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ABSTRACT

An effective therapeutic antibody must bind both strongly and specifically to its
target while being free from developability issues such as aggregation, polyspeci-
ficity, poor expression, or low solubility. A key challenge in antibody drug dis-
covery is designing novel sequences that are free from these developability issues,
often arising from the 3D biophysical properties of the antibody. Antibodies con-
sist of two paired chains (Heavy and Light) and both chains and their interaction
can be important in determining their developability. Currently, there are no an-
tibody language models capable of generating paired sequences, crucial for fully
considering developability. Here, we present p-IgGen, a decoder-only language
model for paired heavy-light chain generation. We show that generated sequences
are diverse, antibody-like, and show pairing properties found in natural sequences.
p-IgGen shows state-of-the-art performance on zero-shot predictive tasks, outper-
forming much larger models. We also demonstrate how the model can be biased
to generate sequences with desired structural properties through finetuning. Here,
we bias the model to generate antibodies with 3D biophysical properties that fall
within distributions seen in clinical stage therapeutic antibodies.

1 INTRODUCTION

Antibodies play a crucial role in the immune response and are an increasingly important class of
therapeutic (Raybould et al.,2024). They consist of two sets of heavy and light chains with antigen
binding mediated by the Fv region of each chain (VH and VL respectively) (Chiu et al., |2019). The
majority of the diversity in antibodies is located in six hypervariable loops within the Fv region
known as complementarity determining regions (CDRs). The light chain and heavy chain each
contain 3 CDR loops (CDRL 1-3 and CDRH 1-3).

Modern antibody drug discovery typically relies on large libraries of paired variable heavy (VH)
and variable light (VL) sequences which are screened for affinity against a target (Zhang| [2023).
However, such libraries often contain sequences with developability issues (Jain et al., 2017)) (i.e.
propensity for aggregation, polyspecficity, poor expression, or low solubility) which can result in
potential therapeutics being discarded or requiring engineering later in the pipeline. It is important
to consider the heavy and light chain in combination for such issues (Raybould et al.|[2024).

There are currently several models capable of generating novel antibody VH or VL chains individ-
ually e.g. [Nijkamp et al.| (2022)) and Shuai et al.| (2023), however, none generate paired heavy and
light chain sequences. Generating paired sequences with these models requires either random com-
bination of generated VH and VL chains or the use of simple heuristics, such as pairing chains with
comparable rates of mutation. Random pairing of heavy and light chains can lead to unfavourable
interactions between the two chains compared to natively paired sequences which may introduce de-
velopability related issues or a lower propensity to forming high affinity interactions with an antigen
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(Jayaram et al| 2012} [Warszawski et al, |2019). These issues are related to the structure and se-
quence of the entire antibody including interactions between the heavy and light chains (Raybould
et al.,[2024).

Here, we address this issue by developing paired-IgGen (p-IgGen), an auto-regressive decoder-only
model trained on both unpaired and paired antibody sequences. p-IgGen generates diverse and
antibody-like sequences, as measured with a variety of sequence and structure-based metrics. In
order to make best use of the available data we use a pretraining regime capable of ingesting the large
corpus of unpaired sequences (~250M) followed by finetuning on the smaller but more biologically
relevant paired sequence data (~1.8M). The model can also be biased to generate sequences with
desired properties through finetuning. Here, we bias the model to generate antibodies with 3D
biophysical properties that fall within distributions seen in clinical stage therapeutic antibodies, as
predicted by the structure-based developability predictor the Therapeutic Antibody Profiler (TAP)
(Raybould et al.,2019)). Finally, we show that p-IgGen outperforms other antibody language models
on zero-shot prediction benchmarks, demonstrating robust sequence representations.

2 RESULTS

2.1 PAIRED ANTIBODY LANGUAGE MODEL

p-IgGen is an auto-regressive decoder-only language model using a GPT-2 like architecture (Brown
et al.,2020), see Methods for full architecture and training details. We trained p-IgGen in a two-step
procedure, pretraining on the much larger available dataset of unpaired sequences. ‘IgGen’ was
trained on a filtered set of 117M VL and 140M VH sequences taken from the Observed Antibody
Space (OAS) (Olsen et al., |2022a)), see Methods for full filtering and tokenisation details. ‘p-IgGen’
was then trained by finetuning IgGen on a set of 1.8M paired VH/VL sequences taken from OAS.

2.2 P-IGGEN GENERATES NOVEL, REALISTIC AND DIVERSE PAIRED SEQUENCES.

We evaluated the sequences generated by p-IgGen using a comprehensive set of in silico metrics,
demonstrating that these sequences are unique, diverse, and antibody-like. By comparing these
metrics against a test set of natural paired sequences we establish that the distributions of generated
sequences are very similar to those of natural sequences.

We found that sequences generated by p-IgGen were as similar to natural sequences as natural se-
quences are to each other (Appendix Figure {). Generated sequences also show a similar sequence
identity to both training and validation sets, indicating that the model has not overfit to the train-
ing data (Appendix Figures [3] and [). Following [Shin et al.| (2021) we examined the diversity of
generated sequences using the cosine similarity with each sequence’s nearest neighbour. At a sam-
pling temperature of 1.25 the generated sequences were as diverse as natural sequences (Appendix
Figure[7). This diversity can be tuned by adjusting the sampling temperature.

Generated sequences show a similar distribution of ESM-2 (Lin et al.,|2023) likelihoods, suggesting
that they are just as ‘protein-like’ as natural sequences (Appendix Figure[5). To assess if they were
antibody-like, we aligned and numbered all sequences with the antibody-numbering tool ANARCI
(Dunbar & Deanel 2015) which successfully identified a heavy and light chain for all sequences.
The distribution of CDR lengths was also examined and found to be closely aligned with natural
sequences (Figure [I). We also tested whether the sequences could be structurally modelled using
ABodyBuilder2 (ABB2) (Abanades et al., |2023) and found similar confidence values as those seen
for natural sequences (Appendix Figure[6).

Finally, we investigated whether the generated sequences show VH/VL pairing characteristics simi-
lar to those observed in natural sequences. Naturally paired sequences show a correlation in the mu-
tation rates of the heavy and light chains, relative to their respective germline sequences. We found
that generated sequences from p-IgGen also display a similar correlation, while no such correlation
is observed when the same generated sequences are randomly paired with each other (Appendix
Figure [9). Additionally, we compared the inverse folding likelihood of sequences generated by p-
IgGen to randomly paired sequences using Antifold (Hgie et al.,2023)), an antibody-specific inverse
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folding model. p-IgGen generated sequences show higher likelihoods and a distribution closer to
that of naturally paired sequences compared to the randomly paired sequences (Appendix Figure [g).
These results suggest that sequences generated by p-IgGen are not only antibody-like but also have
biologically plausible VH/VL pairings.
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Figure 1: Generated sequences show a similar distribution of CDR lengths to natural se-
quences. We looked at the distribution of CDR lengths of sequences generated by p-IgGen (“Gener-
ated”) compared to test set sequences from paired OAS (“Natural”). Lengths were determined using
IMGT-defined CDR positions with IMGT numbering using ANARCI.

Our validation of p-IgGen’s generated sequences spans a broad array of tests: assessing sequence
identity and diversity, protein-likeness, antibody-specific properties (including ANARCI numbering
and CDR length distributions), and conducting structural modelling with ABB2. Together, these
tests confirm that p-IgGen generates novel and diverse sequences that appear just as antibody-like
as natural sequences. Our comprehensive validation confirms p-IgGen’s potential to generate novel,
realistic, and diverse paired antibody libraries.

2.3 GENERATION CAN BE BIASED TOWARDS ANTIBODIES WITH DESIRED SEQUENCE AND
STRUCTURE-BASED PROPERTIES.

Having verified that p-IgGen can create diverse, realistic, and previously unseen antibodies, we then
investigated whether the generation space could be restricted to antibodies with desirable developa-
bility properties. The approach we took was to fine-tune p-IgGen on a set of antibodies with the
desired properties. This has the advantage of being very simple to implement; it does not require a
differentiable property predictor or reinforcement learning. As a case study, we fine-tuned on a set
of developable antibodies, as predicted by the Therapeutic Antibody Profiler (TAP) tool (Raybould
et al.l 2019). Specifically, we structurally modelled all 1.8M paired sequences using ABB2 and ran
these structures through TAP. We defined an antibody as ’developable’ if it had all green flags for
the four structure-based TAP metrics (PSH, PPC, PNC, and SFvCSP) (see Methods for full details).
We used this “safe’ set of 909,790 sequences to fine-tune paired p-IgGen to create a “developable
p-IgGen”. The developable p-IgGen is therefore trained in a three-step process - first pretrained
on unpaired data, then finetuned on paired sequences, and finally finetuned on highly developable
sequences.

Finetuning on the developable set shifted the distribution of the 3D biophysical properties of gener-
ated antibodies (Appendix Figure[I0), despite being trained on sequence alone. We saw a significant
reduction in the proportion of amber and red-flagged antibodies for all metrics for the developable
model relative to the paired model (Figure [2). The diversity of generated antibodies was still main-
tained, as measured by intraset diversity and sequtence identity (Appendix Figures[IT] & [12).
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Figure 2: Developable p-IgGen shows favourable TAP flagging compared to p-IgGen on both
structure-based and sequence-based metrics. We generated 3000 sequences from p-IgGen, and
developable p-IgGen and sampled 3000 sequences from the paired OAS validation set. All of these
sequences were structurally modelled with ABB2 and were then run through TAP to generate devel-
opability flags for the four structure-based metrics (PSH, PPC, PNC, SFvCSP) and the total CDR
length.

2.4 P-IGGEN ACHIEVES STATE-OF-THE-ART PERFORMANCE OF 0-SHOT TASKS

Finally, to understand whether our models were learning meaningful representations of antibodies,
we tested their ’zero-shot’ prediction performance on two antibody fitness datasets. We used a
deep mutational scan dataset of 4275 anti-VEGF antibodies (Koenig et al.,2017)) to assess zero-shot
prediction of expression, and a curated dataset of antidrug antibody responses for 217 therapeutic
antibodies for immunogenicity prediction (Marks et al.,2021). For zero-shot accuracy, we looked at
the Pearson correlation of the perplexity of sequences under the given model with the fitness metric
being assessed.

For model testing and comparison, we used the Fitness Landscapes for Antibodies (FLADb) testing
suite (Chungyoun et al.,|2024). FLADb offers benchmark results for various state-of-the-art models,
both sequence-based (IgL.M (Shuai et al., [2023), AntiBERTy (Ruffolo et al., 2021), ProGen (Ni-
jkamp et al.,[2022))) and structure-based (ProteinMPNN (Dauparas et al., 2022), ESM-IF (Hsu et al.,
2022)). However, FLADb lacks benchmarks for structure-based models on the expression dataset. For
both datasets, we found that p-IgGen outperformed IgGen, while p-IgGen and developable p-IgGen
performed similarly. For the expression dataset, p-IgGen outperformed all other antibody-specific
LMs (AntiBerty, IgLM, and ProGen OAS) (Appendix Table [3). The ProGen general protein LMs
outperformed p-IgGen for expression prediction, but even the smallest ProGen model has more than
7.5X the number of parameters of p-IgGen (see Appendix Table ) and requires significantly more
compute to train. The superior performance of general protein language models for expression sug-
gests the evolutionary patterns learnt during training on diverse proteins are important for the more
general problem of protein expression. For the immunogenicity dataset, p-IgGen outperformed all
other methods, with the same performance for both the developable p-IgGen model and the p-IgGen
model (Table[T).

3 CONCLUSIONS

In this work, we have presented and extensively validated p-IgGen, an antibody language model
capable of producing realistic paired sequences and achieving state-of-the-art performance on zero-
shot tasks. The ability to finetune p-IgGen to produce sequences with desired biophysical properties
while preserving diversity highlights its applicability to high throughput antibody drug discovery.
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Model Parameters Pearson Correlation
p-IgGen 17M 0.53
Developable p-IgGen 17"M 0.52
ProGen/small 151M 0.48
ProGen/medium 764M 0.46
IgGen 17M 0.45
ProGen/xlarge 6.4B 0.34
ProGen/oas 764M 0.29
ESM-IF 124M 0.28
IgLM 13M 0.20
ProGen/large 2.7B 0.07
ProGen/base 764M 0.06
MPNN 1.7M -0.03
AntiBerty 26M -0.05

Table 1: p-IgGen and developable p-IgGen outperform all other models for zero-shot predic-
tion of immunogenicity. Language models and inverse folding models (ESM-IF and MPNN) were
evaluated for zero-shot prediction of immunogenicity using a dataset of antidrug antibody responses
for 217 therapeutic antibodies curated by Marks et al.| (2021) using FLAb. Results are ordered by
Pearson’s correlation (best to worst).

4 METHODS

4.1 MODEL AND TRAINING

We trained three models: IgGen, p-IgGen, and developable p-IgGen. IgGen was pretrained on un-
paired sequences and finetuned on paired sequences to give p-IgGen. p-IgGen was further finetuned
on a set of developable sequences to give developable p-IgGen. All models use the same autore-
gressive decoder-only architecture based on GPT-2 (Brown et al., |2020) with the addition of rotary
positional embedding (Su et al.l [2024), implemented in PyTorch. We used 3 attention layers, each
with 12 attention heads and an embedding size of 768, the feed-forward layers had a dimension of
2048, for a total of 17,349,888 parameters. Sequences were tokenised at the residue level, with a
special token added to the start (“1”) and end (“2”) of each sequence (see Appendix Section[A.T]for
full details). For the paired models, the light chain was concatenated to the heavy chain. During
training, the forward or reverse direction was randomly chosen.

All training was performed using the Adam optimiser with a cosine learning rate scheduler. IgGen
was trained for 20 epochs on 5 A100 GPUs with a learning rate of 1E-4, a local batch size of
512 and 4 gradient accumulation steps. p-IgGen was trained by finetuning all layers of IgGen for
3 epochs using a batch size of 256 and a learning rate of 1E-5 on an A100 GPU. 3 epochs was
chosen as the model showed an understanding of paired sequences while showing less forgetting
of unpaired sequences in comparison to further trained models. Finally, developable p-IgGen was
trained by finetuning all layers of p-IgGen for 2 epochs with the same hyperparameters as used to
train p-IgGen.

4.2 DATA

Models were trained using antibody sequences taken from the Observed Antibody Space
(OAS) (Olsen et al., 2022a). Only human sequences were used, and sequences were filtered to
reduce redundancy and to remove sequences which likely contained PCR sequencing errors (see
Appendix section . For the unpaired dataset, this resulted in 117,431,915 VL and 130,246,252
VH sequences. The filtered paired dataset consists of 1,800,545 VH/VL sequences.

For the developable dataset, we structurally modelled all sequences from paired OAS using ABody-
Builder2 (Abanades et al,, 2023). The structures were then flagged for developability using TAP
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(Raybould et al., 2019), which calculates five metrics which have been associated with poor devel-
opability. CDR sequences that had green flags for the four structure-based metrics (PSH, SFvCSP,
PPC, and PNC) were classified as developable and included in the finetuning set. We did not filter
on the CDR length metric, as this is sequence-based so generated sequences could be quickly and
easily filtered for this. As p-IgGen had already been trained on the paired dataset, we ensured that
we kept the same train / validation / test splits as used for training the paired model.

Datasets for zero-shot prediction tasks were taken from the FLAb repository (Chungyoun et al.,
2024). The immunogenicity set consists of the anti-drug antibody (ADA) response against 217
therapeutics curated by Marks et al.| (2021). The expression dataset is taken from Koenig et al.
(2017) and consists of a deep mutational scan of an anti-VEGF antibody, with 4275 sequences.
There was no overlap between the paired zero-shot test sequences and training set sequences.
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A APPENDIX

A.1 TOKENISATION SCHEME

Forward Tokenisation Reverse Tokenisation
1{VH}2 2{Reverse VH}1
1{VL}2 2{Reverse VL}2

1{VH}{VL}2 2{Reverse VL}{Reverse VH}1

Table 2: IgGen is provided with VH and VL sequences separately, while p-IgGen and developable p-
IgGen are provided with the VL concatenated to the VH. All sequences are provided in the forward
direction as well as reversed. During training, models are shown all sequences in both the forward
and reverse direction.

A.2 DATASET FILTERING

For unpaired OAS, heavy and light sequences were filtered separately to remove identical sequences
and any sequences marked by ANARCI (Dunbar & Deane} [2015) as having shorter than IMGT
defined framework region 1 or 4, missing conserved cysteines, or containing unknown residues.
The sequences were then further filtered for redundancy by clustering at 95% identity using linclust
(Steinegger & Sodingl [2018) with coverage mode 1 (target coverage). Within each cluster, we
further clustered by identical CDRs and kept a random sample for each sub-cluster. We numbered
sequences with the IMGT scheme using ANARCI (Dunbar & Deanel 2015) and used IMGT CDR
definitions (Lefranc et al.,[2003)). 117,431,915 VL and 130,246,252 VH sequences were used for
further steps.

Paired OAS was filtered to remove sequences with missing conserved cysteine residues or
with unknown residues. Sequences with deletions in framework regions were completed using
AbLang (Olsen et al., 2022b)). This was not performed for unpaired sequences as a large amount
of data was already available. Due to the smaller size of paired OAS, and the increased diversity
relative to unpaired OAS due to the combination of both VH and VL chains for each sequence, we
did not filter the sequences for redundancy, apart from ensuring no identical full VH/VL sequences
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were present. For the train, validation, and test splits, we clustered length matched CDRs at 95%
sequence identity using cd-hit (Li & Godzik} 2006).

A.3 SEQUENCE VALIDATION

We generated samples using top-p sampling, as implemented in the HuggingFace Transformers li-
brary (Wolf et al.| [2020), with a top-p value of 0.95, and a temperature value of 1.25 unless otherwise
stated. We numbered sequences using ANARCI (Dunbar & Deane| 2015) and the IMGT scheme
(Lefranc et al.| [2003)) to identify the heavy and light chains and allow for other downstream analyses.

We calculated the sequence identity of heavy chains taken from the paired generated sequences and
the OAS paired test set to all of OAS unpaired using KASearch (Olsen et al.l 2023)). To assess the
intraset diversity of the generated and test sequences, we calculated the pairwise cosine diversity
of 3-mer subsequences of the paired sequences within each set, with the light chain concatenated
after the heavy chain, using the scikit-learn library (Pedregosa et al.,|2011). We calculated the log-
likelihood of sequences using ESM2 (Lin et al.| 2023), with the light chain concatenated after the
heavy chain. We used the esm2_t12_35M_URS50D model hosted on HuggingFace (Wolf et al., [2020)
and calculated the average log-likelihood of the tokens in the input.

We used ANARCI-derived numbering and IMGT definitions to calculate the length distribution of
the CDRs within the generated and natural sets. ANARCI annotations were also used for germline
gene usage and sequence identity to germline sequences. We modelled all generated sequences using
ABodyBuilder2 (ABB2) (Abanades et al., 2023) and extracted error estimates from the generated
pdb files. For developability prediction, we ran the generated structures through the Therapeutic
Antibody Profiler (TAP) (Raybould et al.,[2019). We then ran modelled structures through Antifold
to calculate the inverse folding log likelihood. We also took the same generated sequences, randomly
paired the VH and VL chains, modelled these structures with ABB2 and calculated inverse folding
likelihoods using Antifold.
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Figure 3: Generated sequences do not show signs of overfitting to the training sequences. We
calculated the maximum sequence identity of VH and VL from 1000 sequences generated by p-
IgGen with the paired OAS training set. VH and VL regions were extracted from the generated
sequences using ANARCI. KDE lines show the smoothed distribution of the sequence identity data.
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Figure 4: Generated sequences show similar identity to validation set sequence as training set
sequences do to validation set sequences. We calculated the sequence identity of VH and VL from
1000 sequences generated by p-IgGen with the paired OAS validation set (”"Generated”). We also
calculated the sequence identity of a random sample of 1000 OAS paired training set sequences
to validation set sequences ("Natural”). VH and VL regions were extracted from the generated
sequences using ANARCI. KDE lines show the smoothed distribution of the sequence identity data.
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Figure 5: Generated sequences have a similar distribution of ESM-2 log-likelihoods as natural
sequences. We calculated the log-likelihood of 1,000 full VH/VL sequences generated by p-IgGen
(“Generated”) as well as 1,000 sequences taken from the test set of paired OAS using the masked
protein language model ESM-2.
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Figure 6: Generated sequences have similar structural modelling error estimates as natural
sequences. We structurally modelled 1,000 generated and 1,000 natural sequences using ABB2.
Per loop error estimates were produced by taking the mean ABB2 RMSD error estimate across
residues in IMGT defined CDR regions, as numbered by ANARCI.

Distance Within Sequence Set

e
N~ O

Percent of Sequences
=
o

N
ﬁ—'P

Set
[ Natural
[ Generated

.0

0.1

Pairwise Cosine Distances

0.7

Figure 7: Intraset diversity, measured by cosine distance, is similar for generated and natural
sequences. We calculated the highest pairwise cosine distance for 1000 sequences generated from
p-IgGen using a sampling temperature of 1.25 (“Generated”). This was compared to the highest
pairwise cosine distance for 1000 sequences sampled from the validation set of paired OAS (“Natu-

ral”). KDE lines show the smoothed distribution of the diversity data.
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Figure 8: Inverse folding likelihoods of VH/VL pairings generated by p-IgGen show a distri-
bution closer to natural sequences compared to randomly paired generated sequences. We
calculated the Antifold inverse-folding likelihood of 1000 sequences generated by p-IgGen (“Gen-
erated”) and structurally modelled using ABB2. This was compared to 1000 natural sequences
(“Natural”) as well as the same 1000 generated sequences but with VH and VL chains randomly
paired and remodelled using ABB2 (“Generated Random Pairings”).
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Figure 9: Both natural sequences and paired sequences generated by p-IgGen show correla-
tion between the mutation rates of the VH and VL chains. Average V/J gene identity to germline
was used as a measure of mutation of the VH and VL chains, as reported by ANARCI. Natural
sequences (taken from the paired OAS validation set) and sequences generated by p-IgGen (“Gener-
ated Sequences”) show a strong correlation between the VH and VL mutation rates. No correlation
is seen for generated sequences which have VH and VL chains randomly paired.
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A.4 PROPERTY BIASING
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Figure 10: Antibodies generated by developable p-IgGen show a favourable shift in the dis-
tribution of TAP metrics relative to natural sequences. We generated and structurally modelled
1000 sequences from developable p-IgGen using ABB2. We then ran TAP on the structural mod-
els to calculate the four structure-based metrics (PNC, PPC, PSH, and SFvCSP) and the total CDR
length (“Generated”). We also calculated the TAP metrics for all paired OAS test set sequences
(“Natural”) using the same methodology.
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Figure 11: Sequences generated by developable p-IgGen maintain their diversity. We calculated
the highest pairwise cosine distance for 1000 sequences generated from developable p-IgGen using
a sampling temperature of 1.25 (“Generated”). This was compared to the highest pairwise cosine
distance for 1000 sequences sampled from the validation set of developable paired OAS (‘“Natural”).
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Figure 12: Sequences generated by developable p-IgGen maintain a similar sequence identity
distribution as seen with p-IgGen. We calculated the sequence identity of VH and VL from 1000
sequences generated by developable p-IgGen with the validation set of developable paired OAS. We
also calculated the sequence identity of a random sample of 1000 developable paired OAS training
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A.5 ZERO-SHOT TASK

For zero-shot prediction, we adapted code from the FLAb repository (Chungyoun et al., [2024)) to
calculate the perplexity of paired sequences in each dataset and determined the Pearson correlations
with the experimental assay data. For IgGen we calculated the mean perplexity of the VH and
VL sequences. For the p-IgGen models, we took the perplexity of the concatenated VH and VL

sequences.

Table 3: The p-IgGen models (p-IgGen and developable p-IgGen) significantly outperform the
unpaired IgGen model and other state-of-the-art language models of comparable size for zero-
shot expression prediction. Language models were evaluated for zero-shot prediction of expression
levels with a deep mutational scan dataset consisting of 4275 anti-VEGF antibodies (Koenig et al.,

Light Chain

set
[ Natural
1 Generated

e e B TF

70 80 90
Sequency ldentity to Val Set (%)

Model Parameters Pearson Correlation
ProGen/small 151M 0.56
ProGen/medium 764M 0.56
ProGen/base 764M 0.53
ProGen/xlarge 6.4B 0.50
ProGen/large 2.7B 0.49
Developable p-IgGen 1M 0.42
p-1gGen 17M 0.41
IgGen 17M 0.28
AntiBerty 26M 0.27
IgLM 13M 0.27
ProGen/oas 764M 0.20

2017) using FLAD. Results are ordered by Pearson’s correlation (best to worst).

16

100



Published at the GEM workshop, ICLR 2024

Model Parameters Training Dataset(s)
AntiBerty 26M Unpaired OAS
IgGen 17M Unpaired OAS
p-1gGen 17M Unpaired OAS, Paired OAS (finetuning)
developable p-IgGen 17M Unpaired OAS, Paired OAS (finetuning)
IgLM 13M Unpaired OAS
ProGen/oas 764M Unpaired OAS
ProGen/small 151M UniRef90, BFD30
ProGen/medium 764M UniRef90, BFD30
ProGen/base 764M UniRef90, BFD30
ProGen/large 2.7B UniRef90, BFD30
ProGen/xlarge 6.4B UniRef90, BFD30
ESM-IF 124M CATH40, UniRef50
MPNN 1.7"M PDB

Table 4: Summary of model parameters and training data. Inverse folding models (ESM-
IF and MPNN) were trained on structural data, while all other models were trained on sequence
data. AntiBerty, IgL.M, and Progen-OAS were trained on unpaired antibody sequences from OAS
(Olsen et al., 2022a). All other ProGen models were trained on UniRef90 (Suzek et al., [2015), a
redundancy-filtered subset of the UniProt dataset, and BFD30, which is mainly from metagenomic
sources (Steinegger & Soding, |2018)). ESM-IF was trained on experimental structures from CATH40
(Sillitoe et al., [2015)), a redundancy-filtered subset of the Protein Data Bank (PDB) (Berman et al.,
2000), as well as AlphaFold2 (Jumper et al.l [2021)) predicted structures of UniRef40 (Suzek et al.,
2015). MPNN was trained on a subset of experimental structures taken from the PDB.
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