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Abstract
We present a framework for safety-critical optimal
control of physical systems based on denoising
diffusion probabilistic models (DDPMs). The
technology of control barrier functions (CBFs),
encoding desired safety constraints, is used in
combination with DDPMs to plan actions by it-
eratively denoising trajectories through a CBF-
based guided sampling procedure. At the same
time, the generated trajectories are also guided to
maximize a future cumulative reward represent-
ing a specific task to be optimally executed. The
proposed scheme can be seen as an offline and
model-based reinforcement learning algorithm re-
sembling in its functionalities a model-predictive
control optimization scheme with receding hori-
zon in which the selected actions lead to optimal
and safe trajectories.

1. Introduction
When controlling a physical system, the concept of safety is
crucial. In general, safety is not a system theoretic property
(like e.g., stability) which possesses a precise mathematical
definition, and safety requirements depend on the specific
safety hazards that are considered. Systems for which some
instance of safety is considered of paramount importance,
are referred to as safety-critical systems. Examples include
autonomous driving with adaptive cruise control and human-
collision avoidance for collaborative robots (Ames et al.,
2019). Safety constraints are conceptually distinct from the
task-based specifications. For example, a collaborative robot
performing a trajectory tracking task might be controlled
using Lyapunov-based designs or learned control policies,
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but the underlying safety requirement of avoiding collisions
with humans is transversal to any chosen controller, and
must be always satisfied.

Control barrier functions (CBFs) (Ames et al., 2017; 2019)
represent a formal framework aiming to achieve safety as
a hard constraint in an optimization problem in which the
cost function encodes information on the nominal task to
be executed. In particular CBF-based safety constraints are
represented by forward invariance of so-called safe sets, i.e.
subsets of the state space which the controlled system should
not leave during the task execution. We stress that within
this context, safety becomes a mathematically rigorous sys-
tem theoretic property and, even if unable to represent any
possible safety hazard, it is very useful to design safety con-
straints, e.g. kinematic constraints for mechanical systems
(Singletary et al., 2021).

Reinforcement learning (RL) (Sutton & Barto, 2018) has
achieved outstanding success in control of dynamical and
physical systems directly from high-dimensional sensory
data (Kaelbling et al., 1996; Kaiser et al., 2019; Li, 2017;
Botteghi et al., 2022). RL algorithms can be classified as
either model-free or model-based. Model-free RL algo-
rithms learn optimal policies directly from observations and
rewards received by the agent from the environment after
each action taken. On the other side, model-based algo-
rithms first learn the environment dynamics, i.e. forward
and reward models, and then use the learned models to gen-
erate samples for optimizing the policy. Independently of
the chosen method, RL lacks of safety guarantees, which
is one of the reasons why learning schemes are still poorly
used in real safety-critical applications. As a consequence,
embedding safety guarantees, for example using CBFs, in
learning schemes is becoming a major research topic in the
learning community, see (Dawson et al., 2023; Cheng et al.,
2019; Ma et al., 2022) and references therein.

Intrinsically related to safety and CBFs, we find the need
for a forward dynamical model able to accurately predict
the evolution over time of the system given current state
and control inputs. The forward model can be either de-
rived from physical governing laws, especially for simple
dynamical systems, or learned from data when limited or
no physical knowledge is available (Brunton & Kutz, 2022).
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Figure 1. Proposed framework for planning and control using denoising diffusion probabilistic models. Generation from random noise of
dynamically consistent state-action trajectories with horizon H from a generic timestep t to T = t+H .

The latter is often the case for complex dynamical systems
(Brunton & Kutz, 2022) and the progress of deep learning
(Lecun et al., 2015) has made learning, and controlling, dy-
namical systems from data increasingly popular in recent
years. In most cases, data-driven methods focus on learn-
ing, for example via neural networks or Gaussian processes
(Rasmussen, 2004), a (Markovian) 1-step-ahead forward
model predicting the state at the next timestep given (history
of) state(s) and action(s). However, when making long-term
prediction, the 1-step-ahead forward model has to be iter-
atively called at the price of accumulating more and more
prediction error the longer the horizon. An alternative so-
lution was proposed by (Janner et al., 2022), where instead
of learning a model predicting the next state, they introduce
a trajectory-based generative model outputting sequences
of state-action pairs, i.e. trajectories. It is worth mentioning
that this model is only locally Markovian since each step of
the trajectory is a function of the past and future state-action
pairs. Therefore, the model has to be able to learn the causal
relations from data, i.e. observed state-action pairs over
time, to properly generate trajectories.

With reference to Figure 1, we frame our contribution in the
context of safety-critical optimal control in an offline and
model-based RL framework, proposing a scheme utilizing
denoising diffusion probabilistic models (DDPMs) (Sohl-
Dickstein et al., 2015; Ho et al., 2020) for optimal and safe

trajectory generation. As hallmark of our contribution, three
properties are approximated by three different DDPMs, and
as such represent conceptually distinct units which can be
independently changed in the proposed architecture:

• dynamically consistent trajectory generation, i.e. a
diffusion model Dθ is trained to generate trajectories
consistent with the dynamics of the system,

• value estimation, i.e. a diffusion model Vψ is trained to
learn the expected return of each trajectory, encoding
the specific task to be optimally executed, and

• safety classification, i.e., a diffusion model Bϕ is
trained to classify the generated trajectory as safe or
unsafe, based on the CBF constraint.

Given these three DDPMs, the problem of safety-critical
optimal control can be rephrased as a problem of conditional
sampling of trajectories, i.e. sequence of state-action pairs,
from Dθ using Vψ and Bϕ as guides. With this method, the
generated trajectories are not only optimal, but also safe.

Our approach closely relates to the work in (Janner et al.,
2022), where two diffusion models, predicting trajectories
and values, were proposed together with a conditional sam-
pling scheme. However, differently from them we focus on
safety-critical control with the addition of a third diffusion



Trajectory Generation, Control, and Safety with Denoising Diffusion Probabilistic Models

model and a new conditional sampling scheme combining
optimality and safety. After applying the first action of the
trajectory, a new conditional sampling step takes place given
the next state of the environment as initial state, resembling
an optimization scheme with receding horizon. As a conse-
quence, similarly to what has been achieved in (Zeng et al.,
2021) in a model predictive control (MPC) framework, the
CBF-based safety constraint influences the choice of the
trajectory over the whole planning horizon, and not only
at the current state, making the planning appoach not over-
conservative. The view on the whole trajectory is the main
conceptual differences with respect to (Cheng et al., 2019),
also combining RL and CBFs, but where the CBF-based
constraint is solved at every iteration to modify online the
model-free RL policy.

2. Preliminaries
2.1. Control Barrier Functions

Control barrier functions (CBFs) are used to guarantee in-
variance of a set C, normally referred to as safe set. The lat-
ter is designed to encode constraints depending on the state
of the controlled system, e.g., obstacle avoidance for robot
manipulators. We present the relevant background directly
in its discrete-time formulation (Ahmadi et al., 2019; Zeng
et al., 2021; Xiong et al., 2023) to conveniently integrate the
technique in the developed learning scheme. Furthermore,
we use the standard RL notation to indicate state, action,
rewards, and value function (Sutton & Barto, 2018).

Consider a discrete-time system

st+1 = f(st,at) (1)

where st ∈ S ⊂ Rn is the state at time step t ∈ N, the
control action at ∈ A is applied to the system, and f :
S ×A → S is a continuous map. The safe set C is defined
as

C = {s ∈ S : h(s) ≥ 0},
∂C = {s ∈ S : h(s) = 0},

Int(C) = {s ∈ S : h(s) > 0},

where h : S → R is a continuous map. Remind that a class
K function is a strictly increasing function α : [0, a) →
[0,∞) with α(0) = 0 and a > 0. The function h(s) is then
defined to be a CBF if there exists a class K function α
satisfying α(u) < u,∀u > 0 such that

h(st+1)− h(st) ≥ −α(h(st)), ∀s ∈ S. (2)

The set C is called forward invariant if s0 ∈ C implies
st ∈ C,∀t ∈ N. The following theorem, which represents
the core of CBFs in the current context, relates existence

of CBF and forward invariance of C achieved by means of
control.

Theorem 2.1. (Ahmadi et al., 2019) Consider system (1)
and the previously defined set C. Any control policy π(at|st)
implementing at in a way that (2) is satisfied will render C
forward invariant.

Remark 2.2. We stress that in the literature different types
of CBFs are present. These vary, both in continuous and
discrete time, on the basis of i) the specific set S where
condition (2) must hold, which can be a proper subset of
the total state space (in this case the CBFs are normally
referred to explicitly as "CBFs on S"); and ii) whether the
CBF diverges or goes to 0 at the boundary ∂C of the safe
set. In the latter case, which is the one treated in this work,
CBFs are sometimes referred to as "zeroing" CBFs, and
have the advantage to be well defined outside the safe set. It
follows (see proof Theorem 1 in (Ahmadi et al., 2019)) that
existence of zeroing CBFs on S not only achieve forward
invariance, but also asymptotic stability of C.

Remark 2.3. Condition (2) for an autonomous discrete time
system st+1 = f(st) is actually necessary and sufficient
(i.e., equivalent) to achieve forward invariance of the set C
(see Theorem 1 in (Ahmadi et al., 2019)). It follows that
finding a control policy applied to (1) which satisfies (2) is
also necessary and sufficient (i.e., equivalent) to produce
forward invariance of C in the closed-loop system. An inter-
esting consequence is that the discrete time CBF approach is
not conservative (but in fact equivalent) to achieve forward
invariance of a set.

Remark 2.4. Normally one chooses the linear class K func-
tion α(u) = λu, with λ ∈ R, 0 ≤ λ ≤ 1. In this way it
holds h(st) ≥ (1− λ)th(s0), which clearly shows forward
invariance of C for every admissible λ. The constraint (2)
with the choice λ = 1 corresponds to achive invariance in
the less conservative case, i.e., h(st) ≥ 0,∀t ∈ N, while
the choice λ = 0 collapses (2) into a Lyapunov condition
achieving h(st) ≥ h(st−1),∀t ∈ N.

The way discrete-time CBFs are implemented in practice is
by casting condition (2) as a constraint of a discrete optimi-
sation problem, which in its basic forms can be represented
as

a∗t = argminat∈A J(st,at)

s.t. h(f(st,at))− h(st) ≥ −α(h(st))
(3)

The level of sophistication of the latter can vary on the basis
of the application, by adding other constraints (e.g., input
constraints), and/or slack variables to help the feasibility of
the problem.
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2.2. Denoising Diffusion Probabilistic Models

Denoising diffusion probabilistic models (DDPMs) (Sohl-
Dickstein et al., 2015; Ho et al., 2020) are a class of (deep)
probabilistic generative models, such as generative adver-
sarial networks (Goodfellow et al., 2020), variational au-
toencoders (Kingma & Welling, 2014), and score-matching
models (Song & Ermon, 2019; 2020) learning generative
data distributions out of which we can sample new data.
DDPMs are parametrized Markov chains generating data
from random noise by performing a step-wise denoising of
the random vectors. The denoising process, often referred
to as the reverse process, is learned from data with the goal
of reverting the forward process of gradually adding noise
to the data. The forward process can be written as:

q(x1:K |x0) =

K∏
k=1

q(xk|xk−1),

q(xk|xk−1) = N (
√

1− βkx
k−1, βkI)

(4)

where x ∼ D is a data sample from a dataset D, the su-
perscript k = 1, . . . ,K indicates the kth diffusion step, K
the number of diffusion steps, x0 the noise-free data, and
βk ∈ (0, 1) is an hyperparameter controlling the variance
of the forward diffusion process. The reverse process is
described by:

pθ(x
0:K) =

K∏
k=1

pθ(x
k−1|xk)

pθ(x
k−1|xk) = N (µθ(x

k, k),Σk)

(5)

where µθ(x
k, k) is the mean learned by the diffusion model,

Σk is the covariance matrix usually following a cosine
schedule (Nichol & Dhariwal, 2021) (and not learned from
data), and the subscript θ indicates the (learnable) parame-
ters of the diffusion model.

DDPMs can be trained by maximizing the variational lower
bound similarly to variational autoencoders (Sohl-Dickstein
et al., 2015), or using the simplified objective introduced by
(Ho et al., 2020):

L(θ) = Ek,ϵ,x0 [||ϵk − ϵθ(x
k, k)||2]

= Ek,ϵ,x0 [||ϵk − ϵθ(
√
ᾱkx

0 +
√
1− ᾱkϵ

k, k)||2]
(6)

where k ∼ U{1, . . . ,K} with U indicating a uniform dis-
tribution, ϵk ∼ N (0, I) is the target noise, ᾱk =

∏K
k=1 αk

with αk = 1 − βk, and with the learnable mean rewritten
as:

µθ(x
k, k) =

1√
αk

(xk − 1− αk√
1− ᾱk

ϵθ(x
k, k)) (7)

To further improve and control the generation process, it
is possible to introduce a classifier pϕ(y|xk) and use its

gradient∇xkpϕ(y|xk) with respect to the input xk to guide
the reverse diffusion process towards samples from a class y.
This procedure is commonly referred to as classifier-guided
sampling (Dhariwal & Nichol, 2021).

2.2.1. PLANNING AND CONTROL

Instead of considering a generic data x, we assume we
have recorded trajectories of our dynamical system τ t =
(st,at, . . . , sT ,aT ), where st corresponds to the state vec-
tor at timestep t, at to the control action, and the subscript
t ∈ {0, ..., T} to the actual timestep of agent-environment
interaction of the underlying RL scheme, while the super-
script k indicates the diffusion steps as introduced in Section
2.2. Given a sampled trajectory τK ∼ N (0, I), it is possi-
ble to use a trained diffusion model to reverse the forward
process and to generate a trajectory τ t consistent with the
observed dynamics of the system, as shown in (Janner et al.,
2022):

pθ(τ
k−1
t |τ k

t ) = N (µθ(τ
k
t , k),Σ

k) (8)

In a classic model-based RL fashion, one may sample tra-
jectories from the reverse diffusion model, apply the control
actions to the real environment and evaluate the value of
each visited state. However, analogously to the classifier-
guided sampling introduced by (Dhariwal & Nichol, 2021),
diffusion models can be used to perform conditional sam-
pling, e.g., sampling images from a specific class, by using a
classifier to adjust the mean of the reverse process during the
diffusion steps. The use of conditional sampling for control
was first explored by (Janner et al., 2022) by transforming
the problem of optimal trajectory generation in a problem
of conditional sampling:

p̃θ(τ ) ≈ pθ(τ )f(τ ) (9)

where f(τ t) may encode prior information, desired goals, or
general reward and cost functions to optimize. In particular,
we can use a trained value function model, indicated by Vψ
to sample trajectories maximizing the value function, i.e.
optimal trajectories. A single guided-diffusion step can be
written as:

τ k−1 ∼ N (µk−1
θ + η1Σ

k−1∇τkVψ(µθ),Σ
k−1) (10)

with η1 a scaling constant, and µθ = µθ(τ
k
t , k) for the

sake of lightening the notation. After the generation the
planning, the first action is executed in the environment, and
similarly to MPC methods with receding horizon, the plan
is generated again given the next state of the environment
as initial state of the trajectory.

While this planning strategies allows the generation of op-
timal trajectories, differently from (Janner et al., 2022), in
our work we focus on the problem of optimal planning un-
der safety constraint where we want to generate not only
optimal, but also safe trajectories.
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3. Optimal and Safe Trajectory Generation
with Denoising Diffusion Probabilistic
Models

In this work, we study the problem optimal and safe tra-
jectory generation using DDPMs and conditional sampling.
With reference to Figure 1, we decompose the problem of
optimal and safe trajectory planning into the problem of
learning:

• Dθ generating trajectories τ t = (st,at, . . . , sT ,aT )
from random noise consistent with the measurement
data of the dynamical system considered,

• Vψ estimating the value, i.e. expected discounted re-
turn, of each trajectory, again from random noise, and

• Bϕ classifying whether each timestep of the trajecto-
ries generated is safe or unsafe in accordance with the
CBF-based safety constraint, defined by Equation (2).

These three models are DDPMs (see Section 2.2) with ar-
chitecture described in details in Appendix A.

While it is possible to train a single DDPM to generate
trajectories, predicting values, and assessing safety of the
state-action pairs, the independence of the three models is
important for data efficiency and flexibility of use. For ex-
ample, if a robot is moved to a new room the safety regions
may change, while its dynamics or task may not. With our
framework, we just need to retrain the safety classifier Bϕ.
The same holds if we change reward function, with the dif-
ference that we need now to retrain only the value function
model Vψ .

3.1. Planning as Conditional Sampling

In this section, we describe the conditional sampling pro-
cedure for the generation of optimal and safe trajectories.
Given Dθ, we can generate trajectories from random noise
accordingly to Equation (8). The generation of the trajec-
tories can be conditioned on initial and/or final states of
the trajectories through the process called inpainting (Sohl-
Dickstein et al., 2015), i.e. the problem of consistently
filling the gaps or a trajectory given some known states or
actions (see Figure 2 for an example). Since we focus on
path planning with unknown target location, in our exper-
iments we condition the generated plan only on the initial
state. Using Vψ, we can guide Dθ toward the generation
of high-value trajectories according to Equation (10), i.e.
trajectories reaching the target (Janner et al., 2022), yet pos-
sibly unsafe. The guided planning procedure is described
in Algorithm 1, where the guide function is generically
indicated by f .

To make these high-value trajectories safe, accordingly to
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Figure 2. Reverse diffusion process with inpainting of initial and
final states of the trajectory indicated with s∗t and s∗T .

the CBFs methodology, one may solve the constrained op-
timization problem in Equation (3) for each step of the
trajectory in order to "filter" the actions. However, the prob-
lem in (3) is expensive to solve, especially for non-affine
dynamics and/or constraints (Cheng et al., 2019), and has
to be computed every time before applying an action to the
environment.

Here, we propose an alternative solution. Recall that Bϕ
is able to classify whether each step of a trajectory is safe
or not. Similarly to the classifier-guide sampling method
(Dhariwal & Nichol, 2021), often employed in the process
of generating high-quality images, we can guide Dθ to
generate only trajectories belonging to the "safe" class by
adjusting the mean of the reverse process accordingly to:

τ k−1 ∼ N (µk−1
θ + η2Σ

k−1∇τk log pϕ(c|τ k),Σk−1)
(11)

where η2 is a scaling constant, pϕ(c|τ k) = Bϕ, and
c = (ct, · · · , cT ) is the vector containing the class labels
for each step of the trajectory. We can use the sampling
procedure in Equation (11) to generate trajectories the are
classified as safe by Bϕ. Again if both initial and final po-
sitions are known, one can simply use (11) together with
inpainting to generate safe trajectories connecting the two
points. However, these trajectories may not be optimal in
terms of reward accumulated, e.g. may be over-conservative
or require high-control effort.

Instead of guiding the planning towards optimality or safety,
we propose to do both by employing both guides at the same
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Algorithm 1 Guided Planning

Input: Dθ, and guide f
for i = 1 to I do

Reset environment and sample s1
for j = 1 to J do

Sample plan τK ∼ N (0, I) conditioned on sj
for k = K to 1 do
µθ ← Dθ(τ

k)
τ k−1 ←∼ N (µθ + ηΣ∇f,Σk)
τ k−1
sj ← sj

end for
Apply first action of the plan to the environment
Observe next state sj+1, reward rj , terminal condi-
tion dj+1, and safety constraint cj
sj ← sj+1

end for
end for

time and introducing a new conditional sampling procedure:

τ k−1 ∼ N (µθ +Σ(η1∇f1 + η2∇f2),Σ) (12)

where f1 = Vψ(τ
k) and f2 = log pϕ(c|τ k)1. Similarly to

before, we can now generate optimal and safe trajectories
by simply plugging (12) in Algorithm 1.

DDPMs are probabilistic models, thus the generated trajec-
tories may differ every time we call Algorithm 1. Therefore,
we do not simply generate a single trajectory but a batch
of them (64 in our experiments), we then select one ac-
cordingly to a predefined criterium, and we apply the first
action of the plan to the environment. Because our main
concern is safety, we select the trajectory without collisions,
but more advance criteria may be used, such as considering
a weighted sum of value and collisions or even learning
the weighting factor. However, we leave this interesting
research direction to future work.

3.2. Training Objectives

To train our models and test their generalization capabili-
ties in low-data regimes, we collect a dataset D with 300
trajectories of 100 steps each for a total of 30000 tuples
(starget

t ,atarget
t , starget

t+1 , rtarget
t , dtarget

t , ctarget
t ), where rtarget

t is the
instantaneous reward, dtarget

t is a boolean flag indicating the
end of the episode, and:

ctarget
t =

{
0 if h(st+1)− h(st) ≥ −α(h(st))
1 otherwise

(13)

is the label generated through the use of the CBF constraint
in Equation (2). We use a random control policy to generate
the training dataset.

1We drop subscripts and superscripts for the sake of concise-
ness.

Similarly to (Janner et al., 2022), instead of relying of the
objective function in Equation (6)2, we train the diffusion
model Dθ using the mean-squared error loss between the
generated trajectory τ and the measured one τ target:

L(θ) = Eτ t,τ
target
t ∼D[||τ t − τ target

t ||2] (14)

The value function model is instead trained to predict the
expected return of a given trajectory, but again with mean-
squared error loss:

L(ψ) = Eτ t,rt:H ∼ D[||vt − vtarget
t ||2] (15)

where vtarget
t =

∑H−1
t=0 γtrtarget

t with H equal to the planning
horizon and γ ∈ [0, 1] is the discount factor. Eventually, the
CBF classifier Bϕ is trained with the cross entropy loss:

L(ϕ) = Eτ t,ct:T∼D[

T−1∑
t=0

−ctarget
t log(ct)+(1−ctarget

t ) log(ct)]

(16)

4. Numerical Experiments
For our numerical experiments 3, we simulate a two degrees
of freedom, fully-actuated, planar manipulator in the task
of reaching a randomly-sampled target from a randomly-
sampled initial configuration of its angles and angular ve-
locities. Additionally, we add a circular unsafe region, the
end-effector must not enter into as shown in Figure 3.

Figure 3. Openai Gym simulated environment. The blue dot repre-
sents the target location that the end-effector has to reach, while
the red circle represent the unsafe region.

The state is composed of the joint angles α1 and α2, ex-
pressed with their sine and cosine, their angular velocity α̇1

and α̇2, and the target position (xtg, ytg) for a total dimen-
sion of 8. The actions a1, a2 are the torques at the two joints

2For the example considered, we did not notice substantial
difference between training the models to reconstruct the original
signal or to reconstruct the noise.

3The framework is implemented using PyTorch (Paszke et al.,
2019) and Openai Gym (Brockman et al., 2016). The code can be
found at: github.com/nicob15.

https://github.com/nicob15/Trajectory-Generation-Control-and-Safety-with-Denoising-Diffusion-Probabilistic-Models
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Figure 4. Trajectory generated by the diffusion planner with value-function guide.

∈ [−1.0, 1.0]. Because the goal of the agent is to reach a
target position starting from any initial configuration, we
chose as the reward function the negative of the Euclidean
distance from the end-effector to the target:

R(s) = −d(xee, yee, xtg, ytg) (17)

with xee, yee indicating the coordinates of the end-effector,
and d indicating the Euclidean distance. This reward func-
tion, when maximized, corresponds to the end-effector
reaching the target.

To assess the performance of this framework in low data
regimes, we first train offline Dθ , Vψ , and Bϕ using a small
dataset of randomly generated trajectory (as described in
Section 3.2) with loss functions (14)-(16) respectively and
then we evaluate the policy generated using the guided plan-
ning generated Algorithm 1 using only the value function
guide on a set of 100 randomly-generated target. We record
success rate4, average rewards, average number of steps,
and standard deviation of them. We compare with soft-actor
critic (SAC) (Haarnoja et al., 2018) trained for 100K, 200K,
and 300K iteration for 300 episodes of 100 steps each for the
sake of a fair comparison. We report the results in Table 1.
The complete list of hyperparameters and an ablation study
on the guide scale η1 can be find respectively in Appendix

4We consider success when the end-effect reaches the target,
with a predefined tolerance ϵ, withing 100 steps, and unsuccess
otherwise.

B and C.

Secondly, we want to test whether we can generate optimal
and safe trajectories using Algorithm 1 by using both the
value and the safety-classifier guide accordingly to Equation
(12).

5. Results
From Table 1, we can notice that the proposed offline and
model-based approach in low-data regimes is able to gen-
eralize better that model-free SAC in terms of success rate
and average number of steps to reach the target, but not in
term of average reward. The small difference is likely due
to the different dataset used for training the two methods.
Despite the two methods are trained on the same amount of
data, the diffusion models are trained completely offline on
randomly generated trajectories, while SAC is trained on-
line. Therefore, SAC is able to experience more high-reward
trajectories in later episodes.

Method Succ. Rate Avg. Rew. Avg. Steps

Dθ + Vψ (200K it.) 0.65 −104.24 ± 78.06 53.42 ± 38.42

SAC (300K it.) 0.57 −98.67 ± 74.44 55.97 ± 40.89
SAC (200K it.) 0.56 −102.3 ± 68.93 59.01 ± 38.09
SAC (100K it.) 0.55 −107.07 ± 69.18 62.71 ± 38.59

Table 1. Comparison of the proposed offline, model-based ap-
proach trained for 200K iteration and online, model-free SAC
trained for 300K, 200K, 100K iterations on a set of 100 randomly-
generated target and initial conditions.
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In Figure 4 and 5, we show the trajectories generated by
the DDPMs with value guide (Equation (10)) and with the
proposed value and safety-classifier guide (Equation (12)).
It is worth mentioning that the dataset used to train the mod-
els does not contain targets in the unsafe region, as in this
case. Therefore, this is a good example of generalization ca-
pabilities of the diffusion models even in low-data regimes.
While the diffusion planner can reach the target (see Figure
4), without any safety constraint it naturally ends up in the
unsafe region multiple times. On the other side, the dif-
fuser planner employing the conditional sampling strategy
in (12) does not violate the safery region while close to the
(unreachable) target. Additional results can be found in
Appendix D.

6. Conclusion
In this work, we studied the problem of safety-critical
optimal control using data-driven generative models, i.e.
DDPMs. In particular, we transform the problem of learning
an optimal and safe policy into the problem of conditional
sampling of trajectories, i.e. state-action pairs over an hori-
zon H , either with high value and safe using a value function
model and a safety (CBF-inspired) classifier as guides. We
show that the method is not only more sample efficient that
model-free RL in low-data regimes, but it can also be used to
generate trajectories avoiding the unsafe regions. Addition-
ally, we decoupled trajectory generation, value estimation,
and safety prediction making by using three independent
DDPMs, making the framework extremely flexible when
dealing with changes in the environment, in the task, or in
the safety regions.
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Figure 5. Trajectory generated by the diffusion planner with value-function and safety-classifier guides.
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A. Architecture
We use a similar architecture to (Janner et al., 2022) for the diffusion models Dθ, value function Vψ , safety classifier Bϕ.
The three models use a U-net with 6 residual blocks with linear attention. Each block is composed of two 1D temporal
convolutions, group normalization (Wu & He, 2020) and Mish activation (Misra, 2019). The timesteps of the diffusion
process are encoded via a fully-connected layers in the first temporal convolution of each block. The value function Vψ and
the barrier classifier Bϕ additionally have a final fully-connected layer to output a single scalar and a vector of dimension
equal to the number classes (2) ×H with H the planning horizon.

B. Hyperparameters
In Table 2, the hyperparameters of the experiments are reported.

Hyperparameter Value

optimizer AdamW (Loshchilov & Hutter, 2019)
learning rate 2e− 4

batch size 32
training dataset size 30K
testing dataset size 3K

training epochs 200
training iterations [200K, 300K]

num. diffusion steps 50
planning horizon 16
CBF constant λ 0.99

value function discount γ 0.997
value guide scale η1 [0.1, 0.01,0.001, 0.0005, 0.0001]

classifier guide scale η2 [0.1, 1.0,5.0, 10.0]
tolerance ϵ 0.3
state dim. 8

action dim. 2

Table 2. DDPMs hyperparameters.

The SAC hyperparameters used are presented in Table 3.

C. Ablation Study
C.1. Guide Scale Selection

To select the value function guide scale hyperparameter η1, we performed a grid search on a set of 100 randomly-generated
targets and initial conditions using models trained 200K iterations. The results are reported in Table C.1

Guide Scale Succ. Rate Avg. Rew. Avg. Steps

0.1 0.54 −123.81± 84.6 61.75± 39.83
0.01 0.47 −122.49± 88.76 63.11± 41.18
0.001 0.65 −104.24± 78.06 53.42± 38.42
0.0005 0.58 −104.44± 85.82 53.76± 41.94
0.0001 0.51 −125.63± 72.31 66.34± 37.14

We also performed similar experiments on a model trained for 300K iterations, but we did not notice substantial change in
the performance.
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Hyperparameter Value

optimizer Adam (Kingma & Ba, 2015)
learning rate 3e− 4

batch size 32
num. training episodes 300

num. training steps 100
training dataset size 30K
training iterations [100K, 200K, 300K]

value function discount γ [0.99, 0.997]
num. hidden layers 2

hidden neurons 256
hidden layers activation ReLU

output activation Tanh
tolerance ϵ 0.3
state dim. 8

action dim. 2
num. different seeds 3

Table 3. SAC hyperparameters.

D. Additional Experiments
Figure 4 and 5 show snapshots of a trajectory generated by following the plan generated by Algorithm 1 with value
guide (see Equation (10)) and with value and safety-classifier guide (see Equation (12)). Analogously in this section, we
show additional results achieved by the two different planning strategies. The code of our experiments can be found at:
github.com/nicob15.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Trajectory generated by the diffusion planner with value-function guide.

https://github.com/nicob15/Trajectory-Generation-Control-and-Safety-with-Denoising-Diffusion-Probabilistic-Models
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Figure 7. Trajectory generated by the diffusion planner with value-function and safety-classifier guides.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 8. Trajectory generated by the diffusion planner with value-function guide.

(a) (b) (c) (d)

Figure 9. Trajectory generated by the diffusion planner with value-function and safety-classifier guides.
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Figure 10. Trajectory generated by the diffusion planner with value-function guide.
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Figure 11. Trajectory generated by the diffusion planner with value-function and safety-classifier guides.
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Figure 12. Trajectory generated by the diffusion planner with value-function guide.
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(a) (b) (c) (d)

Figure 13. Trajectory generated by the diffusion planner with value-function and safety-classifier guides.


