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ABSTRACT

Synthetic data offers a promising path to train models while preserving data privacy.
Differentially private (DP) finetuning of large language models (LLMs) as data
generator is effective, but is impractical when computation resources are limited.
Meanwhile, prompt-based methods such as private evolution [Xie et al.| (2024); Hou,
et al.[(2024)), depend heavily on the manual prompts, and ineffectively use private
information in their iterative data selection process. To overcome these limitations,
we propose CTCL (Data Synthesis with ConTrollability and CLustering), a novel
framework for generating privacy-preserving synthetic data without extensive
prompt engineering or billion-scale LLM finetuning. CTCL pretrains a lightweight
140M conditional generator and a clustering-based topic model on large-scale
public data. To further adapt to the private domain, the generator is DP finetuned
on private data for fine-grained textual information, while the topic model extracts
a DP histogram representing distributional information. The DP generator then
samples according to the DP histogram to synthesize a desired number of data
examples. Evaluation across five diverse domains demonstrates the effectiveness
of our framework, particularly in the strong privacy regime. Systematic ablation
validates the design of each framework component and highlights the scalability of
our approach.

1 INTRODUCTION

Many artificial intelligence (AI) applications improves their model performances by leveraging
user data. For example, models are improved by adapting to the typing text in user’s mobile
virtual keyboard (Hard et al., 2018; |Xu et al.| [2023)), and aligning with user preference in a chat-
bot (OpenAl, 2024; |Google, 2024; [Llama Team, 2024)). However, training models on user data raises
privacy concerns, particularly in domains involving highly sensitive information, such as healthcare
records Milmo & Stacey| (2025) and chat messages (Hogan| |2025)). Researchers have shown that the
training data can be memorized and potentially extracted from models (Carlini et al., 2021} Nasr et al.,
2023;|Carlini et al.| [2023). Synthesizing privacy-preserving user data has emerged as a promising
approach to mitigating these privacy risks. A popular approach is to differentially-private (DP)
finetune a generative language model (LM) on user data, followed by generating synthetic data using
the finetuned model Bommasani et al.| (2019); [Putta et al.|(2022); Mattern et al.| (2022a); Yue et al.
(2023)). Benefiting from the development of open-sourced billion-scale large language models (LLMs)
such as Llama|Touvron et al.|(2023)), DP-finetuned generators have demonstrated effectiveness in
the downstream classification [Kurakin et al.[| (2023)) and instruction tuning tasks [Yu et al.| (2024).
However, DP finetuning is both computationally expensive and resource-intensive, because it requires
per-sample gradient operations in every training batch and large batch size to get good privacy-utility
trade-off (Ponomareva et al.,2023)). This results in higher memory usage and slower training speeds
compared to the non-DP finetuning. Moreover, when the user data are decentralized across their
own devices, and no centralized data collection is allowed following the data minimization privacy
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Figure 1: Overview of CTCL (Data Synthesis with ConTrollability and CLustering) framework: (A)
A universal topic model and a lightweight 140M generator with strong controllability are developed
once and for all on large-scale public corpora (§3.T]and §3.2); (B) To learn the private domain, we
collect a DP topic histogram, and DP finetune the generator on the private data (§3.3); (C) Privacy-
preserving synthetic data is generated based on the topic histogram and the finetuned generator (.

principle (McMahan et al.l 2017; [Kairouz et al., 2021} Daly et al., 2024), the devices performing
local computations typically lack the necessary resources to finetune billion-scale LLMs.

To address the resource limitations, recent work has explored generating synthetic data that only
require LLM API access, exemplified by the Private Evolution (PE) framework |Lin et al.[ (2024)); Xie
et al.[(2024); |Hou et al.| (2024)). These methods use an iterative process where samples are drawn
from the LLMs using human-crafted prompts, and then filtered based on their similarity to the private
data. This line of work has several limitations. First, they require prompt writers to have deep domain
knowledge of the private data, a requirement that can be unrealistic across diverse scenarios. They
also heavily rely on the LLM’s creativity and extensive prompt engineering tailored to the specific
LLMs. More critically, the PE framework only uses the private data in the embedding space for
example selection and filtration, and fails to fully leverage the fine-grained word-level information.
This inherently limits the performance of the synthetic data in the downstream tasks, particularly the
challenging generative tasks. As we will show in our experiments, unlike the standard classification
tasks, these generative tasks are evaluated by next-word prediction accuracy, and hence, demand a
finer-grained approximation of the private data distributions.

In this work, we introduce CTCL (Data Synthesis with ConTrollability and CLustering), a novel
framework for generating synthetic privacy-preserving data without finetuning billion-scale LLMs or
domain-specific prompt engineering. As illustrated in Figure[I] CTCL comprises two key components:
a lightweight 140M parameter generator and a universal topic model. Both components are pre-trained
on the large-scale public corpora, SlimPajama [Soboleva et al.| (2023) and Wikipedia |Foundation
(2023)), respectively. When adapting to the private domains, the topic model produces a DP topic
histogram to capture high-level distributional information, while the generator is DP finetuned to
learn fine-grained, textual information. During the data generation phase, the DP-finetuned generator
is sampled proportionally for each topic according to the DP topic histogram. An arbitrary amount
of synthetic data can be generated by our CTCL-generator without paying additional privacy costs,
because of the post-processing property of DP|Dwork et al.|(2014).

We validate our framework across five diverse downstream domains, including the medical contexts
and human-to-human conversations, covering both generative tasks evaluated by the next-word
prediction accuracy, and the standard classification tasks. Our framework demonstrates significant
advantages over previous approaches, particularly under strict privacy constraints. Through a compre-
hensive analysis, we highlight the importance of each component in our design, and demonstrate the
scalability of CTCL compared to prompting-based methods such as PE Xie et al.[(2024)).

2 RELATED WORK

Differential Privacy (DP) Our operations on the private data adhere to the standard (e, 6)-DP
guarantee Dwork et al.|(2006), ensuring that the inclusion or exclusion of a single record has minimal
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Prompt for OpenReview on GPT-3.5 [Xie et al.[(2024)

\ Prompt for GB. Dialogues on PaLM Wu et al.|(2024a))

Given the area and final decision of a research paper, you
are required to provide a **detailed and long** review
consisting of the following content:

1. briefly summarizing the paper in 3-5 sentences;

2. listing the strengths and weaknesses of the paper in
details;

Imagine you are a female at age 23. You are using
the Android Messages APP to message your family on
your mobile phone on the afternoon of a vacation day.
You want to chat about the following topic: I can’t wait
to come home and tell you all about it. Generate the
conversation between you and your message receiver.

3. briefly summarizing the review in 3-5 sentences.

Prompt used in our pretraining data construction on Gemma-2-2B (

Describe this document in multiple aspects. Make sure “Document Type” and “Keywords” are two of the aspects.
{document}

Table 1: The prompts used in existing synthetic data approaches versus in our pretraining data
construction. Prompts in existing work usually requires in-depth domain knowledge and intensive
prompt engineering specific to dataset and the LLM being prompted, while the one used in our data
construction is simple and generally applicable on whatever types of documents in pretraining corpus.

impact on the algorithm’s output. This constraint limits the model to learning generalizable patterns
rather than memorizing individual data points. Specifically, we employ DP-Adam [Li et al.|(2022);
Yu et al.| (2022) for DP finetuning, which clips per-sample gradients and injects Gaussian noise into
each gradient update during training. We also add Gaussian noise to every bin when collecting DP
histogram. For more details about the DP mechanism and the DP paremeters used in our experiments,
see Appendix [A]and [E]

Synthetic Data via DP Finetuning of LMs This line of work DP finetunes an LM on the private
data, and the finetuned LM is then used to generate synthetic dataBommasani et al.| (2019); Putta et al.
(2022); Mattern et al.|(2022a)); |Yue et al.| (2023)); [Kurakin et al.| (2023); |Yu et al.|(2024); Wang et al.
(2024)); Ochs & Habernal|(2024)); Carranza et al.| (2024). To preserve model capability under the DP
training noise, these approaches often rely on billion-scale models, particularly for generative tasks.
For instance, |Yu et al.| (2024) finetune LLaMA-7B [Touvron et al.|(2023)) with DP to generate short
(usually single-sentence) human-to-machine instructions. In contrast, our framework incorporates a
carefully designed learning process on the private data while using a significantly smaller backbone
LM with only 140M parameters in DP finetuning. This substantially reduces the computational costs,
making the approach more feasible for real-world resource-constrained applications.

Synthetic Data via LLM API Prompting This line of research explores data synthesis using only
LLM inference APIs, typically leveraging prompt engineering with domain-specific knowledge, such
as specifying document structures or assuming roles Wu et al.|(2024a). The Private Evolution (PE)
framework Lin et al.|(2024); Xie et al.|(2024); Hou et al.| (2024) integrates the private information
into the synthetic data through an iterative sample selection process. Specifically, the API-generated
outputs are selected based on their proximity to private data measured by the differentially private
nearest neighbors (DP-NN). In this setup, DP-NN serves as the sole mechanism for extracting
information from the private data, limiting the extent to which its information is fully captured.
Furthermore, the synthetic data size (which determines the number of bins in the DP-NN histogram)
is often constrained in order to better tolerate the DP noise (see discussion in Appendix [B]). For
instance, the synthetic datasets in Xie et al.|(2024) contain typically 2,000 to 5,000 examples across
the experiments. Unlike the prompting-based methods, our framework does not require prompt
engineering and prior domain knowledge when applied to downstream data. Additionally, our
synthetic dataset size is not constrained, offering significantly greater scalability compared to the PE
approach. We discuss more related work including private inference in Appendix

3 CTCL FRAMEWORK

In this work, we propose CTCL (Data Synthesis with ConTrollability and CLustering), a framework
for generating synthetic private data without requiring billion-scale DP finetuning or domain-specific
prompt engineering. Figure|l|gives an overview of CTCL.

Our framework consists of two key components: CTCL-Generator and CTCL-Topic. Both are
developed only once using the large-scale public corpora. CTCL-Generator is a lightweight 140M-
parameter conditional generator that supports free-form text input, allowing users to specify attributes
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Document

MORGANTOWN, W.Va. (November 11, 2015) — West Virginia University golf coach Sean Covich announced
Wednesday that Ty Olinger (Blacksburg, Va.,/North Cross HS) and Etienne Papineau (St-Jean sur Richelieu,
Quebec St-Lawrence) have committed to joining the Mountaineers starting in the fall of 2016. [...]

Extracted Aspects by Gemma-2-2B
Tone : Informative, positive, celebratory, and official.

Style : Simple, straightforward, and direct.
Keywords : West Virginia University, Golf, Recruiting, College Golf.
Purpose : To announce a new recruiting class for WVU golf.

Structure : Follows a standard journalistic format
Document Type : Article, Sports News

Table 2: Example of generated document description (which is used to form the condition partin
the pretraining (condition, document) data corpus). This only extracts existing information
in the document, so it doesn’t rely on large LLMs with super strong creativity to achieve. The
aspects marked in blue are automatically generated instead of pre-defined.

such as keywords and document type (§3.1). The second component, CTCL-Topic, is a topic model
that categorizes a given document into a predefined topic, represented by ten keywords (§3.2). To use
these two components for learning a specific private domain: the topic model constructs a topic-wise
histogram to capture high-level distributional information, while the generator is DP finetuned on
private training data to retain low-level textual details (§3.3). After that, we use the DP finetuned
generator and the DP topic histogram to produce an arbitrary number of synthetic samples without
additional privacy costs (§3.4).

The design of our framework offers several advantages. First, compared with the existing billion-scale
LLM DP finetuning, our backbone LM contains only 140M parameters, making DP finetuning
practical for real-world resource-constrained applications. Second, unlike the prompting-based
approaches that depend on hand-crafted domain-specific prompts that require in-depth expertise,
our framework is applicable to any private domain regardless of prior domain knowledge. Third,
PE-based methods need to balance between data quality and synthetic data size (see discussions
in Appendix [B)), while our framework naturally allows for unlimited data samples using the DP
finetuned generator, without additional privacy costs during generation.

The remainder of this section provides a detailed explanation of CTCL, covering its components
(§3.1] §3.2), and the private learning and data synthesis processes (§3.3] §3.4).

3.1 CTCL-GENERATOR

In our framework, CTCL-Generator is a lightweight (140M-parameter) conditional LM designed for
strong controllability. Specifically, it accepts one or more feature assignments as input, and generates
documents that adhere to these specifications. The assignments can include free-text inputs, such
as “Document Type: daily dialogue.” To enable this functionality within a small LM, we construct a
large-scale dataset and perform continual pretraining of an unsupervisedly pretrained LM.

Pretraining Data Curation We introduce a simple yet effective approach for constructing a large-
scale condition-to-document corpus. Our method builds on SlimPajama [Soboleva et al.| (2023), a
large unsupervised pretraining corpus, and leverages a relatively small LLM, Gemma-2-2B [Team
et al.| (2024])). Specifically, we employ a domain-agnostic and LLM-independent prompting strategy
for each document in SlimPajama: “Describe the document in multiple aspects.” This document
description task is straightforward and not requiring the LLM’s creativity, making it well-suited for
a small LLM like Gemma-2-2B to efficiently handle the data construction process. As a result, we
generate a large-scale pretraining dataset comprising 430M (condition, document) pairs,
where the Gemma-2-2B generated document description is used as the condition part.

TablesT]and 2] present the exact prompt we use and an example of the generated document description.
Notably, our prompt encourages the inclusion of “Document Type” and “Keywords” as aspects in the
prompting output. This is designed to match how we use topic keywords to obtain high-level topic
distributions, when adapting to a specific private domain (§3.3]and §3.4). Additionally, the document
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type is encouraged because it is the simplest high-level information to extract from the private data
domain.

Pretraining Setup We perform continual pretraining on top of BART-base [Lewis|(2019), a 140M-
parameter sequence-to-sequence LM previously pretrained in an unsupervised manner. The model’s
encoder-decoder architecture is well suitable for conditioning on inputs through the encoder while
generating outputs via the decoder. Optimization was performed using the AdamW optimizer with a
batch size of 4096 and a cosine learning rate schedule starting at 5 x 10~°. The implementation of
the pretraining is based on RedCoast Tan et al.| (2023) using bf16 mixed precision and the pretraining
takes approximately 24 hours on 256 TPU-v4 cores Jouppi et al.| (2023)).

3.2 CTCL-TopriC

Another key component of CTCL is a high-quality and diverse clustering schema: a universal topic
model based on document embeddings. This model is designed to identify a topic index for a given
document, along with 10 representative keywords associated with the identified topic.

The topic model is used to capture high-level distributional information from the private training data.
To ensure universality, the model is designed to generalize well across a wide range of downstream
documents, always identifying a relevant topic. To achieve this, we constructed the topic model using
Wikipedia [Foundation| (2023)), a large-scale, diverse, and commonly recognized high-quality corpus.

Topic Model Setup Specifically, we utilized the November 2023 version of Wikipedia, which
contains over 6 million pages. A publicly available 20M-parameter document embedding mode
was applied to the entire Wikipedia corpus, followed by HDBSCAN clustering Mclnnes et al.| (2017),
resulting in the identification of 1,300 clusters, each treated as a distinct topic. To represent each
topic, we employed the KeyBERT Sharma & Li|(2019) to annotate 10 keywords for each cluster. The
implementation of the pipeline above is based on BERTopi(E] Grootendorst| (2022)).

3.3 LEARNING THE PRIVATE DOMAIN

When applying CTCL to the downstream private domains (shown by Part B in Figure [T)), we use
CTCL-Topic to capture the high-level distributional information across the entire private corpus
(via DP topic histogram), and adapt CTCL-Generator (via DP finetuning) to learn fine-grained text
information from the private data.

DP Topic Histogram Using the topic model built by CTCL-Topic, we first assign a topic to each
document in the private training data, by applying the same 20M document embedding modelemb-
model on every document and finding the closest topic embedding (among the 1,300 topic embeddings
obtained from §3.2)). A histogram representing the topic-wise distribution of the private corpus (i.e.,
the proportion of documents associated with each topic) is then constructed. Gaussian noises are
added properly to every bins in the histogram, and the result is a private topic histogram.

DP Finetuning After the “DP Topic Histogram” process, each document in the private dataset
has been assigned to a topic. Recall that in CTCL-Topic, each topic is represented by 10 keywords.
Now we transform the private dataset into the (condition, document) pairs, where the
condition part consists of 10 keywords corresponding to the topic assigned to the document.
This dataset is then used to DP finetune the CTCL-Generator. Note that the condition part is
slightly different between the constructed pretraining data in §3.1|and private finetuning data here.
The pretraining data has free-form text condition (obtained from Gemma-2-2B) while the finetuning
data has 10 keywords as the condition. That said, if available, additional domain-specific knowledge,
such as document types, can be incorporated into the condition as well. These constructed condition-
document pairs align with the pretraining condition-to-document task in This alignment is a
key to benefit from our pretraining, which enables the model to effectively learn private information
while being more robust to the noise in training compared to vanilla DP finetuning [Yue et al.|(2023);
Kurakin et al.| (2023).

'nttps://huggingface.co/sentence-transformers/all-MinilM-L6-v2
https://maartengr.github.io/BERTopic/
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PubMed (Medical Paper Abstract)

Setting €= 00 e=4 e=2 c=1
BERTMini  BERTsman | BERTmini  BERTsmanr | BERTwMini  BERTsman | BERTMini  BERT'sman

GPT2x.-1.5B (Upper Bound) 39.6 429 377 40.5 373 40.2 36.8 39.7
GPT2x,.-1.5B-LoRA (Upper Bound) 394 425 347 377 34.9 379 349 379
Downstream DPFT (No Synthetic Data) 4.3 46.0 30.7 34.1 28.9 325 26.7 30.4
Private Evolution (PE) (2024] 29.7 31.8 29.6 31.8 29.7 319 29.8 319
AUG-PE + Mixtral-8x7B[Xie et al.|(2024] 24.9 27.6 - - - - 245 27.1
AUG-PE + GPT-3.5 (2024] 304 327 30.3 325 30.2 325 30.1 324
GPT2sman 38.1 41.6 35.0 37.4 32.0 34.4 26.8 293
GPT2sman + Resamp 39.0 42.4 35.3 375 33.0 35.1 27.6 29.1
BARTBuse 40.9 43.9 30.5 32.4 28.9 30.8 26.7 28.5
BARTg,. + Resample 413 442 30.7 325 29.0 30.7 26.5 28.0
Ours 415 44.6 35.9 38.1 354 37.6 34.5 36.7

Table 3: Performance of PubMed evaluated by next-word prediction accuracy of downstream models
(BERTpin; and BERTsa11). A smaller privacy budget (¢) corresponds to stricter privacy constraints.
See @for details of "Downstream DPFT.”
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Figure 2: Next-word prediction accuracy of the downstream model BERT iy in the Chatbot Arena
Instruction and Multi-Session Chat domains. Comparing the the blue and yellow bars, our framework
demonstrates greater improvements over the baselines under the stricter privacy constraint € = 1
compared to the setting of € = 4.

3.4 SYNTHETIC DATA GENERATION

The DP finetuned CTCL-Generator is sampled to generate synthetic data based on the DP topic
histogram (see Part C in Figure[T). Specifically, given the desired size of the synthetic dataset (say, V)
and the topic proportions specified by the DP topic histogram (say, 2% for Topic 1, y% for Topic 2,
etc), we know the number of target samples for each topic (i.e., N for Topic 1, yN for Topic 2, etc).
For each topic, we use the corresponding 10 keywords as input to the DP finetuned CTCL-Generator
to generate data.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP
4.1.1 DOWNSTREAM TASKS

Our experiments contain three generative tasks and two classification tasks. The downstream
generative tasks are evaluated by the next-word prediction accuracy, which needs the synthetic data
to preserve fine-grained textual information from the private data. In contrast, the downstream
classification tasks usually rely on co-occurrence patterns between labels and words in the synthetic
data. Therefore, generative tasks tend to be more challenging than classification tasks. E|

Generative Tasks Three generative downstream tasks are chosen to cover a diverse set of the
practical scenarios. Specifically, we include PubMed (2023) to represent the academic

3Size of the training datasets can be found in Appendix
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| Yelp | OpenReview
Setting |e=00 e=4 €e=2 e=1]e=00 e=4 e=2 e=1
GPT2x..-1.5B (Upper Bound) 71.1 69.4 68.2 68.2 49.1 46.6 46.3 454
GPT2x1.-1.5B-LoRA (Upper Bound) 70.3 67.7 67.6 67.7 51.0 46.2 45.3 46.0
Downstream DPFT (No Synthetic Data) 76.0 67.5 67.2 66.8 50.8 32.0 32.0 32.0
Private Evolution (PE) Lin et al.| (2024) 67.9 67.1 67.2 67.6 424 43.5 43.7 429
AUG-PE [Xie et al.| (2024) 68.4 68.1 67.8 67.9 43.5 44.6 44.5 43.1
GPT2sman |Yue et al.|(2023) 71.0 68.2 67.9 67.9 52.1 41.1 38.5 35.1
BARTgRase | Yue et al.| (2023) 70.7 66.3 66.9 66.9 52.6 44.7 42.2 25.7
Ours ‘ 70.5 68.1 68.0 67.7 ‘ 53.9 46.5 47.1 46.2

Table 4: Accuracy of downstream models in the classification tasks. A smaller privacy budget (¢)
corresponds to stricter privacy constraints. See §[ZTI_TZ] for details of "Downstream DPFT.”

medical domain, Chatbot Arena Zheng et al.| (2023) for human-to-machine interactions, and Multi-
Session Chat|Xu|(2021) for human-to-human everyday dialogues. Following the evaluation setup
in Xie et al.| (2024)), we train 10M-level downstream causal LMs on the synthetic datasets, and use
next-word prediction accuracy on the real test data as the primary quality metric.

Classification Tasks We conduct experiments on two classification tasks: Yelp |Yelp, Inc.| and
OpenReview Xie et al.|(2024)), both of which are 5-way classification, with Yelp focusing on business
reviews and OpenReview on academic paper reviews. The performance is measured by the accuracy
of a downstream classifier trained on the synthetic data.

To mitigate concerns regarding data contamination, we use a search engine |Liu et al.|(2024)) indexed
on RedPajama |Computer| (2023) (a superset of our pretraining corpus) to identify potential overlaps
between our downstream and pretraining data. Our analysis detects no overlap between our training
data and the five downstream datasets. Additionally, for the PubMed dataset, all included samples are
dated within August 2023, ensuring they were published after the release of our pretraining corpus in
June 2023.

4.1.2 BASELINES

Direct DP Finetuning Downstream Models A straightforward approach to obtain a downstream
model is to directly perform DP finetuning of the downstream model on the private data, without
using the synthetic data. For simplicity, we refer to this baseline as “Downstream DPFT” throughout
this paper.

Vanilla DP Finetuning We conduct standard DP finetuning |Yue et al.| (2023)) on BARTg, [Lewis
(2019) and GPT2g,,1 Radford et al.|(2019)), both of which have comparable O(100M) model sizes
as that of the generator in our framework. Additionally, we include DP finetuning of GPT2x; -1.5B
Radford et al.[(2019) as an upper bound. Given prior findings that LoRA finetuning can outperform
full-model finetuning under DP constraints [Kurakin et al.| (2023)), we also evaluate a LoRA DP-
finetuned variant of GPT2x; -1.5B as another upper bound. Notably, while LoRA reduces trainable
parameters, it does not significantly decrease resource demands since backpropagation is still required
through the full backbone LLM.

Post-Generation Resampling Yu et al| (2024) proposes to refine the synthesizd dataset by a
resampling technique, in order to better align with statistical properties derived from the private data.

Private Evolution (PE) We include results from the original PE Lin et al|(2024) and its augmented
variant, AUG-PE Xie et al.|(2024)), as the examplar of LLM prompting based data synthesis approach.

4.1.3 HYPERPARAMETERS

DP Finetuning and Sample Generation For all settings involving DP finetuning, we use DP-Adam
for 2000 steps with a batch size of 4096, a gradient norm clip of 1.0, and a weight decay of 0.1. The
learning rate follows a linear decay schedule with 100 warmup steps, and the peak learning rate is
selected from the range [1,4] x [1073,10~%,107°] based on validation performance. The privacy
budget accounts for both DP model finetuning and the collection of DP topic histogram statistics.
We apply a Gaussian noise multiplier of 10 to the DP topic histogram. The noise multipliers for
DP finetuning vary across settings depending on the training data size and the presence of a topic
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Figure 3: Scalability investigation results. The x-axes represent the increasing privacy budget or the
number of synthetic examples, while the y-axes indicate the performance of downstream models
trained on synthetic data.

histogram (see Appendix[E). For the sample generation process, we generate 400K synthetic examples
using nucleus sampling with top-p = 0.95 and a maximum sequence length of 512 tokens. For upper-
bound experiments with GPT2x; -1.5B, we reduce the batch size to 256 to mitigate computational
costs. The implementation of DP finetuning is based on RedCoast|Tan et al.|(2023) using full fp32
precision.

Downstream Model Training and Evaluation We follow the evaluation of Xie et al.| (2024) for
both generative and classification tasks. For generative tasks, we train the causal versions of BERT iy
and BERTg, using a linear learning rate schedule from 0.0003 to 0, a batch size of 64, and a total
of 6000 steps, with a weight decay of 0.01. For classification tasks, we finetune a RoBERTa-base
model unde5r the same hyperparameter settings as in generative tasks above, except for a learning rate
of 3 x 107°.

4.2 RESULTS
4.2.1 GENERATIVE TASKS

Table 3| and Figure [2| present the results of three generative tasksﬂ Our framework consistently
outperforms baselines under different DP constraints and achieves performance close to the upper
bounds. Moreover, as shown in Figure 2] the performance gap between our framework and the
baselines widens under tighter privacy constraints (i.e., comparing the patterns of blue and yellow
bars), highlighting its robustness. This can be attributed to our framework’s ability to simultaneously
learn both high-level and fine-grained information from private data.

Our results also reflect the limitations of the baselines. Specifically, when there is no DP constraint,
direct downstream finetuning on the real data (without synthetic data) achieves the best performance
across all three tasks. However, adding DP training noise leads substantial performance drop,
indicating the vulnerability towards DP noise of small downstream models. Additionally, the
performance of PE methods |Xie et al.| (2024)); |Lin et al.|(2024) remains almost unchanged across
different privacy constraints, which also indicates that these methods do not fully exploit the increased
privacy budget. This limitation may stem from their constrained capacity (i.e., only via the nearest
neighbors) to effectively capture information in the private data. Moreover, a comparison of different
LMs within the AUG-PE framework reveals a significant performance gap between GPT-3.5 API and
the open-source Mistral-8x7B, despite the latter also being considered a strong model. This suggests
that the effectiveness of PE methods heavily relies on the exceptional capacity and creativity of the
backbone LLM.

4.2.2 CLASSIFICATION TASKS

As shown in Table |4} our model still achieves performance that is either superior to or on par with the
best-performing methods. PE-based approaches demonstrate stronger results in classification tasks
compared to their performance on generative tasks. This may be because that classification primarily
relies on synthetic data to capture associations between labels and specific words or phrases, which
is an objective that PE methods can effectively achieve by prompting LLMs properly. In contrast,
generative tasks require a deeper resemble of finer-grained textual information from private data,
which poses greater challenges for PE methods.

*A complete result table is available in the Appendix@
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Setting e=o0 €=1
BARTBse 63.1 572.9
BARTRas + Keywords 49.3 291.6

BARTg.se + Keywords + Pretraining (Ours) 48.4 125.6

Table 5: Ablation study results evaluated by the downstream language model’s perplexity (lower
values indicate better performance). A privacy budget of ¢ = co means no DP training noise during
the finetuning of the data generator.

4.3 ANALYSIS AND ABLATION STUDY

4.3.1 SCALABILITY

The privacy budget and the size of the generated synthetic data are two key factors influencing the
performance of data synthesis. In this study, we examine the effect of these factors, focusing on a
comparative analysis between our framework and AUG-PE, an exemplar prompting-based approach.
To investigate the impact of synthetic data size, we follow the experimental setup of
and extend AUG-PE’s sample sizes to 200K for the PubMed dataset and 100K for the Yelp dataset.
The PubMed expansion is achieved by combining two runs of data synthesis using GPT-3.5 and
Llama-3-8b-Instruct, while the Yelp expansion uses GPT2-Large as reported inXie et al.| (2024).

Regarding privacy budget scalability, as illustrated in the leftmost plot of Figure [3] and briefly
discussed in §4.2.1] AUG-PE does not benefit from an increased privacy budget, whereas our
framework continues to improve under the same conditions. For synthetic data size, the second and
third plots in Figure[3|show that when the number of synthetic examples remains in the thousand-level
range, AUG-PE produces higher-quality datasets. However, its performance plateaus beyond 10K
examples. In contrast, our framework exhibits continuous improvement as the dataset size increases.
These findings align with our discussion in §2]and Appendix [B]on the size limitations of PE method.

Overall, our approach demonstrates superior scalability in terms of both privacy budget and synthetic
data size.

4.3.2 ABLATION STUDY

In this study, we validate the importance of two key components in our framework: 1) pretraining
the generator and 2) incorporating keyword-based conditions during DP finetuning. Specifically,
starting from standard DP finetuning, we sequentially introduce these components and measure the
downstream model’s perplexity. The results, presented in Table[5] demonstrate the following: first, a
comparison between “BARTp,.”” and “BARTg, + Keywords” reveals that incorporating keywords
during finetuning significantly improves performance, regardless of the presence of DP training noise.
Second, a comparison between “BARTp,s. + Keywords” and “BARTg, + Keywords + Pretraining”
indicates that pretraining offers limited benefits in noise-free settings but provides a clear advantage
when the DP training noise is added.

We also compute the MAUVE score |Pil
to measure the distribu-
tion similarity between the generated syn-
thetic data and the PubMed test set. As
shown in Figure [d] our method achieves
the highest MAUVE score among the com-
pared methods, showing the effectiveness
of our topic-wise distribution alignment
during the generation process (§3.1). More-
over, a comparison between GPT2x; -1.5B
and GPT2gy,y reveals that DP finetuning
on a larger model better captures high-level GPT2smai GPT2x-1.5B  AUG-PE Ours
distributional patterns. Furthermore, we

find that the high-level distribution sim- Figure 41 MAUVE scores on PubMed dataset under
ilarity measured by MAUVE is not the € = 4. Note that only the relative rankings instead
sole determinant of synthetic data quality. ©of the absolute scores matters here, because the score
For instance, while the synthetic data from scale can change a lot with slightly different evaluation

GPT2xq -1.5B has a lower MAUVE score configurations.

© o o©
N w >

MAUVE Score
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BART-Base (Downstream Model Performance: 30.5%): We explored the relationship between molecular
interaction, NCT-2 and NCT-3 (NCT-1), NCT-4, NCT and NCT-1.5 (NCT), NCT-, NCT-6, and NCT[4]. In a
recent clinical trial, we described an enzyme in NCT-10 that enabled novel processes to explore novel approaches
for NCT- 2.3 to NCT-IIL. [...]

GPT2x.,-1.5B (Upper Bound, Downstream Model Performance: 37.7%) The ability of leptin to induce
weight loss, to stimulate ectothermic thermogenesis, and to augment activity of the AMPK system and the
AMPK-dependent lipoprotein lipase activity, was examined. Circulating concentrations of leptin were assessed
in the femoral adipose fat pad of the lean and obese [...]

AUG-PE + GPT-3.5 (Downstream Model Performance: 30.3%) An increasing incidence of aneurysmal
subarachnoid hemorrhage (SAH) remains high, necessitating prompt intervention. The recognition and treatment
options, including both surgical and endovascular approaches, have emerged as key components of tertiary
management. [...]

Ours (Downstream Model Performance: 35.9%): To develop a therapeutic formula to reduce rates of morbidity
that occur in people with a combination of cardiovascular problems. We used a multi-state, multidisciplinary
approach to the research of the clinical manifestations of cardiovascular problems with the introduction of a
biocontrol. [...]

Table 6: Synthetic data samples on PubMed under € = 4. (Randomly Sampled.) Obvious disfluent
cuts are highlighted in red.

than that of our approach, the model trained on it achieves a higher downstream performance (37.7%
vs. 35.9%) in Table[3]

4.3.3 SYNTHETIC SAMPLES

Table[6]presents synthetic samples generated by our framework and several baselines. Under the DP
training noise, the BARTg,s model tends to produce repetitive content. In contrast, our framework,
built on the same lightweight model architecture, maintains the sentence fluency well. Interestingly,
while the AUG-PE method generates fluent sentences using the powerful GPT-3.5, its downstream
performance is only comparable to that of the DP-finetuned BARTg,s. This suggests that in the
context of data synthesis, the quality of the surface form (e.g., fluency and coherence) may not be the
most critical factor. Generating synthetic data that is useful for the downstream model development
is more important than generating fluent data.

5 CONCLUSION

In this work, we propose a novel framework for synthesizing private domain data, which integrates a
universal topic model with a lightweight 140M conditional language model. This framework captures
both high-level, topic-specific information and fine-grained, context-sensitive details of the private
domain in a modular and efficient manner. Through evaluations across five diverse downstream
domains, we demonstrate that the synthesized data generated by our framework outperforms baseline
methods, including vanilla differential privacy finetuning and prompting-based approaches such as
private evolution.
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A BACKGROUND ON DIFFERENTIAL PRIVACY

We use the standard (e, d)-differential privacy (DP) guarantee Dwork et al.| (2006) to measure the
privacy risk of an ML algorithm memorizing individual records in the sensitive training data. For
simplicity, we present a brief description below, and defer to Dwork et al.|(2014); Ponomareva et al.
(2023)) for more details.

Definition A.1 ((¢, §)-DP Dwork et al. (2006)). A randomized algorithm M satisfies (¢,0)-DP if for
any two neighboring datasets I, D’ (defined by adding or removing one record from the dataset), and
for any S C Range(,M), where Range(M) is the set of all outcomes of M:

PrM(D) € S] < e Pr[M(D') € S] + 6.

At the high level, (¢, 0)-DP provides a formal definition that adding or removing a single record from
the dataset should not have a large influence on the algorithm output. This indicates that the algorithm
only learns the common knowledge from the entire dataset.

To help readers better understand our paper, we now briefly describe two important facts about
(¢, 0)-DP. First, one popular approach to DP training is DP-SGD |Song et al.|(2013); Bassily et al.
(2014); |/Abadi et al.| (2016) or variants such as DP-Adam |Li et al.| (2022); |Yu et al.| (2022), which
modifies the standard SGD algorithm by clipping per-sample gradients and adding noise to each
gradient updates during training. We use DP-Adam to train LMs throughout this paper. Second, any
post-processing of a private algorithm’s output cannot make it less private Dwork et al.|(2014). In our
case, this property means that the synthetic dataset generated by a DP finetuned LM has the same
(e, 0)-DP guarantee as that of the DP finetuned LM.

B SUPPLEMENTARY DISCUSSION ON RELATED WORK

This paper focuses on generating privacy-preserving text data that resemble a private data source. We
discuss more about prior work here in addition to

Synthetic text data generated by DP-finetuned LMs. This is a popular approach: an LM is
first finetuned on the private data with DP, and then sampled to generate synthetic data| Bommasani
et al.[| (2019); Putta et al. (2022); Mattern et al. (2022a); Yue et al.| (2023)); Kurakin et al.| (2023));
Yu et al.| (2024); Wang et al.| (2024); (Ochs & Habernal| (2024); |Carranza et al.|(2024)). While this
paper follows a similar approach, we primarily focus on improving the data generation quality from
a small O(100M)-scale LM. By carefully finetuning on the public and private data, the synthetic
data generated by our method have significantly better quality than that obtained by the previous DP
finetuning approaches for the O(100M)-scale LMs.

Existing DP finetuning-based approaches for synthetic data generation often rely on the strong
capability and generalability of billion-scale LLMs, especially when the downstream tasks are the
challenging generative tasks as opposed to the simpler classification tasks. For instance, [Yu et al.
(2024) DP finetune LLaMA-7B to synthesize Chatbot Arena-style short (often one-sentence) human-
to-machine instructions. While CTCL also incorporates a DP finetuning step on private data, it
significantly reduces the computational cost by using a backbone LM with only 140M parameters,
making it much more acceptable for real-world resource-constrained applications.

Synthetic text data that only require LLM API access. Because DP finetuning can be expensive
and sometimes impossible (e.g., for non-public models), this line of work explores data synthesis
assuming only access to the LLM inference APIs. Simply relying on the high-level knowledge about
a private domain to design proper LLM prompts is not enough to generate synthetic data that well
represent the actual private domain|Wu et al.|(2024a). The Private Evolution (PE) framework, initially
developed by Lin et al.| (2024])) for the image domain, and later extended to the text domain in|Xie et al.
(2024); Hou et al.| (2024)), proposes to “refine” (i.e., select good examples from) the current synthetic
dataset according to the closeness of each example with respect to the private dataset. A similar idea
is also explored by [Zhao et al.[(2024). The key idea behind PE is to measure closeness using DP
nearest neighbor histogram: if an example is close to the private distribution, then it would receive a
lot nearest neighbor votes from the private examples. PE starts with an initial dataset generated by
the state-of-the-art LLMs via API access (using domain knowledge to design LLM prompts). PE
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then works by iteratively selecting good examples (measured by the DP nearest neighbor histogram)
and using LLMs to generate more similar examples. In our experiments, we show that PE performs
worse than DP finetuning especially for generative tasks, even when we are only allowed to finetune
a small (million parameters) LMs.

Unlike prompting-based approaches such as PE, CTCL does not depend on prompting advanced
LLMs or external APIs when applied on downstream data. Although a prompting step is involved
during CTCL’s pretraining phase in §3.1](note that this step only needs to be done once), our prompt is
only designed for summarizing a public document, without requiring the strong creativity capabilities
from advanced LLMs. In practice, for this step, we only need a lightweight 2B-parameter LLM,
ensuring that the constructed data can be scaled up to pretraining level. Table[I|presents the examples
of prompts used in existing prompting-based data synthesis approaches as well as the one used in our
pretraining data construction.

The size of the synthetic dataset in PE-based approaches is often constrained due to the sample-wise
noise introduced by the differential-private nearest neighbor (DP-NN) process. In this setup, DP-
NN serves as the only mechanism for incorporating the information from the private data into the
synthetic dataset. Specifically, DP-NN identifies the nearest neighbors of each private data sample
within the synthetic dataset. To preserve privacy, DP noise is added to each synthetic sample. In
this process, each synthetic sample acts as a bin, with its count indicating how many private data
samples identify it as their nearest neighbor. Noise is then applied to these counts to ensure privacy.
However, this process requires each bin to contain a sufficiently large number of counts; otherwise,
the noise overwhelms the signal, making it difficult to distinguish between zero and small counts.
Consequently, the synthetic dataset size must be limited, as an excessive number of bins would make
DP-NN ineffective. To overcome this limitation, a variation process is often employed, where LLM
APIs are prompted to generate additional samples based on the initially selected subset. However,
since the private data does not directly influence this generation process, the final synthetic dataset
theoretically contains no more information from the private data than the small subset originally
selected.

Nagesh et al.| (2024) propose an approach that privately learns the probability distribution of
keyphrases via kernel density estimation, followed by sampling sequences of keyphrases to seed LLM
prompts. To better capture the correlations between the sampled keyphrases, this method requires
estimating the distribution of keyphrases at varying lengths. As a result, it is hard to scale this method
to generating very long documents.

Another line of work explores generating private-preserving few-shot examples for in-context learning
(ICL), e.g.,[Tang et al.|(2024); Wu et al. (2024b); Duan et al.|(2023)). Given a reasonable DP guarantee,
these methods can only generate a limited amount of synthetic data, e.g., a few for ICL, or at most
thousand |Amin et al.|(2024). By contrast, our method (based on DP finetuning) can generate a much
larger dataset of synthetic examples.

Text privatization based on word or sentence perturbations. These approaches, e.g., [Feyisetan
et al. (2020); Mattern et al.[(2022b)); |Carvalho et al.|(2023)); Utpala et al. (2023), usually use a different
DP notion and perform worse than the approaches discussed above. We defer interested readers to
Appendix C.11 in[Xie et al.|(2024) for more details.

C DATASET SIZES

Dataset | Train Valid Test

PubMed | 75,316 14,423 4,453

Chatbot Arena | 180,000 5,000 3,819
Multi-Session Chat | 17,940 3,000 2,505
Yelp | 1,939,290 5,000 5,000

OpenReview | 8,396 2,798 2,798

Table 7: Sizes of datasets in our experiments.
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D FuULL RESULTS OF GENERATIVE TASKS

PubMed (Medical Paper Abstract)

Settin €= 00 e=4 e=2 e=1
2 BERTMini  BERTsman | BERTwMini  BERTsman | BERTwmini  BERTsman | BERTmini  BERTsman
GPT2x.-1.5B (Upper Bound) 39.6 429 37.7 40.5 37.3 40.2 36.8 39.7
GPT2x..-1.5B-LoRA (Upper Bound) 394 42.5 34.7 37.7 349 37.9 349 37.9
Downstream DPFT (No Syn. Data) 44.3 46.0 30.7 34.1 28.9 325 26.7 30.4
Private Evolution (PE) Lin et al.|(2024) 29.7 31.8 29.6 31.8 29.7 31.9 29.8 31.9
AUG-PE + Mixtral-8x7B|Xie et al.|(2024) 24.9 27.6 - - - - 24.5 27.1
AUG-PE + GPT-3.5 Xie et al.[(2024) 30.4 32.7 30.3 325 30.2 325 30.1 324
GPT2sman | Yue et al.|(2023) 38.1 41.6 35.0 374 32.0 34.4 26.8 29.3
GPT2sman + Resample|Yu et al. |(2024) 39.0 424 353 37.5 33.0 35.1 27.6 29.1
BARTSg,s |Yue et al.[(2023) 40.9 439 30.5 324 28.9 30.8 26.7 28.5
BARTSB.s. + Resample|Yu et al.|(2024) 413 442 30.7 32.5 29.0 30.7 26.5 28.0
Ours 41.5 44.6 35.9 38.1 354 37.6 345 36.7
Chatbot Arena (Human-to-Machine Instructions)
Setting € = 00 e=14 €e=2 e=1
BERTMini  BERTsmai | BERTmini  BERTsman | BERTMini  BERTsman | BERTmini  BERTsman
GPT2x..-1.5B (Upper Bound) 26.6 29.4 19.6 21.9 19.4 21.8 19.2 21.6
GPT2x.-1.5B-LoRA (Upper Bound) 28.5 31.1 229 25 22.8 24.9 22.8 25.0
Downstream DPFT (No Syn. Data) 28.9 319 13.3 12.5 11.9 10.9 10.3 9.2
GPT2sman | Yue et al.|(2023) 26.1 28.8 18.8 20.7 17.7 19.5 16.0 17.6
GPT2sman + Resample|Yu et al. |(2024) 26.8 29.3 18.7 20.0 17.6 18.6 159 17.1
BARTB.s |Yue et al.|(2023) 21.8 24.1 15.9 16.8 14.9 16.1 13.5 14.5
BARTS3,s + Resample|Yu et al.|(2024) 234 25.6 16.3 174 15.3 16.7 14.3 15.1
Ours 22.5 249 19.6 21.5 19.4 21.2 19.2 20.7
Multi-Session Chat (Long-Term Human-Human Conversations)
Settin €= 00 e=4 €e=2 e=1
€ BERTMmini  BERTsman | BERTwmini  BERTsman | BERTwMini  BERTsman | BERTmini  BERTsman
GPT2x..-1.5B (Upper Bound) 332 355 27.5 30.2 25.3 28.7 239 27.0
GPT2x1.-1.5B-LoRA (Upper Bound) 38.3 40.8 28.4 30.7 28.4 31.1 28.8 31.1
Downstream DPFT (No Syn. Data) 38.8 40.1 21.6 17.7 18.9 11.8 15.1 6.7
GPT2sman | Yue et al.|(2023) 34.6 37.2 19.1 19.9 20.2 214 15.1 17.3
GPT2sman + Resample|Yu et al. |(2024) 34.6 37.3 184 17.3 19.9 18.7 14.5 13.4
BARTSgas [Yue et al. |(2023) 342 36.9 27.8 29.1 23.8 25.0 10.8 11.2
BARTB.se + Resample|Yu et al.|(2024) 34.8 37.4 28.1 29.1 242 25.1 9.1 9.8
Ours 34.3 36.4 30.3 32.6 29.1 29.7 27.6 29.3

Table 8: Performance of generative tasks evaluated by next-word prediction accuracy of downstream
models (BERTyin; and BERTsy,1). A smaller privacy budget (e) corresponds to a stricter privacy

constraint.
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E NOISE MULTIPLIERS

The table below gives the noise multipliers used when DP finetuning LMs in our experiments.
Following Yue et al.| (2023), we set § = ﬁgl\,, where NV is the size of private training set. Given a

desired (¢, §)-DP guarantee, the noise multipliers are computed using the standard dp_accounting
package (DP Team| [2022). As pointed out in Appendix [A] we use DP-Adam for DP finetuning and
follow the standard Gaussian mechanism to obtain (e, §)-DP guarantee. Compared to the “Vanilla
DP Finetune” approach, the noise multiplier used by our method is slightly larger, because we need
to allocate some privacy budget to the DP topic histogram (see §3.3|and §4.1.3] where we follow
Yu et al.| (2024) to apply a Gaussian noise multiplier of 10 to the DP topic histogram). Besides,
GPT2x;-1.5B has much smaller noise multipliers because we reduce the training batch size from
4096 to 256 to save computational resources. For other non-DP training hyperparameters, see §4.1.3]

PubMed
Vanilla DP Finetune (BARTg, and GPT2gan) 0 3.01 5.49 10.3
GPT2x1 -1.5B (reduced batch size) 0 0.63 0.77 0.97
Ours 0 3.03 563 11.33
Chatbot Arena
Vanilla DP Finetune (BARTg,s and GPT2ga1) 0 1.47 2.5 4.58
GPT2x1 -1.5B (reduced batch size) 0 0.56 0.67 0.78
Ours 0 1.48 2.57 5.08
Multi-Session Chat
Vanilla DP Finetune (BARTg,s and GPT2ga1) 0 11.38 21.01 39.41
GPT2x1 -1.5B (reduced batch size) 0 1 1.52 2.61
Ours 0 1145 2147 427
Yelp
Vanilla DP Finetune (BARTg,s. and GPT2sman) 0 0.63 0.77 091
GPT2x1 -1.5B (reduced batch size) 0 0.51 0.6 0.69
Ours 0 0.63 0.77 0.94
OpenReview
Vanilla DP Finetune (BARTg,s. and GPT2ga1n1) 0 233 4287 80.05
GPT2x.-1.5B (reduced batch size) 0 1.64 2.81 5.11
Ours 0 23.44 43.72 86.05

Table 9: The noise multipliers used when DP finetuning LMs in our experiments.
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