
GAN-MPC: Training Model Predictive
Controllers with Parameterized Cost Functions

using Demonstrations from Non-identical
Experts

Returaj Burnwal∗, Anirban Santara†, Nirav P. Bhatt∗, Balaraman Ravindran∗ and Gaurav Aggarwal†
∗Robert Bosch Centre for Data Science and AI, Indian Institute of Technology, Madras

†Google Research India

Abstract—Model predictive control (MPC) is a popular
approach for trajectory optimization in practical robotics
applications due to guarantees on safety, optimality, general-
izability, interpretability, and explainability. Traditional MPC
needs a hand-crafted cost function for trajectory optimization.
However, some behaviors are complex and hand-crafting is
difficult and error-prone. A special class of MPC policies called
Learnable-MPC addresses this difficulty by using imitation
learning from expert demonstrations. A critical assumption
made by Learnable-MPC is that the demonstrator and the
imitator agents have identical state-action spaces and transition
dynamics. This is hard to satisfy in many practical applications
of robotics. In this paper, we address this practical problem
through a novel approach that uses a generative adversarial
network (GAN) to match state-trajectory distributions of the
demonstrator and the imitator. We evaluate our approach on a
variety of simulated robotics tasks of DeepMind Control suite
and demonstrate the efficacy of our approach at learning the
demonstrator’s behavior without having to copy their actions.

I. INTRODUCTION

Large-scale deployment of robots in real-world human-
centric environments is faced with the challenges of safety,
social compatibility and robustness to unforeseen changes
in the environment [1]. Model predictive control (MPC)
[2, 3, 4, 5] is a popular approach for trajectory optimization
in robotics. MPC policies can optimize trajectory parameters
under kinodynamic and safety constraints, and they provide
guarantees on safety, optimality, and generalizability. How-
ever, it is difficult to hand-craft an MPC objective function
for complex behaviors. Learnable MPC [6, 7, 8, 9, 10, 11, 1]
addresses this difficulty using imitation learning. Learnable
MPC policies use a parameterized objective function that can
be trained from expert demonstrations. The learnable parame-
ters also allow them to easily adapt to a wide variety of robot-
environment situations. The imitation learning formulation
of Learnable MPC requires the demonstrator and the imitator
to be identical. This is an important limitation because in
real-world applications the dynamics of the imitator robot
may slip away from that of the demonstrator robot due
to a variety of internal events such as mechanical faults
[12], dropping battery charge-level [13] and external events,
such as changes in the operating environment (e.g., surface
friction [14]), or the robot’s task (e.g., increased load [13]).

In many cases, all the state variables of the demonstrator may
not be observable to the imitator. In this paper, we address
the practical problem of training Learnable-MPC policies
when the demonstrator and the imitator do not share the
same dynamics and their state spaces only have a partial
overlap. Our proposed method uses a generative adversarial
network (GAN) to match the state-trajectory distributions of
the demonstrator and the imitator [15]. The GAN consists
of two networks: a generator and a discriminator. The
generator is a neural network modeling the learnable cost
function. This, along with the engineered cost is minimized
by the imitator to produce trajectories. The discriminator is
responsible for distinguishing between state trajectories from
the demonstrator and the imitator. At Nash equilibrium [16],
the state-trajectory distributions of the demonstrator and the
imitator would be identical. Empirical evaluation on three
continuous control tasks of DeepMind Control Suite [17]
shows that our method is effective in mimicking complex
behaviors even when the dynamics of the demonstrator and
the imitator are widely different.

II. PROBLEM STATEMENT

Imitation learning [18] involves two agents - demonstrator
(also referred to as the “expert”) D and the imitator I.
Let MD = (SD, AD, TD, ρD) and MI = (SI, AI, T I, ρI)
be the Markov Decision Processes (MDPs) [19] associated
with the D and I respectively. Equation 1 describes the
optimization problem solved by MPC.

a∗1:H = argmina1:H−1
J(st, a1:H−1) (1)

= argmina1:H−1

H−1∑
t=1

Cstg(st, at, t) + γCterm(sH)

s.t. ∀t, st+1 = T̃ (st, at), g(st, at) = 0, h(st, at) ≤ 0

H is the planning horizon of the MPC. Cstg : S ×A→ R
is the staging cost that applies to each step of the plan and
Cterm : S → R is the terminal cost that applies only to
the final state. g : S × A → R and h : S × A → R are
equality and inequality constraints on the solution. γ is a
hyperparameter that controls the relative weightage of the
staging and the terminal costs. T̃ is a local model of the

Fig. 1: Flowchart describing the proposed GAN-MPC training algorithm. Please refer to Section III for details.

transition dynamics T around the initial control guess. At
every step of planning, the MPC plans a trajectory a∗1:H−1

of length H that minimizes the objective in Equation 1. To
address the inevitability of modeling error in the estimation of
T̃ , MPC only executes the first action a∗1 and updates T̃ with
the observed outcome. We denote an MPC policy by πMPC :
S → A where πMPC(s1) = a∗1. This planning algorithm is
repeated for every step of the agent’s trajectory. Motivated
by real world applications in robotics and accessibility, we
study the problem of imitation learning of Learnable MPC
policies when the demonstrator and the imitator do not share
the same dynamics - TD 6= T I. Our method can also be
applied to settings where the state and action spaces do not
overlap completely, by considering only the overlapping state
and action variables.

A. Challenges

MPC requires a model of the transition dynamics for
planning. This is challenging in real world complex con-
tinuous control tasks with large state-action spaces. Some
parts of the state-action space are difficult to reach and
hence difficult to collect data from. Also, parts of the state-
action space are often inaccessible due to hard kinodynamic
constraints. Neural networks provide an efficient way of
modeling highly non-linear functions over large state-action
spaces. However, they find it hard to model the constraints and
end up halucinating in the inaccessible areas, often leading
to infeasible solutions. MPC solvers like iLQR [20] can be
highly sensitive to the “initial control guess” in complex
non-linear dynamical systems. The challenge is to predict
an ag0:H−1 close to the optimal solution a∗0. The terminal
cost Cterm is used to measure how close the agent would
get to a “target” state at the end of the planning horizon H .
For dynamic tasks like Cheetah-Run the target state is
different for each time step – making it difficult to calculate
Cterm.

III. PROPOSED METHOD: GAN-MPC

The proposed appraoch uses the GAN framework [21] that
consists of a generator and a discriminator. Given a set of
expert demonstrations, the task of the discriminator is to learn
an accurate binary classifier to tell apart expert demonstrations
from other trajectories. The task of the generator is to produce
samples that are indistinguishable from demonstrator’s
trajectories. Our generator is the Learnable MPC policy

πMPC(·|Φgen) of I along with a model of the transition
dynamics T̃ I. Φgen is the set of learnable parameters
of the terminal cost function. Given a demonstrated
trajectory τDs = (sD0 , s

D
1 , s

D
2 , . . .) ∈ XD

s , a generator
rollout τ I,g = (sI,g0 , aI,g0 , sI,g1 , aI,g1 , sI,g2 , aI,g2 , . . . , sI,gP−1) of
maximum length P (a hyper parameter) is created by starting
from the same initial state sI,g0 = sD0 , solving for actions
using the MPC policy aI,gt = πMPC(sI,gt) and the next state
from the transition dynamics model sI,gt+1 = T̃ I,g(sI,gt , aI,gt).
We denote the state trajectory distribution of the generator
rollouts by Gs(·|Φgen,ΘI). The discriminator Q(·|Φdisc) is
modelled using an LSTM network with parameters Φdisc.

The performance of an MPC policy is strongly dependent
on the accuracy of transition dynamics model T . As noted
in Section II-A learning a model of T I can be challenging
in large state-action spaces. The dynamics function must be
trained on (st, at, st+1) transitions collected by the agent
while interacting with the environment. In order to model the
function accurately in the regions of the state-action space
traversed during the execution of the target task, enough data
must be collected from those regions. This is not a big issue
when D and I are identical as the demonstrated trajectories
XD can be used for training T I. However, in our case,
getting I to the desired regions of the state-action space can
be as hard as learning the policy. We address this challenge
by pre-training T I on XD for a small number of epochs
under the assumption that the demonstrator and the imitator
dynamics have some degree of similarity. We continue to
update the dynamics model in each training iteration with
transitions recorded from physical interaction of I with the
environment with πMPC . We use the popular iLQR solver in
our experiments. As noted in Section II-A, the performance
is a strong function of the initial control guess aI,g0:H−1.
We again make the assumption that the demonstrator and
imitator dynamics have some degree of similarity. We train a
behavior cloning policy πBCχ : SI → AI with parameters χ
on XD. At each iteration of iLQR, we set aI,gt = πBC(s̃It).
The terminal component of the MPC cost function Cterm is
intended to estimate how far the agent would be from the
target state at the end of the planning horizon. In dynamic
tasks like Cheetah Run, the target state is not singular
making it difficult to specify Cterm. With a motivation to set
as target state as somewhere the expert would be in the next

Fig. 2: Physical properties of the imitators relative to the demonstrators in our experiments. We have 4 imitators each for
Cartpole-Balance and Pendulum-Standup. In case of Cheetah-Run, we have 12 imitators with different levels
of disability and different torso-masses as denoted by the set product “×” in the figure.

time step, we train a neural network model NΨ : SD → SD

with trainable parameters Ψ on XD to predict the next state
sDt+1 given the current state sDt .

Our algorithm, GAN-MPC, starts by pre-training the dynam-
ics model of the imitator on D for a small number of epochs.
In the main training loop, in the first step, we let the imitator
interact with the environment for K time steps and use
this data to update the dynamics model by running a small
number of epochs Ndyn of training. Next, the discriminator
network is trained on Ds and the imitator’s state trajectories.
In the final step, the learnable parameters of the MPC policy
and the relative weight of the engineered and learnable cost
components are updated slowly [22].

IV. EXPERIMENTS

Our experimental study aims to understand whether GAN-
MPC can learn an expert’s skills by trying to visit the same
sequence of states and planning an appropriate sequence of
actions, even though the imitator’s actions may be different
from the expert’s due to differences in dynamics.

We evaluate the efficacy of GAN-MPC on three
continuous control tasks from the DeepMind Control
suite: CartPole-Balance, Pendulum-Standup, and
Cheetah-Run. For each task we train a SAC agent
for sampling demonstrator trajectories. We choose a set
of imitator agents that have similar morphology as the
demonstrators but different physical properties as described
in Figure 2. We compare the performance of our proposed
algorithm (GAN-MPC) with Behavioral Cloning (BC) and
two Learnable-MPC formulations that minimize the L2
distance between the demonstrator and imitator trajectories:
a) L2-MPC-SA that matches state-action trajectories and
b) L2-MPC-S that matches state-only trajectories of the
demonstrator and the imitator. In many practical applications,
the entire state space of the demonstrator may not be
observable or the state spaces of the demonstrator and the
imitator may only overlap partially. We study this case also
in the Cheetah-Run task environment.

In all experiments, a training set of 50 trajectories
is collected from the demonstrator. L2-MPC-SA, L2-
MPC-S and GAN-MPC imitators are allowed to inter-

Fig. 3: Results of the Pendulum-Swingup experi-
ment. The imitators are denoted by Px where P stands
for pole mass and x = Pimitator/Pdemonstrator.

Fig. 4: Results of the Cartpole-Balance experi-
ment. The imitators are denoted by PxCyDz where
P , C and D stand for pole mass, cart mass and
cart dimension, respectively. The subscripts - x, y
and z - denote ratios relative to the demonstrator, e.g.
x = Pimitator/Pdemonstrator. The legend of Figure 3
has been followed.

act with the environment for a total of 5000 steps for
Cartpole-Balance and Pendulum-Swingup; and
10000 steps for Cheetah-Run. The performance of each
agent is measured by rolling out 50 trajectories with different
random seeds and computing the average trajectory reward
Rτ . We measure the performance of the imitators in terms
of average trajectory reward relative to the demonstrator,
R̃τ =

Rτimitator
Rτdemonstrator

. Figures 3, 4 and 6 provide a summary
of the results. The bars represent means and the whiskers
represent standard deviations. We observe that GAN-MPC
outperforms or matches the baselines in most of the settings.
We also observe that the performance of GAN-MPC grace-

Fig. 5: Characteristics of the galloping behavior learned by different imitators with different physical properties from the
same set of demonstrations for the Cheetah-Run task. All the imitators have the same torso-mass (2× the demonstrator)
but different types of disability, as marked in the figure. A cheetah’s gallop consists of three phases: 1) “Launch stance”,
where the cheetah gathers propulsion to leap; 2) “Suspension/Flight”, where the whole body of the cheetah is in the air;
and 3) “Land stance”, where the cheetah touches down in preparation for the next leap. The top row shows an imitator
with no disability. It launches on the rear foot and lands on the front foot similar to the demonstrator which also does not
have any disability. The middle row shows an imitator whose front ankle is broken. While it launches on the rear foot like
the demonstrator, it learns that it can not land on the front foot since it would not be able to maintain stability due to the
broken ankle. It learns to land with the rear foot down or both feet down or in a crouched position as viable alternatives.
Finally, the bottom row shows an imitator whose back ankle is broken. While it often lands on the front foot like the
demonstrator, it uses the front leg, back knee and sometimes the whole body for propulsion during launch. These results
align with our goal of learning the demonstrator’s behavior without having to copy their actions.

fully degrades (like most of the baselines) as the dynamics
of the imitator becomes more and more different from the
demonstrator. In our experiments on Cheetah-Run we
observe that the disabled imitators, in their quest to learn
the fit demonstrator’s skills, learn alternative strategies to
work around their disabilities (Figure 5). This establishes
GAN-MPC as a viable step towards achieving the goal of
learning skills from non-identical experts without having to
copy their actions. In Figure 6, we also observe that under
partial observability of the demonstrator’s state space the
GAN-MPC agents (GAN-MPC: SD ⊂ SI) are able to learn
the desired behavior and outperform the baselines that have
access to the full state observations. This shows the viability
of GAN-MPC as a method to learn skills from experts with
non-identical dynamics and partial observability of their state
spaces. Please visit our website1 for videos of the learned
behaviors.

V. CONCLUSION

In this paper, we study imitation learning of MPC policies
with parameterised cost functions. We consider the practical
challenges of mismatch in the dynamics of the demonstrator
and the imitator agents and partial observability of the state
space of the demonstrator. We propose a novel approach
called GAN-MPC that minimizes the statistical divergence
between state-trajectories of the demonstator and the imitator
using the GAN framework. Experiments on continuous
control tasks of the DeepMind Control suite demonstrate the
viability of the proposed method. The GAN-MPC framework
needs significantly fewer samples of real world interaction of
the imitator compared to RL based methods and this makes
it viable for real world applications.

1https://sites.google.com/view/gan-mpcneurips2023/home?authuser=1

(a) Same torso-mass (b) 1.25× torso-mass

(c) 1.5× torso-mass (d) 2× torso-mass

Fig. 6: Results of the Cheetah-Run experiment. The
captions of the sub-figures mention “torso-mass” of the
imitators relative to the demonstrator. As described in Section
IV and Figure 2, we have three categories of imitators in
terms of disability - No Disability (ND), Front Ankle broken
(FA) and Back Ankle broken (BA). All the agents except
“ GAN-MPC: SD ⊂ SI ” are trained on the same set of
demonstrations XD

s . As described in Section IV, “ GAN-
MPC: SD ⊂ SI ” is trained on XD

s but only a subset of the
state variables are exposed.

https://sites.google.com/view/gan-mpcneurips2023/home?authuser=1

REFERENCES

[1] Xuesu Xiao, Tingnan Zhang, Krzysztof Choromanski,
Edward Lee, Anthony Francis, Jake Varley, Stephen
Tu, Sumeet Singh, Peng Xu, Fei Xia, et al. Learning
model predictive controllers with real-time attention for
real-world navigation. arXiv preprint arXiv:2209.10780,
2022.

[2] Manfred Morari, Carlos E Garcia, and David M Prett.
Model predictive control: theory and practice. IFAC
Proceedings Volumes, 21(4):1–12, 1988.

[3] Yang Wang and Stephen Boyd. Fast model predictive
control using online optimization. IEEE Transactions
on control systems technology, 18(2):267–278, 2009.

[4] Spyros Maniatopoulos, Dimitra Panagou, and Kostas J
Kyriakopoulos. Model predictive control for the
navigation of a nonholonomic vehicle with field-of-
view constraints. In 2013 American control conference,
pages 3967–3972. IEEE, 2013.

[5] Thomas Fork, H Eric Tseng, and Francesco Borrelli.
Models and predictive control for nonplanar vehicle
navigation. In 2021 IEEE International Intelligent
Transportation Systems Conference (ITSC), pages 749–
754. IEEE, 2021.

[6] Rahul Shridhar and Douglas J Cooper. A tuning strategy
for unconstrained siso model predictive control. Indus-
trial & Engineering Chemistry Research, 36(3):729–
746, 1997.

[7] Rahul Shridhar and Douglas J Cooper. A tuning strat-
egy for unconstrained multivariable model predictive
control. Industrial & engineering chemistry research,
37(10):4003–4016, 1998.

[8] Jorge L Garriga and Masoud Soroush. Model predictive
control tuning methods: A review. Industrial & Engi-
neering Chemistry Research, 49(8):3505–3515, 2010.

[9] William Edwards, Gao Tang, Giorgos Mamakoukas,
Todd Murphey, and Kris Hauser. Automatic tuning for
data-driven model predictive control. In 2021 IEEE
International Conference on Robotics and Automation
(ICRA), pages 7379–7385. IEEE, 2021.

[10] Andre Shigueo Yamashita, Antônio Carlos Zanin, and
Darci Odloak. Tuning of model predictive control
with multi-objective optimization. Brazilian Journal of
Chemical Engineering, 33:333–346, 2016.

[11] Valarmathi Ramasamy, Rakesh Kumar Sidharthan,
Ramkumar Kannan, and Guruprasath Muralidharan.
Optimal tuning of model predictive controller weights
using genetic algorithm with interactive decision tree
for industrial cement kiln process. Processes, 7(12):938,
2019.

[12] Vandi Verma, Geoff Gordon, Reid Simmons, and
Sebastian Thrun. Real-time fault diagnosis [robot fault
diagnosis]. IEEE Robotics & Automation Magazine,
11(2):56–66, 2004.

[13] Marco Hutter, Christian Gehring, Andreas Lauber,
Fabian Gunther, Carmine Dario Bellicoso, Vassilios
Tsounis, Péter Fankhauser, Remo Diethelm, Samuel

Bachmann, Michael Blösch, et al. Anymal-toward
legged robots for harsh environments. Advanced
Robotics, 31(17):918–931, 2017.

[14] Lei Hao, Roberto Pagani, Manuel Beschi, and Giovanni
Legnani. Dynamic and friction parameters of an indus-
trial robot: Identification, comparison and repetitiveness
analysis. Robotics, 10(1):49, 2021.

[15] Gérard Biau, Benoît Cadre, Maxime Sangnier, and Ugo
Tanielian. Some theoretical properties of gans. 2020.

[16] Farzan Farnia and Asuman Ozdaglar. Do gans always
have nash equilibria? In International Conference on
Machine Learning, pages 3029–3039. PMLR, 2020.

[17] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez,
Yazhe Li, Diego de Las Casas, David Budden, Abbas
Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deep-
mind control suite. arXiv preprint arXiv:1801.00690,
2018.

[18] Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan,
and Chrisina Jayne. Imitation learning: A survey of
learning methods. ACM Computing Surveys (CSUR),
50(2):1–35, 2017.

[19] Richard S Sutton and Andrew G Barto. Reinforcement
learning: An introduction. MIT press, 2018.

[20] Russ Tedrake. Underactuated Robotics. 2023.
[21] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,

Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial
networks. Communications of the ACM, 63(11):139–
144, 2020.

[22] Boris T Polyak and Anatoli B Juditsky. Acceleration of
stochastic approximation by averaging. SIAM journal
on control and optimization, 30(4):838–855, 1992.

	Introduction
	Problem Statement
	Challenges

	Proposed Method: GAN-MPC
	Experiments
	Conclusion

