to understand the dependence of the optimal competitive ratio as both
𝛼 approaches 1 and as 𝑛 goes to infinity (i.e., the regime where our
estimate for welfare is very accurate, but this welfare is divided among
many bidders).

4 MATROID SETTING
In this section, we generalize the results from our digital goods

setting to the matroid setting.

4.1 Upper Bound
Wepresent a𝑂 (log(𝑘/𝛼))-competitive for thematroid setting (where

𝑘 is the rank of the matroid). We use a two-phase mechanism:

(1) In the first phase, we sort all all bidders in order of non-

increasing bid (breaking ties arbitrarily but consistently).

Initially, the set of bidders we will pass to the next phase is

an empty set. When we process a bidder, we add it to the set

that we will pass if doing so produces an independent set.

(2) In the second phase, we receive an independent set and run

the digital goods mechanism (from Theorem 3.1) on this set

of 𝑘 buyers under the assumption that the total welfare is in

[𝛼, 1].

Theorem 4.1. The above mechanism is incentive-compatible, pro-
duces an independent set, and is 2 log(2𝑘𝑒/𝛼)-competitive.

Proof. The plan is to analyze the proposed mechanism using

Myerson’s Lemma [Mye81]. Note that we have only specified an

allocation rule, but Myerson’s Lemma describes how to construct a

corresponding payment rule to make an overall truthful mechanism

as long as our allocation rule was monotone.

To do so, it will be helpful to introduce some notation to charac-

terize the effects of the two phases. Consider some buyer 𝑖 , and fix

the bids of all other buyers to be some 𝑏−𝑖 . In order to get past phase
one, this buyer must be early enough in the greedy ordering such

that adding buyer 𝑖 still yields an independent set. Hence there is

some minimum bid 𝜏 (𝑏−𝑖 ) (technically an infimum due to tiebreak-

ing issues) they must present to pass the first phase. Then, assuming

they passed this check, 𝑏−𝑖 uniquely determines the (up to) 𝑘 − 1

other bidders that also passed. As a thought experiment, suppose

buyer 𝑖 was allowed to skip the first phase and enter the second

phase with these 𝑘 − 1 other bidders determined by 𝑏−𝑖 . Then they

would face just the digital goods mechanism of Theorem 3.1, which

results in some allocation rule for bidder 𝑖: 𝑥𝑏−𝑖 (𝑏𝑖 ). Using these

definitions, the overall allocation rule imposed on buyer 𝑖 is:

𝑥𝑏−𝑖 (𝑏𝑖 ) =
{
0 if 𝑏𝑖 < 𝜏 (𝑏−𝑖 )
𝑥𝑏−𝑖 (𝑏𝑖 ) otherwise

This rule is monotone because it is a truncated version of the

allocation rule for the digital goods mechanism, which is monotone

due to that mechanism being truthful (Myerson’s lemma states

monotonicity and implementability for allocation rules are equiva-

lent).

Next, it is simple to confirm that our mechanism always produces

an independent set because the first phase produces an independent

set by construction and the second phase always produces a subset

of that (subsets of independent sets are independent).

It just remains to prove that the mechanism is 2 log(2𝑘𝑒/𝛼)-
competitive. To do so, we will want to think about the payments

induced by our allocation rule. We now consider some buyer 𝑖 in the

optimal independent set, i.e. the one which achieves optimal welfare

𝑊 ∈ [𝛼, 1]. This is the same set that the greedy algorithm in phase

one produces, since the greedy algorithm is optimal over matroids

[Edm71]. What payment rule does this buyer face? We know that

if they only went through phase two, we can apply Myerson’s

Lema to generate a payment rule from the allocation rule 𝑥𝑏−𝑖 (𝑏𝑖 ).
Instead, we generate a payment rule from the truncated version

𝑥𝑏−𝑖 (𝑏𝑖 ). Relative to 𝑥 , our allocation rule 𝑥 winds up delaying

any allocation increases until at least 𝜏 (𝑏−𝑖 ). As a result, for buyer
values which are at least 𝑏−𝑖 , we extract at least as much payment

as the corresponding payment rule for 𝑥 . But we know that buyer

𝑖 bids truthfully and their value is at least 𝜏 (𝑏−𝑖 ) since 𝑖 is in the

optimal independent set by assumption.

Hence for all buyers in the optimal independent set, we extract

as least as much payment as directly running the digital goods

mechanism (i.e. only phase two) on these buyers. But Theorem 3.1

guarantees that would extract a 1/(2 log(2𝑘𝑒/𝛼))-fraction of the
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welfare of these buyers. This proves our approximation guarantee

and completes the proof. □

Remark 4.2. It is possible to generalize the mechanism and proof
in this section to work for a downward-closed set S, with the caveats
that (i) we lose efficiency from the first phase of the mechanism, which
needs to optimize over S and (ii) the exact guarantee becomes more
complicated because it depends on the size of the set that enters the
second phase of the mechanism (note it is not necessarily true that all
maximal sets in S have the same cardinality).

4.2 Lower Bound
We also inherit our lower bound from the digital goods setting; this

proof is much more straightforward. Interestingly, our lower bound

does not simply show some matroid of rank 𝑘 is hard, but rather

every matroid of rank 𝑘 must be hard.

Corollary 4.3. Fix any matroid M over 𝑛 elements with rank 𝑘 .
Any 𝛽-competitive truthful mechanism for the matroid setting with
M and 𝛼 = 1/2 must satisfy 𝛽 = Ω(log𝑘).

Proof. Since M is rank 𝑘 , it must have an independent set of

size 𝑘 . We invoke Theorem 3.2 to produce a distribution over that

set of buyers, then pad out to the 𝑛 total buyers by adding (𝑛 − 𝑘)
buyers who have value zero. Observe that this maintains the welfare

𝑊 . Then any hypothetical 𝛽-competitive truthful mechanism for

M and 𝛼 = 1/2 extracts too much revenue from the real 𝑘 buyers (it

cannot extract any payments from the zero-value buyers we used

to pad), which violates Theorem 3.2. This completes the proof. □

5 PUBLIC GOODS SETTING
5.1 Upper Bound
As with digital goods, we begin this section by presenting a mecha-

nism for the public goods setting. The mechanism we present will

be 𝑂 (𝑛 log(1/𝛼))-competitive with the welfare; later we will show

this has the optimal dependence on 𝑛 and 𝛼 .

We first remark that one natural approach for designing such a

mechanism is to attempt to mirror the approach in Theorem 3.1 and

run some instance of the single-buyer mechanism per bidder. In

the public goods setting, we can accomplish this as follows: divide

the item into 𝑛 equal pieces, and sell the 𝑖th piece independently to

bidder 𝑖 via the single-buyer mechanism (with the understanding

that if bidder 𝑖 wins this piece, all other bidders also receive it).

Doing this results in an𝑂 (𝑛 log(𝑛/𝛼))-competitive mechanism, but

it turns out this dependence on 𝑛 is sub-optimal.

Instead, we will show that we can do asymptotically better by us-

ing a threshold mechanism. Specifically, we will sample a threshold

𝜏 from some distribution depending on 𝛼 (defined in Mechanism

1) and allocate the item only if the sum of values𝑊 (truthfully

reported as bids) is at least 𝜏 . If allocation occurs, we charge bidder

𝑖 a fee ofmax(0, 𝜏 − (𝑊 −𝑣𝑖 )) (the VCG payment rule for this mech-

anism). We show this mechanism is 𝑂 (𝑛 log(1/𝛼))-competitive

(improving over the best posted-price algorithm by an 𝑂 (log𝑛)
factor).

Theorem 5.1. Mechanism 1 is truthful and 2𝑛𝑒 log(1/𝛼)-competitive.

Proof. To see thatMechanism 1 is truthful, note that each bidder

pays the minimum amount they would have to bid to cause the

Algorithm 1: An 𝑂 (𝑛 log(1/𝛼))-competitive mechanism

for the public goods setting.

Input:Welfare estimate [𝛼, 1], 𝑛 bidders (with private

values 𝑣𝑖 ).

Sample 𝜔 uniformly from the setW = {𝛼, 𝑒𝛼, 𝑒2𝛼, . . . , 1}.
Sample 𝜏 uniformly from the interval [0, 𝜔].
Solicit (truthfully) bids 𝑏𝑖 from each bidder.

Allocate the item only if

∑
𝑖 𝑏𝑖 ≥ 𝜏 . In this case, charge

bidder 𝑖 a cost of 𝑟𝑖 = max(0, 𝜏 − ∑
𝑗≠𝑖 𝑏 𝑗 ).

item to be (deterministically) allocated, so by Myerson’s Lemma

this payment rule is truthful (and the bid 𝑏𝑖 submitted by bidder 𝑖

will be 𝑣𝑖 ). We now proceed to analyze the competitive ratio of this

mechanism.

Note that by the construction of the setW, there is an element

𝜔 in𝑊 with the property that𝑊 ≤ 𝜔 ≤ 𝑒𝑊 . Since we have a

1/log(1/𝛼) probability of choosing this element 𝜔 from W, let us

condition on this event (this adds a |W| = log(1/𝛼) factor to our
eventual competitive ratio).

Now, consider the revenue 𝑟𝑖 = max(0, 𝜏 − (𝑊 − 𝑣𝑖 )) we obtain
from bidder 𝑖 through this mechanism. Since 𝜏 is chosen uniformly

in [0, 𝜔], this is a random variable with expectation

E[𝑟𝑖 ] =
1

𝜔

∫ 𝜔

𝑊 −𝑣𝑖
(𝜏 − (𝑊 − 𝑣𝑖 ))𝑑𝜏 =

1

2𝜔
(𝜔 −𝑊 + 𝑣𝑖 )2 ≥

𝑣2
𝑖

2𝜔
.

This implies the total expected revenue from the mechanism (con-

ditioned on choosing the correct 𝜔) is at least

𝑛∑︁
𝑖=1

E[𝑟𝑖 ] ≥
1

2𝜔

𝑛∑︁
𝑖=1

𝑣2𝑖 ≥ 1

2𝑛𝜔

(
𝑛∑︁
𝑖=1

𝑣𝑖

)
2

=
𝑊 2

2𝑛𝜔
≥ 1

2𝑛𝑒
𝑊 .

□

5.2 Lower Bound
We now show the linear dependence on 𝑛 is tight (as with digital

goods, the log(1/𝛼) dependence on 𝛼 is tight even in the 𝑛 = 1 case

by Theorem 2.4).

Theorem 5.2. Any 𝛽-competitive truthful mechanism for the pub-
lic goods setting with 𝑛 buyers and 𝛼 = 1/2 must satisfy 𝛽 = Ω(𝑛).

Proof. For simplicity, we prove the claim for even 𝑛 (odd 𝑛 can

be handled by padding the even case with an additional bidder that

always has zero valuation).

Our counterexample valuation vectors for 𝑛 bidders will all fol-

low the restriction that each bidder’s valuation is either zero or
1

𝑛 ;

due to 𝛼 , at least 𝑛
2
of the bidders must have the latter value. The

performance of any mechanism on these valuation vectors can be

characterized by its allocation function on these inputs. Although

it initially appears that the space of possible mechanisms is large,

we claim that a mechanism might as well give the same allocation

to any permutation of a valuation vector.

Formally, suppose we have a candidate mechanism with alloca-

tion function𝑥 (𝑣). Consider an symmetrized versionwith allocation
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function 𝑥 (𝑣) defined by:

𝑥 (𝑣) ≜ 1

𝑛!

∑︁
𝜎 ∈𝑆𝑛

𝑥 (𝜎 (𝑣))

The payment rule works out to:

𝑝 (𝑣) =
𝑛∑︁
𝑖=1

𝑣𝑖 · (𝑥 (𝑣) − 𝑥 (0, 𝑣−𝑖 ))

=

𝑛∑︁
𝑖=1

𝑣𝑖 · ©« 1

𝑛!

∑︁
𝜎 ∈𝑆𝑛

𝑥 (𝜎 (𝑣)) − 𝑥 (𝜎 (0, 𝑣−𝑖 ))ª®¬
=

1

𝑛!

∑︁
𝜎 ∈𝑆𝑛

𝑛∑︁
𝑖=1

𝑣𝑖 · (𝑥 (𝜎 (𝑣)) − 𝑥 (𝜎 (0, 𝑣−𝑖 )))

=
1

𝑛!

∑︁
𝜎 ∈𝑆𝑛

𝑝 (𝜎 (𝑣))

But this implies that the worst point of our symmetrized mechanism

does at least as well as the worst point of the original mechanism:

𝑝 (𝑣) ≥ min

𝜎 ∈𝑆𝑛
𝑝 (𝜎 (𝑣))

𝑝 (𝑣)
∥𝑣 ∥ ≥ min

𝜎 ∈𝑆𝑛

𝑝 (𝜎 (𝑣))
∥𝜎 (𝑣)∥

Hence it suffices to only consider symmetrized mechanisms when

proving our counterexample. Since all our bidders only have one

of two values and we have symmetrized, the allocation function

might as well only depend on the total welfare𝑊 = ∥𝑣 ∥. Consider
the allocations when the total welfare is𝑊 = 1

2
, 1
2
+ 1

𝑛 , · · · , 1. We

know that:

0 ≤ 𝑥

(
1

2

)
≤ 𝑥

(
1

2

+ 1

𝑛

)
≤ · · · ≤ 𝑥 (1) ≤ 1

By the pigeonhole principle, we know that exists an 𝑖 between
𝑛
2
and 𝑛 such that the difference 𝑥 ( 𝑖+1𝑛 ) − 𝑥 ( 𝑖𝑛 ) is at most

2

𝑛 . But

this implies that:

𝑝

(
𝑖 + 1

𝑛

)
=
𝑖 + 1

𝑛
·
(
𝑥

(
𝑖 + 1

𝑛

)
− 𝑥

(
𝑖

𝑛

))
≤𝑊 · 2

𝑛

This completes the proof. □
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A OMITTED PROOFS
Proof of Lemma 2.2.

Proof of Lemma 2.2. This is straightforward to verify, keeping

in mind that drawing a value of ℎ is always larger than 𝑝 ∈ [ℓ, ℎ].

Pr

𝑧∼D𝑒𝑞 [ℓ,ℎ]
[𝑧 ≥ 𝑝] · 𝑝 =

[∫ ℎ

𝑝

ℓ

𝑧2
𝑑𝑧 + ℓ

ℎ

]
· 𝑝

=

[
ℓ

𝑝
− ℓ

ℎ
+ ℓ

ℎ

]
· 𝑝

= ℓ

This completes the proof. □

Proof of Lemma 2.3.

Proof of Lemma 2.3. We have:

E𝑧∼D𝑒𝑞 [ℓ,ℎ] [𝑧] =
∫ ℎ

ℓ

ℓ

𝑧
𝑑𝑧 + ℓ

ℎ
· ℎ

= ℓ log
ℎ

ℓ
+ ℓ

= ℓ

(
1 + log

ℎ

ℓ

)
□

Proof of theorem 2.4. Suppose that there is a truthful mecha-

nism that achieves an _-approximate mechanism. Let 𝑥 (𝑣) denote
the probability of receiving an item when the bid is 𝑣 . WLOG, we as-

sume𝑥 (𝑣) is nonzero iff 𝑣 ∈ [𝛼, 1] . FromMyerson’s Lemma [Mye81],

we know that the allocation rule 𝑥 (𝑣) is implementable if and only

if it is monotone, and if it is implementable the corresponding

payment rule is 𝑝 (𝑣) =
∫ 𝑣

𝛼
𝑡 · 𝑥 ′(𝑡)𝑑𝑡 . Observe that the optimal

allocation rule 𝑥 , will satisfy the following constraints:∫ 𝑣

𝛼

𝑡 · 𝑥 ′(𝑡)𝑑𝑡 ≥ _𝑣 ∀𝑣 ∈ [𝛼, 1] (LP𝜖 )∫
1

𝛼

𝑥 ′(𝑡) ≤ 1

𝑥 ′(𝑡) ≥ 0 ∀𝑡 ∈ [𝛼, 1]

We will show that we can construct a sequence of linear pro-

grams 𝐿𝑃𝜖 such that they can approximate the optimal allocation

upto a discretization error of 𝜖 . We show that these linear programs

yield an allocation rule whose approximation ratio that converges

to a value of
1

1−log(𝛼) .
Let I𝜖 be the set that includes the multiples of 𝜖 along with 𝛼 ,

i.e. I𝜖 = {0, 𝜖, 2𝜖, . . . 1} ∪ {𝛼} denote the discretization of inter-

val [0, 1] into multiples of 1/𝜖 along with 𝛼. Denote by suc(𝑥) =
min𝑦∈I𝜖 ,𝑦>𝑥 𝑦 and pred(𝑥) = max𝑦∈I𝜖 ,𝑦<𝑥 𝑦 to be the successor

for a given value 𝑥 and predecessor of a given value 𝑥 in the dis-

cretization I𝜖 .
For any 𝜖 , we can show that there exists a family of linear pro-

grams LP𝜖 parametrized by 𝜖 which upper bound the optimal ap-

proximation factor _ by at most (1 + 𝜖). Taking the limit 𝜖 → 0, we

obtain the desired result. Consider the following linear program

max _ (Primal𝜖 )∑︁
𝑡 ∈I𝜖 ,𝑡 ≤𝑣

(𝑡 + Y) · 𝑦𝑡 ≥ _𝑣 ∀𝑣 ∈ I𝜖 ∩ [𝛼, 1] (apx)∑︁
𝑡 ∈I𝜖

𝑦𝑡 ≤ 1 (alloc)

𝑦𝑡 ≥ 0 ∀𝑡 ∈ I𝜖 (mon)

First observe that given an allocation function 𝑥 with a approx-

imation value, we can set 𝑦𝑡 = 𝑥 (𝑠𝑢𝑐 (𝑡)) − 𝑥 (𝑡) and _ to be the

same as the approximation value. Note that eq. (alloc) and eq. (mon)

are immidiately satisfied due to the monotonicity and the defi-

nition of an allocation function. The eq. (apx) will translate to∑
𝑡 (𝑡 + Y) · (𝑥 (𝑠𝑢𝑐 (𝑡)) − 𝑥 (𝑡)) = ∑

𝑡 (𝑡 + Y) ·
∫ 𝑡+Y
𝑡

𝑥 (𝑠𝑢𝑐 (𝑡)) − 𝑥 (𝑡) ≥∫ 𝑣

𝛼
𝑡 · 𝑥 ′(𝑡)𝑑𝑡 ≥ _𝑣 .

To show that the optimal value of LP𝜖 lies in [ 1

1−log(𝛼) ,
1+𝜖

1−log(𝛼) ],
we will present a primal solution with value

1

1−log(𝛼) and a dual so-

lution whose value is at most
(1+𝜖)

1−log(𝛼) . and we set 𝑦𝑡 = 𝑓 (𝑠𝑢𝑐 (𝑡)) −
𝑓 (𝑡) where 𝑓 is the function defined below:

𝑓 (𝑡) =
{

1

1−log(𝛼)
(
1 + log(𝑡/𝛼)

)
if 𝑡 ∈ [𝛼, 1]

0 else

Note that this function has the derivative

𝑓 ′(𝑡) =
{

1

1−log(𝛼) ·
1

𝑡 if 𝑡 ∈ [𝛼, 1]
0 else

.

To show that this is tight, we exhibit the dual:

min 𝛽 (Dual𝜖 )

𝛽 − (𝑡 + 𝜖) ·
∑︁

𝑣:𝑡 ≤𝑣≤1
𝑧𝑣 ≥ 0 𝑡 ∈ I𝜖∑︁

𝑣∈I𝜖
𝑣 · 𝑧𝑣 ≥ 1

𝑧𝑣 ≥ 0 ∀𝑣 ∈ IY
𝛽 ≥ 0

The above dual has the following solution: 𝛽 = 1+Y
1−log(𝛼) and

𝑔(𝑣) =
{

1

1−log(𝛼) ·
(
1 − 1

𝑣

)
if 𝑣 ∈ [𝛼, 1]

0 else

and set 𝑧𝑣 = 𝑔(𝑣) − 𝑔(pred(𝑣)). By construction, we notice that

𝑔(1)−𝑔(𝑡) = 1

1−log(𝛼)
1

𝑡 . The first constraint is satisfied as
1+Y

1−log(𝛼) −

(𝑡 + 𝜖) ·
(

1

1−log(𝛼)
1

𝑡

)
≥ 0.
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The second constraint is satisfied as∑︁
𝑣∈IY

𝑣𝑧𝑣

=
∑︁
𝑣∈IY

𝑣 · (𝑔(𝑣) − 𝑔(pred(𝑣)))

= 𝑔(1) − 𝛼 · 𝑔(𝛼) + Y ·
∑︁

𝑣∈IY ,𝛼≤𝑣≤1
𝑔(𝑣)

≥ 𝑔(1) − 𝛼 · 𝑔(𝛼) +
∫

1

𝛼

𝑔(𝑣)𝑑𝑣

= 1

□

B COMPUTING APPROXIMATELY OPTIMAL
MECHANISMS FOR TWO (OR MORE)
BUYERS

In this appendix, we explain how to generalize the linear program

in the proof of Theorem 2.4 to compute approximately optimal

mechanisms for two buyers (which we used to generate Figure 1).

A useful observation is that without loss of generality, the opti-

mal mechanism is symmetric in the two bidders. This is because any

𝛽-competitive truthful asymmetric mechanism can be converted

into a 𝛽-competitive truthful symmetric mechanism by averaging

it with a version that has the bidders swapped
1
due to linearity.

Hence we only need a linear program to find the best symmetric

mechanism.

This assumption lets us just consider a one-dimensional alloca-

tion function 𝑥 (𝑣1, 𝑣2) which represents the allocation to buyer one

when they bid 𝑣1 and the other buyer bids 𝑣2; symmetry allows us

to retrieve buyer two’s allocation function by swapping the argu-

ments: 𝑥 (𝑣2, 𝑣1). Again, from Myerson’s Lemma [Mye81] we know

that this allocation rule is implementable if and only if it is mono-

tone, and if it is implementable the corresponding payment rule is

𝑝 (𝑣1, 𝑣2) =
∫ 𝑣1
0

𝑡 · 𝑥 ′(𝑡, 𝑣2)𝑑𝑡 . Applying the same discretization as

before (recall that IY = {0, Y, 2Y, ..., 1}∪ {𝛼}) yields this approximate

linear program:

max _

𝑝𝑣1,𝑣2 =
∑︁
𝑡 ≤𝑣1

(𝑡 + 𝜖) · 𝑦𝑡,𝑣2 ∀𝑣1, 𝑣2 ∈ IY

𝑝𝑣1,𝑣2 + 𝑝𝑣2,𝑣1 ≥ _(𝑣1 + 𝑣2) ∀𝑣1, 𝑣2 ∈ IY s.t. 𝑣1 + 𝑣2 ∈ [𝛼, 1]∑︁
𝑡 ∈IY

𝑦𝑡,𝑡 ′ ≤ 1 ∀𝑡 ′ ∈ IY

𝑦𝑡,𝑡 ′ ≥ 0 ∀𝑡, 𝑡 ′ ∈ IY
As before, when we take the limit Y → 0 this linear program

approaches the optimal mechanism.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

1
In general, mechanisms for symmetric settings with more than two bidders can also

be symmetrized by averaging them over all permutations of bidders.
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