GAN-MPC: Training Model Predictive Controllers with Parameterized Cost Functions using Demonstrations from Non-identical Experts

Returaj Burnwal*, Anirban Santara†, Nirav P. Bhatt*, Balaraman Ravindran* and Gaurav Aggarwal†
*Robert Bosch Centre for Data Science and AI, Indian Institute of Technology, Madras
†Google Research India

Abstract—Model predictive control (MPC) is a popular approach for trajectory optimization in practical robotics applications due to guarantees on safety, optimality, generalizability, interpretability, and explainability. Traditional MPC needs a hand-crafted cost function for trajectory optimization. However, some behaviors are complex and hand-crafting is difficult and error-prone. A special class of MPC policies called Learnable-MPC addresses this difficulty by using imitation learning from expert demonstrations. A critical assumption made by Learnable-MPC is that the demonstrator and the imitator agents have identical state-action spaces and transition dynamics. This is hard to satisfy in many practical applications of robotics. In this paper, we address this practical problem through a novel approach that uses a generative adversarial network (GAN) to match state-trajectory distributions of the demonstrator and the imitator. We evaluate our approach on a variety of simulated robotics tasks of DeepMind Control suite and demonstrate the efficacy of our approach at learning the demonstrator’s behavior without having to copy their actions.

I. INTRODUCTION

Large-scale deployment of robots in real-world human-centric environments is faced with the challenges of safety, social compatibility and robustness to unforeseen changes in the environment [1]. Model predictive control (MPC) [2, 3, 4, 5] is a popular approach for trajectory optimization in robotics. MPC policies can optimize trajectory parameters under kinodynamic and safety constraints, and they provide guarantees on safety, optimality, and generalizability. However, it is difficult to hand-craft an MPC objective function for complex behaviors. Learnable MPC [6, 7, 8, 9, 10, 11] addresses this difficulty using imitation learning. Learnable MPC policies use a parameterized objective function that can be trained from expert demonstrations. The learnable parameters also allow them to easily adapt to a wide variety of robot-environment situations. The imitation learning formulation of Learnable MPC requires the demonstrator and the imitator to be identical. This is an important limitation because in real-world applications the dynamics of the imitator robot may slip away from that of the demonstrator robot due to a variety of internal events such as mechanical faults [12], dropping battery charge-level [13] and external events, such as changes in the operating environment (e.g., surface friction [14]), or the robot’s task (e.g., increased load [13]).

In many cases, all the state variables of the demonstrator may not be observable to the imitator. In this paper, we address the practical problem of training Learnable-MPC policies when the demonstrator and the imitator do not share the same dynamics and their state spaces only have a partial overlap. Our proposed method uses a generative adversarial network (GAN) to match the state-trajectory distributions of the demonstrator and the imitator [15]. The GAN consists of two networks: a generator and a discriminator. The generator is a neural network modeling the learnable cost function. This, along with the engineered cost is minimized by the imitator to produce trajectories. The discriminator is responsible for distinguishing between state trajectories from the demonstrator and the imitator. At Nash equilibrium [16], the state-trajectory distributions of the demonstrator and the imitator would be identical. Empirical evaluation on three continuous control tasks of DeepMind Control Suite [17] shows that our method is effective in mimicking complex behaviors even when the dynamics of the demonstrator and the imitator are widely different.

II. PROBLEM STATEMENT

Imitation learning [18] involves two agents - demonstrator (also referred to as the “expert”) D and the imitator I. Let \(\mathcal{M}^D = (S^D, A^D, T^D, \rho^D) \) and \(\mathcal{M}^I = (S^I, A^I, T^I, \rho^I) \) be the Markov Decision Processes (MDPs) [19] associated with the D and I respectively. Equation 1 describes the optimization problem solved by MPC.

\[
a^*_t: H = \arg \min_{a_{1:H-1}} J(s_t, a_{1:H-1})
\]

\[
= \arg \min_{a_{1:H-1}} \sum_{t=1}^{H-1} C_{stg}(s_t, a_t, t) + \gamma C_{term}(s_H)
\]

s.t. \(s_{t+1} = \tilde{T}(s_t, a_t), g(s_t, a_t) = 0, h(s_t, a_t) \leq 0 \)

\(H \) is the planning horizon of the MPC. \(C_{stg} : S \times A \rightarrow \mathbb{R} \) is the staging cost that applies to each step of the plan and \(C_{term} : S \rightarrow \mathbb{R} \) is the terminal cost that applies only to the final state. \(g : S \times A \rightarrow \mathbb{R} \) and \(h : S \times A \rightarrow \mathbb{R} \) are equality and inequality constraints on the solution. \(\gamma \) is a hyperparameter that controls the relative weightage of the staging and the terminal costs. \(\tilde{T} \) is a local model of the
transition dynamics T around the initial control guess. At every step of planning, the MPC plans a trajectory $a^*_{1:H-1}$ of length H that minimizes the objective in Equation 1. To address the inevitability of modeling error in the estimation of \tilde{T}, MPC only executes the first action a^*_1 and updates \tilde{T} with the observed outcome. We denote an MPC policy by $\pi^{MPC}: S \rightarrow A$ where $\pi^{MPC}(s_1) = a^*_1$. This planning algorithm is repeated for every step of the agent’s trajectory. Motivated by real world applications in robotics and accessibility, we study the problem of imitation learning of Learnable MPC policies when the demonstrator and the imitator do not share the same dynamics - $T^D \neq T^I$. Our generator is the Learnable MPC policy $\pi^{MPC}(\cdot|\Phi^{gen})$ of I along with a model of the transition dynamics \tilde{T}^I. Φ^{gen} is the set of learnable parameters of the terminal cost function. Given a demonstrated trajectory $\tau^D_s = (s^D_0,a^D_0,s^D_1,a^D_1,s^D_2,a^D_2,\ldots) \in \mathcal{X}^D$, a generator rollout $\tau^I_g = (s^g_0,a^g_0,s^g_1,a^g_1,s^g_2,a^g_2,\ldots,s^g_{P-1})$ of maximum length P (a hyper parameter) is created by starting from the same initial state $s^g_0 = s^D_0$, solving for actions using the MPC policy $\pi^{MPC}(s^g_t|\Phi^{disc})$ and the next state from the transition dynamics model $s^g_{t+1} = \tilde{T}^I_g(s^g_t,a^g_t)$. We denote the state trajectory distribution of the generator $G_s(\cdot|\Phi^{gen},\Theta^I)$.

The performance of an MPC policy is strongly dependent on the accuracy of transition dynamics model T. As noted in Section II-A learning a model of T^I can be challenging in large state-action spaces. The dynamics function must be trained on (s_t,a_t,s_{t+1}) transitions collected by the agent while interacting with the environment. In order to model the function accurately in the regions of the state-action space traversed during the execution of the target task, enough data must be collected from those regions. This is not a big issue when D and I are identical as the demonstrated trajectories \mathcal{X}^D can be used for training T^I. However, in our case, getting I to the desired regions of the state-action space can be as hard as learning the policy. We address this challenge by pre-training T^I on \mathcal{X}^D for a small number of epochs under the assumption that the demonstrator and the imitator dynamics have some degree of similarity. We continue to update the dynamics model in each training iteration with transitions recorded from physical interaction of I with the environment with π^{MPC}. We use the popular iLQR solver in our experiments. As noted in Section II-A the performance is a strong function of the initial control guess $a^I_{0:H-1}$. We again make the assumption that the demonstrator and imitator dynamics have some degree of similarity. We train a behavior cloning policy $\pi^{BC}_\chi: S^I \rightarrow A^I$ with parameters χ on \mathcal{X}^D. At each iteration of iLQR, we set $a^I_{1:Q} = \pi^{BC}(s^I_t)$. The terminal component of the MPC cost function C_{term} is intended to estimate how far the agent would be from the target state at the end of the planning horizon. In dynamic tasks like Cheetah Run, the target state is not singular making it difficult to specify C_{term}. With a motivation to set as target state as somewhere the expert would be in the next
time step, we train a neural network model \(\mathcal{N}_\Psi : S^D \rightarrow S^D \)
with trainable parameters \(\Psi \) on \(\mathcal{X}^D \) to predict the next state \(s^D_{t+1} \) given the current state \(s^D_t \).

Our algorithm, GAN-MPC, starts by pre-training the dynamics model of the imitator on \(D \) for a small number of epochs. In the main training loop, in the first step, we let the imitator interact with the environment for \(K \) time steps and use this data to update the dynamics model by running a small number of epochs \(N^{dyn} \) of training. Next, the discriminator network is trained on \(D^* \) and the imitator’s state trajectories. In the final step, the learnable parameters of the MPC policy and the relative weight of the engineered and learnable cost components are updated slowly [22].

IV. Experiments

Our experimental study aims to understand whether GAN-MPC can learn an expert’s skills by trying to visit the same sequence of states and planning an appropriate sequence of actions, even though the imitator’s actions may be different from the expert’s due to differences in dynamics.

We evaluate the efficacy of GAN-MPC on three continuous control tasks from the DeepMind Control suite: CartPole-Balance, Pendulum-Standup, and Cheetah-Run. For each task we train a SAC agent for sampling demonstrator trajectories. We choose a set of imitator agents that have similar morphology as the demonstrators but different physical properties as described in Figure 2. We compare the performance of our proposed algorithm (GAN-MPC) with Behavioral Cloning (BC) and two Learnable-MPC formulations that minimize the L2 distance between the demonstrator and imitator trajectories: a) L2-MPC-SA that matches state-action trajectories and b) L2-MPC-S that matches state-only trajectories of the demonstrator and the imitator. In many practical applications, the entire state space of the demonstrator may not be observable or the state spaces of the demonstrator and the imitator may only overlap partially. We study this case also in the Cheetah-Run task environment.

In all experiments, a training set of 50 trajectories is collected from the demonstrator. L2-MPC-SA, L2-MPC-S and GAN-MPC imitators are allowed to interact with the environment for a total of 5000 steps for Cartpole-Balance and Pendulum-Standup; and 10000 steps for Cheetah-Run. The performance of each agent is measured by rolling out 50 trajectories with different random seeds and computing the average trajectory reward \(\tilde{R}^\tau \). We measure the performance of the imitators in terms of average trajectory reward relative to the demonstrator, \(\tilde{R}^\tau = \frac{\bar{R}^\tau_{imitator}}{\bar{R}^\tau_{demonstrator}} \). Figures 3, 4 and 6 provide a summary of the results. The bars represent means and the whiskers represent standard deviations. We observe that GAN-MPC outperforms or matches the baselines in most of the settings. We also observe that the performance of GAN-MPC grace-
Fig. 5: Characteristics of the galloping behavior learned by different imitators with different physical properties from the same set of demonstrations for the Cheetah-Run task. All the imitators have the same torso-mass (2× the demonstrator) but different types of disability, as marked in the figure. A cheetah’s gallop consists of three phases: 1) “Launch stance”, where the cheetah gathers propulsion to leap; 2) “Suspension/Flight”, where the whole body of the cheetah is in the air; and 3) “Land stance”, where the cheetah touches down in preparation for the next leap. The top row shows an imitator with no disability. It launches on the rear foot and lands on the front foot similar to the demonstrator which also does not have any disability. The middle row shows an imitator whose front ankle is broken. While it launches on the rear foot like the demonstrator, it learns that it can not land on the front foot since it would not be able to maintain stability due to the broken ankle. It learns to land with the rear foot down or both feet down or in a crouched position as viable alternatives. Finally, the bottom row shows an imitator whose back ankle is broken. While it often lands on the front foot like the demonstrator, it uses the front leg, back knee and sometimes the whole body for propulsion during launch. These results align with our goal of learning the demonstrator’s behavior without having to copy their actions.

fully degrades (like most of the baselines) as the dynamics of the imitator becomes more and more different from the demonstrator. In our experiments on Cheetah-Run we observe that the disabled imitators, in their quest to learn the fit demonstrator’s skills, learn alternative strategies to work around their disabilities (Figure 5). This establishes GAN-MPC as a viable step towards achieving the goal of learning skills from non-identical experts without having to copy their actions. In Figure 6, we also observe that under partial observability of the demonstrator’s state space the GAN-MPC agents (GAN-MPC: \(S^D \subset S^I \)) are able to learn the desired behavior and outperform the baselines that have access to the full state observations. This shows the viability of GAN-MPC as a method to learn skills from experts with non-identical dynamics and partial observability of their state spaces. Please visit our website for videos of the learned behaviors.

V. CONCLUSION

In this paper, we study imitation learning of MPC policies with parameterised cost functions. We consider the practical challenges of mismatch in the dynamics of the demonstrator and the imitator agents and partial observability of the state space of the demonstrator. We propose a novel approach called GAN-MPC that minimizes the statistical divergence between state-trajectories of the demonstrator and the imitator using the GAN framework. Experiments on continuous control tasks of the DeepMind Control suite demonstrate the viability of the proposed method. The GAN-MPC framework needs significantly fewer samples of real world interaction of the imitator compared to RL based methods and this makes it viable for real world applications.

https://sites.google.com/view/gan-mpcneurips2023/home?authuser=1

Fig. 6: Results of the Cheetah-Run experiment. The captions of the sub-figures mention “torso-mass” of the imitators relative to the demonstrator. As described in Section IV and Figure 2 we have three categories of imitators in terms of disability - No Disability (ND), Front Ankle broken (FA) and Back Ankle broken (BA). All the agents except “GAN-MPC: \(S^D \supset S^I \)” are trained on the same set of demonstrations \(X^D \). As described in Section IV, “GAN-MPC: \(S^D \subset S^I \)” is trained on \(X^D \) but only a subset of the state variables are exposed.
REFERENCES

