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Abstract

Probability calibration transforms raw output of a classifica-
tion model into empirically interpretable probability. When
the model is purposed to detect rare event and only a small
expensive data source has clean labels, it becomes extraordi-
narily challenging to obtain accurate probability calibration.
Utilizing an additional large cheap data source is very help-
ful, however, such data sources oftentimes suffer from biased
labels. To this end, we introduce an approximate expectation-
maximization (EM) algorithm to extract useful information
from the large data sources. For a family of calibration meth-
ods based on the logistic likelihood, we derive closed-form
updates and call the resulting iterative algorithm CalEM. We
show that CalEM inherits convergence guarantees from the
approximate EM algorithm. We test the proposed model in
simulation and on the real marketing datasets, where it shows
significant performance increases.

1 Introduction

Machine learning models, including neural networks and
gradient boosted trees, often suffer from calibration issues
(Zadrozny and Elkan 2001; Guo et al. 2017; Zadrozny and
Elkan 2001; Kuleshov, Fenner, and Ermon 2018; Fernandez
et al. 2018). Calibration refers to the alignment of a model’s
predicted probabilities with the actual likelihood of outcomes.
For instance, if a model predicts a probability of 0.2 for a
specific class over 100 instances, ideally, 20 of those in-
stances should belong to that class. This aspect of model
performance is crucial for model trustworthiness and safety.
There has been significant research on developing metrics
for calibration assessment (Nixon et al. 2019; Gupta et al.
2020; Gruber and Buettner 2022), methods to post-correct
mis-calibrated models (Platt et al. 1999; Zadrozny and Elkan
2002; Kumar, Liang, and Ma 2019; Gupta et al. 2020), and
techniques for creating better-calibrated classifiers (Bohdal,
Yang, and Hospedales 2023).

In this paper, we tackle a separate challenge of training a
probability calibration model under practical constraints of la-
bel imbalance and small sample size. Under such constraints,
accurate probability calibration becomes challenging as we
illustrate in Figure 1. As the sample size decreases and the
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label imbalance exacerbates, the variance (calibration error)
of the probability calibration model increases significantly.

A prominent example of real-world data with severe class
imbalance and small sample size comes from the marketing
literature (Diemert et al. 2018; Ke et al. 2021; Liu et al. 2023).
In this context, a key objective is to estimate the probability
that a customer will naturally convert to a given brand. With
accurate estimates, marketing firms can strategically allocate
budgets to target the most promising customer segments and
improve overall sales. The target variable, a binary conver-
sion indicator, is highly imbalanced (often with fewer than
1% converting), and the only unbiased dataset is the control
group that receives no marketing intervention — data which
can be both costly and limited. Meanwhile, the treatment
group, exposed to marketing campaigns, produces biased
labels unsuitable for direct modeling (Ke et al. 2021). Similar
scenarios arise in (1) medical modeling, where the target is
disease susceptibility and the treatment is a vaccine; (2) fraud
prevention, where the target is fraudulent activity and the
treatment is a preventative measure; and (3) online education,
where the target is course completion and the treatment is
a learning intervention. In all of these cases, the goal is to
estimate the target, but the control data may be expensive,
while treated samples have modified outcomes and cannot be
used directly.

To solve this challenge, we propose a modified EM algo-
rithm to fit any likelihood-based calibration model on the
combined control and treatment portions of the dataset. We
first estimate the calibration on the control data and then
proceed to estimating the transition probability between the
treatment and control sets. The calibration model could then
be re-fit on the combined dataset with weights computed
according to the transition probabilities. The algorithm then
proceeds by iteratively refining the transition probability and
calibration model estimates. As we illustrate in Figure 1, the
algorithm results in smaller variance (calibration error). We
theoretically show that our approach could be formulated as
an approximate EM (Dempster, Laird, and Rubin 1977) and
demonstrate convergence guarantees. We empirically validate
its performance in simulation and on real marketing datasets,
where we show improvement over the baseline methods fitted
on the control-only data.

The rest of the paper is structured as follows. In Section 3
we introduce a general EM algorithm with approximate E-
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Figure 1: Variance of the probability calibration models in simulation. Note that larger variance leads to higher expected
calibration error, by bias-variance decomposition. The shaded area represents the 95% confidence intervals around the curves.
The baseline model is fitted on the small control data, while our proposed approach uses EM to fit on the combined control and
large noisy datasets. Total sample size of the combined dataset is 2,000.

step which has an application to data augmentation for model
calibration, we also show the convergence property of this
approximate EM algorithm. We introduce baseline calibra-
tion in Section 4.2, and design data-augmented calibration
algorithm based on the approximate EM algorithm in Sec-
tion 4.3. In Section 5 we demonstrate our data-augmented
model calibration in an empirical study. We put the proof and
derivation in Appendix.

2 Related Work

Probability Calibration A variety of calibration tech-
niques has been proposed in the literature such as works
by Groeneboom and Lopuhaa (1993); Platt et al. (1999);
Zadrozny and Elkan (2001); Niculescu-Mizil and Caruana
(2005b,a); Naeini, Cooper, and Hauskrecht (2015); Kull,
Silva Filho, and Flach (2017); Kull et al. (2019); Kumar,
Liang, and Ma (2019); Gupta et al. (2021); van der Laan
et al. (2023). Key desiderata for calibration methods is to be
accuracy-preserving and data-efficient. To achieve the first,
calibration methods are usually constrained to be monotonic.
The latter has been studied by Kumar, Liang, and Ma (2019),
who established sample efficiency for various calibration
methods.

In practice, probability calibration can be integrated during
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model training (Platt et al. 1999; Niculescu-Mizil and Caru-
ana 2005a) or applied as a post-hoc process (Groeneboom
and Lopuhaa 1993; Kull, Silva Filho, and Flach 2017; Gupta
et al. 2021). The post-hoc approach is generally favored in
practical applications due to its superior performance and
modularity, which allows the base classification model to
remain unaltered.

Despite their popularity, post-hoc calibration models suffer
from the need to maintain a separate calibration set for fitting.
As we show in Figure 1, the variance (calibration error) of
the model is highly dependent on the class imbalance and
sample size. In many practical scenarios, maintaining a large
calibration data set could be prohibitively expensive. In this
work, we propose an algorithm that could be utilized together
with any existing likelihood-based calibration models to in-
corporate large biased data source that substantially reduces
the calibration error, whilst also not requiring the access to
the expensive unbiased data.

Latent Variables To treat the bias in the large data source,
we use the latent variable formulation. Numerous statisti-
cal frameworks are designed to handle unobserved (latent)
variables effectively. For cases involving missing data, in-
verse probability weighting methods have demonstrated ex-
cellent performance, supported by robust theoretical guar-



Algorithm 1: EM with approximate E-step

Initialization: specify initial point 69, tolerance ¢; and
learn 7;

Expectation-maximization iterations fort = 0,1,2,---:
1. implement E-step by

Qu(816)) = Bur,, @io)[log Po(O.U)];
2. implement M-step by
01+ = argmax Q, (0]6);
9

3. continue until ||9(t+1) - H(t)H <e.
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Figure 2: Intuition of the convergence of our approximate
EM

antees (Wooldridge 2007). In our scenario, we have a small
control set that is representative of the population, alongside
a larger dataset where a biased proxy of the response variable
is available. The work in Chatterjee et al. (2016) explores a
similar issue, utilizing a large additional data source to esti-
mate the distribution of covariates in a regression framework.
The study in Yang and Ding (2020) aligns even more closely
with our setup, with the key difference being the adoption of
a causal inference framework: the authors are interested in
estimating the causal effects. We draw inspiration from these
methodologies to develop our algorithm, which we build on
the EM framework (Dempster, Laird, and Rubin 1977).

3 Approximate EM Algorithm

Let 6 be the parameter of interest, O be the observed data, and
U be the unobserved (latent) data. We can analytically for-
mulate the log-likelihood function log Py (O, U) with respect
to both observed and unobserved data. However, without
the unobserved data I/, one cannot analytically formulate
the log-likelihood function Lo (0) = log Py(O) with respect
to observed data O alone. EM algorithm circumvents this
difficulty, it computes expectation of the log-likelihood func-
tion log Py(O,U) conditional on observed data, and then
maximizes the conditional expectation.

Given a starting value of parameter, the EM algorithm
alternates the following two steps iteratively:

 E-step: find the conditional distribution of latent variables
given observed variables and current parameter value, and
compute the conditional expectation of the full likelihood
of both observed and latent data;
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Algorithm 2: EM with approximate E-step for penalized
likelihood

Initialization: specify penalty hyperparameter J, initial
point 6, tolerance e; and learn IR
Expectation-maximization iterations fort = 0,1,2,---:

1. implement E-step by

Qun(0109) = Evr,,, wio)[log Po(O,U)]
— Q5 (0);

2. implement M-step by maximizing the penalized ex-
pected log-likelihood function:

g+l — argmax Q>\7n(9|9(t));
0

3. continue until HH(”I) - H(t)H <e.

* M-step: maximize the conditional expectation of the full
likelihood and update the parameter value.

The E-step and M-step of the EM algorithm can be described
by

Q(016™) Eunrp,, w0y [log Po(O,U)], (D)
gy = argrgnaxczww(”), ©)

where Py (U|O) is the conditional distribution of latent
variables conditioning on observed variables, parameterized
by 0(Y). The EM algorithm can reach a local maximum of
Lo(0) (or the global maximum if L (6) is concave), even
though the log-likelihood £ (6) is not computable.

In practice, the E-step of Equation (1) may be difficult
to compute. The probabilistic model of latent variable con-
ditional on observed data may be so complicated that it is
prohibitive to express the expectation in Equation (1) analyt-
ically. We propose an approximate E-step in which we use
a surrogate conditional distribution Py, (U|O) as an ap-
proximation of the exact conditional distribution Py (U]O)
in iteration ¢. The additional parameter 7 in the surrogate is
learned from the large noisy dataset and does not need to be
updated in EM iterations.

If we model Py, wisely, the E-step in Algorithm 1 is
conveniently implementable. In addition, if the noisy data
size is sufficient, Py, (U|O) can be a close proxy to ensure
convergence. Below we give a theoretical result with regard to
the convergence property of our approximate EM algorithm.
The proof of the theorem can be found in Appendix A.1.

Theorem 1. Suppose 0* is a local maximum of the likelihood
function. Assume we can learn the nuisance parameter 1 so
that Py, is sufficiently close to Py in the following sense:

D1 (Po.y(10) | Po-(-]0)) = Dxcw (Po.y(10) | Pe(-\O)()é)

as long as ||0 —6*|| < -, where Dxy,(+|-) is Kullback-Leibler
divergence' and v is a positive constant, then Algorithm 1
(EM algorithm with approximate E-step) converges.

'Kullback—Leibler divergence is defined as Dxr(plg) =



Intuitively speaking, as long as the surrogate conditional
distribution is closer to the exact conditional distribution
than to the true conditional distribution, our approximate EM
algorithm converges. The Requirement (3) is not a stringent
assumption and we provide its intuition in Figure 2. Note that
the Requirement (3) is trivially true when 6 = 6*.

Modern practices of maximum likelihood estimation often
incorporate penalty, i.e., choose

L(0) = Lo(0) — Qx(0) )

as the objective function, where (2 is a penalty function with
hyperparameter A\. The purpose of penalizing log-likelihood
is to achieve certain desired properties, e.g. sparsity, mono-
tonicity, etc. For probability calibration in Section 4, we need
a penalty term to impose a shape constraint on calibration
function. We apply the idea of EM algorithm with approxi-
mate E-step to penalized maximum likelihood estimation in
Algorithm 2.

We can extend the convergence property of EM algorithm
with approximate E-step in Theorem 1 to penalized maximum
likelihood estimation.

Corollary 1. Suppose 0* is a local maximum of (4). Assume
we can learn the nuisance parameter 1) such that Py ,, satisfies
(3) as long as ||0 — 6*|| < v for a positive constant vy, then
Algorithm 2 converges.

4 Data-Augmented Model Calibration
4.1 Notation and Setup

Let X be a feature space and Y = {0, 1} be a binary label
— we label a sample that belongs to the target category as
1 (positive), otherwise we label it as O (negative). Denote
the random variables corresponding to features and labels
by X and Y respectively. We call the variable Y unbiased
or control. In contrast, denote by Z the biased or treatment
variables, which have distribution pz # py . Denote a classifi-
cation model by f : X — [0, 1], i.e. f(X) is raw model score.
The raw score f(X) from most modern machine learning
models does not represent empirical probability. To calibrate
raw model output whilst retain its predictive capability, a
monotonically increasing function gy is used to post hoc
process raw model output as gy o f(X), where 6 is a multi-
dimensional parameter. We call this function gy a probability
calibration model.

4.2 Vanilla Probability Calibration

As we outline in Section 2, a probability calibration model
gp can be learned in a variety of ways. In this work in order
to utilize EM algorithm, we focus on the models gy that can
be learned via logistic regression. Specifically, we focus on
the case when:

Y|f(X) ~ Bernoulli (go(f(X)) )

1
s E—yy ©

go(w)

E,[log(p/q)]. It can be interpreted as a distance metric in space of
probability distributions — it measures distance between probability
distributions.
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For example, Kull, Silva Filho, and Flach (2017) propose to
parameterize sy as a bi-variate function to make the logistic
objective correspond to optimizing Beta distribution. Gupta
et al. (2021) parameterize sg as a monotonic spline function.
In particular, this probabilistic formulation allows us to
directly write the estimation procedure as a likelihood opti-
mization, which in turn allows us to introduce the EM step.
Since we focus on the calibration methods that can be learned
via logistic regression objective, in the rest of this paper, we
generically denote a learning algorithm for gg by

go < LogReg(D),
where D are the observations of (X, Y).

Probability Calibration: Case Study In marketing data,
the target category is customer conversion. A machine learn-
ing model is used to score the probability of converting a
customer. The overall goal is to use the model to target cus-
tomers with higher likelihood of converting, which would
simultaneously save the resources whilst retaining the overall
effectiveness. The majority of the traffic (usually > 90%)
is subject to the marketing treatment. The remaining small
portion of traffic is exempt from any treatment to serve as
holdout or control group for performance measurement and
calibration purposes. We denote small clean data from the
minority group by Dg and large noisy data from the majority
group by Dp:

small clean dataset: Ds ={xi,y1 }ies,

Dp = {x, 2k }reB,

where x; and x;, are feature vectors, ¥; is an unbiased label,
and zj is the observed but potentially biased label.

Note that the treated sample labels {zj } x5 may contain
bias. Intuitively, we want to decouple the default probabil-
ity of customer conversion from the effect of the marketing
campaign. In the treatment group, these two effects are con-
founded, so vanilla probability calibration can only utilize the
small clean dataset Dg. In the cases of severe label imbalance,
this could lead to especially large variance and instability.
Therefore, it is of interest to incorporate information from
the biased sample Dp into fitting the calibration model.

large noisy dataset:

4.3 Data-Augmented Calibration via Approximate
EM Algorithm

We augment the data by incorporating latent variable in the
following way

large noisy dataset: {x, 2k, Yk }reB,

where {yi }rep are latent counterfactual labels (would-be
labels if no treatment was applied).

Under this formulation, the observed data and unobserved
data become

O =DsUDsg, U = {Yr}res. @)

When the cardinality of clean labels is far less than that of
corrupted labels, i.e. |S| < |B|, data augmentation com-
bining Dg and Dp and extracting information from large
biased labels provides significant improvement over vanilla
probability calibration on Dg.



The hurdle to utilize the large noisy data is treatment-
induced bias in observed labels {zj }rcp. We consider the
unobserved clean labels {yx}rep of samples in the large
noisy data as latent information. We use the approximate
EM algorithm introduced in Section 3 to learn probability
calibration in the presence of latent data.

We formulate Py(U|O) for our use cases as follows. Let
Z denote the label from a customer that has undergone treat-
ment. There are two possible outcomes:

e If a sample has a negative label, we suppose that the
treatment did not sufficiently alter the outcome. Hence,
we assume that the counterfactual outcome, Y, would still
be negative if there was no treatment;

* If a sample has undergone a treatment and the outcome is
positive, with a non-zero probability the positive outcome
could have been caused by the treatment. In other words,
counterfactual outcome, Y, could have been positive if
there was no treatment.

We formalize our intuition in the following statement.
Assumption 1 (Treatment effect).

1 if Z =0
WMX) ifZ=1"

We can find such function h : X — [0, 1] as long as P(Y =
0|f(X)=0) <12

Now let us deduce the form of the function h. Using the
law of total probability and Bayes’s theorem, we write

PY=0X)=P(Z=0X)+h(X) -P(Z=1X).
Therefore, we have that:
P(Y =0|X)-P(Z=0X)
P(Z =1|X)

Note that h(X) is a well-defined probability measure:
h(X) € [0,1] because P(Z = 0|X) < P(Y = 0|T =
L,LX)<1,VX eX

Based on the Assumption (1) and Algorithm 1, we pro-
pose a new algorithm called CalEM. We describe CalEM
in Algorithm 3. The full derivation of Algorithm 3 can be
found in Appendix A.2. We also provide a visual illustration
in Figure 3. The algorithm works by first fitting a calibrator
gpco) on the model’s predictions and true labels, and a second
calibrator g,, on the same predictions and biased labels. Next,
it computes a transition function h from gy©) and g,, and
then uses an expectation-maximization (EM) approach to iter-
atively refit gy(+) on the combined dataset, guided by A. This
process adjusts for label bias and improves the calibration of
the model’s predictions.

P(Y = 0/2,X) = { ®)

h(X) = )

S Experiments

First, we investigate the performance of the proposed ap-
proach under controlled settings in simulations in Section 5.1.
We then apply our approach to the real marketing datasets in
Section 5.2.

*The condition P(Y = 0|f(X) = 0) < 1 is not stringent.
On the contrary, P(Y = 0|f(X) = 0) = 1 means the classifier
f(X) = 0 predicts negative label with 100% accuracy.
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Step 1: Model + True Labels Step 2: Model + Biased Labels

Data (z,y)

Biased Data (x, z)

Fit g,, using (f(z), 2)

Fit gy(0) using (f(z),y) ‘

Step 3: Compute i

h from gy, go(0)

Step 4: EM Refit ‘ EM Refit g,y on combined (f(x),y) & (f(z), z)

Figure 3: Summary of the CalEM algorithm

5.1 Simulation

In simulation our primary goals twofold: test how the model
performance changes with respect to the observed data pro-
portion, event probability, and the choice of transition and
calibration functions, h and g respectively. As a baseline
model, we choose spline-based calibration model (Gupta
et al. 2021), which we denote by GAM. First, we first fit
GAM on the clean sample. Then, we enhance GAM with
CalEM and re-fit on the large biased dataset.

For simulation, we sample true probabilities from
Beta(a, ) distribution, where a, 8 allows us to control the
event probability. To imitate the effect of the miscalibrated
classifier, we transform the true probabilities to model scores
via function, g_l. The treatment effect is simulated via the
transition function, h. Overall, our sampling models for gen-
erating the data is:

pi ~ Beta(a, 8),
z; ~ Bernoulli(p;),
pi = pi — h(pi) * pi,
0 ifz,=0
Yilpi, 2~ {Bernoulli(l —h(p)) ifz=1"

In total, we generate 10, 000 samples and select some portion
of the data to be the clean dataset, Dg = {g~*(p;), v: }, and
the rest to be the noisy data, Dg = {971 (p;), 2 }.

For the miscalibration curve g~!, we explore two design
options: g; ' (p) = m’ which represents an
overconfident classifier that pushes scores to the extremes,
and g5 ! (p) = p?, which corresponds to a classifier trained on
imbalanced data, tending to push scores closer to 0. Similarly,
for the transition function, we consider two options: k1 (p) =
0.5p? and ha(p) = 0.3 x 1{p > 0.3}, where the primary
goal is to assess how the smoothness of the transition function
impacts the estimation procedure.

For each simulation setup, we train the baseline GAM
model on the observed portion, Dg. We then fit the proposed
model on the combined dataset, Dg U Dp. As a metric, we



% / P(Y) g1 92
0.5 0.4 0.3 0.2 \ 0.5 04 0.3 0.2
10% +35.55%"  +24.49%" 432.00%" +11.26%" | +21.62%* +47.51%" 4+46.96%" +52.82%"
20% +21.14%"  +18.68%" +19.45%"  +7.17% | +23.97%* +33.13%" +48.55%" +32.87%"
ha 30% +20.12%%  +24.23%"  4+23.18%"  —3.62% | +18.79%" +12.91%  +52.48%" +33.40%"
40% +12.49%*  +12.31%"  4+10.30%"  +15.46%" | +15.03%*  +22.21%  4+27.56%" +38.04%"
50% +4.94%  4+7.12%" +2.12% +4.82% +8.58%* +4.46%  +20.08%" +25.00%"
10% +3.95%%  +2.62%"  +4.77%" +2.94% +4.93%%  +12.23%"  +31.84%" +17.34%"
20% +7.98%%  +6.56%°  +10.32%"  +8.92%" | +19.60%" +23.98%" +46.98%" +43.49%"
ha 30% +7.32%%  +4.27%"  +5.03%"  +4.55%" | +11.63%" +14.61%" +28.72%" +29.33%"
40% +3.39%"  +8.04%" +1.44% +0.79% +6.56%"  +20.18%" +15.64%" +28.13%"
50% +3.95%%  +2.62%"  +4.77%" +2.94% +4.93%%  +12.23%"  +31.84%" +17.34%"

Table 1: Simulation results: average percent improvement in L2-error of the proposed model over the baseline GAM fit on the
observed-only data. We indicate with star (*) the results that are statistically significant at the 5% level using paired T-test.

Criteo Hillstorm Lenta
KS Brier Log-lik. KS Brier Log-lik.  KS-error Brier Log-lik.
GAM 0.000489  0.001656 0.008835 0.016997 0.092418 0.326527 0.002450 0.077768 0.270673
IR 0.000199  0.001653 0.008229 0.016958 0.092875 0.343015 0.002484 0.077877 0.271399
BC 0.000224 0.001647 0.008089 0.015970 0.091948 0.324656 0.002073 0.077755 0.270462
GAM-EM 0.000389 0.001650 0.008773 0.016290 0.092224 0.325976 0.002357 0.077708 0.270407
BC-EM  0.000190 0.001643 0.008083 0.015884 0.091926 0.324489 0.001918 0.077715 0.270340

Table 2: Results on the marketing datasets with 10 re-runs. The best results are highlighted in bold; second best results are
underlined. We measure Kolmogorov-Smirnov error (Gupta et al. 2020), Brier score (Brier 1950), and log-likelihood. Our EM

approach consistently improves on the baseline method.

compute L>2-error between the oracle calibration curve, g, and
the estimated calibration curves. To demonstrate the utility
of our approach, we compute the percent improvement as
(L% anr — L% )/ (L2 45p) * 100%. We report the results in
Table 1. We observe the proposed method outperform the
baseline under all settings. We re-run the simulation 100
times and perform a paired T-test on the L? errors. We find
that at 5% significance level, our proposed approach achieves
a lower L? error under most scenarios.

Based on Table 1, we hypothesize that datasets that would
benefit the most from the proposed approach are the ones
with mild label imbalance, have small observed data size
compared to the latent data, and where the influence function
h is suspected to be relatively smooth. For the imbalanced
datasets, the variance of the calibration curve is heterogenu-
ous and high; therefore, the calibration error improves from
adding more data. However, if the observed data sample size
is large enough, then there is no room for improvement, so the
proposed approach may not yield a significant boost. Regard-
ing smoothness, since we use GAM as our baseline which is
piece-wise polynomial, this dictates a smoothness assump-
tion on A by (9). Finally, the shape of the true calibration
curve does not seem to affect our method.
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5.2 Real Data Application

For our real data analysis, we compare our proposed approach
against the mainstream calibration methods: Beta calibra-
tion (Kull, Silva Filho, and Flach 2017), isotonic regression
(Groeneboom and Lopuhaa 1993), and GAM (Gupta et al.
2021).

We use the datasets Criteo (Diemert et al. 2018), Hillstrom
(Hillstrom 2008), and Lenta (Lenta 2020). For all datasets,
the goal is to develop a well-calibrated classifier to predict
the treatment outcome. Each dataset contains a feature set,
a target column, and a binary treatment indicator. Criteo
(Diemert et al. 2018) consists of data of 13 million users,
each one represented by 12 features with the overall treatment
ratio of 84.6%. Hillstrom (Hillstrom 2008) consists of the
records of 64,000 users, described by 8 features with the
overall treatment ratio of 0.6. Finally, Lenta (Lenta 2020)
contains information on 687,000 users, described by 193
features with the overall treatment ratio of 75%.

To test the proposed approach, we randomly split the
observed portion of the dataset, consisting of untreated
users, into training, calibration, and test sets with a ratio
of 90% — 5% — 5%, respectively. We use the training dataset
to train the XGBoost classifier (Chen and Guestrin 2016).
We use the calibration set for fitting the calibration model.
Finally, we test the calibration on the test set, measuring
Kolmogorov-Smirnov error (Gupta et al. 2020), Brier score



Algorithm 3: CalEM

Input: read a small clean dataset Dg + a large noisy
dataset Dp, and specify tolerance ¢;
Process: Construct dataset

D* = DsUDpU{xp,yr = 0}ren:

Initialization: learn an initial calibration function gy
using Dg and a calibration function on the biased dataset
using Dp using logistic regression objective, i.e.,

9o < LogReg(Ds) g, < LogReg(Dp);
Computing an initial estimate of “treatment effect”:

(o) = SHE I,

Expectation-maximization iterations for¢t = 0,1,2,---:
1. compute weight vector:

t),T t), T\ T
'w(t):(lrsng) ,wé) ) ’

where T denotes vector transpose, and
* 1,5/ is a column vector of 1’s whose dimension equals
the cardinality of S, i.e. |S],
. wgt) is a column vector of dimension |B|, and its j-th
fe )
elementis w; ; =1 — h(,(t)’n(scj),
()

* w,’ is a column vector of dimension |B|, and its j-th

G
element is wéi = hgw) ,(x;);

2. update calibration function gg:) — gg:+1) by:
gotr1) — LogReg(D*; w®);
3. update “treatment effect” estimate:

hg(t+1>v77(mj) _ gﬂ(f(ilij)) — Jp(t+1) (f(m]))’

gn(f(25))

4. continue until HG“H) — 9("')H < e.

(Brier 1950), and log-likelihood. We report the mean error
results across 10 runs in Table 2. As we outline in Section 4.2
both Beta calibration (Kull, Silva Filho, and Flach 2017) and
GAM (Gupta et al. 2020) are likelihood-based approaches.
Following Algorithm 3, we combine them with our proposed
CalEM method. Upon analyzing the results, we find that
CalEM consistently enhances the performance of the base-
line algorithms and achieves optimal performance across
all metrics. These outcomes underscore the effectiveness of
CalEM in incorporating additional biased data in fitting the
calibration model.

6 Conclusion

In this paper, we introduce an iterative approach based on
a modified EM algorithm that allows the incorporation of
large, biased data sources into the estimation of the probabil-
ity calibration function. The proposed algorithm can serve
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as a drop-in enhancement for any likelihood-based recalibra-
tion method. Additionally, the method benefits from conver-
gence guarantees inherited from the EM formulation. The
significant performance improvements demonstrated in both
simulated environments and real-world marketing datasets
underscore the effectiveness and practical applicability of
the proposed model in enhancing the accuracy of probability
calibration under a variety of conditions.
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