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Scene�configuration:
Object�1:�class=bed...
Object�2:�class=cabinet...
Object�3:�class=nightstand...

"Sure, I can do that. I will first use remove API to remove the chair and then use
replace API to change the bed to a wooden one. ...." 

Command
Planner

Step 1: [Remove, the green
chair, (in front of, dresser)]

Step 2: [Replace, the modern
design bed,  the wooden bed]

Scene
Editor

Step Command
Source Scene Graph

Graph Diffusion
Target Scene Graph w/ Layout

"I don't want that green
chair and I want to change
the bed to a wooden one"

Figure 1: Editing Pipeline with EditRoom. EditRoom is a language-guided 3D scene editing method based
on LLM planning and graph diffusion. It can accept natural language commands and source scenes, generating
coherent and appropriate editing results.

Abstract

Language-guided 3D scene editing has001
emerged as a pivotal technology in fields such002
as virtual reality, augmented reality, gaming,003
architecture, and film production. Traditional004
methods of 3D scene editing require extensive005
expertise and time due to the complexity006
of 3D environments. Recent advancements007
in language-guided 3D scene editing offer008
promising solutions, but existing approaches009
either limit editing to generated scenes or focus010
on appearance modifications without support-011
ing comprehensive scene layout changes. In012
this work, we propose EditRoom, a novel013
framework for language-guided 3D room014
layout editing that addresses these limitations.015
EditRoom leverages Large Language Models016
(LLMs) for command planning and a graph017
diffusion-based method for executing six018
editing types: rotate, translate, scale, replace,019
add, and remove. In addition, we introduce020
EditRoom-DB, a large-scale dataset with021
83k editing pairs, for training and evaluation022
purposes. Our approach significantly improves023
the accuracy and coherence of scene editing,024
effectively handling complex commands025
with multiple operations. Experimental026
results demonstrate EditRoom’s superior027

performance in both single and complex 028
editing scenarios, highlighting its potential for 029
practical applications. 030

1 Introduction 031

Language-guided 3D scene editing tasks, particu- 032

larly in environments such as bedrooms, demand 033

coherent and precise modifications based on ver- 034

bal instructions. Traditionally, editing 3D scenes 035

necessitates manual intervention via specialized 036

software, requiring extensive expertise and con- 037

siderable time. Consequently, an automated sys- 038

tem capable of interpreting natural language and 039

accurately manipulating these scenes holds sub- 040

stantial value. However, the complexity, diversity, 041

and ambiguity of natural language pose signifi- 042

cant challenges, especially when the commands 043

involve comprehensive scene layout adjustments, 044

such as "creating more movable space in my room" 045

or "making my room more modern." These types 046

of commands typically necessitate an understand- 047

ing of the interplay between the verbal directive 048

and the overall scene configuration, often involving 049

multiple object manipulations. Furthermore, the 050

relatively small size of available 3D scene datasets 051

limits the development of large-scale pretrained 052
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models for fully automated, end-to-end language-053

guided scene editing.054

Recently, several works have demonstrated055

capabilities in language-guided 3D scene edit-056

ing (Haque et al., 2023; Zhuang et al., 2023;057

Bartrum et al., 2024; Chen et al., 2023; Ye et al.,058

2023; Vilesov et al., 2023; Zhou et al., 2024b;059

Lin and Yadong, 2023; Tang et al., 2023). How-060

ever, some works (Vilesov et al., 2023; Zhou et al.,061

2024b) are limited to editing the scenes gener-062

ated by the model itself, while other methods063

mainly focus on changing the appearance of a sin-064

gle object (Haque et al., 2023; Zhuang et al., 2023;065

Bartrum et al., 2024) or requiring manual interven-066

tion for any layout adjustments (Chen et al., 2023;067

Ye et al., 2023; Lin and Yadong, 2023; Tang et al.,068

2023), like adding a new object or changing the069

object pose.070

To address these challenges, we propose Ed-071

itRoom, which can accept complex natural lan-072

guage commands and coherently modify the 3D073

room layout for a provided scene. Intuitively, we074

find that every common natural language com-075

mand can be converted into the compositions of076

six basic editing types on single objects: adding,077

removing, replacing, translating, rotating,078

and scaling. Therefore, we design a graph079

diffusion-based method to achieve every basic edit-080

ing type in a unified framework and use LLM as081

a planner for high-level command comprehension.082

In order to provide accurate results on each edit-083

ing type, we construct an automatic data genera-084

tion pipeline and collect a synthetic scene editing085

dataset named EditRoom-DB.086

EditRoom consists of two main modules: the087

command planner and the scene editor. In our088

command planner, we employ an LLM, specifi-089

cally GPT-4o, to transform natural language com-090

mands into sequences of template commands for091

basic editing operations by providing the source092

scene information in text format. These template093

commands, along with the source scenes, are then094

fed sequentially into the scene editor for execu-095

tion. The scene editor is dedicated to constructing096

single-operation editing results by conditioning on097

the template commands and input scenes. It en-098

compasses two graph diffusion-based models: the099

first is designed to generate high-level target scene100

graphs, which define object shapes and their rel-101

ative spatial relationships; the second model uses102

these generated target scene graphs, the source103

scene, and language commands to estimate the final104

target scene layout. All object meshes are sourced 105

from a high-quality object dataset and adjusted ac- 106

cording to the generated layout. 107

To enable the scene editor to estimate accurate 108

conditional scene distributions for each basic edit- 109

ing type, we have compiled EditRoom-DB, which 110

includes approximately 83,000 editing pairs featur- 111

ing both template and natural language commands. 112

We designed several pipelines to augment the ex- 113

isting 3D scene dataset, 3D FRONT (Fu et al., 114

2021a), which contains 16,000 indoor scene de- 115

signs equipped with high-quality object models. 116

We implement each basic editing operation on these 117

scenes and generate corresponding language com- 118

mands using predefined templates. Subsequently, 119

we employ GPT-4o to transform these template 120

commands into more natural language forms, serv- 121

ing both as training material for our baselines and 122

as test cases for single-operation evaluations. 123

In our experimental framework, we assess the 124

performance of EditRoom in scenarios involving 125

both single-operation and complex multi-operation 126

commands. The results indicate that EditRoom not 127

only achieves higher precision in editing specific 128

types of operations and room categories but also 129

demonstrates robust generalization capabilities in 130

handling complex natural language commands that 131

encompass multiple operations, even in zero-shot 132

settings. 133

Our contributions are summarized as follows: 134

• We propose a new framework, named Edit- 135

Room, consisting of the command planner 136

and scene editor, which accepts scene inputs 137

and can edit scenes using natural language 138

commands by leveraging LLM for planning. 139

• We propose a unified graph diffusion-based 140

module that serves as the scene editor, ca- 141

pable of executing every basic editing type, 142

including adding, removing, replacing, 143

translating, rotating, and scaling. 144

• To address the lack of 3D indoor scene editing 145

data, we introduce an automatic data augmen- 146

tation pipeline to generate edited pairs with 147

corresponding language commands. 148

• From the experiments, we demonstrate that 149

EditRoom outperforms other baselines across 150

all editing types and room types on single 151

operation commands, and it can generalize to 152

complex operation commands without further 153

training. 154
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2 Related Work155

Language-guided 3D Scene Editing Current156

language-guided scene editing works can be ab-157

stractly categorized into four main approaches. The158

first approach involves pretrained image editing159

models to edit the appearance of objects inside the160

scene (Haque et al., 2023; Zhuang et al., 2023;161

Bartrum et al., 2024; Karim et al., 2023). The sec-162

ond approach leverages neural field representation,163

like 3D Gaussian Splatting (Kerbl et al., 2023), to164

obtain individual object representation and apply165

layout change by manually selecting targets (Chen166

et al., 2023; Ye et al., 2023). The third approach167

is to learn conditional scene generation from scene168

description and manually mask the target attribu-169

tions for editing (Haque et al., 2023; Tang et al.,170

2023). The fourth approach starts with generating171

new scenes and limits to editing these generated172

scenes (Vilesov et al., 2023; Zhou et al., 2024b). In173

contrast to these previous works, EditRoom can ac-174

cept an existing scene as input and apply free-form175

editing commands for 3D scene layout without176

manual interventions.177

LLM for 3D Scene Understanding Recent178

works demonstrate that existing LLMs can facil-179

itate 3D spatial reasoning. These works usually180

leverage the pretrained caption models to convert181

3D scenes into text descriptions and ask the LLM182

to generate navigation steps (Zhou et al., 2023,183

2024a), provide room layout (Feng et al., 2024), or184

ground 3D objects (Yang et al., 2023; Hong et al.,185

2023; Huang et al., 2023). In our work, we lever-186

age LLM (GPT-4o) to take source scenes in text187

format and break the natural language commands188

into basic editing operations.189

3 The EditRoom Method190

In this section, we introduce EditRoom, our pro-191

posed framework for language-guided 3D room192

layout editing, comprising two primary modules:193

the Command Planner and the Scene Editor. We194

denote D := {(S1,T1,C1), . . . , (SN ,TN ,CN )}195

as a collection of N editing pairs of indoor scenes,196

where Si is the source scene, Ti is the target scene,197

Ci is the corresponding language command for the198

i-th pair, and N is the total number of editing pairs.199

Given a natural language command Ci and200

source scene Si, we aim to estimate the condi-201

tional target scene distribution q(Ti|Si,Ci). Our202

command planner takes the source scene Si and203

natural command Ci to generate the template com- 204

mands Li. Then, the scene editor conditions on 205

template commands Li to obtain the final target 206

scene Ti, where the whole pipeline can be writ- 207

ten as q(Ti|Si,Ci) = q(Li|Si,Ci) × q(Ti|Si,Li), 208

shown in Figure 1. 209

3.1 LLM as Command Planner 210

In order to process open natural language com- 211

mands, we use GPT-4o to convert natural lan- 212

guage command Ci into a set of combinations 213

of basic editing types with template commands 214

Li := {lij}
NL
j=1, where NL is the number of tem- 215

plate commands, shown in Figure 1. To cover the 216

general manipulations on the scene, we design six 217

basic editing operations: 218

• Rotate an object: [Rotate, Target Object De- 219

scription, Angle] 220

• Translate an object: [Translate, Target Object 221

Description, Direction, Distance] 222

• Scale an object: [Scale, Target Object Descrip- 223

tion, Scale Factor] 224

• Replace an object: [Replace, Source Object 225

Description, Target Object Description] 226

• Add an object: [Add, Target Object Descrip- 227

tion, Target Object Location] 228

• Remove an object: [Remove, Target Object 229

Description] 230

We instruct the LLM to use another unique ob- 231

ject as a reference to describe the spatial relation if 232

the target object is not unique. During the inference 233

phase, we prompt the LLM with attributes of ob- 234

jects within the source scene along with the natural 235

language command, tasking the model to analyze 236

the scene and delineate basic editing operations 237

through template commands in specified formats. 238

The attributes include categories, locations, sizes, 239

rotations, and object captions. Detailed descrip- 240

tions of the full prompt and examples are provided 241

in Figure 5 of the appendix. 242

3.2 Graph Diffusion as 3D Scene Editor 243

Given the template command l and source scene 244

S, our objective is to determine the conditional tar- 245

get scene distribution q(T |S, l). Drawing inspira- 246

tion from recent advancements in language-guided 247

3D scene synthesis (Lin and Yadong, 2023), we 248

transform scenes into semantic graphs and employ 249

a graph transformer-based conditional diffusion 250

model to learn the conditional target scene graph 251

distribution, as depicted in Figure 2. Our approach 252
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Target Graph Generation

Target Layout Generation

Source Scene

Add�object:�a�wooden
wardrobe;�location:�on
the�right�of�the�bed.

Template Command

Text Encoder

Target Scene

Object Node with Category
and Semantic Feature

Directed Edge for Object
Spatial Relations t s r

Scene layout with positions,
rotations and sizes

Frozen Trainable

All masked GraphSource Scene Graph

t s r

t s r

t s r

Source Scene Graph 
(w/ layout)

t s r

Target Scene Graph
(w/ random layout) 

t s r
t s r

t s r t s r

t s r

wooden
wardrobe

Target Scene Graph
(w/ layout)

t s r
t s r

t s r t s r

t s r

Figure 2: Scene Editor Overview. Scene Editor aims to provide accurate, coherent editing results according to
the given source scene and language commands. It consists of two graph transformer-based conditional diffusion
models. One diffusion model generates semantic target scene graphs. Another diffusion model can estimate accurate
poses and size information for each object inside the generated target scene graphs. All diffusion processes are
conditioned on Source Scene and Template Command.

involves two key graph transformer-based diffu-253

sion models: the Target Graph Diffusion, which254

generates object shapes and their spatial relations255

as graphs, and the Target Layout Diffusion, which256

computes the final layout of the target scene. To257

reduce the alignment challenges between the 3D258

scene distribution and language, all commands are259

encoded using the text encoder of CLIP-ViT-B-32.260

Scene Graph Representation Each scene is rep-261

resented as a combination of a layout B and a scene262

graph G (Lin and Yadong, 2023). The layout B263

encapsulates the position, size, and orientation of264

each object, while the scene graph G encodes addi-265

tional high-level semantic information. Formally,266

a semantic scene graph G := (V,E) comprises267

nodes vi ∈ V , where each vi corresponds to an268

object oi with high-level attributes. Directed edges269

eij ∈ E represent spatial relationships such as “left270

of”, connecting the i-th object to the j-th object.271

Each node vi is characterized by a discrete category272

ci and continuous semantic features fi, derived273

from a pretrained multimodal-aligned point cloud274

encoder, OpenShape (Liu et al., 2024c), which fea-275

tures a 1280-dimensional representation space.276

Target Graph Diffusion In this stage, we aim to277

learn semantic scene graphs Gtg for target scenes278

by giving source scenes Gs and language com-279

mands l through a discrete diffusion model εg,280

where Gtg includes category Ctg and semantic281

features Ftg for each node and the edges Etg for 282

object relative relations. Since high-dimensional 283

object semantic features (d = 1280) are too com- 284

plicated to learn from limited data, we use a VQ- 285

VAE model (Lin and Yadong, 2023; Wang et al., 286

2019) to compress them into low-dimensional fea- 287

tures z ∈ Rnf×dZ , which consists of nf vectors ex- 288

tracted from a learned codebook Z ∈ RKf×dZ by a 289

sequence of feature indices fidx := {1, ...,Kf}nf , 290

where Kf and dZ are the size and dimension of 291

codebook. Then, we use the feature indices to 292

replace the original object semantic features as 293

targets for training, denoted as F̂ . Therefore, 294

Gtg = (Ctg, F̂tg, Etg) and Gs = (Cs, F̂s, Es), 295

and our goal is to learn the conditional distribu- 296

tion q(Gtg|Gs, l). During the training process, at 297

timestep t, the noises are added to the Gtg to get 298

Gt
tg, and the model εg aims to reconstruct G0

tg by- 299

conditioning on Gs and l. To add the conditions, 300

we concatenate each element of source graphs 301

into noisy target graphs as context and use cross- 302

attention layers to incorporate language features. 303

The loss function can be written as: 304

Lg :=Eq(G0
tg)

[

T∑
t=2

Lt−1− 305

Eq(G1
tg|G

0
tg)

[logpεg (G
0
tg|G1

tg, Gs, l)]] (1) 306

Lt−1 :=DKL[q(G
t−1
tg |Gt

tg, G
0
tg)|| 307

pεg (G
t−1
tg |Gt

tg, Gs, l)] (2) 308

where DKL indicates the KL divergence. 309
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Target Layout Diffusion In this stage, we aim310

to estimate the target scene layout Btg using a311

diffusion model εb, conditioning on target scene312

graph Gtg, source scene graph Gs, source layout313

Bs, and language command l. The target scene lay-314

out Btg ∈ RM×8 consists of position Ttg ∈ RM×3,315

size Stg ∈ RM×3, and rotation R ∈ RM×2. Dur-316

ing the training process, gaussian noises ϵ will be317

added to the target layout, and the layouts are en-318

coded into the node features by MLP layers. Simi-319

lar to the Target Graph Diffusion, we concatenate320

the source scene graph and source layout to the321

target scene graph and corrupted target layout as322

context. The language features are incorporated323

through cross-attention layers. The objective target324

is to estimate the added noises at each time step.325

The loss function can be written as:326

Lb := EB0
tg,t,ϵ

[||ϵ− εb(B
t
tg, t, Gtg, Gs, Bs, l)] (3)327

Inference Process During the inference phase,328

the first step consists of transforming the source329

scene into a scene graph Gs and a corresponding330

layout Bs. Subsequently, the Target Graph Gen-331

eration model predicts the target scene graph Gtg,332

conditioned on the source scene graph Gs and the333

language command l. This is followed by the Tar-334

get Layout Generation model, which computes the335

target layout Btg, leveraging all available variables336

as inputs. The final step in constructing the tar-337

get scene, denoted as T := (Gtg, Btg), involves338

retrieving the object meshes based on the estimated339

object features and arranging them according to340

the generated layout. This systematic approach341

enables the dynamic generation of scenes that are342

aligned with verbal instructions, ensuring that the343

resulting scenes accurately represent the specified344

conditions.345

4 The EditRoom-DB Dataset346

To support various basic editing operations, we in-347

troduce an automated data augmentation pipeline348

that generates editing pairs, subsequently forming349

the EditRoom-DB dataset. We utilize the bedroom,350

dining room, and living room scenes from the 3D-351

FRONT dataset (Fu et al., 2021a) as our initial352

scene sets, and the 3D-FUTURE dataset (Fu et al.,353

2021b) as the source for high-quality objects. The354

generation process accepts these 3D scenes and355

applies object-level modifications to simulate the356

3D scene editing workflow. These modifications in-357

clude Add and Remove Objects, Pose and Size358

Train Test

Types Bedroom Diningroom Livingroom Bedroom Diningroom Livingroom

Translate 8.6k 3.2k 2.7k 61 58 74
Rotate 4.0k 1.3k 1.3k 38 35 27
Scale 12.7k 4.5k 3.9k 146 144 162
Add 8.9k 3.4k 2.8k 75 79 57
Remove 8.8k 3.3k 2.8k 129 142 127
Replace 6.8k 2.2k 2.1k 51 42 53

Total 49.8k 17.9k 15.6k 500 500 500

Table 1: EditRoom-DB dataset statistics. We collect
around 83k training data across all room types and 500
test data for each room type.

Changes, and Object Replacement. The modi- 359

fied scenes are returned with a detailed template 360

text describing the changes made. 361

Template commands, constructed with editing 362

and target object descriptions, are captioned by 363

the pretrained multimodal understanding model, 364

LLAVA-1.6 (Liu et al., 2024b,a, 2023), using front 365

view images of the objects. These template com- 366

mands are then translated into natural language 367

commands using GPT-4o for testing single oper- 368

ations and training baseline models. Additional 369

prompts and examples are detailed in Figure 6 of 370

the appendix. 371

For each scene in our initial sets, objects are 372

randomly selected for iterative modification using 373

basic editing operations. For the Add and Remove 374

Objects pairs, the scene lacking the selected object 375

serves as the target for removal, and the original 376

scene serves as the source for addition. In Pose 377

and Size Changes, random values are applied 378

to the attributes of the selected objects, with col- 379

lision checking ensuring the creation of collision- 380

free editing pairs. During Object Replacement, 381

objects within the same category are randomly cho- 382

sen, with collision checking helping to avoid low- 383

quality data samples. The dataset comprises 83k 384

training samples across all room types and 500 test 385

samples for each type. Detailed statistics are avail- 386

able in Table 1 and further details in Appendix C. 387

5 Experiments 388

5.1 Baselines and Evaluation Metrics 389

Baselines Since there is no previous work that 390

accepts natural language commands for various 391

editing types, we construct two baseline for com- 392

parisons: DiffuScene-E and SceneEditor-N: 393

• DiffuScen-N: DiffuScene-N is modified from 394

the language-guided 3D scene synthesis work, 395

DiffuScene (Tang et al., 2023), which includes 396

a UNet-based diffusion model to generate 397

scene layout. To enable it with language- 398
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Bedroom Diningroom Livingroom

Model IOU (↑) S-IOU (↑) LPIPS (↓) CLIP (↑) IOU (↑) S-IOU (↑) LPIPS (↓) CLIP (↑) IOU (↑) S-IOU (↑) LPIPS (↓) CLIP (↑)

DiffuScene-N 0.6213 0.6122 0.1374 0.9550 0.4484 0.4338 0.1984 0.9247 0.4693 0.4507 0.1748 0.9328
SceneEditor-N 0.7254 0.7150 0.1071 0.9601 0.5189 0.5033 0.1572 0.9356 0.4797 0.4667 0.1638 0.9385
EditRoom 0.7435 0.7344 0.0967 0.9644 0.5246 0.5095 0.1489 0.9450 0.4801 0.4724 0.1564 0.9463

Table 2: Performance on single operation with different room types. From the table, we can find EditRoom
outperforms baselines among all room types, which indicates that our methods can provide more accurate and
coherent editing across room types.

Translate Rotate Scale

Model IOU (↑) S-IOU (↑) LPIPS (↓) CLIP (↑) IOU (↑) S-IOU (↑) LPIPS (↓) CLIP (↑) IOU (↑) S-IOU (↑) LPIPS (↓) CLIP (↑)

DiffuScene-N 0.5237 0.5115 0.1691 0.9488 0.5902 0.5770 0.1372 0.9510 0.5816 0.5691 0.1248 0.9510
SceneEditor-N 0.5611 0.5491 0.1488 0.9511 0.6269 0.6146 0.1313 0.9526 0.6191 0.6083 0.1150 0.9573
EditRoom 0.5782 0.5673 0.1432 0.9553 0.6277 0.6158 0.1290 0.9538 0.6309 0.6216 0.1083 0.9610

Replace Add Remove

IOU (↑) S-IOU (↑) LPIPS (↓) CLIP (↑) IOU (↑) S-IOU (↑) LPIPS (↓) CLIP (↑) IOU (↑) S-IOU (↑) LPIPS (↓) CLIP (↑)

DiffuScene-N 0.5662 0.5435 0.1439 0.9336 0.5075 0.4946 0.1826 0.9381 0.4291 0.4144 0.2060 0.9325
SceneEditor-N 0.6002 0.5746 0.1398 0.9390 0.5595 0.5472 0.1619 0.9341 0.5545 0.5412 0.1442 0.9496
EditRoom 0.6114 0.5837 0.1369 0.9427 0.5657 0.5542 0.1571 0.9430 0.5556 0.5453 0.1363 0.9517

Table 3: Performance on single operation with different editing types. From the table, we can notice EditRoom
can provide better editing results across all basic editing types.

guided scene editing ability, we leverage their399

scene completion pipeline by incorporating400

the source scene as context for the diffusion401

process. During the training and testing, the402

model directly conditions natural commands403

for target scene layout generation.404

• SceneEditor-N: To test our generalization abil-405

ity, we experiment with another setting, where406

the scene editor directly trains on the natural407

commands got from the GPT-4o. During the408

inference time, the model conditions the natu-409

ral commands and generates the final scenes.410

Metrics To evaluate the models’ performance,411

we utilize four metrics: IOU, S-IOU, LPIPS (Zhang412

et al., 2018), and CLIP (Radford et al., 2021) scores.413

The IOU scores are calculated by determining414

the 3D Intersection Over Union (IOU) between415

each object in the generated and target scenes,416

selecting pairs with the highest 3D IOU values.417

The S-IOU represents the semantic-weighted 3D418

IOU, where semantic similarities between match-419

ing objects are calculated using Sentence BERT420

(S-BERT) (Reimers and Gurevych, 2019) based421

on their captions. For visual evaluation, we render422

both the generated and target scenes from 24 fixed423

camera views. Visual similarity is assessed using424

the LPIPS metric for pixel similarity, and seman-425

tic similarity is evaluated using the CLIP image426

encoder (CLIP-ViT-B32).427

5.2 Results428

Single Operation To assess model performance429

on single operations, we test our model and base-430

lines using the EditRoom-DB test set, which con- 431

tains 500 samples per room type, with language 432

commands generated by GPT-4o. Quantitative re- 433

sults are depicted in Tables 2 and 3, and qualitative 434

outcomes are illustrated in Figure 3. Table 2 indi- 435

cates that EditRoom consistently outperforms other 436

baselines across all room types, with notably supe- 437

rior performance in bedrooms. According to Ta- 438

ble 3, EditRoom also excels across all editing types. 439

Comparisons between EditRoom and SceneEditor- 440

N reveal that template-based instructions can sim- 441

plify the learning process by more effectively align- 442

ing language commands with scene changes. More- 443

over, the LLM (GPT-4o) demonstrates a successful 444

bridge between natural language and template com- 445

mands. SceneEditor-N outperforms DiffScene-E 446

across all metrics and editing types, suggesting 447

that our graph-based diffusion method yields more 448

coherent and accurate editing results compared to 449

the UNet-based approach. Thus, EditRoom pro- 450

vides more precise and coherent atomic editing 451

operations from natural language commands than 452

its counterparts. 453

Analysis across different room types shows that 454

all models perform better as the average number of 455

objects in rooms decreases, highlighting potential 456

for improvements in larger, more complex scenes. 457

Evaluating different editing operations reveals that 458

translating, adding, and removing operations score 459

lower on IOU, demanding stronger spatial reason- 460

ing. Meanwhile, replacing and adding operations 461

yield lower CLIP scores, indicating a need for bet- 462

ter alignment between object descriptions and their 463
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EditRoom SceneEditor-N DiffuScene-N

shrink the green
sofa to half size

move the double
bed towards back
direction a little bit

distance

rotate the black
double bed with

pillows and a black
headboard 90

degrees.

remove the gray
coffee table with

matte finish

add a modern, black
and white wine

cabinet with glass
front on the left of
the dining table

replace the lamp
with a wooden
base and metal
chain to another
one, geometric
design and a

clear glass bulb

Source SceneLanguage
Command

Figure 3: Qualitative results on single operation commands. The left column is the source scene with single
operation commands for each basic editing type. From the examples, we can find that EditRoom can provide more
coherent and appropriate editing operations across all editing types.

semantic features. This underscores the potential464

for further enhancement of models’ spatial reason-465

ing and object alignment capabilities.466

Complex Operations To demonstrate the gener-467

alization capabilities of EditRoom, we manually de-468

signed several test prompts that combine multiple469

atomic operations, and we assessed each model’s470

performance qualitatively. Figure 4, shows that471

EditRoom provides more coherent and appropriate472

responses than the baseline models. For instance,473

the command in the first row requests a bed re-474

placement and the addition of a wardrobe. Edit-475

Room successfully interprets the natural language476

command and translates it into the corresponding477

atomic operations using an LLM, whereas other478

Model IOU (↑) S-IOU (↑) LPIPS (↓) CLIP (↑)

EditRoom (Concat-Text) 0.5992 0.5835 0.1325 0.9547
EditRoom (Original) 0.7435 0.7344 0.0967 0.9644

Table 4: Ablation on different condition types on the
bedroom. From the table, we can show that incorporat-
ing source information as context with the self-attention
(our design) instead of the cross-attention mechanism
can significantly improve model performance.

baseline models misinterpret the command and 479

perform incorrect operations such as translation. 480

These outcomes highlight the challenges of directly 481

training models on natural language commands for 482

compositional editing tasks. EditRoom, by con- 483

trast, effectively executes complex editing opera- 484

tions through strategic LLM planning. 485
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SceneEditor-NEditRoom DiffuScene-N

Change the bed to a
wooden one and add
a wooden wardrobe
in front of the bed.

Remove the left
nightstand and

rotate the bed 90
degrees to make it
face the cabinet.

Make the cabinet
two times larger
and put it to the
right a little bit.

Source Scene
Language
Command

Figure 4: Qualitative results on complex operation commands. The left column is the source scene with complex
operation commands. From the figure, we can find the EditRoom can successfully generalize to complex natural
language commands with multiple operations without further training on the complex operation data, while baselines
fail to execute coherent editing.

Model IOU (↑) S-IOU (↑) LPIPS (↓) CLIP (↑)

EditRoom (OpenCLIP-ViT-bigG-14) 0.6970 0.6788 0.1271 0.9490
EditRoom (Original) 0.7435 0.7344 0.0967 0.9644

Table 5: Ablation on different text encoders on the
bedroom. Due to the limited size of training data, we
find using the larger text encoder with high-dimensional
features induces decreasing performance on editing,
which indicates further exploration with 3D editing data
generation.

Ablation on Condition Types To validate our486

model design, we experimented with an alternative487

conditioning approach, where a graph transformer488

encodes the source scene into a sequence of vec-489

tors that are then concatenated with text features.490

These combined features are incorporated into the491

cross-attention layers of our graph diffusion pro-492

cess. We specifically tested this method on the493

bedroom scene type, with results shown in Table 4.494

The table indicates a significant decrease in model495

performance, both in terms of layout accuracy and496

visual coherence. This outcome suggests that uti-497

lizing source scene information as the context for498

self-attention layers, rather than as conditions for499

cross-attention, yields better results.500

Ablation on Text Encoders In an exploration501

of text encoder options, we replaced the CLIP-502

ViT-B32 text encoder (512 feature dimensions)503

with a larger pretrained text encoder, OpenCLIP-504

ViT-bigG-14 (1280 feature dimensions), used by 505

OpenShape to align with object semantic fea- 506

tures—consistent with the object features in our 507

models. We conducted tests on the bedroom test 508

set, with outcomes detailed in Table 5. The results 509

indicate that the model equipped with the larger 510

text encoder underperforms compared to the one 511

using the original encoder. We attribute this de- 512

crease in performance to the limited size of our 513

training dataset. Given that our diffusion models 514

are trained from scratch, they require more data to 515

effectively align with higher-dimensional features 516

(d = 512 vs d = 1280). This finding underscores 517

the need for further exploration into constructing 518

larger scene editing datasets. 519

6 Conclusion 520

In this work, we introduce EditRoom, a language- 521

guided 3D room layout editing method. EditRoom 522

incorporates a graph diffusion-based scene editor 523

that facilitates unified basic editing operations, and 524

it utilizes an LLM for natural language planning. 525

Our experiments demonstrate that EditRoom can 526

effectively execute appropriate edits for both single 527

and complex operations. We believe this work will 528

inspire further research into language-guided 3D 529

scene layout editing. 530
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Limitation Since EditRoom leverages the LLM531

for the command planner, its performance is con-532

tingent upon the LLM’s capability in 3D scene533

understanding and natural command comprehen-534

sion. This dependency may lead to the generation535

of erroneous commands that prompt the scene ed-536

itor to execute potentially problematic operations,537

such as collisions. However, because the training538

data predominantly consist of collision-free sam-539

ples, there is an inherent trade-off between adher-540

ing strictly to the commands and avoiding colli-541

sions. If the commands deviate significantly from542

typical scenarios—such as moving an object 100543

meters away—the model might instead perform a544

similar action that falls within the observed training545

distributions.546
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A LLM as Command Planner682

(Referred by Section 3.1) A detailed dialog be-683

tween user and LLM (GPT-4o) is shown in Fig-684

ure 5.685

B Scene Editor Implementation Details686

All language commands are encoded through the687

pretrained CLIP-ViT-B32 text encoder. Each graph688

diffusion model includes a five-layer graph trans-689

former model with 512 hidden dimensions and 8690

attention heads. Training is conducted using the691

AdamW optimizer over 300 epochs, with a batch692

size of 512 and a learning rate of 2 × 10−4. All693

models are individually trained and tested on each694

room type. For EditRoom, template commands695

are employed for the scene editor during training,696

whereas other baseline models utilize natural lan-697

guage commands generated by GPT-4o. During698

testing, all models receive natural language com-699

mands as input.700

C EditRoom-DB pipeline details701

(Referred by Section 4) A detailed example of us-702

ing LLM to generate natural language description703

from template command is shown in Figure 6.704

Add and Remove Objects Removing each ob-705

ject in the scene separately could generate the mod-706

ified scenes as the result after removal compared to707

the original scene. Conversely, the original scene708

could be treated as the result after object addi-709

tion. The formatted editing description will be710

‘Add/Remove [object description]’. In order to con-711

sider the location of the addition and potential mul-712

tiple objects in the scene, we will add the relative713

location description with the closest unique object714

in the scene, like ‘location: [relative description]715

[reference object description]’.716

Pose and Size Changes We can similarly re-717

peat the pose change operation for every object718

in the scene as add/remove. Specifically, we design719

three operations: translation, rotation, and scal-720

ing. For translation, we create random translations721

as the mix of distances, sampled from 0.1 meters722

to 1.5 meters with step 0.1, and directions, sam-723

pled along the two axes directions (front/back and724

left/right). Then, collision checking is done for ev-725

ery translated object until we find a collision-free726

sample. The translation will be skipped if all the727

samples fail in collision checking. The formatted728

editing description will be ‘Move object towards729

the front/back/left/right direction for [distance] : 730

[object description]’ 731

Similarly, we create random rotation angles as 732

the mix of uniform direction samples, clockwise 733

or counterclockwise, and random values between 734

15− 180 degrees with the step of 15 degrees, and 735

check collision for each sample. The check stops 736

when we find a collision-free sample or all samples 737

fail the checking. The formatted editing description 738

will be ‘Rotate object [angle] degrees : [object 739

description]’ 740

For scaling, we separate it as shrinking and en- 741

larging. The scaling factor is randomly generated 742

between 0.5-0.8 or 1.2-1.5. The scaling factor uni- 743

formly applies to three dimensions. Since shrinking 744

won’t cause a collision with other objects, it can 745

always result in a successfully modified scene. For 746

enlarging, if collision checking fails on all trials, 747

the enlarging is skipped. Otherwise, we save the 748

largest collision-free scaling factor. The formatted 749

editing description will be ‘Shrink/Enlarge object 750

by [scale_factor] times : [object description]’ 751

Object Replacement For the replace operation, 752

we access an object dataset with semantic class 753

labels and 3D meshes. The system will retrieve 754

several objects from the dataset with the same class 755

label as the replaced object, and check their col- 756

lision with other existing objects in the scene. If 757

none of the objects could be placed without col- 758

lision, we randomly select one object and shrink 759

its bounding box to be equal or smaller than the 760

replaced object to avoid collision. The formatted 761

description is ‘Replace source with target : [source 762

object description] to [target object description]’. 763

Collision Detection Module The objects are ab- 764

stracted as 3D bounding boxes and further decom- 765

posed into 2D bounding boxes on a horizontal 766

plane and vertical range, as the objects can only 767

rotate about the vertical axis. Then, the two objects 768

are only in collision if their 2D bounding boxes 769

overlap and their vertical ranges overlap. For 2D 770

bounding box collision detection, we apply the Sep- 771

arating Axis Theorem (Huynh, 2009) to determine 772

if the boxes intersect. 773
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System Prompt
Imagine you are a indoor room designer and you are using provided API to control the 3D models in the scene.
Given one scene configuration and a command to edit the scene, you should use the provided APIs to do planning and achieve the target.
All sizes and centroids in scene configurations are in meters. The angles are defined in degrees. The dimension sequence is [x,y,z]. Vertical angles are the angles along the y-axis.
Sizes are the half lengths of the bounding box along the x, y, and z axes when the vertical angle is zero.
We define +x/-x as the right/left direction, +y/-y as the up/down direction, and +z/-z as the front/back direction.
Positive angles are counterclockwise, and negative angles are clockwise.

APIs:
1. Rotate an object: [Rotate, Target Object Description, Angle :(degrees)]
2. Translate an object: [Translate, Target Object Description, Direction :(x/y/z), Distance :(meters)]
3. Scale an object: [Scale, Target Object Description, Scale Factor]
4. Replace an object: [Replace, Source Object Description, Target Object Description]
5. Add an object: [Add, Target Object Description]
6. Remove an object: [Remove, Target Object Description]

Matters needing attention:
1. If there are multiple same objects in the scene and the command is related to the object, you should refer to the object locations.
When you refer to the object locations, you should this format: (Relative Description, Relative Object Description).
When you use add or remove command, you should refer to the object locations.
Relative Description: [left, right, in front of, behind, above, below, closely left, closely right, closely in front of, closely behind]. 'closely' means the distance between two object centroids are
less than 1 meters in x-z plane.
For example, if you want to add a chair in front of the table, you should use the format: [Add, Chair, (in front of, Table)].
2. Translate, rotate, and scale commands should be executed in the order of scale, rotate, and translate.
Consider the protential collision between objects when you execute the commands.
3. When you scale an object, the object should be scaled uniformly. Scale factor should one float number.
4. Replace object will only replace the object with the same class. Replace command will only change the object appearance, not the object poses and sizes.
5. If Translate/Rotate/Scale commands can achieve the target, you should not use Replace/Add/Remove commands.
6. If image is provided, you should use the image to help you understand the scene.
7. Attempt to use the minimum number of commands to achieve the target.
8. If you want to remove and add the object within the same class, you should use the replace command.
9. Object descriptions should be detailed descriptions instead of class names. You can imagine the object descriptions if the object is not in the scene.
10. All apis should be able to converted to a list of strings and numbers, which can be directly processed by json.loads()

For example:
1. If you want to rotate a chair 90 degrees and there is only one chair in the scene, you should use the format: ['Rotate', 'chair', 90].
2. If you want to add a chair in front of the table, you should use the format: ['Add', 'chair', ('in front of', 'table')].
3. If you want to remove a chair, you should use the format: ['Remove', 'chair'].
4. If you want to replace a metal chair with a wooden one and this chair on the left of the bed, you should use the format: ['Replace', 'mental chair', 'wooden chair', ('left', 'bed')].

Think about it step by step. Summarize the used apis at the end by lines. The final output format should be ***api1;api2;...***.

User Input
[Scene configurations]:
Object 0: {"class": "double bed", "size": [1.01, 0.39, 1.08], "vertical angle": -90, "centroid": [3.22, 0.0, -2.48], 
"description": "the double bed is a modern, minimalist design with a white color scheme and a simple, clean appearance."} 
 Object 1: {"class": "nightstand", "size": [0.28, 0.24, 0.22], "vertical angle": 0, "centroid": [2.05, 0.0, -4.52], 
"description": "the nightstand is a modern, dark wood piece with a sleek, minimalist design."} 
 Object 2: {"class": "nightstand", "size": [0.33, 0.33, 0.23], "vertical angle": 0, "centroid": [4.54, 0.0, -3.35], 
"description": "the nightstand is a simple, white, two-drawer piece with a smooth finish and a small, round knob on each drawer."} 
 Object 3: {"class": "wardrobe", "size": [1.04, 1.02, 0.32], "vertical angle": 90, "centroid": [1.51, 0.0, -2.48], 
"description": "the wardrobe is a large, white, traditional style piece of furniture with a decorative top and multiple doors."} 
 Object 4: {"class": "desk", "size": [1.0, 0.38, 0.3], "vertical angle": -90, "centroid": [5.6, 0.0, -2.47], 
"description": "the desk is a modern, minimalist design with a sleek, rectangular shape and a matte gray finish."}
[Command]:"replace the nightstand near the white cabinet with the same model of another nightstand near the black table, 
then move it closer to the bed corner to be symmetric with another one."

replace the nightstand near the white cabinet with the same model of another nightstand near the black table, 
then move it closer to the bed corner to be symmetric with another one.

LLM Response
To achieve the command of replacing the nightstand near the white cabinet with the other nightstand near the black table and moving it to be symmetric with the other nightstand closer to
the bed corner, we can follow these steps:
1. Identify the nightstands:
   a. Nightstand near the white cabinet (wardrobe): This is the darker wood nightstand at centroid [2.05, 0.0, -4.52].
   b. Nightstand near the black table: This is the white nightstand at centroid [4.54, 0.0, -3.35].
2. Replace the darker wood nightstand with the white nightstand.
3. Move this replaced nightstand closer to the bed so it is symmetric with the other nightstand:
   a. To maintain symmetry, the nightstand should be as positioned close to the bed corner, in the right direction.
Let's execute the steps to achieve the target:
1. **Replace the dark wood nightstand with the white nightstand:**
   ```json
   ['Replace', 'modern, dark wood nightstand', 'simple, white two-drawer nightstand', ('near', 'white cabinet')]
   ```
2. **Translate the replaced nightstand to the right direction to make it symmetric:**
   Considering there is another nightstand near the bed (on the right side), the new one should move closely to the same distance as the first one but in the symmetric position (left of the
bed):
   ```json
   ['Translate', 'simple, white two-drawer nightstand', 'x', 1.22]
   ```
Final API commands used:
- **Replace the nightstand:**
  ```json
  ["Replace", "modern, dark wood nightstand", "simple, white two-drawer nightstand", ("near", "white cabinet")]
  ```
- **Translate the nightstand to ensure symmetry with another nightstand near the bed:**
  ```json
  ["Translate", "simple, white two-drawer nightstand", "x", 1.22]
  ```
Combining these together, the final output is:
**Output:**
***["Replace", "modern, dark wood nightstand", "simple, white two-drawer nightstand", ("near", "white cabinet")];
["Translate", "simple, white two-drawer nightstand", "x", 1.22]***

Figure 5: Dialog between user and LLM to generate an edit plan to rearrange the bedroom. The room image in
’User Input’ is not given to LLM, just for illustration purpose.
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System Prompt
Given scene configurations and templated commands, you should write new commands using natural language and spatial reference.
Templated commands will be in the 'action: target_object' format. If the location is provided in the templated commands, it can be considered as a hint for the target object's location
compared to the existing object in the scene.
All sizes and centroids in scene configurations are in meters. The angles are defined in degrees. The dimension sequence is [x,y,z]. Vertical angles are the angles along the y-axis.
Sizes are the half lengths of the bounding box along the x, y, and z axes when the vertical angle is zero.
We define +x/-x as the right/left direction, +y/-y as the up/down direction, and +z/-z as the front/back direction.
When you design new commands, please refer to the spatial relations between objects in the scene.
When you design new commands, please consider correctness, conciseness, and naturalness.
You should attempt to make your command need reasoning.
If there are duplicate target objects in the scene, you should refer to object locations by relative spatial relations with one unique object in the scene.
If there are multiple templated commands, you should consider them as the same command with different representations.
If templated commands indicate to add an object where there is already a similar object, you should indicate this is about adding a new object in your command.
Enlarge and shrink in the command should be uniform.
You can add object descriptions according to the scene configurations, commands, and the image (if provided).
For example:
Example1:
[Templated commands]:['move object towards the ***left*** direction for 1 meters: a white bed with a red and white plaid comforter and a red and white plaid pillow.']
If there is a table (only one table inside the scene) on the left side of the bed and length of bed is 2 meters, you can write: 'move the white bed with red and white plaid towards the table
around 1 meters.' or 'move the bed towards the left direction by half of bed length.'
Example2:
[Templated commands]:['move object towards the ***left*** direction for 0.5 meters: a wooden nightstand.]'
If there is a bed parallel to the nightstand and moving to the left will make the nightstand closer to the bed headboard, you can write: 'move the nightstand closer to the bed headboard by 0.5
meters'.
Example3:
[Templated commands]:['replace source with target : [Source] a white bed; [Target] a brown bed.']
You can write: 'replace the white bed with a brown bed.'
Example4:
[Templated commands]:['add object: a white bed; location: ***right*** a wardrobe.']
If there is a wardrobe in the scene, you can write: 'add a white bed on the right side of the wardrobe.'
Now you can start to design new commands based on the scene configurations and templated commands. You can supplement object descriptions on the command.
Think about it step by step and summarize your commands in the end. The final output format should be '###[natural command 1, natural command 2, ...]###', which is a list of strings and
can be processed by ast.literal_eval() or json.loads().

User Input
[Scene configurations]:
Object 0: {"class": "dining table", "size": [0.55, 0.38, 0.23], "vertical angle": 0, "centroid": [-0.8, 0.0, -3.46], 
"description": "the dining table is a modern, minimalist design with a black marble top and a silver metal frame."} 
Object 1: {"class": "loveseat sofa", "size": [1.24, 0.43, 0.47], "vertical angle": 90, "centroid": [-3.78, 0.0, 1.38], 
"description": "the loveseat sofa is brown with a modern design and has a variety of patterned throw pillows."} 
Object 2: {"class": "coffee table", "size": [0.69, 0.23, 0.47], "vertical angle": 90, "centroid": [-2.48, 0.0, 1.4], 
"description": "the coffee table is a modern, minimalist design with a geometric shape, featuring a combination of dark wood and lighter wood panels."} 
Object 3: {"class": "lounge chair", "size": [0.37, 0.45, 0.37], "vertical angle": 153, "centroid": [-2.94, 0.0, 3.11], 
"description": "the chair is a modern, minimalist design with a dark wood frame and a cushion featuring a geometric pattern."} 
Object 4: {"class": "corner side table", "size": [0.22, 0.23, 0.22], "vertical angle": 90, "centroid": [-3.99, 0.0, -0.25], 
"description": "a round, black marble table with a white base."} 
Object 5: {"class": "dining chair", "size": [0.31, 0.45, 0.3], "vertical angle": -180, "centroid": [-0.47, 0.0, -2.79], 
"description": "the chair is black with a modern design, featuring a high back and armrests."} 
Object 6: {"class": "dining chair", "size": [0.31, 0.45, 0.3], "vertical angle": -180, "centroid": [-1.08, 0.0, -2.79], 
"description": "the chair is black with a modern design, featuring a high back and armrests."} 
Object 7: {"class": "corner side table", "size": [0.22, 0.23, 0.22], "vertical angle": 90, "centroid": [-3.99, 0.0, 3.13], 
"description": "a round, black marble table with a white base."} 
Object 8: {"class": "dining chair", "size": [0.31, 0.45, 0.3], "vertical angle": 0, "centroid": [-1.08, 0.0, -4.17], 
"description": "the chair is black with a modern design, featuring a high back and armrests."} 
Object 9: {"class": "dining chair", "size": [0.31, 0.45, 0.3], "vertical angle": 0, "centroid": [-0.48, 0.0, -4.17], 
"description": "the chair is black with a modern design, featuring a high back and armrests."} 
Object 10: {"class": "console table", "size": [0.7, 0.42, 0.15], "vertical angle": 0, "centroid": [-3.35, 0.0, -4.56], 
"description": "the console table is a modern, black, three-tiered design with a flat top and a rectangular base."} 
Object 11: {"class": "cabinet", "size": [0.62, 1.08, 0.29], "vertical angle": -90, "centroid": [-3.94, 0.0, -2.04], 
"description": "the children's cabinet is a modern, minimalist design with a light wood frame and a blue and white color scheme, featuring a playful bunny motif on the doors."} 
Object 12: {"class": "pendant lamp", "size": [0.18, 0.54, 0.18], "vertical angle": 90, "centroid": [-2.71, 1.53, 4.35], 
"description": "the pendant lamp is a modern, metallic chandelier with a white finish, featuring a series of vertical, clear glass tubes that create a geometric pattern."} 
Object 13: {"class": "pendant lamp", "size": [0.19, 0.52, 0.19], "vertical angle": 90, "centroid": [-2.26, 1.55, -0.3], 
"description": "the pendant lamp is black with a woven design and a white interior."}

[Templated commands]:["rotate object 135 degrees : the pendant lamp is black with a woven design and a white interior",
"obviously rotate object 135 degrees :the pendant lamp is black with a woven design and a white interior."]
Hint: The target object is the Object_13.

LLM Response

***###['Rotate the black pendant lamp with a woven design and a white interior by 135 degrees.']###***To achieve the command of replacing the nightstand near
the white cabinet with the other nightstand near the black table and moving it to be symmetric with the other nightstand closer to the bed corner, we can follow these steps:

Figure 6: Dialog between user and LLM to generate natural language description from the template command. The
room image in ’User Input’ is not given to LLM, just for illustration purposes.
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