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ABSTRACT

Advances in video diffusion models have unlocked the potential for realistic
audio-driven talking video generation. However, it is still highly challenging to
ensure seamless audio-lip synchronization, maintain long-term identity consis-
tency, and achieve natural expressions aligned with the audio in generated talk-
ing videos. To address these challenges, we propose Memory-guided EMOtion-
aware diffusion (MEMO), an end-to-end audio-driven portrait animation approach
to generate identity-consistent and expressive talking videos. Our approach is
built around two key modules: (1) a memory-guided temporal module, which en-
hances long-term identity consistency and smooth motion by developing memory
states that store information from all previously generated frames and guide tem-
poral modeling through linear attention; and (2) an emotion-aware audio module,
which replaces traditional cross attention with multi-modal attention to enhance
audio-video interaction, while detecting emotions from the audio to refine facial
expressions via emotion adaptive layer norm. Moreover, MEMO is trained on
a large-scale, high-quality dataset of talking head videos without relying on fa-
cial inductive biases such as face landmarks or bounding boxes. Extensive ex-
periments demonstrate that MEMO generates more realistic talking videos across
a wide range of audio types, surpassing state-of-the-art talking video diffusion
methods in human evaluations in terms of emotion-audio alignment, identity con-
sistency and overall quality, respectively.

1 INTRODUCTION

Audio-driven talking video generation (Prajwal et al., 2020; Tian et al., 2024; Xu et al., 2024b)
has gained significant attention due to its broad impact on areas like virtual avatars, digital content
creation, and real-time communication, offering transformative possibilities in entertainment, educa-
tion, and e-commerce. However, compared to text-to-video generation (Guo et al., 2023; Rombach
et al., 2022; Ramesh et al., 2022) or image-to-video generation (Blattmann et al., 2023), audio-driven
talking video generation presents unique challenges. It requires not only generating synchronized lip
movements and realistic head motions from audio, but also preserving the long-term identity consis-
tency of the reference image and producing natural expressions that align with the emotional tone of
the audio. Successfully balancing these demands while ensuring generalization across diverse audio
inputs and reference images makes this task highly challenging.

Recent advances in video diffusion models (Tian et al., 2024; Xu et al., 2024a; Chen et al., 2024)
have enabled more realistic audio-driven talking video generation. Most existing methods use cross-
attention mechanisms to incorporate audio to guide video generation and typically condition on past
generated 2-4 frames to improve identity consistency and motion smoothness (Tian et al., 2024;
Xu et al., 2024a). Sometimes, they incorporate a static emotion label to specify the emotion of the
generated video (Xu et al., 2024b; Tan et al., 2024). However, these approaches face challenges
with audio-lip synchronization, maintaining long-term identity consistency, and achieving natural
expressions aligned with the audio. Cross-attention mechanisms rely on fixed audio features, limit-
ing audio-video interaction and coherence, while conditioning on a limited number of past frames
can lead to error accumulation, especially when those frames contain artifacts (cf. Figure 1). Addi-
tionally, using static emotion labels can result in facial expressions that fail to capture the dynamic
emotional shifts inherent in audio. Consequently, these methods may struggle with lip-audio syn-
chronization, expression-audio alignment, and long-term identity preservation.
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Figure 1: Our MEMO generates talking videos with improved identity consistency, audio-lip align-
ment, and motion smoothness. In contrast, existing diffusion-based methods (e.g., Hallo (Xu et al.,
2024a)) are prone to error accumulation during auto-regressive generation, especially when the gen-
erated last 2-4 frames used as temporal conditions contain artifacts, leading to inconsistent identity.

In this paper, we propose Memory-guided EMOtion-aware diffusion (MEMO), an end-to-end
audio-driven portrait animation approach. As shown in Figure 2, MEMO is built around two key
modules: (1) a memory-guided temporal module and (2) an emotion-aware audio module. To en-
sure consistent facial identity and smooth transitions across long-term videos, MEMO develops
a memory-guided temporal module that maintains memory states across all previously generated
frames. This allows the model to use long-term motion information to guide temporal modeling
through linear attention, resulting in more coherent facial movements and mitigating the error accu-
mulation issue that may occur in existing diffusion methods (cf. Figure 1). Moreover, to improve
audio-lip synchronization and align facial expressions with the emotional tone of the audio, MEMO
introduces an emotion-aware audio module. This module replaces the traditional cross-attention au-
dio module in previous diffusion methods with a more dynamic multi-modal attention mechanism,
enabling better interaction between audio and video during the diffusion process. By detecting sub-
tle emotional cues from the audio, this module further refines facial expressions through emotion
adaptive layer norm, enabling the generation of expressive and emotionally aligned talking videos.

Extensive quantitative results and human evaluations demonstrate that our approach consistently
outperforms state-of-the-art methods in overall quality, audio-lip synchronization, expression-audio
alignment, identity consistency, and motion smoothness (cf. Table 1 and Figure 6). Additionally,
diverse qualitative results highlight MEMO’s strong generalization across various types of audio,
including speech, singing, rap, and multiple languages, further showcasing the effectiveness of our
method. Lastly, ablation studies further validate the distinct contributions of the emotion-aware
audio module, which significantly improves audio-lip alignment and expression naturalness, and
the memory-guided temporal module, which enhances long-term identity consistency and motion
smoothness.

In summary, our contributions are threefold: (1) MEMO is the first to leverage motion informa-
tion from all past frames to guide temporal modeling in diffusion-based talking video generation,
effectively improving long-term identity consistency and motion smoothness; (2) unlike previous
methods, MEMO dynamically detects the emotion in audio and incorporates it into audio-video in-
teraction, improving lip-audio synchronization and expression-audio alignment in talking videos;
(3) we introduce a new data processing pipeline to obtain high-quality talking head data, which is
crucial for diffusion model training and will benefit future research in talking video generation.
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2 RELATED WORK

Audio-driven talking head generation. Audio-driven talking head generation aims to synthe-
size realistic and synchronized talking videos given an audio clip and a reference image. Early
approaches only focused on learning audio-lip mapping while keeping other facial attributes
static (Suwajanakorn et al., 2017; Chen et al., 2018; Prajwal et al., 2020; Cheng et al., 2022; Yin
et al., 2022). These methods could not capture comprehensive facial expressions and natural head
movements. To improve realism, later research leveraged intermediate motion representations, e.g.,
landmark coordinates, 3D facial mesh, and 3D morphable models, and decomposed the generation
process into two stages, i.e., audio-to-motion and motion-to-video (Zhou et al., 2020; Sun et al.,
2023; Zhang et al., 2023b; Wang et al., 2024; Chen et al., 2024; Wei et al., 2024). The typical issue
of these methods is the bottleneck of the intermediate representations, which limits the expressive-
ness and realism of the generated videos. Recent end-to-end methods can generate vivid portrait
videos (Tian et al., 2024; Xu et al., 2024a) by fine-tuning pre-trained text-to-video (T2V) models,
but they struggle to generalize to out-of-distribution (OOD) scenarios and need specific modules
(e.g., face locator) to constrain head stability, which hinders more natural head motions. Similar
issues exist in the methods that learned a specific face latent space (He et al., 2023; Ma et al., 2023;
Zhang et al., 2023a; Xu et al., 2024b). Furthermore, most of these methods use 2-4 past frames to
generate long videos auto-regressively, which may lead to error accumulation over time and fail to
preserve identity when generating long-term videos. In contrast, our work does not depend on any
facial inductive biases, which unlocks the possibilities for generating more expressive head motions
of talking videos. Moreover, our method improves long-term identity consistency and mitigates
error accumulation via memory-guided linear attention. Besides, unlike previous diffusion-based
methods that used a cross-attention mechanism to integrate audio features, our method enhances
the lip-audio synchronization and expression-audio alignment based on a newly developed emotion-
aware multi-modal diffusion. The most related concurrent work to our memory module is Loopy
(Jiang et al., 2024), which use a temporal segment module to model cross-clip relationships, but
it only considers the representative motion frames in other temporal segments. In contrast, our
memory-guided temporal module allows MEMO to utilize all past frames to provide more compre-
hensive temporal guidance for motion and identity. More related studies of diffusion models are
provided in Appendix C.

3 PRELIMINARIES

Problem statement. Given a reference image and audio as inputs, audio-driven talking video gen-
eration (Prajwal et al., 2020; Tian et al., 2024) aims to output a vivid video that closely aligns with
the input audio and authentically replicates real human speech and facial movements. This task is
particularly challenging because it requires seamless audio-lip synchronization, realistic head move-
ments, long-term identity consistency, and natural expressions that align with the audio. Most exist-
ing diffusion-based approaches (Tian et al., 2024; Xu et al., 2024a; Chen et al., 2024) struggle with
issues such as error accumulation, inconsistent identity preservation over time, limited audio-lip
synchronization, unnatural expressions, and poor generalization.

Latent diffusion models and rectified flow loss. Our method is built upon the Latent Diffusion
Model (LDM) (Rombach et al., 2022), a framework designed to efficiently learn generative pro-
cesses in a lower-dimensional latent space rather than directly operating on pixel space. During
training, LDM first employs a pre-trained encoder E(·) to map high-dimensional images into a
compressed latent space, producing latent features z0 = E(I). Then, following the principles
of Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020), Gaussian noise ϵ is pro-
gressively added to the latent features over t discrete timesteps, resulting in noisy latent features
zt =

√
αtz0 +

√
1− αtϵ, where αt is a variance schedule controlling how much noise is added.

The diffusion model is then trained to reverse this noise-adding process by taking the noisy latent
representation zt as input and predicting the added noise ϵ. The objective function for training can
be expressed as: L = Ezt,c,ϵ∼N (0,1),t[∥ϵ − ϵθ(zt, t, c)∥22], where ϵθ represents the noise prediction
made by the U-Net network, and c represents conditioning information such as audio, or motion
frames in the context of talking video generation. Recently, Stable Diffusion 3 (SD3) (Esser et al.,
2024) introduced a refinement to this process by incorporating rectified flow loss, which modifies

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Noisy
latents

Audio

Reference
image

Past
frames

Spatial module

Emotion-aware
audio module

Reference
image flow

Wav2Vec

Emotion 
Detection

VAE
Encoder+

VAE
Decoder

Memory Memory-guided
temporal module

Past frame flow

Audio flow
Emotion flow
Memory update
Memory guide

Video flow

Reference Net

Diffusion
Net

K
KV

K
KV

K
KV

K
KV

K
KV

K
KV

K
KV

Figure 2: Overview of MEMO.

the traditional DDPM objective to:

L = Ezt,c,ϵ∼N (0,1),t[λ(t)∥ϵ− ϵθ(zt, t, c)∥22], (1)

where λ(t) = 1/(1− t)2 and zt is reparameterized using linear combination as zt = (1− t)z0 + tϵ.
This formulation leads to both better training stability and more efficient inference. In light of these
advantages, we adopt the rectified flow loss from SD3 in our training.

4 METHOD

As illustrated in Figure 2, MEMO is an end-to-end audio-driven diffusion model for generat-
ing identity-consistent and expressive talking videos. Similar to previous diffusion-based ap-
proaches (Tian et al., 2024; Xu et al., 2024a), MEMO is built around two main components: a Refer-
ence Net and a Diffusion Net. The main contributions of MEMO lie in two key modules within the
Diffusion Net: the memory-guided temporal module (cf. Section 4.1), and the emotion-aware au-
dio module (cf. Section 4.2), which work together to achieve superior audio-video synchronization,
long-term identity consistency, and natural expression generation. In addition, MEMO introduces a
new data processing pipeline (cf. Section 4.4) for acquiring high-quality talking head videos, along
with a decomposed training strategy (cf. Section 4.3) to optimize diffusion model training.

4.1 MEMORY-GUIDED TEMPORAL MODULE

Most existing diffusion-based approaches (Tian et al., 2024; Xu et al., 2024a; Chen et al., 2024)
typically generate talking videos in an auto-regressive manner, dividing the audio into clips corre-
sponding to 12-16 frames and using the past 2-4 generated frames to condition the generation of
the next video clip. They concatenate the past frame features with the current noisy latent features
along the temporal dimension and apply temporal self-attention to model the sequential informa-
tion. While this approach can model short-term dependencies, it often struggles with maintaining
consistency over longer sequences. If artifacts are generated in the past 2-4 conditioned frames, the
errors tend to accumulate as the generation progresses, resulting in visual distortions that degrade
both identity consistency and audio quality (cf. Figure 1).

Motivated by the idea that leveraging a more complete memory of motion information, rather than
relying solely on the most recent 2-4 frames, can provide richer guidance for enhancing identity
consistency and motion smoothness, we propose a memory-guided temporal module. The key of
this module is memory-guided linear attention, which is designed to improve temporal coherence
and maintain consistent facial identity.

Linear Attention. Previous approaches use self-attention (Tian et al., 2024; Jiang et al., 2024) to
capture temporal information across frames. However, self-attention requires storing all key-value
pairs, leading to increasing GPU-memory overhead as the number of memory frames grows, making
it impractical to use all motion information. To address this limitation, we replace self-attention with
linear attention (Katharopoulos et al., 2020) and include a memory update mechanism into linear

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Update
(Eq. 3-4)

Current frames Past frames

Memory

Memory guided
linear attention (Eq. 2)

Figure 3: Memory-guided temporal module.

Emo-AdaNorm

Self-Attention

Video

Emo-AdaNorm

Emo-AdaNorm

Self-Attention

Emo-AdaNorm

Self-Attention

Emo-AdaNorm

Emo-AdaNorm

Self-Attention

Emotion Detection

Audio

++

Emo-aware Multi-Modal Attention

Figure 4: Emotion-aware audio module.

attention to model long-term temporal information efficiently. Denote query as Q, key as K and
value as V . In linear attention, the output for i-th frame is

outi =
ϕ(Qi)

⊤(∑f
j=1 ϕ(Kj)V

⊤
j

)
ϕ(Qi)⊤

∑f
j=1 ϕ(Kj)

,

where f is the frame number and ϕ is an activation function (we use softmax in this work).

Memory update mechanism. To incorporate motion information from all past frames to guide
video generation, we develop a memory update mechanism. Specifically, let the latent features of
past frames as m ∈ Rf×d and the latent features of current frames as h ∈ Rf×d, where d is the
dimension of latent features. As shown in Figure 3, linear attention processes these latent features via
learnable matrices, which transform them into queries (Qh), keys (Kh,Km), and values (Vh, Vm).

To memorize all motion information, we define the memory Mf for the past f frames as two ma-
trices: Mf

KV =
∑f

i=1 γ
iϕ(Km,i)V

⊤
m,i and Mf

K =
∑f

i=1 γ
iϕ(Km,i), which occupy constant GPU-

memory irrespective of f . Here, γ is a decay factor (0 < γ < 1) that modulates the influence of
past frames, with more recent frames exerting greater impact, reflected through the exponentiation
by i. After each generation of f frames, we update the memory Mf by incorporating information
from these newly generated frames. In formal, the memory update when adding the latest a frames
to the memory with b past frames is as follows:

Ma+b
KV ← γaM b

KV +
∑a

j=1 γ
jϕ(Kh,j)V

⊤
h,j , (2)

Ma+b
K ← γaM b

K +
∑a

j=1 γ
jϕ(Kh,j). (3)

Here, the decay scheme plays a crucial role, since using a unified positional encoding across different
clips is infeasible. Instead, we use causal memory decay to provide implicit positional encoding,
which enables more effective memory updates for capturing long-term dependencies.

Memory-guided linear attention. When generating the current clips, we use the memory to guide
the temporal modeling. Let HKV = ϕ(Kh)V

⊤
h and HK = ϕ(Kh). The output of the memory-

guided temporal module is calculated as follows:

out =
ϕ(Qh)

⊤ (HKV +MKV )

ϕ(Qh)⊤ (HK +MK)
. (4)

4.2 EMOTION-AWARE AUDIO MODULE

Existing diffusion-based approaches (Tian et al., 2024; Xu et al., 2024a; Chen et al., 2024) rely
on cross-attention mechanisms to integrate audio guidance for video generation, while some meth-
ods (Xu et al., 2024b; Tan et al., 2024) further use static emotion labels to generate more emotionally
expressive talking videos. However, cross attention relies on fixed audio features, limiting the depth
of audio-video interaction during the diffusion process; while static emotion labels cannot capture

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

the emotional nuances in the audio, leading to facial expressions that do not align naturally with the
audio emotions. To address these issues, we develop a new emotion-aware audio module to improve
audio-lip consistency and align facial expressions with the audio emotion. As shown in Figure 4,
there are two key components: multi-modal attention and Emotion AdaNorm.

Multi-modal attention. Our emotion-aware audio module replaces the traditional cross attention
with a more dynamic multi-modal attention mechanism. Specifically, cross attention aligns video
and audio information by conditioning video features v on audio features a. This approach can be
formalized as minimizing the loss functionLθv|a = Et,ϵ∼N (0,I)[λ(t)∥ϵθ(vt|a)−ϵ∥22]. In contrast, we
explore multi-modal attention, which jointly processes both video and audio inputs by minimizing
the loss function Lθva

= Et,ϵ∼N (0,I)[λ(t)∥ϵθ(vt, a)− ϵ∥22], enabling better video-audio interaction
during the diffusion process.

Emotion AdaNorm. We then dynamically detect audio emotions to guide audio-video interaction,
using a newly trained emotion detection model. Specifically, the model is trained on a diverse dataset
to extract emotion e from audio (see Appendix A for more details), recognizing eight distinct emo-
tions: angry, disgusted, fearful, happy, neutral, sad, surprised, and others.
The detected emotion for each audio clip is then projected into emotion embeddings, which are
incorporated into each layer via adaptive layer norm to guide multi-modal attention. This process
results in the following emotion-conditioned loss:

Lθva|e = Et,ϵ∼N (0,I)[λ(t)∥ϵθ(vt, a|e)− ϵ∥22]. (5)

During inference, we use classifier-free guidance (Ho & Salimans, 2022) to further enhance the
impact of the dynamically detected emotion on the generated output. The emotion-aware output is

ϵ̃θ(vt, a|e) = (1 + w)ϵθ(vt, a|e)− wϵθ(vt, a), (6)
where w is the classifier-free guidance scale controlling the influence of the emotion condition. This
technique amplifies the emotional cues during inference, allowing MEMO to generate talking videos
that are not only synchronized with the speech but also rich in emotional expressiveness.

4.3 TRAINING STRATEGY DECOMPOSITION

The model’s generative capabilities can be progressively enhanced by dividing the training process
into three distinct stages, each with specific objectives.

Stage 1: Face domain adaptation. Following (Tian et al., 2024; Xu et al., 2024a; Chen et al., 2024),
we initialize the Reference Net and the spatial module of the Diffusion Net with the weights of SD
1.5 (Rombach et al., 2022). In this stage, we adapt the Reference Net, the spatial attention modules
of the Diffusion Net, and the original text cross-attention module to the face domain, ensuring these
components capture facial features effectively.

Stage 2: Robust scale-up training. We then integrate the emotion-aware audio module and
memory-guided temporal module into the Diffusion Net. Initially, we perform a warm-up train-
ing phase, keeping the modules trained in Stage 1 fixed. After the warm-up, all modules are jointly
trained using a fixed number of past frames as memory. Here, since our method generates 16 frames
at a time, we set the number of past frames to 16 as temporal context. In this stage, we scale up
the dataset to include all collected and processed data for more comprehensive training. However,
even after applying our data processing pipeline (cf. Section 4.4) and manual filtering, we found
that some noisy data remained, making the diffusion training unstable and leading to biased model
optimization. To mitigate this issue, we develop a robust training strategy that filters out data points
with loss values suddenly exceeding a specific threshold (0.1 in our case), as the rectified flow loss
(cf. Eq. 1) in our method typically converges and fluctuates around 0.03.

Stage 3: Dynamic past frame training. In Stage 2, we use a fixed number of 16 past frames to
compute memory states. However, during inference, the audio typically spans much longer than 16
frames, meaning the memory must dynamically adapt to longer past frames to avoid a gap between
training and inference. To address this, we further introduce dynamic past frame training. During
each diffusion training iteration, we randomly select 16, 32, or 48 as the number of past frames,
allowing the model to better handle longer memory updates. One might ask why we do not use
values larger than 48. This is because, with our memory decay scheme, 48 past frames are sufficient
to generalize memory updates over longer sequences, while also keeping computation manageable.
In this stage, we train only the audio and temporal modules, while keeping all other modules fixed.
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Table 1: Quantitative results of video quality and audio-lip synchronization on the VoxCeleb2 test
set and the OOD datasets. MEMO consistently outperforms existing talking video baselines.

Method VoxCeleb2 test set OOD dataset
FVD ↓ FID ↓ Sync-C ↑ FVD ↓ FID ↓ Sync-C ↑

SadTalker (Zhang et al., 2023b) 508.8 71.4 5.7 225.3 40.9 5.6
AniPortrait (Wei et al., 2024) 291.9 37.7 3.0 266.0 37.3 3.4
V-Express (Wang et al., 2024) 445.0 46.6 7.0 316.6 45.0 5.6
Hallo (Xu et al., 2024a) 216.9 33.2 6.9 174.4 33.0 5.9
EchoMimic (Chen et al., 2024) 396.3 81.6 4.0 202.8 43.2 5.9
MEMO (Ours) 197.8 30.5 7.0 160.4 32.1 6.1

4.4 DATA PROCESSING PIPELINE

We collect a comprehensive set of open-source datasets, such as HDTF (Zhang et al., 2021b),
VFHQ (Xie et al., 2022), CelebV-HQ (Zhu et al., 2022), MultiTalk (Sung-Bin et al., 2024), and
MEAD (Wang et al., 2020b), along with additional data we collected ourselves. The total duration
of these raw videos exceeds 2,200 hours. However, as illustrated in Figure 13 in Appendix B, we
find that the overall quality of the data is poor, with numerous issues such as audio-lip misalignment,
missing heads, multiple heads, occluded faces by subtitles, extremely small face regions, and low
resolution. Directly using these data for model training results in unstable training, poor conver-
gence, and terrible generation quality.

To further obtain high-quality talking head data, we developed a dedicated data processing pipeline
for talking head generation. The pipeline consists of five steps: First, we perform scene transition
detection and trim video clips to a length of less than 30 seconds. Second, we apply face detection,
filtering out videos with no faces, partial faces, or multiple heads, and use the resulting bounding
boxes to extract talking heads. Third, we use an Image Quality Assessment model (Su et al., 2020) to
filter out low-quality and low-resolution videos. Fourth, we apply SyncNet (Prajwal et al., 2020) to
remove videos with audio-lip synchronization issues. Lastly, for partial data, we manually assess the
audio-lip synchronization and overall video quality for more accurate filtering. After completing the
entire pipeline, the total duration of the processed high-quality videos is approximately 660 hours.
We use this processed data for the second and third stages of model training in Section 4.3.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Evaluation benchmarks. We create two datasets to evaluate MEMO’s performance and general-
ization capabilities. We use the VoxCeleb2 (Nagrani et al., 2020) test set, which contains videos of
various celebrities. We select 46 individuals and sample 10 clips per person, resulting in a total of
460 clips. To further evaluate out-of-distribution (OOD) generalization, we create an OOD dataset
with 300 video clips across a more diverse set of audios, backgrounds, ages, genders, languages, etc.

Evaluation metrics. We adopt a suite of metrics to evaluate the overall quality and audio-lip syn-
chronization of the generated videos. The Fréchet Video Distance (FVD) (Unterthiner et al., 2019)
measures the distance between the distributions of real and generated videos, providing an assess-
ment of overall video quality. The Fréchet Inception Distance (FID) (Heusel et al., 2017) evaluates
the quality of individual frames by comparing feature distributions extracted from a pre-trained
model. SyncNet Confidence (Sync-C) (Chung & Zisserman, 2017) measures audio-lip synchroniza-
tion using a pre-trained discriminator model.

Baselines. We compare our method against several state-of-the-art baselines, including two-stage
methods with intermediate representations and end-to-end audio-to-video diffusion methods. V-
Express (Wang et al., 2024) and EchoMimic (Chen et al., 2024) are two-stage methods using in-
termediate representations like landmarks, while Hallo (Xu et al., 2024a) is a recent end-to-end
diffusion model using hierarchical face masks to integrate audio information. More implementation
details of MEMO are put into Appendix D.
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Figure 5: Visualization of generated videos on VoxCeleb2 (left) and the OOD dataset (right).
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Figure 6: Human preferences among MEMO and baselines.

5.2 QUANTITATIVE RESULTS

Performance on VoxCeleb2 test set and OOD dataset. Table 1 summarizes the quantitative results
on VoxCeleb2 and our collected OOD dataset. In the VoxCeleb2 test set, our method consistently
outperforms all baselines across FVD, FID, and Sync-C metrics, indicating better video quality
and audio-lip synchronization. Meanwhile, MEMO maintains robust performance in OOD datasets
compared to baselines, demonstrating improved generalization to unseen identities and challenging
reference images and audios.

Human evaluation. To better benchmark the quality of generated talking videos, we conduct human
studies based on five subjective metrics in several challenging scenarios, e.g., singing, rap, and multi-
lingual talking video generation. Specifically, our analyses are based on the overall quality, motion
smoothness, expression-audio alignment, audio-lip synchronization, and identity consistency. As
shown in Figure 6, our method achieves the highest scores across all criteria in human top-2 choice
evaluations. Specifically, MEMO is selected as the best case in 93.3%, 91.4%, 92.4%, 93.8%, and
86.6% of the samples for the five metrics, respectively. This further demonstrates the effectiveness
of our approach.
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Figure 7: MEMO can generate talking videos featuring a wider range of smooth head movements
and more emotional facial expressions, illustrated in both visualization and heatmaps.

5.3 QUALITATIVE RESULTS

Comparisons with baselines. Figure 5 presents several comparisons of talking videos generated by
MEMO and the baselines on the two datasets we sampled. For the VoxCeleb test set, although exist-
ing methods can generate relatively realistic talking videos, their motion smoothness and expression-
audio alignment are not satisfying compared to the ground truth videos. Compared to existing
methods, our method can generate more natural facial expressions and head movements that are
well-aligned with the audio inputs. In addition, the videos generated by MEMO have higher overall
visual quality and better identity consistency. The advantages of MEMO are more significant in
OOD datasets. Specifically, most existing models tend to generate artifacts and lose the original
identity and details given reference images with pure background, as shown on the right of Figure
5. In contrast, MEMO can generate videos with similar quality compared to the ground truth.
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Figure 8: Visualization of generated videos on the Vox-
Celeb2 test set and the OOD data reference images and
audios. MEMO can generate talking videos with

Diverse expression and head motion.
Figure 7 showcases the diversity in head
motion and facial expressions generated
by MEMO. This diversity enhances the
naturalness and expressiveness of the talk-
ing videos. In addition to improvements in
expressions and motions, our method also
achieves better audio-expression align-
ment and audio-lip synchronization, as
further shown by the human studies in
Section 5.2. Video demonstrations can be
found in the supplementary materials.

Generalization to different scenarios.
To demonstrate the generalization capa-
bilities of our method, we evaluate it un-
der various challenging scenarios, e.g., au-
dios for singing and multiple languages,
and reference images of virtual avatars.
As shown in Figure 8, our method effec-
tively generates lip movements synchro-
nized with given singing voices. Further-
more, the model generalizes across dif-
ferent languages, producing accurate lip
movements irrespective of the linguistic
content. Additionally, we evaluate per-
formance on images with diverse artistic
styles, and our method maintains consis-
tent quality across these variations. Video demos can be found in the supplementary materials.
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Figure 9: Ablation of the classifier-free guidance scale.
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Figure 10: Human ablations on the number of
past frames (f ).
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Figure 11: Human preferences between multi-
modal attention and cross attention.

5.4 ABLATION STUDIES

Effects of memory module. We evaluate the effect of memory and the role of different past frame
lengths as temporal guidance on video quality through human evaluations. As shown in Figure 10,
longer memory significantly improves temporal coherence, overall quality, motion smoothness,
identity consistency, and audio-lip alignment, while short motion frames leads to the worse perfor-
mance. This result further demonstrate the effectiveness of our memory-guided temporal module.

Effects of emotion guidance. By adjusting the classifier-free guidance scale, we observe variations
in the expressiveness of the generated faces. As shown in Figure 9, higher guidance scales lead to
more pronounced emotional expressions. These visualization further verifies the effectiveness of
our emotion-aware audio module.

Effects of multi-modal attention. We further investigate the impact of the multi-modal attention
through human evaluations. Results in Figure 11 underscore the effectiveness of multi-modal atten-
tion over cross attention in terms of the overall video quality and lip-audio alignments.

6 CONCLUSION

In this work, we present MEMO, a state-of-the-art talking video generation model. MEMO reduces
artifacts and error accumulation in long-term video generation by introducing the memory-guided
temporal module. It can generate videos with high audio-lip synchronization and natural head move-
ments with our emotion-conditioned audio module. In particular, it does not need face-related in-
ductive biases in the model architecture, allowing it to be extended to broader applications, such as
talking body generation tasks. In future work, it would be interesting to explore the effectiveness of
Diffusion Transformer (Peebles & Xie, 2023) in talking video generation.
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APPENDIX

A AUDIO EMOTION DETECTION

To facilitate emotion guidance in talking videos, it is crucial to develop an accurate and robust
emotion detection module that can extract emotion labels from audio. Emotion recognition from
speech and music has been extensively researched. Drawing on the well-established foundations of
Speech Emotion Recognition (SER) and Music Emotion Recognition (MER), we aim to integrate
these insights into a unified module.

A.1 DATA

Dataset collection. To achieve robust emotion detection across both speech and music audio
sources, we collected a large-scale dataset encompassing both speech and music segments, each
annotated with emotion labels. A detailed overview of the datasets used in our training process is
provided in Table 2. For the speech component, we sourced data from a recent Speech Emotion
Recognition benchmark, EmoBox (Ma et al., 2024a), which incorporates 23 datasets from various
origins, covering 12 distinct languages. Regarding the music component, we gathered data from the
RAVDESS-song (Livingstone & Russo, 2018) and MTG-Jamendo (Bogdanov et al., 2019) datasets,
including songs with and without background music.

Speech Emotion Recognition datasets
Dataset Source Lang #Emo #Utts #Hrs
AESDD (Vryzas et al., 2018) Act Greek 5 604 0.7
ASED (Retta et al., 2023) Act Amharic 5 2474 2.1
ASVP-ESD(Landry et al., 2020) Media Mix 12 13964 18.0
CaFE (Gournay et al., 2018) Act French 7 936 1.2
EMNS (Noriy et al., 2023) Act English 8 1181 1.9
EmoDB (Burkhardt et al., 2005) Act German 7 535 0.4
EmoV-DB (Adigwe et al., 2018) Act English 5 6887 9.5
Emozionalmente (Catania, 2023) Act Italian 7 6902 6.3
eNTERFACE (Martin et al., 2006) Act English 6 1263 1.1
ESD (Zhou et al., 2021) Act Mix 5 35000 29.1
JL-Corpus (James et al., 2018) Act English 5 2400 1.4
M3ED (Zhao et al., 2022) TV Mandarin 7 24437 9.8
MEAD (Wang et al., 2020a) Act English 8 31729 37.3
MESD (Duville et al., 2021) Act Spanish 6 862 0.2
Oreau (KERKENI et al., 2020) Act French 7 434 0.3
PAVOQUE (Steiner et al., 2013) Act German 5 7334 12.2
Polish (Kaminska et al., 2015) Act Polish 3 450 0.1
RAVDESS (Livingstone & Russo, 2018) Act English 8 1440 1.5
SAVEE (Jackson & Haq, 2014) Act English 7 480 0.5
SUBESCO (Sultana et al., 2021) Act Bangla 7 7000 7.8
TESS (Dupuis & Pichora-Fuller, 2010) Act English 7 2800 1.6
TurEV-DB (Canpolat et al., 2020) Act Turkish 4 1735 0.5
URDU (Latif et al., 2018) Talk show Urdu 4 400 0.3

Music Emotion Recognition datasets
Dataset Source Lang Emo #Utts #Hrs
RAVDESS-Song (Livingstone & Russo, 2018) Act English 6 1012 1.31
MTG-Jamendo (Bogdanov et al., 2019) Media Mix 56 5022 299.47

Table 2: Emotion Detection Dataset Information Table

We provide detailed information about each dataset in several aspects in Table 2: Source represents
the origin of the samples, Lang specifies the dataset’s language, Emo indicates the number of emo-
tion categories, Utts shows the total number of utterances, and Hrs represents the total hours of
training data. All data underwent a standardized processing protocol, being converted to a mono-
phonic format with a sampling rate of 16, 000 Hz. Each utterance is uniquely annotated with an
emotion label. For datasets containing lengthy samples, such as MTG-Jamendo, we divided them
into shorter segments of 30 seconds to align with the typically shorter length of other datasets, as-
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signing the same label to all segments. Each dataset was then split into training and testing sets with
a ratio of 3 : 1.

Label merging. A major challenge in integrating different datasets is aligning their label spaces,
as each dataset often features distinct emotion categories. For instance, the URDU dataset (Latif
et al., 2018) contains only four emotion labels: happy, sad, angry, and neutral. In contrast, ASVP-
ESD (Landry et al., 2020) includes 12 emotion labels, covering less common emotions such as
boredom and pain. For music emotion recognition datasets like MTG-Jamendo (Bogdanov et al.,
2019), there are 56 mood/theme tags, not all of which correspond to emotional labels, and each
sample can be assigned multiple tags. These discrepancies and overlaps in category spaces across
different datasets present significant challenges for emotion detection.

To establish a generalized and streamlined label space, we designed our module to perform an 8-
class classification task, selecting labels that are both commonly recognized and easily distinguish-
able: angry, disgusted, fearful, happy, neutral, sad, surprised, and others. We
meticulously reviewed and mapped the original labels from each dataset to fit within this new label
space. For instance, samples labeled as pleasure in the ASVPESD dataset were mapped to the
happy category due to their semantic similarity. Labels that did not clearly correspond to a specific
emotion were categorized under the others label.

A.2 AUDIO EMOTION DETECTOR

Figure 12: Accuracy comparison of audio emo-
tion detection between Emotion2vec (Ma et al.,
2024b) and our learned emotion detector.

Dataset Emotion2vec Ours
AESDD 75.84 78.52
ASED 86.20 85.23
ASVP-ESD 52.55 55.99
CaFE 73.30 100.00
EMNS 57.98 61.87
EmoDB 88.41 100.0
EmoV-DB 77.84 91.22
Emozionalmente 66.61 71.02
eNTERFACE 28.21 32.05
ESD 94.83 99.94
JL-Corpus 71.92 100.00
M3ED 42.59 41.52
MEAD 61.74 71.45
MESD 40.65 41.12
Oreau 50.96 42.31
PAVOQUE 85.15 92.74
Polish 44.89 100.00
RAVDESS 82.36 100.00
SAVEE 83.33 100.00
SUBESCO 78.43 100.00
TESS 76.29 95.14
TurEV-DB 47.45 53.47
URDU 54.00 56.00
RAVDESS-Song 43.58 100.00
MTG-Jamendo 65.30 74.50

Total 68.78 78.26

We implemented an 8-way classifier for our
task, drawing inspiration from state-of-the-
art methods in speech and music emotion
detection. Our solution builds upon Emo-
tion2vec (Ma et al., 2024b), a robust universal
speech emotion representation model. The fea-
ture extractor employs multiple convolutional
layers and Transformer blocks and is trained
using a teacher-student online distillation self-
supervised learning approach. The feature ex-
tractor backbone of Emotion2vec is pre-trained
on a large-scale multilingual speech corpus.
For our classification task, we utilized the fixed
Emotion2vec backbone as the feature extractor
and trained a 5-layer MLP as the classification
head.

To stabilize the training process, we applied
gradient clipping, constraining the gradient up-
dates within an l2 norm of 1.0. To enhance the
model’s generalization ability, we incorporated
a contrastive learning technique (Zhang et al.,
2021a). The test accuracy for each dataset, as
well as the overall accuracy, is reported in the
table below. We compare with the original so-
lution of Ma et al. (2024b) as the baseline,
where they adopted a single linear layer after
the feature extraction backbone for the down-
stream emotion detection task.
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B DATA PROCESSING PIPELINE

We collect a comprehensive set of open-source datasets, such as HDTF (Zhang et al., 2021b),
VFHQ (Xie et al., 2022), CelebV-HQ (Zhu et al., 2022), MultiTalk (Sung-Bin et al., 2024), and
MEAD (Wang et al., 2020b), along with additional data we collected ourselves. The total duration
of these raw videos exceeds 2,200 hours. However, as illustrated in Figure 13, we find that the over-
all quality of the data is poor, with numerous issues such as audio-lip misalignment, missing heads,
multiple heads, occluded faces by subtitles, extremely small face regions, and low resolution. Di-
rectly using these data for model training results in unstable training, poor convergence, and terrible
generation quality.

Issue

Sample

Partial FaceNo Mouth

Human face is under-represented

Audio-lip Async

Multi-headsIssue

Sample

Subtitles take up a large portion

Low Resolution

Figure 13: There are some issues making the dataset can’t use in training since the training data
needs to appear mouthy and the lips of the sound are consistent.

To further obtain high-quality talking head data, we developed a dedicated data processing pipeline
for talking head generation. The pipeline consists of five steps: First, we perform scene transition
detection and trim video clips to a length of less than 30 seconds. Second, we apply face detection,
filtering out videos with no faces, partial faces, or multiple heads, and use the resulting bounding
boxes to extract talking heads. To ensure that the cropped areas encompass more than just the human
faces, we apply a scaling factor of 1.1 to the bounding box regions. Third, we use an Image Quality
Assessment model (Su et al., 2020) to filter out low-quality and low-resolution videos. We apply
an Image Quality Assessment (IQA) model to the first frame of the videos and find that when the
IQA score exceeds 40, there is a noticeable improvement in video quality. Therefore, we use an
IQA score of 40 as a selection criterion, but this threshold will be dynamically adjusted based on
the volume and quality of the data. Fourth, we apply SyncNet (Prajwal et al., 2020) to remove
videos with audio-lip synchronization issues. We use Sync-Confidence (Sync-C) to filter the data
and find that it exhibits better diversity compared to Sync-Distance (Sync-D). Specifically, for a
given dataset, not all data points tend to fall within the same scoring range, as shown in Figure 14.
Additionally, for Sync-C, we can identify a suitable threshold for filtering, which is set at a score of
5 or higher. Lastly, for partial data, we manually assess the audio-lip synchronization and overall
video quality for more accurate filtering. After completing the entire pipeline, the total duration of
the processed high-quality videos is approximately 660 hours.
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(a) Distribution of the Sync-C in the CelebV-HQ. (b) Distribution of the Sync-D in the CelebV-HQ.

Figure 14: From the distributions of Sync-C and Sync-D, we observe that for the same dataset, the
distribution of Sync-C is more dispersed, which facilitates the selection of an appropriate filtering
threshold.

C MORE RELATED STUDIES OF DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) are highly expressive generative
models, demonstrating remarkable capabilities in image synthesis (Rombach et al., 2022; Podell
et al., 2023) and video generation (Guo et al., 2023; Xing et al., 2023). Rombach et al. (2022) employ
a UNet architecture and generate high-resolution images in the latent space, which is extended to
video domains by AnimateDiff (Guo et al., 2023) via adding temporal attention layers. These models
generate images or videos based on text prompts, where the text guidance from the pre-trained text
encoder is introduced through cross-attention modules. In the domain of talking head, diffusion
models also show promising results in generation quality (He et al., 2023; Tian et al., 2024; Wei
et al., 2024; Xu et al., 2024a; Stypułkowski et al., 2024; Xu et al., 2024b), outperforming previous
GAN-based methods (Prajwal et al., 2020; Zhou et al., 2020). Instead of using text prompts, most of
these diffusion-based methods condition diffusion models on image and audio embeddings extracted
from a pre-trained image encoder and audio encoder, respectively.

D MORE IMPLEMENTATION DETAILS

Both the Reference Net and the spatial module of the Diffusion Net are initialized with the weights
of SD 1.5 (Rombach et al., 2022). The temporal module is initialized with the motion module from
AnimateDiff (Guo et al., 2023). We add two projection modules to convert the audio embedding
and image embedding into the dimensions required by our attention module. The audio embedding
consists of all the hidden states from the Wav2Vec 2.0 model (Baevski et al., 2020). For both the
Reference Net and the Diffusion Net, we replace the text cross-attention with image cross-attention.
We use the normalized hidden states from the Reference Net before the self-attention layers for
reference attention with the hidden states in the Diffusion Net. The training videos are center-
cropped and resized to a resolution of 512 × 512 pixels. Across all training stages, we maintain
a fixed learning rate of 1e-5. We train MEMO for 15k, 500k, and 100k steps at training stage 1,
2, and 3, respectively. During training, emotion embeddings are randomly dropped with a dropout
probability of 30%, while all other conditions, including reference images, audio embeddings, past
frames, are dropped with a probability of 5%. At inference, we set the frame rate to 30 FPS and
generate 16 frames per iteration. The scale of classifier-free guidance is default to 3.5.
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