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Abstract
Spatio-temporal point processes (STPPs) are po-
tent mathematical tools for modeling and pre-
dicting events with both temporal and spatial
features. Despite their versatility, most existing
methods for learning STPPs either assume a re-
stricted form of the spatio-temporal distribution,
or suffer from inaccurate approximations of the
intractable integral in the likelihood training ob-
jective. These issues typically arise from the nor-
malization term of the probability density func-
tion. Moreover, existing works only provide point
prediction for events without quantifying their
uncertainty, such as confidence intervals for the
event’s arrival time and confidence regions for
the event’s location, which is crucial given the
considerable randomness of the data. To tackle
these challenges, we introduce SMASH: a Score
MAtching-based pSeudolikeliHood estimator for
learning marked STPPs. Specifically, our frame-
work adopts a normalization-free objective by es-
timating the pseudolikelihood of marked STPPs
through score-matching and predicts confidence
intervals/regions for event time and location by
generating samples through a score-based sam-
pling algorithm. The superior performance of our
proposed framework is demonstrated through ex-
tensive experiments on both point and confidence
interval/region prediction of events.

1. Introduction
Spatio-temporal point processes (STPPs) are stochastic pro-
cesses that model event occurrences in time and space,
where each event is associated with both temporal and spa-

1Georgia Institute of Technology, Atlanta, USA 2The Chi-
nese University of Hong Kong, Hongkong, China. Correspon-
dence to: Zichong Li <zichongli@gatech.edu>, Tuo Zhao
<tourzhao@gatech.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

tial features. STPPs are widely used in various fields, in-
cluding ecology (González et al., 2016), physiology (Tagli-
azucchi et al., 2012), and epidemiology (Li et al., 2021),
to model complex event sequences such as earthquakes,
brain activities, and disease outbreaks. Classical STPPs
(Diggle, 2006; González et al., 2016) capture relatively sim-
ple spatio-temporal patterns through combining a temporal
point process model, such as Poisson process (Kingman,
1992) and self-excitation process (Hawkes, 1971), with a
pre-specified spatial distribution estimator. With the advent
of neural networks, flexible and expressive neural STPPs
have been developed to model much more complicated event
dynamics, see Zhou et al. (2022); Dong et al. (2023); Yuan
et al. (2023); Okawa et al. (2019); Zhu et al. (2022).

In neural STPPs, event distributions are typically character-
ized through intensity functions parametrized by the neural
network, which model the influence of past events on present
occurrences. Current methods predominantly estimate pa-
rameters by maximizing the log-likelihood of event time and
location. However, computing such a likelihood involves
integrating the intensity function over time and space, which
is usually intractable due to the intricate form of the neural
network. Therefore, they resort to numerical approximation
methods such as Monte Carlo integration (González et al.,
2016; Zhu et al., 2022; Dong et al., 2023), which inevitably
introduce approximation errors that compromise prediction
accuracy. Various works have sought solutions for this com-
plication. For instance, Chen et al. (2021) utilize ODE with
the continuous-time normalizing flow (CNFs) to model con-
tinuous transformation of the distribution, but they need to
integrate over the ODE trajectory by inefficient numerical
ODE solver. Jia and Benson (2019); Zhou et al. (2022)
bypass the approximation of the integral by assuming re-
stricted forms of the distribution such as Gaussian mixture
models, but failing to capture complex spatio-temporal dy-
namics. Yuan et al. (2023) propose a diffusion-based STPP
model to avoid integrals and flexibly learn event distribu-
tions. However, they suffer from inefficient training and
non-trivial hyperparameter configuration.

Another limitation of neural STPPs is the absence of confi-
dence interval prediction. Given the huge inherent random-
ness of event times and locations, the variance of data points
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typically far exceeds the mean, rendering point prediction
unreliable and insufficient. Thus, it is crucial to quantify the
uncertainty associated with event predictions by providing
confidence intervals for event times and confidence regions
for locations. Moreover, when dealing with marked STPPs,
where discrete marks are associated with each event, we aim
to match the predicted posterior distribution to the ground
truth data. Since the learned model often exhibits overconfi-
dence or underconfidence, capturing an accurate confidence
score for event mark prediction is also necessary to enable
users to make more informed decisions. Li et al. (2023)
propose SMURF-THP for marked temporal point process
and provides confidence interval prediction, which will be
further discussed in Section 3.

In this work, we introduce SMASH: a Score MAtching-
based pSeudolikeliHood estimator for learning marked
STPPs, to address the above issues. Specifically, SMASH
bypasses the difficulty in integral calculation by adopting a
score-matching objective (Hyvärinen, 2005) for the condi-
tional likelihood of event time and location, which matches
the derivative of the log-likelihood (known as score) to
the derivative of the log-density of the underlying (un-
known) distribution. Furthermore, as a score-based genera-
tive model, SMASH can naturally generate samples from the
learned score functions using score-based sampling. This
facilitates predicting confidence intervals and regions for
event time and location.

In summary, we make three primary contributions:

• We propose SMASH, a consistent estimator for marked
STPPs that leverages a normalization-free score-based pseu-
dolikelihood objective to bypass the intractable integral com-
putation involved in log-likelihood estimation. SMASH
parametrizes the conditional score function of event loca-
tion and the joint intensity of event time and mark, capturing
intricate spatio-temporal dynamics with discrete marks.

• We consider confidence interval/region prediction for
events beyond unreliable point prediction, a feature unex-
plored and unevaluated by existing STPP methods. SMASH
supports flexible generation of event time, mark and location
via score-based sampling, offering high-quality samples.

• We validate the effectiveness of SMASH using multiple
real-world datasets. Our results demonstrate that SMASH
offers significant improvements over other baselines in both
point and confidence interval/region prediction.

2. Background
We briefly review marked spatio-temporal point process
(MSTPP), neural STPP, score matching, Langevin dynamics,
and confidence interval prediction in this section.

• Marked Spatio-Temporal Point Process is a stochastic

process whose realization consists of an ordered sequence of
discrete events S = {(ti, ki,xi)}Li=1 with length L, where
ti ∈ [0, T ] is the time of occurrence, ki ∈ {1, · · · ,M} is
the discrete event mark/type and xi ∈ Rd is the location
of the event that has occurred at time ti. Denote the his-
tory events up to time t as Ht = {(tj , kj ,xj) : tj < t},
the events’ distribution in MSTPPs is usually characterized
via the conditional intensity function λ(t, k,x |Hti). For
simplicity, we omit conditional dependency on the history
in the following discussions and employ a superscript i to
signify the condition on Hti . The conditional intensity is
then defined as

λi(t, k,x) ≜ λ(t, k,x |Hti)

= lim
∆t,∆x↓0

Pi(ti∈ [t, t+∆t], ki = k,xi∈B(x,∆x))

|B(x,∆x)|∆t
,

where B(x,∆x) denotes a ball centered at x and with ra-
dius ∆x. The conditional intensity function describes the
instantaneous probability that an event of mark k occurs
at time t and location x given the events’ history Hti . The
generalized conditional probability of the i-th event given
history Hti can then be expressed as

pi(t, k,x) = λi(t, k,x)e
−

∫ t
ti−1

∫
Rd

∑M
l=1 λi(τ,l,s)dτds

, (1)

where t ∈ [ti−1, T ]. The log-likelihood of the event se-
quence S is:

ℓ(S) =

L∑
i=1

log λi(ti, ki,xi)

−
∫ T

0

∫
Rd

M∑
l=1

λi(τ, l, s)dτds. (2)

The second term in the above equation serves as a normal-
ization term for the probability density.

• Neural STPP employs deep neural networks to param-
eterize the conditional intensity function λi(t, k,x). For
instance, Zhu et al. (2022) and Dong et al. (2023) leverage
Multi-Layer Perceptron (MLP) to construct a non-stationary
kernel for modeling the intricate inter-dependency within
the intensity. Zhou et al. (2022) utilize the Transformer
architecture to encode event history into a latent variable,
subsequently deriving the intensity using Radial Basis Func-
tion (RBF) kernels. Chen et al. (2021) decompose spatial
distribution from time and models the spatial distribution
by CNFs, while the time distribution is learned through an
ordinary differential equation (ODE) latent process. These
methods estimate the model parameters by maximizing the
log-likelihood presented in Eq. 2, where the evaluation of
the intractable integral is either avoided by assuming re-
stricted forms of event distribution or computed by numeri-
cal method.
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• Score Matching (Hyvärinen, 2005) is a technique for
estimating the parameters of unnormalized probability den-
sity models. It minimizes the expected squared difference
between the model’s log-density gradient (also known as the
score) and the ground truth log-density gradient, preventing
the calculation of the normalization integral. Denoising
score matching (Vincent, 2011) enhances the scalability of
score matching by adding a noise term to the original data
points and matching the model’s score to the noisy data’s
score. Yu et al. (2019) and Yu et al. (2022) further expand
score matching to more general classes of domains. No-
tably, Meng et al. (2022) introduce concrete score matching
for discrete data, broadening the application of score-based
models in discrete domains.

• Langevin Dynamics is a widely-used sampling technique
for score-based models, which generates samples from a
target distribution using only its score function by simulating
a continuous-time stochastic process. Hsieh et al. (2018)
introduce Mirror Langevin Dynamics (MLD) as a variant
specifically designed for sampling from distributions with
constrained domains.

• Confidence interval prediction is an essential aspect of
data modeling, providing a range that captures the inherent
uncertainty in the data (Schruben, 1983). For continuous
variables like event time and location in STPPs, we expect
models to predict confidence intervals or regions associated
with predefined confidence levels. The ideal model should
nicely match the confidence level with the actual coverage
of the generated confidence interval/regions; the closer the
match, the more adeptly the model captures the underlying
distribution. However, confidence intervals do not apply to
discrete variables like event marks. In this case, we expect
the model to learn a posterior distribution matching the
actual data distribution. This involves comparing predicted
probabilities to empirical accuracies (Guo et al., 2017), also
known as calibration.

3. Method
3.1. Score Matching-based Pseudolikelihood

Retaining the notation introduced in Section 2, our goal is
to learn λi(t, k,x), the joint intensity given the history Hti .
We aim to employ the score matching technique to avoid the
computation of the intractable integral in the log-likelihood
(Eq. 2). However, score matching cannot be directly applied
to the joint distribution of time, mark and location. This is
because: (1) An intractable integral over location x remains
after direct application and (2) event mark k is discrete
where the gradient does not exist. To tackle these issues, we
first decompose the joint intensity by conditioning on the
event time and mark:

λi(t, k,x) = λi(t, k)pi(x | t, k). (3)

The first term is essentially the intensity function of a
marked temporal point process (MTPP) without spatial fea-
tures and the second term captures the spatial dynamics. We
parametrize both the marginal intensity and the spatial dis-
tribution, and derive two score matching-based objectives
for estimation, which will be introduced in Section 3.1.1
and 3.1.2, respectively.

3.1.1. EVENT TIME AND MARK

We parametrize the marginal intensity function on event
time and mark as λi(t, k; θ) using a Transformer model,
where θ represents the model parameters. For notational
convenience, we omit θ in the subsequent context. Since
score matching cannot be directly applied to pi(t, k) due to
the discrete nature of mark, we further decompose pi(t, k)
to pi(t | k)pi(k | t), resulting in a pseudo-likelihood decom-
position. We then apply score matching to the conditional
distribution of event time pi(t | k) while adopting the condi-
tional likelihood for event mark distribution pi(k | t). Here,
the term “conditional” refers to the condition on time/mark
besides the history.

The score function is defined as the gradient of log-
probability density with respect to the data point. For con-
ditional event time distribution pi(t | k), we have the score
function as:

ψi
t(t | k) = ∂t log p

i(t | k) (4)

= ∂t log λ
i(t, k)−

M∑
l=1

λi(t, l). (5)

We can then formulate the expected score matching objec-
tive for the i-th event time:

L(i)
time =

1

2
Et,k,x

[
∥ψi

t(t | k)− ψi
t

∗
(t | k)∥2

]
, (6)

where ψi
t
∗ is the score function of the true event time distri-

bution. However, this objective is unattainable as it depends
on the unknown ground truth score. We can resolve this is-
sue by following the general derivation in Hyvärinen (2005)
and derive an empirical objective for the event sequence S:

L̃time(S) =

L∑
i=1

[
1

2
ψi
t(ti | ki)

2
+ ∂tψ

i
t(ti | ki)

]
. (7)

By minimizing the above score matching objective, the
scores of event time will be matched with the ground truth.

For event mark with undefined score, we can derive its
conditional probability mass function pi(k | t) in a closed
form:

pi(k | t) = λi(t, k)∑M
l=1 λ

i(t, l)
. (8)
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Then we learn this distribution by minimizing the negative
conditional log-likelihood on the sequence S:

L̃mark(S) =

L∑
i=1

− log
λi(ti, ki)∑M
l=1 λ

i(ti, l)
. (9)

3.1.2. EVENT LOCATION

For the spatial distribution pi(x|t, k), we parametrize the
conditional score function ψi

x(x | t, k) = ∇x log pi(x|t, k).
This allows us to derive the empirical score matching objec-
tive for event location as:

L̃spatial(S) =
1

L

L∑
i=1

[
1

2
∥ψi

x(xi | ti, ki)∥
2

+

d∑
j=1

∂x(j)ψi
x

(j)
(xi | ti, ki)

]
, (10)

where x(j) is the j-th dimension of location and ψi
x
(j) is the

j-th dimension of ψi
x.

3.1.3. SCORE MATCHING-BASED PSEUDOLIKELIHOOD
FOR ESTIMATION

Given the score matching-based objectives for event time
and location, and the conditional log-likelihood for event
mark, we can estimate the model by minimizing their
weighted sum:

L̃SMASH(S)= L̃time(S)+L̃spatial(S)+αL̃mark(S), (11)

where α is a hyperparameter that regulates the scale of the
conditional log-likelihood objective.

Our method is essentially applying score matching to the
first two distributions in the pseudo-likelihood decompo-
sition pi(x|t, k)pi(t | k)pi(k | t). Hence, we term it score
matching-based pseudo-likelihood estimation. Additionally,
we present the following theorem to demonstrate that the
proposed objective in Eq. (11) satisfies local consistency.
Theorem 3.1. Assume the events in sequence S follow the
distribution: p⋆(t, k, x|H) = p(t, k, x|H; θ⋆), and that no
other parameter gives a pdf that is equal (almost everywhere
w.r.t Lebesgue measure) to p(t, k, x|H; θ⋆). Assume further
that the optimization algorithm is able to find the global
minimum and p(t, k, x|H; θ) is positive for all t, k, x, and
θ. Then the estimator obtained by minimizing Eq. (11) is
consistent, i.e., it converges in probability towards θ⋆ when
the sample size approaches infinity.

3.2. Denoising Score Matching

In practice, the direct score-based objective given by Eq. 11
has two limitations: 1) the score functions of event loca-
tion are inaccurately estimated in regions of low data den-
sity (Song and Ermon, 2019) and 2) the objective L̃time(S)

contains second-order derivatives, leading to numerical in-
stability. We resolve these issues by applying denoising
score matching (Vincent, 2011) to the conditional distribu-
tion of event time and location, which reduces the area of
the low-density region by perturbing data and improves
stability by simplifying the objective. Specifically, we
add Gaussian noise to events’ time and location. Then
we match the model to the perturbed data distribution
p̃i(t̃, k, x̃) =

∫
t

∫
x
pi(t, k,x)q(t̃ | t)q(x̃ |x)dtdx, where

q(t̃ | t) ∼ N (t, σ1) and q(x̃ |x) ∼ N (x,σ2). Denote the
perturbed i-th event as {(t̃ji , k, x̃

j
i )}

Q
j=1, where Q is the

number of perturbed samples. The denoising variant of the
score matching objective for event time and location can be
expressed as

L̃D
time(S)=

1

2

L,Q∑
i,j=1

[
ψi
t̃
(t̃ji | k)−∂t̃ log q(t̃

j
i | ti)

]2
,

L̃D
spatial(S)=

1

2

L,Q∑
i,j=1

[
ψi
x̃(x̃

j
i | k)−∂x̃ log q(x̃j

i | ti)
]2
.

We then train the model by minimizing the following objec-
tive:

L̃D
SMASH(S)= L̃D

time(S)+L̃D
spatial(S)+αL̃mark(S). (12)

3.3. Sampling

With the learned intensities and score functions, we can
generate new samples using Langevin Dynamics (LD) to
provide point and confidence interval prediction for events.
Suppose we want to generate the i-th event conditioning
on the history Hti , we first generate events’ time and mark
by sampling the initial time gap t(0) and event mark k(0)

from a pre-specified distribution π. We then use LD to
recursively update the continuous time gap with step size
ϵ > 0 following the equation:

t(n)= t(n−1)+
ϵ

2
ψi
t(ti−1+t

(n−1), k(n−1))+
√
ϵwn, (13)

for n = 1, · · · , N. Here, wn is standard Gaussian noise.
The event mark is updated by sampling k(n) from a categor-
ical distribution defined by

pi(k | ti−1 + t(n−1)) =
λi(ti−1 + t(n−1), k)∑
l λ

i(ti−1 + t(n−1), l)
.

After the Langevin sampling, we utilize an additional de-
noising by Tweedie’s formula (Efron, 2011), following Li
et al. (2023):

t̂ = t(N) + σ1ψ
i
t(ti−1 + t(N), k(N)). (14)

We then sample k̂ from the updated categorical distribution
to obtain the i-th event’s time and mark as (ti−1 + t̂, k̂). We
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proceed similarly to generate the event’s location through
N -step Langevin Dynamics given the generated time and
mark:

x(n) = x(n−1)+
ϵ

2
ψi
x(x

(n−1) | ti−1+ t̂, k̂)+
√
ϵzn, (15)

x̂ = x(N) + σ2ψ
i
x(x

(N) | ti−1 + t̂, k̂), (16)

where the initial x(0) is sampled from an uniform distribu-
tion and zn is standard multivariate Gaussian noise. We
note that the sampling process involves two cascaded de-
noising processes, which is potentially less efficient than the
parallel sampling used in (Yuan et al., 2023). To accelerate
the process, we can sample event time and location in paral-
lel, which we find does not significantly affect the results.
Algorithm 1 in the appendix summarizes the procedure to
generate the i-th event conditioning on the history Hti .

With the generated samples, we can predict the next event
and also compute confidence intervals. We predict the time
and location of the next event by taking the mean of the
time and location samples, respectively. For event mark,
we assign the mode of the mark samples. We compute
confidence intervals for event time by taking quantiles of
the time samples, and compute the confidence regions for
event location by thresholding the location samples’ density.
Additionally, we use the proportion of samples that contain
the predicted mark as the confidence score to measure the
model’s calibration performance on event mark prediction.

3.4. Learning Marked Temporal Point Process

Our proposed method is general and can be easily applied
to marked TPP data. By simply removing the objective
for spatial features, we can learn the conditional intensity
function λi(t, k) for marked TPP model through minimizing

L̃TPP
SMASH(S) = L̃D

time(S) + αL̃mark(S). (17)

From the learned intensities, event time and mark samples
can be jointly generated by the former part of Algorithm 1.

Li et al. (2023) focus on marked TPPs rather than STPPs
and propose SMURF-THP that applies score matching tech-
nique to provide uncertainty quantification. Compared to
their work, we jointly model event time and mark by pa-
rameterizing an intensity function for each mark, whereas
SMURF-THP employs a single intensity function for all
event marks, hindering its ability to differentiate event time
patterns for different marks. Furthermore, we capture event
mark distribution by the joint intensity through a unified
model. In contrast, SMURF-THP relies on an independent
decoder, separated from the intensity function, to predict the
mark of the next event, resulting in less accurate modeling
of the time-mark dependency.

4. Experiments
We present an empirical evaluation of the proposed method
by comparing its performance against multiple classical
and neural STPP baselines on real-world datasets. We ex-
amine the models’ performance on both point and con-
fidence interval prediction of the next event given his-
tory. As the proposed framework is general and can be
directly applied to marked TPPs, we also include a com-
parison with neural marked TPP models on marked TPP
datasets. Further experimental details and results can be
found in the Appendix. Our code is publicly available at
https://github.com/zichongli5/SMASH.git.

Metrics: We employ four metrics to evaluate the model’s
performance:

• Calibration Score (CS) measures the calibration perfor-
mance of the generated confidence intervals/regions across
different confidence levels. It first calculates the calibration
error for each level, which is determined by the difference
between the actual coverage of the region and the desired
confidence level. Then it takes the average calibration error
across all different confidence levels. A lower CS denotes
superior performance in capturing data distribution. In our
experiment, we compute the average error at confidence
levels from 0.5 to 1 in increments of 0.1 for STPPs, and
from 0.8 to 1 in increments of 0.05 for TPPs. This choice is
motivated by that confidence intervals/regions with higher
levels are typically more useful.

• Mean Absolute Error (MAE) measures the mean difference
between the point prediction and the ground truth of the
events’ times and locations. We make point predictions
by taking the average time and location of the generated
samples.

• Mark Prediction Accuracy (Acc) calculates the accuracy
of the event mark predicted by the samples. We designate
the mode of the generated samples’ mark as the prediction.

• Expected Calibration Error (ECE) evaluates the model’s
calibration performance on event mark prediction. It mea-
sures the discrepancy between the predicted probabilities
and the true observed frequencies of outcomes.

4.1. Marked Spatio-Temporal Point Process.

We first compare SMASH against classical and neural STPP
baselines on Spatio-Temporal data, where we evaluate the
calibration score and MAE on both event time and location,
with accuracy and ECE for event mark prediction.

Datasets: We utilize the following three marked STPP
datasets: (1) Earthquake dataset contains the location and
time of all earthquakes in Japan from 1990 to 2020 with a
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magnitude of at least 2.0 from the U.S. Geological Survey 1.
We partition all earthquakes into three categories: ”small”,
”medium” and ”large” based on their magnitude. (2) Crime
dataset comprises reported crime from 2015 to 2020 pro-
vided by Atlanta Police Department 2. Events are classified
into four types according to the crime type. (3) Football
(Yeung et al., 2023) dataset records football event data re-
trieved from the WyScout Open Access Dataset. Each event
signifies an action made by the player, associated with the
type of the action.

Baselines: We compare our model against two classical
STPP methods and five neural STPP methods: (1) Poisson
Process (Kingman, 1992) with mixtures of Gaussian for spa-
tial distribution; (2) Hawkes Process (Hawkes, 1971) with
mixtures of Gaussian; (3) NJSDE (Jia and Benson, 2019)
adopts an SDE latent process to model temporal dynamics
and utilize mixtures of Gaussian for spatial distribution;
(4) NSTPP (Chen et al., 2021) incorporates an ODE latent
process for temporal dynamics and CNFs for spatial distribu-
tion. (5) NSMPP (Zhu et al., 2022) utilizes neural networks
to construct a non-stationary kernel for modeling the joint
conditional intensity. (6) DeepSTPP (Zhou et al., 2022) in-
troduces an RBF kernel-based parametrization for the joint
intensity function that supports exact likelihood computa-
tion. (7) DSTPP (Yuan et al., 2023) leverages the diffusion
model to capture the complex spatio-temporal dynamics.
Note that we utilize multiple sampling methods to generate
samples from baseline models for performance evaluation,
with a detailed description in Appendix B.

Overall performance: Table 1 summarizes the results. We
can observe that SMASH yields the best performance in
terms of CS and MAE for event time, while achieving re-
markable improvement in event location modeling. For
event mark prediction, SMASH obtains comparable accu-
racy with DSTPP and the lowest ECE. The improvements of
SMASH can be attributed to two factors: 1) SMASH learns
the score function without restricted assumption on the
event distribution, whereas NJSDE and DeepSTPP examine
higher CS and MAE due to the inaccurate pre-specified para-
metric form. 2) SMASH optimizes through a normalization-
free objective, while NJSDE, NSTPP and NSMPP suffer
from inaccurate numerical approximation.

Different Confidence Level: We further compare the cov-
erage of the confidence regions at different levels on the
Crime dataset. Figure 1(a) displays the predicted confidence
intervals’ coverage for event time. The black diagonal rep-
resents the ideal coverage. Compared with DeepSTPP and
DSTPP, SMASH is much closer to the black line, indicating
that the generated confidence regions are more accurate.
We can see that DeepSTPP and SMASH experience over-

1https://earthquake.usgs.gov/earthquakes/search/
2https://www.atlantapd.org

confidence on low confidence levels, while DSTPP tends
to be underconfidence. As the level increases, SMASH
approaches the correct coverage, whereas DSTPP and Deep-
STPP present severe overconfidence. For event location, we
highlight the coverage error of the confidence regions in
Figure 1(b) to elucidate the distinctions between the models.
As shown, SMASH presents the lowest coverage error for
most confidence levels, with DeepSTPP being the worst.
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Figure 1. Comparison of coverage of different confidence levels
on the Crime dataset.

Sample distribution visualization: We visualize the dis-
tribution of the generated samples for a randomly selected
event from the Earthquake dataset. As shown in Figure 2,
both the samples’ times and locations exhibit a broad spread,
which indicates the huge randomness within the event dy-
namics. Similar distributions is also observed among other
baselines. This proves the perspective that single point pre-
diction is not sufficient where confidence interval is needed
for the evaluation of the predicted distribution. Furthermore,
the samples’ locations on the right present a multi-modal
distribution, where the point prediction calculated from the
average can easily diverge from the actual observation.
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Figure 2. Distribution of samples’ times and locations generated
by SMASH and the ground truth on the Earthquake dataset.

4.2. Marked Temporal Point Process.

As SMASH provides a general framework, we can also
model marked TPP data using score-based objectives by
simply removing the loss term of the spatial location. In this
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Table 1. Comparison of different methods’ performance on three marked STPP datasets in terms of Calibration Score (CS) and Mean
Absolute Error (MAE) for event time and location, Accuracy (Acc) and Expected Calibration Error (ECE) for event mark.

Datasets Methods CStime(↓)(%) MAEtime(↓)(%) CSspace(↓)(%) MAEspace(↓)(%) Acc(↑)(%) ECE(↓)(%)

Earthquake

Poisson 15.13±0.12 0.75±0.04 7.14±0.21 8.12±0.02 − −
Hawkes 14.62±0.10 0.71±0.05 7.15±0.19 8.15±0.05 − −
NJSDE 16.23±0.55 0.41±0.08 8.35±0.35 8.05±0.04 90.03±0.05 11.23±0.22

NSTPP 14.66±0.89 0.45±0.12 7.33±0.43 7.45±0.05 90.13±0.03 12.21±0.12

NSMPP 25.30±0.25 0.69±0.03 8.66±0.14 7.99±0.03 88.20±0.03 10.47±0.03

DeepSTPP 22.77±1.32 0.38±0.01 7.31±0.25 7.55±0.10 90.11±0.09 21.20±1.50

DSTPP 14.80±0.67 0.35±0.01 5.81±0.56 7.42±0.08 90.30±0.01 7.30±1.45

SMASH 3.53±0.55 0.29±0.01 6.95±0.21 7.37±0.06 90.30±0.01 4.85±0.09

Crime

Poisson 18.06±0.25 1.82±0.11 8.06±0.18 0.062±0.01 − −
Hawkes 13.61±0.15 1.53±0.10 8.23±0.19 0.060±0.01 − −
NJSDE 17.33±0.25 1.72±0.21 7.89±0.70 0.083±0.20 36.26±0.04 13.42±0.65

NSTPP 17.26±0.69 1.41±0.14 7.03±0.98 0.065±0.35 37.03±0.04 14.20±0.28

NSMPP 16.09±0.25 1.63±0.12 9.15±0.08 0.058±0.017 36.30±0.03 15.47±0.23

DeepSTPP 16.64±0.31 1.16±0.02 5.04±0.79 0.058±0.010 36.25±0.03 15.14±0.62

DSTPP 14.50±1.81 1.43±0.13 1.92±1.48 0.057±0.012 39.33±0.93 14.65±1.53

SMASH 6.93±0.36 1.16±0.06 1.08±0.12 0.057±0.008 39.40±1.56 11.36±0.78

Football

Poisson 23.13±0.77 6.50±0.13 3.78±0.10 36.71±0.03 − −
Hawkes 16.91±0.35 5.01±0.08 3.59±0.06 36.66±0.03 − −
NJSDE 19.21±0.55 4.85±0.25 11.32±0.75 36.66±0.20 65.58±0.63 9.53±0.21

NSTPP 18.36±0.73 4.66±0.30 7.23±0.98 27.57±0.35 66.33±0.84 10.68±0.43

NSMPP 19.02±1.19 4.85±0.41 8.62±0.57 30.65±0.65 65.80±0.21 9.37±0.22

DeepSTPP 19.54±1.25 4.24±0.36 9.24±0.18 32.54±0.79 65.92±0.05 12.10±0.08

DSTPP 14.53±4.22 3.76±0.24 2.79±0.81 19.41±0.07 68.62±0.86 4.64±0.83

SMASH 6.38±0.54 3.40±0.08 2.52±0.34 20.35±0.13 68.38±1.03 3.23±1.68

subsection, we compare SMASH with neural TPP models
on four real-world marked TPP data.

Datasets: We utilize the following four real-world datasets:
(1) StackOverflow (Leskovec and Krevl, 2014). This dataset
contains sequences of 6, 633 users’ receipt of awards from a
question answering website over a two-year period. Events
are marked according to the type of the award, with a to-
tal of 21 distinct types. (2) Retweet (Zhao et al., 2015)
dataset comprises 24, 000 sequences of tweets, where each
sequence begins with the original tweet at time 0. Sub-
sequent events represent retweets by other users, which
are classified into three categories based on their follower
counts. (3) MIMIC-II (Du et al., 2016) dataset is a compre-
hensive collection of clinical data from patients admitted to
intensive care units (ICUs) over a seven-year period. We
select a subset of 650 patients and construct sequences from
their visit time and diagnosis codes. (4) Financial Transac-
tions (Du et al., 2016) dataset records a total of 0.7 million
transaction actions for a stock from the New York Stock
Exchange. We partition the long single sequence of trans-
actions into 2, 000 subsequences for evaluation. Each event
is labeled with the transaction time and the action that was
taken: buy or sell.

Baselines: We compare our model against the following
five existing methods: (1) NHP (Mei and Eisner, 2017) de-
signs a continuous-time LSTM to model the evolution of
the intensity function by updating the latent state; (2) NCE-
TPP (Mei et al., 2020) utilizes noise-contrastive estimation
on MTPPs to bypass likelihood computation. (3) SAHP
(Zhang et al., 2020) introduces a time-shifted positional
encoding and employs self-attention to model the intensity
function. (4) THP (Zuo et al., 2020) leverages the Trans-
former architecture to capture long-term dependencies in
history and parameterizes the intensity function through a
tailored continuous formulation. (5) SMURF-THP (Li et al.,
2023) develops a score matching-based objective to train the
THP model and predict confidence intervals for predicted
arrival time.

Overall performance: Table 2 summarizes the results. We
can see that SMASH outperforms other baselines by notice-
able margins in terms of CS, and it achieves the lowest MAE
on three datasets. Although SMURF-THP also leverages
score matching for modeling marked TPPs, SMASH better
captures the time-mark dependencies by modeling the joint
intensity function and constructing a unified model. Addi-
tionally, SMASH also improves the ECE while exhibiting
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Table 2. Comparison of different methods’ performance on four marked TPP datasets in terms of Calibration Score (CS), Mean Absolute
Error (MAE) for event time, Accuracy (Acc) and Expected Calibration Error (ECE) for event mark.

StackOverflow Retweet

Methods CS(%)(↓) MAE(↓) Acc(%)(↑) ECE(%)(↓) CS(%)(↓) MAE(↓) Acc(%)(↑) ECE(%)(↓)
NHP 1.18±0.21 0.72±0.01 46.26±0.02 5.22±0.06 3.78±0.28 1.63±0.02 60.69±0.11 2.63±0.22

NCE-TPP 1.35±0.28 0.67±0.01 46.02±0.04 5.56±0.13 2.73±0.35 1.46±0.04 60.01±0.23 2.42±0.24

SAHP 0.85±0.21 0.67±0.01 46.15±0.03 5.13±0.08 1.71±0.15 1.10±0.02 60.65±0.13 2.57±0.18

THP 1.36±0.40 0.63±0.01 46.50±0.02 5.42±0.10 3.43±0.51 1.59±0.04 60.82±0.06 2.96±0.33

SMURF-THP 0.34±0.04 0.64±0.01 46.26±0.05 5.41±0.04 0.35±0.04 0.99±0.01 60.80±0.08 2.45±0.11

SMASH 0.29±0.12 0.63±0.01 46.26±0.14 3.89±0.03 0.27±0.09 0.96±0.01 60.80±0.06 2.23±0.05

Financial MIMIC

Methods CS(%)(↓) MAE(↓) Acc(%)(↑) ECE(%)(↓) CS(%)(↓) MAE(↓) Acc(%)(↑) ECE(%)(↓)
NHP 1.66±0.21 1.96±0.05 60.39±0.25 4.15±0.13 1.43±0.10 0.99±0.01 83.10±0.91 15.80±0.63

NCE-TPP 1.64±0.27 2.30±0.16 60.12±0.08 4.38±0.35 1.36±0.68 1.13±0.01 83.17±0.67 14.62±1.09

SAHP 1.38±0.30 1.61±0.05 60.83±0.12 3.85±0.86 1.36±0.46 0.87±0.01 82.10±0.87 21.56±0.99

THP 1.54±0.01 1.89±0.01 60.84±0.30 3.48±0.22 1.20±0.37 1.09±0.01 83.73±0.05 13.35±0.81

SMURF-THP 1.28±0.06 1.40±0.01 60.85±0.38 3.71±0.15 1.14±0.23 0.87±0.01 83.72±0.48 15.65±0.85

SMASH 0.81±0.21 1.42±0.01 60.95±0.37 2.30±0.71 0.85±0.38 0.87±0.02 83.72±0.13 12.23±0.70

comparable accuracy with other baselines. We attribute it to
the fact that we perturb event time with noise to use denois-
ing score matching, which implicitly induces regularization
for event mark prediction.

4.3. Ablation Study

Denoising: SMASH perturbs data points with Gaussian
noise and employs denoising score matching to achieve bet-
ter stability and computational efficiency. We investigate the
effects of noise scale σ by adding different amounts of noise
to the data, including training without noise added. Results
tested on the Earthquake dataset are presented in Figure 3.
The figures suggest that adding perturbations effectively im-
proves performance on both event time and location when a
suitable noise scale is chosen. The calibration score of event
time first decreases and then increases as the noise grows,
while the calibration score of event location manifests a
continuous increase. This suggests that a small noise is
sufficient to cover the low-density regions in spatial distribu-
tion, while the event time requires a larger noise magnitude.
Notably, the MAE of both event time and location decrease
and tend to converge as the noise increase, implying that
larger noise can bring smaller mean bias.

Hyperparameter α. We investigate our model’s sensitivity
to the hyperparameter α in the training objectives on the
Earthquake dataset. As depicted in Figure 4, the calibration
scores of both event time and location follow an increasing
trend as α increases, while the ECE for event mark shows
improvement. This observation aligns with our understand-
ing of α as a scaler of the event mark modeling objective,
and increasing it places more emphasis on fitting event mark

distribution. The slight increase in ECE at α being 10 may
hint at overfitting within the mark distribution.
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Figure 3. Performance of SMASH with different noise scales on
the Earthquake dataset.
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5. Discussions
We remark that our work bears similarity to that of Yuan
et al. (2023), which applies a denoising diffusion probabilis-
tic model (DDPM) to STPPs. Their approach introduces
multiple noise scales to perturb the event distribution and
learns all perturbed distributions. In contrast, we only add
the noise once and learn the corresponding distribution,
greatly simplifying the framework. Moreover, they apply
DDPM as a model-free method without parametric assump-
tions, while we utilize the self-modulating intensity formula
in the Hawkes process to better capture the pattern. Notably,
our experimental results indicate that complex diffusion pro-
cesses are unnecessary for STPP modeling, perhaps due to
the lower data dimension compared to the original images
use case. It is also worth noting that while one could gen-
erate samples from some existing STPP methods, they do
not consider or discuss confidence interval prediction for
spatio-temporal events. SMASH naturally supports flexible
sampling via score-based algorithms, achieving superior
prediction performance.

In parallel, several studies on temporal point process (TPP)
explore non-likelihood-based objectives to circumvent the
computationally challenging integral calculation. For in-
stance, Xiao et al. (2017) apply a discriminative learning
method to estimate the model’s parameters. However, it
does not support flexible sampling due to the absence of
an explicit intensity function. Sahani et al. (2016) also
employ score matching for TPPs. However, they assume
intensity functions are independent of historical events, over-
simplifying the modeling of intricate event dependencies in
modern data. TPPRL (Li et al., 2018) employ reinforcement
learning (RL) for learning a policy to generate events in
the setting of temporal point process (TPP), which can not
be trivially extended to marked TPP/STPP. RLPP (Upad-
hyay et al., 2018) apply RL to marked TPP under an overly
restrictive assumption of exponential intensity functions,
which limits the ability to capture complex point processes.
INITIATOR (Guo et al., 2018) and NCE-TPP (Mei et al.,
2020) adopt noise-contrastive estimations to model marked
TPP, while these two methods still need to deal with the
intractable integral due to the likelihood-based approach for
the training of noise generation network. As NCE-TPP has
been shown to outperform INITIATOR by the authors, we
include NCE-TPP in our set of baseline comparisons.

6. Conclusion
In this work, we present SMASH, a Score-MAtching based
pSeudolikeliHood estimator for learning marked STPPs. We
begin by decomposing the intensity function to separate the
spatial features, thereby circumventing the intractable spa-
tial integral that arises when applying the score-matching
technique. Then we derive the score-matching objectives for

the conditional likelihood of event time and location, and
integrate the conditional likelihood of event mark as part of
the objective. Confidence intervals for event time and loca-
tion are obtained through flexible sampling using Langevin
dynamics and the learned score function. We conduct ex-
periments on various real-world datasets to illustrate that
SMASH achieves superior performance under both marked
STPPs and TPPs settings.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A. Model Architecture
We utilize the self-attention mechanism to encode both marked STPP and TPP data, as validated by previous research (Zuo
et al., 2020; Zhang et al., 2020; Zhou et al., 2022; Yuan et al., 2023). This mechanism captures long-term dependencies by
assigning an attention weight between any two events, with higher weights signifying stronger dependencies between those
events. We adopt the approach of (Yuan et al., 2023) and utilize the Transformer Hawkes Process model (Zuo et al., 2020) to
parameterize our intensity functions. Here we detail the model for marked STPP data.

Initially, each event in the sequence is encoded by summing the temporal encoding Ct, spatial encoding Cx and event mark
embedding Ck (Yuan et al., 2023; Zuo et al., 2020), where Ct,Cx,Ck ∈ RL×d with d being the dimension of embedding.
Through this process, the sequence S is encoded as C = Ct +Cx +Ck. We then pass C along with each embedding
Ct,Cx,Ck through the self-attention module. Taking C as the example, the attention output A is computed as:

A = Softmax

(
Q⊤K√
dk

)
V,

Q = CWQ, K = CWK , V = CWV .

The matrices WQ,WK ∈ Rd×dk and WV ∈ Rd×dv serve as weights for linear transformations that transform C into
query, key, and value, respectively. To enhance model capacity, (Vaswani et al., 2017) suggest using multi-head self-
attention. This involves inducing multiple sets of weights {WQ

h ,W
K
h ,W

V
h }Hh=1 and computing different attention outputs

{Ah}Hh=1. The final attention output for the event sequence is obtained by concatenating {Ah}Hh=1 and aggregating them
with WO ∈ R(dv∗H)×d:

A = Concat(A1, ...,AH)WO.

The attention output A is then processed through a position-wise feed-forward neural network (FFN) to obtain the hidden
representations:

H = ReLU(AWFFN
1 + b1)W

FFN
2 + b2,

h(i) = H(i, :).

In this context, h(i) encodes the i-th event and all past events up to time ti. We incorporate future masks during the
computation of attention to prevent learning from future events. We stack multiple self-attention modules and FFNs to
construct a larger model that can capture high-level dependencies.

Following the above computation, we obtain h(i),ht(i),hx(i),hk(i) as the encoding of different aspects of the event
history. We then parametrize the intensity functions λi(t, k) given history Hti using multiple layers of network, where each
layer follows:

hi
tk = σ(Wtt+ bt +Whh(i) + bh +Wtk(ht(i) + hk(i)) + btk).

Here, Wt ∈ Rd×1,Wh,Wtk ∈ Rd×d,bt,bh,btk ∈ Rd are trainable parameters. σ denotes the RELU activation function.
We stack three such layers and pass the output to another FFN, with the softplus activation in the last layer:

λi(t, k) = Softplus(FFN(hi
tk)).

For score function of event location, we employ the Co-attention Denoising Network (CDN) proposed by Yuan et al. (2023):

ψi(x | t, k) = CDN(h(i),ht(i),hx(i),hk(i)).

B. Experiment Detail
B.1. Training Detail

Dataset Preprocessing: (1) Earthquake: We adopt the same preprocessing procedure as in Chen et al. (2021), with the
exception that we exclude earthquakes with magnitudes below 2.0. (2) Crime: We select crime events from 2015 to 2020
at Atlanta with the following crime types: ”Burglary”, ”Agg Assault”, ”Robbery” and ”Homicide”. The occurrence time
of the crime serves as the event time, with longitude and latitude representing spatial features. (3) Football: We follow
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the same preprocessing as Yeung et al. (2023). (4) Four TPP datasets: We adopt the same data preprocessing as those
used by (Du et al., 2016) and (Mei and Eisner, 2017). For additional details and downloadable links, please refer to the
aforementioned papers. Table 5 summarizes the statistics of the seven datasets used in the experiments. We randomly
split all datasets to train/test/valid by the proportion of 0.8/0.1/0.1. As the datasets’ scales differ, we employ normalization
and log-normalization techniques. Specifically, we log-normalize event time by log(t)−Mean(log(t))

Var(log(t)) and apply standard
normalization for event location. We rescale back the generated samples before evaluation.

Hyperparameters: In STPP experiments, we employ the same backbone architecture as DSTPP to ensure a fair comparison
and maintain default hyperparameters for other baselines. In TPP experiments, we employ the same backbone architecture
as SMURF-THP. We note that while the original NCE-TPP uses LSTM as the backbone, we implement it using the same
Transformer backbone as ours. A detailed hyperparameter breakdown for the adopted backbone architecture can be found
in Table 3. During training, we use the Adam optimizer and train all models for 150 epochs on an NVIDIA Tesla V100
GPU. Hyperparameters specific to our method were fine-tuned via grid search and are detailed in Table 4. The number
of perturbations and samples are fixed at 300 for STPPs and 100 for TPPs; increasing these may improve the models’
performance. The two numbers of noise scale on marked STPP datasets signify the noise scale on event time and location.

Table 3. Summary of backbone architecture hyperparameters.

Dataset #head #layer dmodel dk = dv dhidden dropout batch learning rate

Earthquake 4 4 16 16 64 0.1 32 1e-3
Crime 4 4 64 16 256 0.1 32 1e-3

Football 4 4 32 16 128 0.1 4 1e-3
StackOverflow 4 4 64 16 256 0.1 4 1e-3

Retweet 3 3 64 16 256 0.1 16 5e-3
Financial 6 6 128 64 2048 0.1 1 1e-4
MIMIC-II 3 3 64 16 256 0.1 1 1e-4

Table 4. Summary of hyperparameters for the method.

Dataset Loss weight α noise scale σ Langevin step size ϵ #step

Earthquake 0.5 0.2/0.25 0.005 2000
Crime 0.5 0.3/0.03 0.005 1000

Football 0.5 0.2/0.1 0.01 2000
StackOverflow 0.2 0.1 0.005 2000

Retweet 0.5 0.1 0.0003 2000
Financial 0.5 0.01 0.005 2000
MIMIC-II 0.5 0.005 0.002 200

B.2. Computing Confidence Interval/Region

Let’s denote the Q generated samples as {(tji ,x
j
i , k

j
i )}

Q
j=1. For event time, which often follows long-tail distribution, we

calculate the q-confidence level interval as [0, tqi ], with tqi being the q-th quantile of sample times. For event location, we
first obtain the estimated pdf through gaussian kernel density estimation. A threshold is then determined such that the region
with a density exceeding this threshold satisfies the desired confidence level. This delineated region becomes the final
confidence region.

B.3. Baselines

Most of the neural STPP baselines we consider do not inherently support marked STPP modeling. We augment them for
marked STPP by parametrizing an intensity function for each mark based on their original approach. We utilize multiple
sampling methods to adapt to different baselines. For all baselines except DSTPP, we sample event time by Langevin
Dynamics from the learned intensities as in our method. We sample event location for NJSDE by directly sampling from the
learned Gaussian distribution. For NSTPP, we sample through their CNF procedure, that is, sampling starts from the initial
distribution followed by the ODE progression. Both NSMPP and DeepSTPP, which model joint intensity, utilize Langevin

13



Beyond Point Prediction: Score Matching-based Pseudolikelihood Estimation of Neural MSTPP

Dynamics for event location sampling. DSTPP sampling adheres to its native diffusion sampling method.

Table 5. Datasets statistics containing the name of the dataset, the number of event types, the number of events, and the average length per
sequence

Dataset #Type #Event Average Length

Earthquake 3 88064 73
Crime 4 35381 141

Football 7 67408 688
StackOverflow 22 480413 64

Retweet 3 2173533 109
Financial 2 414800 2074
MIMIC-II 75 2419 4

C. Additional Results
C.1. Sample Visualization

We visualize the sample distribution for two randomly selected events from the Crime and Football datasets in Figure 5. We
can observe a long-tail distribution of event time and a wide-spread distribution of event location.
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Figure 5. Distribution of samples’ times and locations generated by SMASH and the ground truth on the Crime and Football dataset.

C.2. Different Confidence Levels

We display coverage and coverage error for different confidence levels on the Earthquake and Football datasets in Figure 6.
For event time, SMASH consistently outperforms DeepSTPP and DSTPP across all confidence levels. For event location,
SMASH achieves comparable coverage error with DSTPP on the Earthquake dataset and slightly better performance on the
Football dataset.
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Figure 6. Comparison of coverage of different confidence levels on the Earthquake and Football dataset.
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C.3. Computational cost

We compare the computational costs of different baselines by measuring the training runtime on the Crime dataset, which
contains over 30,000 events. Table 6 presents the one epoch training time. We can observe that SMASH yields comparable
training time per epoch compared to DeepSTPP and DSTPP, which also avoid the computation of intractable integrals.
Conversely, NSTPP and NSMTPP require significantly more time; NSTPP involves numerical integration over ODE, and
NSMTPP necessitates MC approximation for the integral calculation.

Furthermore, the overall training cost is influenced by the training convergence rate. Therefore, we also assessed the
performance of each baseline under different runtime budgets, as illustrated in Figure 7. Our method, SMASH, demonstrates
rapid convergence to optimal performance. DSTPP and DeepSTPP also achieve convergence within 200 seconds, whereas
NSMTPP and NSTPP are considerably more time-consuming.

Table 6. Training time of 1 epoch of all baselines.

Methods Training Time of 1 epoch (s)

NSTPP 486.0
NSMTPP 53.2
DeepSTPP 2.0
DSTPP 2.4

SMASH 3.1
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Figure 7. Performance of baselines under different training time.

D. Proof of Theorem 3.1
Proof. Let ψ⋆

x (x|t, k,H) and ψ⋆
t (t|k,H) be the associated score functions of the true distributions p⋆(x|t, k,H) and

p⋆(t|k,H), respectively. Denote ψx(x|t, k,H; θ) and ψt(t|k,H; θ) as the score functions of the model with parameter θ.
The score matching objective we use in Eq. (11) is an empirical estimator of the following objective:

L(θ) = Ep⋆

{ L∑
i=1

{1
2

[
ψx(xi|ti, ki,Hti ; θ)− ψ⋆

x (xi|ti, ki,Hti)
]2

+
1

2

[
ψt(ti|ki,Hti ; θ)− ψ⋆

t (ti|ki,Hti)
]2

− log p(ki|ti,Hti ; θ)
}}

,

where the expectation is over each event in the sequence following the true distribution p⋆. We first prove that L(θ) ≥ L(θ⋆)
for all θ and the equality holds when θ = θ⋆.

The first two score matching terms of L(θ) must be larger than or equal to those of L(θ⋆) as the latter equals zero. The
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inequality of the last log-likelihood term can be derived as

E(ti,ki)∼p∗ [− log p(ki|ti,Hti ; θ
∗)]− E(ti,ki)∼p⋆ [− log p(ki|ti,Hti ; θ)] = E(ti,ki)∼p∗ [log

p(ki|ti,Hti ; θ)

p∗(ki|ti,Hti)
]

≤
M∑

ki=1

∫
ti

(
p(ki|ti,Hti ; θ)

p∗(ki|ti,Hti)
− 1)p⋆(ti, ki|Hti)dti

=

M∑
ki=1

∫
ti

(p(ki|ti,Hti ; θ)− p⋆(ki|ti,Hti))p
⋆(ti|Hti)dti =

∫
ti

(1− 1)p⋆(ti|Hti)dti = 0.

By summing up all events, we have that the last term of L(θ) is also greater than or equal to that of L(θ⋆). Then we get
L(θ) ≥ L(θ⋆). To prove the second statement, we look at the three terms step by step. For simplicity, we omit the condition
on history in the following.

If L(θ) = L(θ⋆), the first term in L(θ) must be zero. Since p⋆(·) is positive, we can infer that ψx(·; θ) and ψ∗
x (·) are

equal. This implies log p⋆(x|t, k) = log p(x|t, k; θ) + c for some constant c. Because both p⋆ and p are pdfs, the constant
c must be 0, and hence we have p⋆(x|t, k) = p(x|t, k; θ). Similarly, for the second term, we can get p⋆(t|k) = p(t|k; θ)
and hence p⋆(t,k)

p⋆(k) = p(t,k;θ)
p(k;θ) . From the third term, we can obtain p⋆(k|t) = p(k|t; θ) given the above derivation. So we

have p⋆(t,k)
p⋆(t) = p(t,k;θ)

p(t;θ) . By dividing the two equations, we get p⋆(t)
p⋆(k) =

p(t;θ)
p(k;θ) . Taking integration over t on both sides, we

have p⋆(k) = p(k; θ) and therefore we get p⋆(t, k) = p(t, k; θ). Adding that p⋆(x|t, k) = p(x|t, k; θ), we have the joint
distributions to be equal: p⋆(x, t, k) = p(x, t, k; θ). By assumption, θ⋆ is the only parameter that fulfills this equation, so
necessarily θ = θ⋆.

Then, according to the law of large numbers, the empirical version of the loss converges to L(θ) as the sample size approaches
infinity. Thus, the estimator converges to a point where L(θ) is globally minimized. Considering L(θ⋆) = L(θ) ⇒ θ = θ⋆,
the minimum is unique and must be found at the true parameter θ⋆.

E. Sampling Algorithm

Algorithm 1 Sampling i-th event given history Hti

1: Target: generate the i-th event (t̂i, x̂i, k̂i).
2: (t(0),x(0), k(0)) ∼ π
3: for n = 1, 2, · · · , N do
4: wn ∼ N (0, 1)
5: zn ∼ N (0,1)
6: Update t(n) according to Eq. 13
7: k(n) ∼ Categorical( λi(ti−1+t(n−1),k)∑M

l=1 λi(ti−1+t(n−1),l)
)

8: Update x(n) according to Eq. 15 using t(n) and k(n)

9: end for
10: Calculate t̂ based on Eq. 14
11: k̂ ∼ Categorical( λi(ti−1+t̂,k)∑M

l=1 λi(ti−1+t̂,l)
)

12: Calculate x̂ based on Eq. 16
13: return t̂i = t̂+ ti−1, x̂i = x̂, k̂i = k̂.

16


	Introduction
	Background
	Method
	Score Matching-based Pseudolikelihood
	Event time and mark
	Event location
	Score Matching-based Pseudolikelihood for Estimation

	Denoising Score Matching
	Sampling
	Learning Marked Temporal Point Process

	Experiments
	Marked Spatio-Temporal Point Process.
	Marked Temporal Point Process.
	Ablation Study

	Discussions
	Conclusion
	Model Architecture
	Experiment Detail
	Training Detail
	Computing Confidence Interval/Region
	Baselines

	Additional Results
	Sample Visualization
	Different Confidence Levels
	Computational cost

	Proof of Theorem 3.1
	Sampling Algorithm

