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Figure 1: Editing Pipeline with EditRoom. EditRoom is a language-guided 3D scene editing method based
on LLM planning and graph diffusion. It can accept natural language commands and source scenes, generating
coherent and appropriate editing results.

Abstract

Language-guided 3D scene editing has
emerged as a pivotal technology in fields such
as virtual reality, augmented reality, gaming,
architecture, and film production. Traditional
methods of 3D scene editing require extensive
expertise and time due to the complexity
of 3D environments. Recent advancements
in language-guided 3D scene editing offer
promising solutions, but existing approaches
either limit editing to generated scenes or focus
on appearance modifications without support-
ing comprehensive scene layout changes. In
this work, we propose EditRoom, a novel
framework for language-guided 3D room
layout editing that addresses these limitations.
EditRoom leverages Large Language Models
(LLMs) for command planning and a graph
diffusion-based method for executing six
editing types: rotate, translate, scale, replace,
add, and remove. In addition, we introduce
EditRoom-DB, a large-scale dataset with
83k editing pairs, for training and evaluation
purposes. Our approach significantly improves
the accuracy and coherence of scene editing,
effectively handling complex commands
with multiple operations. Experimental
results demonstrate EditRoom’s superior

performance in both single and complex
editing scenarios, highlighting its potential for
practical applications.

1 Introduction

Language-guided 3D scene editing tasks, particu-
larly in environments such as bedrooms, demand
coherent and precise modifications based on ver-
bal instructions. Traditionally, editing 3D scenes
necessitates manual intervention via specialized
software, requiring extensive expertise and con-
siderable time. Consequently, an automated sys-
tem capable of interpreting natural language and
accurately manipulating these scenes holds sub-
stantial value. However, the complexity, diversity,
and ambiguity of natural language pose signifi-
cant challenges, especially when the commands
involve comprehensive scene layout adjustments,
such as "creating more movable space in my room"
or "making my room more modern." These types
of commands typically necessitate an understand-
ing of the interplay between the verbal directive
and the overall scene configuration, often involving
multiple object manipulations. Furthermore, the
relatively small size of available 3D scene datasets
limits the development of large-scale pretrained



models for fully automated, end-to-end language-
guided scene editing.

Recently, several works have demonstrated
capabilities in language-guided 3D scene edit-
ing (Haque et al., 2023; Zhuang et al., 2023;
Bartrum et al., 2024; Chen et al., 2023; Ye et al.,
2023; Vilesov et al., 2023; Zhou et al., 2024b;
Lin and Yadong, 2023; Tang et al., 2023). How-
ever, some works (Vilesov et al., 2023; Zhou et al.,
2024b) are limited to editing the scenes gener-
ated by the model itself, while other methods
mainly focus on changing the appearance of a sin-
gle object (Haque et al., 2023; Zhuang et al., 2023;
Bartrum et al., 2024) or requiring manual interven-
tion for any layout adjustments (Chen et al., 2023;
Ye et al., 2023; Lin and Yadong, 2023; Tang et al.,
2023), like adding a new object or changing the
object pose.

To address these challenges, we propose Ed-
itRoom, which can accept complex natural lan-
guage commands and coherently modify the 3D
room layout for a provided scene. Intuitively, we
find that every common natural language com-
mand can be converted into the compositions of
six basic editing types on single objects: adding,
removing, replacing, translating, rotating,
and scaling. Therefore, we design a graph
diffusion-based method to achieve every basic edit-
ing type in a unified framework and use LLM as
a planner for high-level command comprehension.
In order to provide accurate results on each edit-
ing type, we construct an automatic data genera-
tion pipeline and collect a synthetic scene editing
dataset named EditRoom-DB.

EditRoom consists of two main modules: the
command planner and the scene editor. In our
command planner, we employ an LLM, specifi-
cally GPT-4o, to transform natural language com-
mands into sequences of template commands for
basic editing operations by providing the source
scene information in text format. These template
commands, along with the source scenes, are then
fed sequentially into the scene editor for execu-
tion. The scene editor is dedicated to constructing
single-operation editing results by conditioning on
the template commands and input scenes. It en-
compasses two graph diffusion-based models: the
first is designed to generate high-level target scene
graphs, which define object shapes and their rel-
ative spatial relationships; the second model uses
these generated target scene graphs, the source
scene, and language commands to estimate the final

target scene layout. All object meshes are sourced
from a high-quality object dataset and adjusted ac-
cording to the generated layout.

To enable the scene editor to estimate accurate
conditional scene distributions for each basic edit-
ing type, we have compiled EditRoom-DB, which
includes approximately 83,000 editing pairs featur-
ing both template and natural language commands.
We designed several pipelines to augment the ex-
isting 3D scene dataset, 3D FRONT (Fu et al.,
2021a), which contains 16,000 indoor scene de-
signs equipped with high-quality object models.
We implement each basic editing operation on these
scenes and generate corresponding language com-
mands using predefined templates. Subsequently,
we employ GPT-4o to transform these template
commands into more natural language forms, serv-
ing both as training material for our baselines and
as test cases for single-operation evaluations.

In our experimental framework, we assess the
performance of EditRoom in scenarios involving
both single-operation and complex multi-operation
commands. The results indicate that EditRoom not
only achieves higher precision in editing specific
types of operations and room categories but also
demonstrates robust generalization capabilities in
handling complex natural language commands that
encompass multiple operations, even in zero-shot
settings.

Our contributions are summarized as follows:

* We propose a new framework, named Edit-
Room, consisting of the command planner
and scene editor, which accepts scene inputs
and can edit scenes using natural language
commands by leveraging LLM for planning.

* We propose a unified graph diffusion-based
module that serves as the scene editor, ca-
pable of executing every basic editing type,
including adding, removing, replacing,
translating, rotating, and scaling.

* To address the lack of 3D indoor scene editing
data, we introduce an automatic data augmen-
tation pipeline to generate edited pairs with
corresponding language commands.

* From the experiments, we demonstrate that
EditRoom outperforms other baselines across
all editing types and room types on single
operation commands, and it can generalize to
complex operation commands without further
training.



2 Related Work

Language-guided 3D Scene Editing Current
language-guided scene editing works can be ab-
stractly categorized into four main approaches. The
first approach involves pretrained image editing
models to edit the appearance of objects inside the
scene (Haque et al., 2023; Zhuang et al., 2023;
Bartrum et al., 2024; Karim et al., 2023). The sec-
ond approach leverages neural field representation,
like 3D Gaussian Splatting (Kerbl et al., 2023), to
obtain individual object representation and apply
layout change by manually selecting targets (Chen
et al., 2023; Ye et al., 2023). The third approach
is to learn conditional scene generation from scene
description and manually mask the target attribu-
tions for editing (Haque et al., 2023; Tang et al.,
2023). The fourth approach starts with generating
new scenes and limits to editing these generated
scenes (Vilesov et al., 2023; Zhou et al., 2024b). In
contrast to these previous works, EditRoom can ac-
cept an existing scene as input and apply free-form
editing commands for 3D scene layout without
manual interventions.

LLM for 3D Scene Understanding Recent
works demonstrate that existing LLMs can facil-
itate 3D spatial reasoning. These works usually
leverage the pretrained caption models to convert
3D scenes into text descriptions and ask the LLM
to generate navigation steps (Zhou et al., 2023,
2024a), provide room layout (Feng et al., 2024), or
ground 3D objects (Yang et al., 2023; Hong et al.,
2023; Huang et al., 2023). In our work, we lever-
age LLM (GPT-40) to take source scenes in text
format and break the natural language commands
into basic editing operations.

3 The EditRoom Method

In this section, we introduce EditRoom, our pro-
posed framework for language-guided 3D room
layout editing, comprising two primary modules:
the Command Planner and the Scene Editor. We
denote D := {(S51, T1, C1),...,(Sn, TN, Cn)}
as a collection of IV editing pairs of indoor scenes,
where S; is the source scene, 7; is the target scene,
C; is the corresponding language command for the
t-th pair, and [V is the total number of editing pairs.

Given a natural language command C; and
source scene S;, we aim to estimate the condi-
tional target scene distribution ¢( T;|.S;, C;). Our
command planner takes the source scene S; and

natural command Cj to generate the template com-
mands L;. Then, the scene editor conditions on
template commands L; to obtain the final target
scene T;, where the whole pipeline can be writ-
ten as q(T;|Si, Gi) = q(LilSi, Gi) x q(T3[S;, Li),
shown in Figure 1.

3.1 LLM as Command Planner

In order to process open natural language com-
mands, we use GPT-4o0 to convert natural lan-
guage command C; into a set of combinations
of basic editing types with template commands
L; := {l; };V:LP where N, is the number of tem-
plate commands, shown in Figure 1. To cover the
general manipulations on the scene, we design six

basic editing operations:

* Rotate an object: [Rotate, Target Object De-
scription, Angle]

* Translate an object: [Translate, Target Object
Description, Direction, Distance]

* Scale an object: [Scale, Target Object Descrip-
tion, Scale Factor]

* Replace an object: [Replace, Source Object
Description, Target Object Description]

* Add an object: [Add, Target Object Descrip-
tion, Target Object Location]

* Remove an object: [Remove, Target Object
Description]

We instruct the LLM to use another unique ob-
ject as a reference to describe the spatial relation if
the target object is not unique. During the inference
phase, we prompt the LLM with attributes of ob-
jects within the source scene along with the natural
language command, tasking the model to analyze
the scene and delineate basic editing operations
through template commands in specified formats.
The attributes include categories, locations, sizes,
rotations, and object captions. Detailed descrip-
tions of the full prompt and examples are provided
in Figure 5 of the appendix.

3.2 Graph Diffusion as 3D Scene Editor

Given the template command / and source scene
S, our objective is to determine the conditional tar-
get scene distribution ¢(7'|.S,!). Drawing inspira-
tion from recent advancements in language-guided
3D scene synthesis (Lin and Yadong, 2023), we
transform scenes into semantic graphs and employ
a graph transformer-based conditional diffusion
model to learn the conditional target scene graph
distribution, as depicted in Figure 2. Our approach
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Figure 2: Scene Editor Overview. Scene Editor aims to provide accurate, coherent editing results according to
the given source scene and language commands. It consists of two graph transformer-based conditional diffusion
models. One diffusion model generates semantic target scene graphs. Another diffusion model can estimate accurate
poses and size information for each object inside the generated target scene graphs. All diffusion processes are

conditioned on Source Scene and Template Command.

involves two key graph transformer-based diffu-
sion models: the Target Graph Diffusion, which
generates object shapes and their spatial relations
as graphs, and the Target Layout Diffusion, which
computes the final layout of the target scene. To
reduce the alignment challenges between the 3D
scene distribution and language, all commands are
encoded using the text encoder of CLIP-ViT-B-32.

Scene Graph Representation Each scene is rep-
resented as a combination of a layout B and a scene
graph G (Lin and Yadong, 2023). The layout B
encapsulates the position, size, and orientation of
each object, while the scene graph G encodes addi-
tional high-level semantic information. Formally,
a semantic scene graph G := (V| E) comprises
nodes v; € V, where each v; corresponds to an
object o; with high-level attributes. Directed edges
e;j € I represent spatial relationships such as “left
of”, connecting the i-th object to the j-th object.
Each node v; is characterized by a discrete category
¢; and continuous semantic features f;, derived
from a pretrained multimodal-aligned point cloud
encoder, OpenShape (Liu et al., 2024c), which fea-
tures a 1280-dimensional representation space.

Target Graph Diffusion In this stage, we aim to
learn semantic scene graphs G, for target scenes
by giving source scenes G5 and language com-
mands [ through a discrete diffusion model ¢,
where Gy, includes category Cj, and semantic

features I, for each node and the edges Ey, for
object relative relations. Since high-dimensional
object semantic features (d = 1280) are too com-
plicated to learn from limited data, we use a VQ-
VAE model (Lin and Yadong, 2023; Wang et al.,
2019) to compress them into low-dimensional fea-
tures z € R™ X492 which consists of n  vectors ex-
tracted from a learned codebook Z € REr*4z by a
sequence of feature indices fiq, := {1,..., Kf}"/,
where Ky and dy are the size and dimension of
codebook. Then, we use the feature indices to
replace the original object semantic features as
targets for training, denoted as F. Therefore,
Gtg = (Ctgath,Etg) and Gs = (CS,FS,ES),
and our goal is to learn the conditional distribu-
tion ¢(Gyy|Gs, ). During the training process, at
timestep ¢, the noises are added to the Gy, to get
G, and the model &, aims to reconstruct G?g by-
conditioning on G4 and /. To add the conditions,
we concatenate each element of source graphs
into noisy target graphs as context and use cross-
attention layers to incorporate language features.
The loss function can be written as:

T
Lg ::Eq(G?Q)[; Li_1—

Eq(c,%g 1G9y) [logpag (G?g \G%g, Gs,1)]]
Li—1 :==Dk1[q(G}; ' |Gly, Gyl
Py (Gig '|Glg, Gs, )]

6]

@

where D indicates the KL divergence.



Target Layout Diffusion In this stage, we aim
to estimate the target scene layout By, using a
diffusion model ¢, conditioning on target scene
graph G4, source scene graph G, source layout
B, and language command [. The target scene lay-
out By, € RM>*8 consists of position 73, € RM*3,
size Sy € RMx3 and rotation R € RM*2, Dur-
ing the training process, gaussian noises e will be
added to the target layout, and the layouts are en-
coded into the node features by MLP layers. Simi-
lar to the Target Graph Diffusion, we concatenate
the source scene graph and source layout to the
target scene graph and corrupted target layout as
context. The language features are incorporated
through cross-attention layers. The objective target
is to estimate the added noises at each time step.
The loss function can be written as:

Ly =Epy , llle = eu(Big, t, Gig, Gs, Bs, )] (3)

Inference Process During the inference phase,
the first step consists of transforming the source
scene into a scene graph G5 and a corresponding
layout Bs. Subsequently, the Target Graph Gen-
eration model predicts the target scene graph G,
conditioned on the source scene graph G4 and the
language command /. This is followed by the Tar-
get Layout Generation model, which computes the
target layout By, leveraging all available variables
as inputs. The final step in constructing the tar-
get scene, denoted as T' := (Gyg, Byg), involves
retrieving the object meshes based on the estimated
object features and arranging them according to
the generated layout. This systematic approach
enables the dynamic generation of scenes that are
aligned with verbal instructions, ensuring that the
resulting scenes accurately represent the specified
conditions.

4 The EditRoom-DB Dataset

To support various basic editing operations, we in-
troduce an automated data augmentation pipeline
that generates editing pairs, subsequently forming
the EditRoom-DB dataset. We utilize the bedroom,
dining room, and living room scenes from the 3D-
FRONT dataset (Fu et al., 2021a) as our initial
scene sets, and the 3D-FUTURE dataset (Fu et al.,
2021b) as the source for high-quality objects. The
generation process accepts these 3D scenes and
applies object-level modifications to simulate the
3D scene editing workflow. These modifications in-
clude Add and Remove Objects, Pose and Size

Train Test

Types Bedroom Diningroom Livingroom Bedroom Diningroom Livingroom
Translate 8.6k 3.2k 2.7k 61 58 74
Rotate 4.0k 1.3k 1.3k 38 35 27
Scale 12.7k 4.5k 3.9k 146 144 162
Add 8.9k 3.4k 2.8k 75 79 57
Remove 8.8k 3.3k 2.8k 129 142 127
Replace 6.8k 2.2k 2.1k 51 42 53
Total 49.8k 17.9k 15.6k 500 500 500

Table 1: EditRoom-DB dataset statistics. We collect
around 83k training data across all room types and 500
test data for each room type.

Changes, and Object Replacement. The modi-
fied scenes are returned with a detailed template
text describing the changes made.

Template commands, constructed with editing
and target object descriptions, are captioned by
the pretrained multimodal understanding model,
LLAVA-1.6 (Liu et al., 2024b,a, 2023), using front
view images of the objects. These template com-
mands are then translated into natural language
commands using GPT-4o for testing single oper-
ations and training baseline models. Additional
prompts and examples are detailed in Figure 6 of
the appendix.

For each scene in our initial sets, objects are
randomly selected for iterative modification using
basic editing operations. For the Add and Remove
Objects pairs, the scene lacking the selected object
serves as the target for removal, and the original
scene serves as the source for addition. In Pose
and Size Changes, random values are applied
to the attributes of the selected objects, with col-
lision checking ensuring the creation of collision-
free editing pairs. During Object Replacement,
objects within the same category are randomly cho-
sen, with collision checking helping to avoid low-
quality data samples. The dataset comprises 83k
training samples across all room types and 500 test
samples for each type. Detailed statistics are avail-
able in Table 1 and further details in Appendix C.

S Experiments

5.1 Baselines and Evaluation Metrics

Baselines Since there is no previous work that
accepts natural language commands for various
editing types, we construct two baseline for com-
parisons: DiffuScene-E and SceneEditor-N:

* DiffuScen-N: DiffuScene-N is modified from
the language-guided 3D scene synthesis work,
DiffuScene (Tang et al., 2023), which includes
a UNet-based diffusion model to generate
scene layout. To enable it with language-



Bedroom Diningroom Livingroom
Model IOU (1) S-IOU (1) LPIPS(l) CLIP(f) IOU(f) S-IOU(1) LPIPS(}) CLIP(1) IOU(f) S-IOU(t) LPIPS(l) CLIP(1)
DiffuScene-N ~ 0.6213  0.6122 0.1374 09550 04484  0.4338 0.1984 09247 04693 04507 0.1748 09328
SceneEditor-N  0.7254  0.7150 0.1071 09601 05189  0.5033 0.1572 09356 04797  0.4667 0.1638 09385
EditRoom 07435 07344 0.0967 09644  0.5246  0.5095 0.1489  0.9450 04801  0.4724 0.1564  0.9463

Table 2: Performance on single operation with different room types. From the table, we can find EditRoom
outperforms baselines among all room types, which indicates that our methods can provide more accurate and

coherent editing across room types.

Translate Rotate Scale
Model IOU () S-IOU (1) LPIPS(|) CLIP(t) IOU(}) S-IOU(t) LPIPS(]) CLIP(f) IOU(t) S-IOU(f) LPIPS(}) CLIP (1)
DiffuScene-N ~ 0.5237  0.5115 0.1691 0.9488 05902 05770 0.1372 09510 05816  0.5691 0.1248 09510
SceneEditor-N 05611 0.5491 0.1488 09511  0.6269  0.6146 0.1313 09526  0.6191  0.6083 0.1150  0.9573
EditRoom 0.5782  0.5673 01432 09553  0.6277  0.6158 01290 09538  0.6309  0.6216 0.1083 09610
Replace Add Remove
IOU (1) S-IOU () LPIPS(}) CLIP(f) IOU(t) S-IOU(1) LPIPS(}) CLIP(1) IOU(f) S-IOU(t) LPIPS(}) CLIP (1)
DiffuScene-N ~ 0.5662  0.5435 0.1439 09336 05075  0.4946 0.1826 09381 04291 04144 0.2060  0.9325
SceneEditor-N ~ 0.6002 05746 0.1398 09390  0.5595  0.5472 0.1619 09341 05545 05412 0.1442  0.9496
EditRoom 0.6114  0.5837 01369 09427  0.5657  0.5542 01571 09430  0.5556  0.5453 01363  0.9517

Table 3: Performance on single operation with different editing types. From the table, we can notice EditRoom
can provide better editing results across all basic editing types.

guided scene editing ability, we leverage their
scene completion pipeline by incorporating
the source scene as context for the diffusion
process. During the training and testing, the
model directly conditions natural commands
for target scene layout generation.

» SceneEditor-N: To test our generalization abil-
ity, we experiment with another setting, where
the scene editor directly trains on the natural
commands got from the GPT-40. During the
inference time, the model conditions the natu-
ral commands and generates the final scenes.

Metrics To evaluate the models’ performance,
we utilize four metrics: IOU, S-IOU, LPIPS (Zhang
etal., 2018), and CLIP (Radford et al., 2021) scores.
The IOU scores are calculated by determining
the 3D Intersection Over Union (IOU) between
each object in the generated and target scenes,
selecting pairs with the highest 3D IOU values.
The S-10U represents the semantic-weighted 3D
10U, where semantic similarities between match-
ing objects are calculated using Sentence BERT
(S-BERT) (Reimers and Gurevych, 2019) based
on their captions. For visual evaluation, we render
both the generated and target scenes from 24 fixed
camera views. Visual similarity is assessed using
the LPIPS metric for pixel similarity, and seman-
tic similarity is evaluated using the CLIP image
encoder (CLIP-ViT-B32).

5.2 Results

Single Operation To assess model performance
on single operations, we test our model and base-

lines using the EditRoom-DB test set, which con-
tains 500 samples per room type, with language
commands generated by GPT-40. Quantitative re-
sults are depicted in Tables 2 and 3, and qualitative
outcomes are illustrated in Figure 3. Table 2 indi-
cates that EditRoom consistently outperforms other
baselines across all room types, with notably supe-
rior performance in bedrooms. According to Ta-
ble 3, EditRoom also excels across all editing types.
Comparisons between EditRoom and SceneEditor-
N reveal that template-based instructions can sim-
plify the learning process by more effectively align-
ing language commands with scene changes. More-
over, the LLM (GPT-40) demonstrates a successful
bridge between natural language and template com-
mands. SceneEditor-N outperforms DiffScene-E
across all metrics and editing types, suggesting
that our graph-based diffusion method yields more
coherent and accurate editing results compared to
the UNet-based approach. Thus, EditRoom pro-
vides more precise and coherent atomic editing
operations from natural language commands than
its counterparts.

Analysis across different room types shows that
all models perform better as the average number of
objects in rooms decreases, highlighting potential
for improvements in larger, more complex scenes.
Evaluating different editing operations reveals that
translating, adding, and removing operations score
lower on IOU, demanding stronger spatial reason-
ing. Meanwhile, replacing and adding operations
yield lower CLIP scores, indicating a need for bet-
ter alignment between object descriptions and their
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Figure 3: Qualitative results on single operation commands. The left column is the source scene with single
operation commands for each basic editing type. From the examples, we can find that EditRoom can provide more
coherent and appropriate editing operations across all editing types.

semantic features. This underscores the potential
for further enhancement of models’ spatial reason-
ing and object alignment capabilities.

Complex Operations To demonstrate the gener-
alization capabilities of EditRoom, we manually de-
signed several test prompts that combine multiple
atomic operations, and we assessed each model’s
performance qualitatively. Figure 4, shows that
EditRoom provides more coherent and appropriate
responses than the baseline models. For instance,
the command in the first row requests a bed re-
placement and the addition of a wardrobe. Edit-
Room successfully interprets the natural language
command and translates it into the corresponding
atomic operations using an LLM, whereas other

Model IOU (1) S-IOU (1)

0.5992 0.5835
0.7435 0.7344

LPIPS (|) CLIP (1)

0.1325 0.9547
0.0967 0.9644

EditRoom (Concat-Text)
EditRoom (Original)

Table 4: Ablation on different condition types on the
bedroom. From the table, we can show that incorporat-
ing source information as context with the self-attention
(our design) instead of the cross-attention mechanism
can significantly improve model performance.

baseline models misinterpret the command and
perform incorrect operations such as translation.
These outcomes highlight the challenges of directly
training models on natural language commands for
compositional editing tasks. EditRoom, by con-
trast, effectively executes complex editing opera-
tions through strategic LLM planning.
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Figure 4: Qualitative results on complex operation commands. The left column is the source scene with complex
operation commands. From the figure, we can find the EditRoom can successfully generalize to complex natural
language commands with multiple operations without further training on the complex operation data, while baselines

fail to execute coherent editing.

Model 10U () S-IOU (1) LPIPS(}) CLIP (1)

EditRoom (OpenCLIP-ViT-bigG-14)  0.6970 0.6788 0.1271 0.9490
EditRoom (Original) 0.7435 0.7344 0.0967 0.9644

Table 5: Ablation on different text encoders on the
bedroom. Due to the limited size of training data, we
find using the larger text encoder with high-dimensional
features induces decreasing performance on editing,
which indicates further exploration with 3D editing data
generation.

Ablation on Condition Types To validate our
model design, we experimented with an alternative
conditioning approach, where a graph transformer
encodes the source scene into a sequence of vec-
tors that are then concatenated with text features.
These combined features are incorporated into the
cross-attention layers of our graph diffusion pro-
cess. We specifically tested this method on the
bedroom scene type, with results shown in Table 4.
The table indicates a significant decrease in model
performance, both in terms of layout accuracy and
visual coherence. This outcome suggests that uti-
lizing source scene information as the context for
self-attention layers, rather than as conditions for
cross-attention, yields better results.

Ablation on Text Encoders In an exploration
of text encoder options, we replaced the CLIP-
ViT-B32 text encoder (512 feature dimensions)
with a larger pretrained text encoder, OpenCLIP-

ViT-bigG-14 (1280 feature dimensions), used by
OpenShape to align with object semantic fea-
tures—consistent with the object features in our
models. We conducted tests on the bedroom test
set, with outcomes detailed in Table 5. The results
indicate that the model equipped with the larger
text encoder underperforms compared to the one
using the original encoder. We attribute this de-
crease in performance to the limited size of our
training dataset. Given that our diffusion models
are trained from scratch, they require more data to
effectively align with higher-dimensional features
(d = 512 vs d = 1280). This finding underscores
the need for further exploration into constructing
larger scene editing datasets.

6 Conclusion

In this work, we introduce EditRoom, a language-
guided 3D room layout editing method. EditRoom
incorporates a graph diffusion-based scene editor
that facilitates unified basic editing operations, and
it utilizes an LLM for natural language planning.
Our experiments demonstrate that EditRoom can
effectively execute appropriate edits for both single
and complex operations. We believe this work will
inspire further research into language-guided 3D
scene layout editing.



Limitation Since EditRoom leverages the LLM
for the command planner, its performance is con-
tingent upon the LLM’s capability in 3D scene
understanding and natural command comprehen-
sion. This dependency may lead to the generation
of erroneous commands that prompt the scene ed-
itor to execute potentially problematic operations,
such as collisions. However, because the training
data predominantly consist of collision-free sam-
ples, there is an inherent trade-off between adher-
ing strictly to the commands and avoiding colli-
sions. If the commands deviate significantly from
typical scenarios—such as moving an object 100
meters away—the model might instead perform a
similar action that falls within the observed training
distributions.
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A LLM as Command Planner

(Referred by Section 3.1) A detailed dialog be-
tween user and LLM (GPT-40) is shown in Fig-
ure 5.

B Scene Editor Implementation Details

All language commands are encoded through the
pretrained CLIP-ViT-B32 text encoder. Each graph
diffusion model includes a five-layer graph trans-
former model with 512 hidden dimensions and 8
attention heads. Training is conducted using the
AdamW optimizer over 300 epochs, with a batch
size of 512 and a learning rate of 2 x 10™4. All
models are individually trained and tested on each
room type. For EditRoom, template commands
are employed for the scene editor during training,
whereas other baseline models utilize natural lan-
guage commands generated by GPT-40. During
testing, all models receive natural language com-
mands as input.

C EditRoom-DB pipeline details

(Referred by Section 4) A detailed example of us-
ing LLM to generate natural language description
from template command is shown in Figure 6.

Add and Remove Objects Removing each ob-
ject in the scene separately could generate the mod-
ified scenes as the result after removal compared to
the original scene. Conversely, the original scene
could be treated as the result after object addi-
tion. The formatted editing description will be
‘Add/Remove [object description]’. In order to con-
sider the location of the addition and potential mul-
tiple objects in the scene, we will add the relative
location description with the closest unique object
in the scene, like ‘location: [relative description]
[reference object description]’.

Pose and Size Changes We can similarly re-
peat the pose change operation for every object
in the scene as add/remove. Specifically, we design
three operations: translation, rotation, and scal-
ing. For translation, we create random translations
as the mix of distances, sampled from 0.1 meters
to 1.5 meters with step 0.1, and directions, sam-
pled along the two axes directions (front/back and
left/right). Then, collision checking is done for ev-
ery translated object until we find a collision-free
sample. The translation will be skipped if all the
samples fail in collision checking. The formatted
editing description will be ‘Move object towards
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the front/back/left/right direction for [distance] :
[object description]’

Similarly, we create random rotation angles as
the mix of uniform direction samples, clockwise
or counterclockwise, and random values between
15 — 180 degrees with the step of 15 degrees, and
check collision for each sample. The check stops
when we find a collision-free sample or all samples
fail the checking. The formatted editing description
will be ‘Rotate object [angle] degrees : [object
description]’

For scaling, we separate it as shrinking and en-
larging. The scaling factor is randomly generated
between 0.5-0.8 or 1.2-1.5. The scaling factor uni-
formly applies to three dimensions. Since shrinking
won’t cause a collision with other objects, it can
always result in a successfully modified scene. For
enlarging, if collision checking fails on all trials,
the enlarging is skipped. Otherwise, we save the
largest collision-free scaling factor. The formatted
editing description will be ‘Shrink/Enlarge object
by [scale_factor] times : [object description]’

Object Replacement For the replace operation,
we access an object dataset with semantic class
labels and 3D meshes. The system will retrieve
several objects from the dataset with the same class
label as the replaced object, and check their col-
lision with other existing objects in the scene. If
none of the objects could be placed without col-
lision, we randomly select one object and shrink
its bounding box to be equal or smaller than the
replaced object to avoid collision. The formatted
description is ‘Replace source with target : [source
object description] to [target object description]’.

Collision Detection Module The objects are ab-
stracted as 3D bounding boxes and further decom-
posed into 2D bounding boxes on a horizontal
plane and vertical range, as the objects can only
rotate about the vertical axis. Then, the two objects
are only in collision if their 2D bounding boxes
overlap and their vertical ranges overlap. For 2D
bounding box collision detection, we apply the Sep-
arating Axis Theorem (Huynh, 2009) to determine
if the boxes intersect.



System Prompt

Imagine you are a indoor room designer and you are using provided API to control the 3D models in the scene.

Given one scene configuration and a command to edit the scene, you should use the provided APIs to do planning and achieve the target.

Al sizes and centroids in scene configurations are in meters. The angles are defined in degrees. The dimension sequence is [x,y,z]. Vertical angles are the angles along the y-axis.
Sizes are the half lengths of the bounding box along the x, y, and z axes when the vertical angle is zero.

We define +x/-x as the right/left direction, +y/-y as the up/down direction, and +z/-z as the front/back direction.

Positive angles are counterclockwise, and negative angles are clockwise.

APIs:

1. Rotate an object: [Rotate, Target Object Description, Angle :(degrees)]

2. Translate an object: [Translate, Target Object Description, Direction :(x/y/z), Distance :(meters)]
3. Scale an object: [Scale, Target Object Description, Scale Factor]

4. Replace an object: [Replace, Source Object Description, Target Object Description]

5. Add an object: [Add, Target Object Description]

6. Remove an object: [Remove, Target Object Description]

Matters needing attention:

1. If there are multiple same objects in the scene and the command is related to the object, you should refer to the object locations.

When you refer to the object locations, you should this format: (Relative Description, Relative Object Description).

When you use add or remove command, you should refer to the object locations.

Relative Description: [left, right, in front of, behind, above, below, closely left, closely right, closely in front of, closely behind]. ‘closely’ means the distance between two object centroids are
less than 1 meters in x-z plane.

For example, if you want to add a chair in front of the table, you should use the format: [Add, Chair, (in front of, Table)].

2. Translate, rotate, and scale commands should be executed in the order of scale, rotate, and translate.

Consider the protential collision between objects when you execute the commands.

3. When you scale an object, the object should be scaled uniformly. Scale factor should one float number.

4. Replace object will only replace the object with the same class. Replace command will only change the object appearance, not the object poses and sizes.
5. If Translate/Rotate/Scale commands can achieve the target, you should not use Replace/Add/Remove commands.

6. If image is provided, you should use the image to help you understand the scene.

7. Attempt to use the minimum number of commands to achieve the target.

8. If you want to remove and add the object within the same class, you should use the replace command.

9. Object descriptions should be detailed descriptions instead of class names. You can imagine the object descriptions if the object is not in the scene.

10. All apis should be able to converted to a list of strings and numbers, which can be directly processed by json.loads()

For example:

1. If you want to rotate a chair 90 degrees and there is only one chair in the scene, you should use the format: ['Rotate', ‘chair', 90].

2. If you want to add a chair in front of the table, you should use the format: ['Add', ‘chair’, ('in front of , 'table")].

3. If you want to remove a chair, you should use the format: [Remove', 'chair].

4. If you want to replace a metal chair with a wooden one and this chair on the left of the bed, you should use the format: [Replace’, 'mental chair', 'wooden chair’, ('left', 'bed")].

Think about it step by step. Summarize the used apis at the end by lines. The final output format should be ***api1;api2;...***.

User Input
[Scene configurations]:
Object 0: {"class": "double bed", "size": [1.01, 0.39, 1.08], "vertical angle": -90, "centroid": [3.22, 0.0, -2.48], A

: "the double bed is a modern, minimalist design with a white color scheme and a simple, clean appearance."} \

lass": "nightstand"”, "size": [0.28, 0.24, 0.22], "vertical angle": 0, "centroid": [2.05, 0.0, -4.52], i o\ i
: "the nightstand is a modern, dark wood piece with a sleek, minimalist design."}
lass": "nightstand"”, "size": [0.33, 0.33, 0.23], "vertical angle": 0, "centroid": [4.54, 0.0, -3.35],
: "the nightstand is a simple, white, two-drawer piece with a smooth finish and a small, round knob on each drawer."}

: "the wardrobe is a large, white, traditional style piece of furniture with a decorative top and multiple doors."}
Object 4: {"class": "desk", "size": [1.0, 0.38, 0.3], "vertical angle": -90, "centroid": [5.6, 0.0, -2.47],

"descriptio he desk is a modern, minimalist design with a sleek, rectangular shape and a matte gray finish."} S——
[Command]:"replace the nightstand near the white cabinet with the same model of another nightstand near the black table,

then move it closer to the bed corner to be symmetric with another one."

replace the nightstand near the white cabinet with the same model of another nightstand near the black table,
then move it closer to the bed corner to be symmetric with another one.

LLM Response

To achieve the command of replacing the nightstand near the white cabinet with the other nightstand near the black table and moving it to be symmetric with the other nightstand closer to
the bed corner, we can follow these steps:
1. Identify the nightstands:
a. Nightstand near the white cabinet (wardrobe): This is the darker wood nightstand at centroid [2.05, 0.0, -4.52].
b. Nightstand near the black table: This is the white nightstand at centroid [4.54, 0.0, -3.35].
2. Replace the darker wood nightstand with the white nightstand.
3. Move this replaced nightstand closer to the bed so it is symmetric with the other nightstand:
a. To maintain symmetry, the nightstand should be as positioned close to the bed corner, in the right direction.
Let's execute the steps to achieve the target:
1. **Replace the dark wood nightstand with the white nightstand:**
son
['Replace', 'modern, dark wood nightstand', 'simple, white two-drawer nightstand', ('near’, 'white cabinet')]

2. **Translate the replaced nightstand to the right direction to make it symmetric:**

Considering there is another nightstand near the bed (on the right side), the new one should move closely to the same distance as the first one but in the symmetric position (left of the
bed):

“json

[Translate', 'simple, white two-drawer nightstand', 'x', 1.22]

Final API commands used:
- **Replace the nightstand:**

“json

["Replace", "modern, dark wood nightstand", "simple, white two-drawer nightstand", ("near", "white cabinet")]
- **Translate the nightstand to ensure symmetry with another nightstand near the bed:**

“json

["Translate", "simple, white two-drawer nightstand”, "x", 1.22]

Combining these together, the final output is:
**Output:**
***["Replace", "modern, dark wood nightstand”, "simple, white two-drawer nightstand"”, ("near", "

["Translate", "simple, white two-drawer nightstand”, "x", 1.22]***

'white cabinet")];

D,

Figure 5: Dialog between user and LLM to generate an edit plan to rearrange the bedroom. The room image in
’User Input’ is not given to LLM, just for illustration purpose.
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System Prompt

Given scene configurations and templated commands, you should write new commands using natural language and spatial reference.

Templated commands will be in the "action: target_object' format. If the location is provided in the templated commands, it can be considered as a hint for the target object's location
compared to the existing object in the scene.

All sizes and centroids in scene configurations are in meters. The angles are defined in degrees. The dimension sequence is [x,y,z]. Vertical angles are the angles along the y-axis.
Sizes are the half lengths of the bounding box along the x, y, and z axes when the vertical angle is zero.

We define +x/-x as the right/left direction, +y/-y as the up/down direction, and +z/-z as the front/back direction.

When you design new commands, please refer to the spatial relations between objects in the scene.

When you design new commands, please consider correctness, conciseness, and naturalness.

You should attempt to make your command need reasoning.

If there are duplicate target objects in the scene, you should refer to object locations by relative spatial relations with one unique object in the scene.

If there are multiple templated commands, you should consider them as the same command with different representations.

If templated commands indicate to add an object where there is already a similar object, you should indicate this is about adding a new object in your command.

Enlarge and shrink in the command should be uniform.

You can add object descriptions according to the scene configurations, commands, and the image (if provided).

For example:

Example1:

[Templated commands]:['move object towards the ***left*** direction for 1 meters: a white bed with a red and white plaid comforter and a red and white plaid pillow.]

If there is a table (only one table inside the scene) on the left side of the bed and length of bed is 2 meters, you can write: 'move the white bed with red and white plaid towards the table
around 1 meters.' or 'move the bed towards the left direction by half of bed length."

Example2:

[Templated commands]:['move object towards the ***left*** direction for 0.5 meters: a wooden nightstand.]'

If there is a bed parallel to the nightstand and moving to the left will make the nightstand closer to the bed headboard, you can write: 'move the nightstand closer to the bed headboard by 0.5
meters'.

Example3:

[Templated commands]:['replace source with target : [Source] a white bed; [Target] a brown bed.']

You can write: 'replace the white bed with a brown bed.'

Example4:

[Templated commands]:['add object: a white bed; location: ***right*** a wardrobe."]

If there is a wardrobe in the scene, you can write: 'add a white bed on the right side of the wardrobe."

Now you can start to design new commands based on the scene configurations and templated commands. You can supplement object descriptions on the command.

Think about it step by step and summarize your commands in the end. The final output format should be ####[natural command 1, natural command 2, ...J###', which is a list of strings and
can be processed by ast.literal_eval() or json.loads().

User Input
[Scene configurations]:
Object 0: {"class": "dining table", "size": [0.55, 0.38, 0.23], "vertical angle": 0, "centroid": [-0.8, 0.0, -3.46],
"description": "the dining table is a modern, minimalist design with a black marble top and a silver metal frame."}
Object 1: {"class": "loveseat sofa", "size": [1.24, 0.43, 0.47], "vertical angle": 90, "centroid": [-3.78, 0.0, 1.38],
"description”: "the loveseat sofa is brown with a modern design and has a variety of patterned throw pillows."}
Object 2: {"class": "coffee table", "size": [0.69, 0.23, 0.47], "vertical angle": 90, "centroid": [-2.48, 0.0, 1.4],
"description": "the coffee table is a modern, minimalist design with a geometric shape, featuring a combination of dark wood and lighter wood panels."}
Object 3: {"class": "lounge chair", "size": [0.37, 0.45, 0.37], "vertical angle": 153, "centroid": [-2.94, 0.0, 3.11],
"description”: "the chair is a modern, minimalist design with a dark wood frame and a cushion featuring a geometric pattern."}
Object 4: {"class": "corner side table", "size": [0.22, 0.23, 0.22], "vertical angle": 90, "centroid": [-3.99, 0.0, -0.25],
"descnptlon "a round, black marble table with a white base."} !

{"class": "dlnlng chair", "size": [0.31, 0.45, 0.3], "vertical angle": -180, "centroid": [-0.47, 0.0, -2.79], . [
ith a modern design, featuring a high back and armrests."} % |
ize": [0.31, 0.45, 0.3], "vertical angle": -180, "centroid": [-1.08, 0.0, -2.79], !

"description": "the chair is black with a modern design, featuring a high back and armrests. [
Object 7: {"class": "corner side table", "size": [0.22, 0.23, 0.22], "vertical angle": 90, "centroid": [-3.99, 0.0, 3.13],

"description": "a round, black marble table with a white base."}

Object 8: {"class": "dining chair", "size": [0.31, 0.45, 0.3], "vertical angle": 0, "centroid": [-1.08, 0.0, -4.17],

"description”: "the chair is black with a modern design, featuring a high back and armrests."}

Object 9: {"class": "dining chair", "size": [0.31, 0.45, 0.3], "vertical angle": 0, "centroid": [-0.48, 0.0, -4.17], £
"description": "the chair is black with a modern design, featuring a high back and armrests."} .
Object 10: {"class": "console table", "size": [0.7, 0.42, 0.15], "vertical angle": 0, "centroid": [-3.35, 0.0, -4.56],

"description”: "the console table is a modern, black, three-tiered design with a flat top and a rectangular base."}

Object 11: {"class": "cabinet", "size": [0.62, 1.08, 0.29], "vertical angle": -90, "centroid": [-3.94, 0.0, -2.04],

"description": "the children's cabinet is a modern, minimalist design with a light wood frame and a blue and white color scheme, featuring a playful bunny motif on the doors."}
Object 12: class" "pendant lamp", "size": [0.18, 0.54, 0.18], "vertical angle": 90, "centroid": [-2.71, 1.53, 4.35],

is a modern, metallic chandelier with a white finish, featuring a series of vertical, clear glass tubes that create a geometric pattern."}

Object 13: {"class": "pendant lamp", "size": [0.19, 0.52, 0.19], "vertical angle": 90, "centroid": [-2.26, 1.55, -0.3],

"description": "the pendant lamp is black with a woven design and a white interior."}

[Templated commands]:["rotate object 135 degrees : the pendant lamp is black with a woven design and a white interior",
"obviously rotate object 135 degrees :the pendant lamp is black with a woven design and a white interior."]
Hint: The target object is the Object_13.

LLM Response

***##H#['Rotate the black pendant lamp with a woven design and a white interior by 135 degrees."[###***

Figure 6: Dialog between user and LLM to generate natural language description from the template command. The
room image in *User Input’ is not given to LLM, just for illustration purposes.
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