
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ROS: A GNN-BASED RELAX-OPTIMIZE-AND-
SAMPLE FRAMEWORK FOR MAX-k-CUT PROBLEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

The Max-k-Cut problem is a fundamental combinatorial optimization challenge
that generalizes the classic NP-complete Max-Cut problem. While relaxation
techniques are commonly employed to tackle Max-k-Cut, they often lack guar-
antees of equivalence between the solutions of the original problem and its relax-
ation. To address this issue, we introduce the Relax-Optimize-and-Sample (ROS)
framework. In particular, we begin by relaxing the discrete constraints to the con-
tinuous probability simplex form. Next, we pre-train and fine-tune a graph neural
network model to efficiently optimize the relaxed problem. Subsequently, we pro-
pose a sampling-based construction algorithm to map the continuous solution back
to a high-quality Max-k-Cut solution. By integrating geometric landscape analysis
with statistical theory, we establish the consistency of function values between the
continuous solution and its mapped counterpart. Extensive experimental results
on random regular graphs and the Gset benchmark demonstrate that the proposed
ROS framework effectively scales to large instances with up to 20, 000 nodes in
just a few seconds, outperforming state-of-the-art algorithms. Furthermore, ROS
exhibits strong generalization capabilities across both in-distribution and out-of-
distribution instances, underscoring its effectiveness for large-scale optimization
tasks.

1 INTRODUCTION

The Max-k-Cut problem involves partitioning the vertices of a graph into k disjoint subsets in such
a way that the total weight of edges between vertices in different subsets is maximized. This prob-
lem represents a significant challenge in combinatorial optimization and finds applications across
various fields, including telecommunication networks (Eisenblätter, 2002; Gui et al., 2018), data
clustering (Poland & Zeugmann, 2006; Ly et al., 2023), and theoretical physics (Cook et al., 2019;
Coja-Oghlan et al., 2022). The Max-k-Cut problem is known to be NP-complete, as it generalizes
the well-known Max-Cut problem, which is one of the 21 classic NP-complete problems identified
by Karp (2010).

Significant efforts have been made to develop methods for solving Max-k-Cut problems (Nath &
Kuhnle, 2024). Ghaddar et al. (2011) introduced an exact branch-and-cut algorithm based on semi-
definite programming, capable of handling graphs with up to 100 vertices. For larger instances, vari-
ous polynomial-time approximation algorithms have been proposed. Goemans & Williamson (1995)
addressed the Max-Cut problem by first solving a semi-definite relaxation to obtain a fractional so-
lution, then applying a randomization technique to convert it into a feasible solution, resulting in a
0.878-approximation algorithm. Building on this, Frieze & Jerrum (1997) extended the approach to
Max-k-Cut, offering feasible solutions with approximation guarantees. de Klerk et al. (2004) further
improved these guarantees, while Shinde et al. (2021) optimized memory usage. Despite their strong
theoretical performance, these approximation algorithms involve solving computationally intensive
semi-definite programs, rendering them impractical for large-scale Max-k-Cut problems. A vari-
ety of heuristic methods have been developed to tackle the scalability challenge. For the Max-Cut
problem, Burer et al. (2002) proposed rank-two relaxation-based heuristics, and Goudet et al. (2024)
introduced a meta-heuristic approach using evolutionary algorithms. For Max-k-Cut, heuristics such
as genetic algorithms (Li & Wang, 2016), greedy search (Gui et al., 2018), multiple operator heuris-
tics (Ma & Hao, 2017), and local search (Garvardt et al., 2023) have been proposed. While these

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Random Sampling

𝒙𝑖 = 𝒆1

𝒙𝑖 = 𝒆2

𝒙𝑖 = 𝒆3

…

1

2

3 4

56

1

2

3 4

56

1

2

3 4

56 𝑯𝚽
𝐿

=
1 0 0.4 0 0 0
0 0 0.6 0 1 1
0 1 0 1 0 0

GNN Parametrization-based Optimization

Pre-train

Fine-tune
min

𝚽
 𝑓 𝑯𝚽

𝐿
; 𝑾

𝒉2
0

𝒉1
0

𝒉6
0

𝒉3
0 𝒉4

0

𝒉6
0

GNNs

𝒉2
𝐿

𝒉1
𝐿

𝒉6
𝐿

𝒉3
𝐿 𝒉4

𝐿

𝒉5
𝐿

Prediction

1

2

3 4

56

1

2

3 4

56

Initialization Loss Function

Continuous Relaxation

min
𝑋∈Δ𝑘

𝑁
𝑓(𝑿; 𝑾)

Probability Simplex
Relaxation

Discrete Problem
min
𝑋∈𝒳

𝑓(𝑿; 𝑾)

Continuous SolutionDiscrete Solutions

Figure 1: The Relax-Optimize-and-Sample framework.

heuristics can handle much larger Max-k-Cut instances, they often struggle to balance efficiency and
solution quality.

Recently, machine learning techniques have gained attention for enhancing optimization algo-
rithms (Bengio et al., 2021; Gasse et al., 2022; Chen et al., 2024). Several studies, including Khalil
et al. (2017); Barrett et al. (2020); Chen et al. (2020); Barrett et al. (2022), framed the Max-Cut
problem as a sequential decision-making process, using reinforcement learning to train policy net-
works for generating feasible solutions. However, RL-based methods often suffer from extensive
sampling efforts and increased complexity in action space when extended to Max-k-Cut, and hence
entails significantly longer training and testing time. Karalias & Loukas (2020) focuses on subset
selection, including Max-Cut as a special case. It trains a graph neural network (GNN) to produce
a distribution over subsets of nodes of an input graph by minimizing a probabilistic penalty loss
function. After the network has been trained, a randomized algorithm is employed to sequentially
decode a valid Max-Cut solution from the learned distribution. A notable advancement by Schuetz
et al. (2022) reformulated Max-Cut as a quadratic unconstrained binary optimization (QUBO), re-
moving binarity constraints to create a differentiable loss function. This loss function was used to
train a GNN, followed by a simple projection onto integer variables after unsupervised training. The
key feature of this approach is solving the Max-Cut problem during the training phase, eliminat-
ing the need for a separate testing stage. Although this method can produce high-quality solutions
for Max-Cut instances with millions of nodes, the computational time remains significant due to
the need to optimize a parameterized GNN from scratch. The work of Tönshoff et al. (2022) first
formulated the Max-Cut problem as a constraint satisfaction problem and then proposed a novel
GNN-based reinforcement learning approach. This method outperforms prior neural combinatorial
optimization techniques and conventional search heuristics. However, to the best of our knowledge,
it is limited to unweighted Max-k-Cut problems.

In this work, we propose a GNN-based Relax-Optimize-and-Sample (ROS) framework for efficiently
solving the Max-k-Cut problem with arbitrary edge weights. The framework is depicted in Figure 1.
Initially, the Max-k-Cut problem is formulated as a discrete optimization task. To handle this,
we introduce probability simplex relaxations, transforming the discrete problem into a continuous
one. We then optimize the relaxed formulation by training parameterized GNNs in an unsupervised
manner. To further improve efficiency, we apply transfer learning, utilizing pre-trained GNNs to
warm-start the training process. Finally, we refine the continuous solution using a random sampling
algorithm, resulting in high-quality Max-k-Cut solutions.

The key contributions of our work are summarized as follows:

• Novel Framework. We propose a scalable ROS framework tailored to the weighted Max-
k-Cut problem with arbitrary signs, built on solving continuous relaxations using efficient
learning-based techniques.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• Theoretical Foundations. We conduct a rigorous theoretical analysis of both the relaxation
and sampling steps. By integrating geometric landscape analysis with statistical theory, we
demonstrate the consistency of function values between the continuous solution and its
sampled discrete counterpart.

• Superior Performance. Comprehensive experiments on public benchmark datasets show
that our framework produces high-quality solutions for Max-k-Cut instances with up to
20, 000 nodes in just a few seconds. Our approach significantly outperforms state-of-the-art
algorithms, while also demonstrating strong generalization across various instance types.

2 PRELIMINARIES

2.1 MAX-k-CUT PROBLEMS

Let G = (V, E) represent an undirected graph with vertex set V and edge set E . Each edge (i, j) ∈ E
is assigned an arbitrary weight Wij ∈ R, which can have any sign. A cut in G refers to a partition
of its vertex set. The Max-k-Cut problem involves finding a k-partition (V1, . . . ,Vk) of the vertex
set V such that the sum of the weights of the edges between different partitions is maximized.

To represent this partitioning, we employ a k-dimensional one-hot encoding scheme. Specifically,
we define a k ×N matrix X ∈ Rk×N where each column represents a one-hot vector. The Max-k-
Cut problem can be formulated as:

max
X∈Rk×N

1

2

N∑
i=1

N∑
j=1

Wij

(
1−X⊤

·i X·j
)

s. t. X·j ∈ {e1, e2, . . . , ek} ∀j ∈ V,

(1)

where X·j denotes the jth column of X , W is a symmetric matrix with zero diagonal entries, and
eℓ ∈ Rk is a one-hot vector with the ℓth entry set to 1. This formulation aims to maximize the
total weight of edges between different partitions, ensuring that each node is assigned to exactly
one partition, represented by the one-hot encoded vectors. We remark that weighted Max-k-Cut
problems with arbitrary signs is a generalization of classic Max-Cut problems and arise in many
interesting applications (De Simone et al., 1995; Poland & Zeugmann, 2006; Hojny et al., 2021).

2.2 GRAPH NEURAL NETWORKS

GNNs are powerful tools for learning representations from graph-structured data. GNNs operate by
iteratively aggregating information from a node’s neighbors, enabling each node to capture increas-
ingly larger sub-graph structures as more layers are stacked. This process allows GNNs to learn
complex patterns and relationships between nodes, based on their local connectivity.

At the initial layer (l = 0), each node i ∈ V is assigned a feature vector h
(0)
i , which typically

originates from node features or labels. The representation of node i is then recursively updated at
each subsequent layer through a parametric aggregation function fΦ(l) , defined as:

h
(l)
i = fΦ(l)

(
h
(l−1)
i , {h(l−1)

j : j ∈ N (i)}
)
, (2)

where Φ(l) represents the trainable parameters at layer l, N (i) denotes the set of neighbors of node
i, and h

(l)
i is the node’s embedding at layer l for l ∈ {1, 2, · · · , L}. This iterative process enables

the GNN to propagate information throughout the graph, capturing both local and global structural
properties.

3 A RELAX-OPTIMIZE-AND-SAMPLE FRAMEWORK

In this work, we leverage continuous optimization techniques to tackle Max-k-Cut problems, intro-
ducing a novel ROS framework. Acknowledging the inherent challenges of discrete optimization,
we begin by relaxing the problem to probability simplices and concentrate on optimizing this relaxed
version. To achieve this, we propose a machine learning-based approach. Specifically, we model the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

relaxed problem using GNNs, pre-training the GNN on a curated graph dataset before fine-tuning
it on the specific target instance. After obtaining high-quality solutions to the relaxed continuous
problem, we employ a random sampling procedure to derive a discrete solution that preserves the
same objective value.

3.1 PROBABILITY SIMPLEX RELAXATIONS

To simplify the formulation of the problem (1), we remove constant terms and negate the objective
function, yielding an equivalent formulation expressed as follows:

min
X∈X

f(X;W) := Tr(XWX⊤), (P)

where X :=
{
X ∈ Rk×N : X·j ∈ {e1, e2, . . . , ek},∀j ∈ V

}
. It is important to note that the matrix

W is indefinite due to its diagonal entries being set to zero.

Given the challenges associated with solving the discrete problem P, we adopt a naive relaxation
approach, obtaining the convex hull of X as the Cartesian product of N k-dimensional probability
simplices, denoted by ∆N

k . Consequently, the discrete problem P is relaxed into the following
continuous optimization form:

min
X∈∆N

k

f(X;W). (P)

Before optimizing problem P, we will characterize its geometric landscape. To facilitate this, we
introduce the following definition.

Definition 1. Let X denote a point in ∆N
k . We define the neighborhood induced by X as follows:

N (X) :=

{
X ∈ ∆N

k

∣∣∣∣∣
∑

i∈K(X·j)

Xij = 1, ∀j ∈ V
}
,

where K(X ·j) := {i ∈ {1, . . . , k} | Xij > 0}.

The set N (X) represents a neighborhood around X , where each point in N (X) can be derived by
allowing each non-zero entry of the matrix X to vary freely, while the other entries are set to zero.
Utilizing this definition, we can establish the following theorem.

Theorem 1. Let X denote a globally optimal solution to P, and let N (X) be its induced neighbor-
hood. Then

f(X;W) = f(X;W), ∀X ∈ N (X).

Theorem 1 states that for a globally optimal solution X , every point within its neighborhood N (X)
shares the same objective value as X , thus forming a basin in the geometric landscape of f(X;W).
If X ∈ X (i.e., an integer solution), then N (X) reduces to the singleton set

{
X
}

. Conversely, if
X /∈ X , there exist

∏
j∈V |K(X ·j)| unique integer solutions within N (X) that maintain the same

objective value as X . This indicates that once a globally optimal solution to the relaxed problem P
is identified, it becomes straightforward to construct an optimal solution for the original problem P
that preserves the same objective value.

According to Carlson & Nemhauser (1966), among all globally optimal solutions to the relaxed
problem P, there is always at least one integer solution. Theorem 1 extends this result, indicating
that if the globally optimal solution is fractional, we can provide a straightforward and efficient
method to derive its integer counterpart. We remark that it is highly non-trivial to guarantee that the
feasible Max-k-Cut solution obtained from the relaxation one has the same quality.

Example. Consider a Max-Cut problem (k = 2) associated with the weight matrix W . We optimize
its relaxation and obtain the optimal solution X⋆.

W :=

(
0 1 1
1 0 1
1 1 0

)
,X⋆ :=

(
p 1 0

1− p 0 1

)
,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where p ∈ [0, 1]. From the neighborhood N (X), We can identify the following integer solutions
that maintain the same objective value.

X⋆
1 =

(
0 1 0
1 0 1

)
,X⋆

2 =

(
1 1 0
0 0 1

)
.

Given that P is a non-convex program, identifying its global minimum is challenging. Consequently,
the following two critical questions arise.

Q1. Since solving P to global optimality is NP-hard, how to efficiently optimize P for high-
quality solutions?

Q2. Given X ∈ ∆N
k \ X as a high-quality solution to P, can we construct a feasible solution

X̂ ∈ X to P such that f(X̂;W) = f(X;W)?

We provide a positive answer to Q2 in Section 3.2, while our approach to addressing Q1 is deferred
to Section 3.3.

3.2 RANDOM SAMPLING

Let X ∈ ∆N
k \ X be a feasible solution to the relaxation P. Our goal is to construct a feasible

solution X ∈ X for the original problem P, ensuring that the corresponding objective values are
equal. Inspired by Theorem 1, we propose a random sampling procedure, outlined in Algorithm 1.
In this approach, we sample each column X·i of the matrix X from a categorical distribution char-
acterized by the event probabilities X ·i (denoted as Cat(x;p = X ·i) in Step 3 of Algorithm 1).
This randomized approach yields a feasible solution X̂ for P. However, since Algorithm 1 incorpo-
rates randomness in generating X̂ from X , the value of f(X̂;W) becomes random as well. This
raises the critical question: is this value greater or lesser than f(X;W)? We address this question
in Theorem 2.

Algorithm 1 Random Sampling

1: Input: X ∈ ∆N
k ▷ any feasible solution to P

2: for i = 1 to N do ▷ each dimension is independent
3: X̂·i ∼ Cat(x;p = X ·i) ▷ sampling from a categorical distribution
4: end for
5: Output: X̂ ∈ X ▷ a feasible solution to P

Theorem 2. Let X and X̂ denote the input and output of Algorithm 1, respectively. Then, we have
EX̂ [f(X̂;W)] = f(X;W).

Theorem 2 states that f(X̂;W) is equal to f(X;W) in expectation. This implies that the random
sampling procedure operates on a fractional solution, yielding Max-k-Cut feasible solutions with
the same objective values in a probabilistic sense. While the Lovász-extension-based method (Bach
et al., 2013) also offers a framework for continuous relaxation, achieving similar theoretical results
for arbitrary k and edge weights Wi,j ∈ R is not always guaranteed. In practice, we execute
Algorithm 1 T times and select the solution with the lowest objective value as our best result. We
remark that the theoretical interpretation in Theorem 2 distinguishes our sampling algorithm from
the existing ones in the literature (Toenshoff et al., 2021; Karalias & Loukas, 2020).

3.3 GNN PARAMETRIZATION-BASED OPTIMIZATION

To solve the problem P, we propose an efficient learning-to-optimize (L2O) method based on GNN
parametrization. This approach reduces the laborious iterations typically required by classical opti-
mization methods (e.g., mirror descent). Additionally, we introduce a “pre-train + fine-tune” strat-
egy, where the model is endowed with prior graph knowledge during the pre-training phase, signifi-
cantly decreasing the computational time required to optimize P.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

GNN Parametrization. The Max-k-Cut problem can be framed as a node classification task, allow-
ing us to leverage GNNs to aggregate node features, and obtain high-quality solutions. Initially, we
assign a random embedding h

(0)
i to each node i in the graph G, as defined in Section 2. We adopt

the GNN architecture proposed by Morris et al. (2019), utilizing an L-layer GNN with updates at
layer l defined as follows:

h
(l)
i := σ

Φ
(l)
1 h

(l−1)
i +Φ

(l)
2

∑
j∈N (i)

wjih
(l−1)
j

 ,

where σ(·) is an activation function, and Φ
(l)
1 and Φ

(l)
2 are the trainable parameters at layer l for

l ∈ {1, . . . , L}. This formulation facilitates efficient learning of node representations by leveraging
both node features and the underlying graph structure. After processing through L layers of GNN,
we obtain the final output H(L)

Φ := [h
(L)
1 , . . . ,h

(L)
N] ∈ Rk×N . A softmax activation function is then

applied in the last layer to ensure H
(L)
Φ ∈ ∆N

k , making the final output feasible for P .

“Pre-train + Fine-tune” Optimization. We propose a “pre-train + fine-tune” framework for learn-
ing the trainable weights of GNNs. Initially, the model is trained on a collection of pre-collected
datasets to produce a pre-trained model. Subsequently, we fine-tune this pre-trained model for each
specific problem instance. This approach equips the model with prior knowledge of graph structures
during the pre-training phase, significantly reducing the overall solving time. Furthermore, it allows
for out-of-distribution generalization due to the fine-tuning step.

The trainable parameters Φ := (Φ
(1)
1 ,Φ

(1)
2 , . . . ,Φ

(L)
1 ,Φ

(L)
2) in the pre-training phase are optimized

using the Adam optimizer with random initialization, targeting the objective

min
Φ

Lpre-training(Φ) :=
1

M

M∑
m=1

f(H
(L)
Φ ;W

(m)
train),

where D := {W (1)
train, . . . ,W

(M)
train } represents the pre-training dataset. In the fine-tuning phase, for a

problem instance represented by Wtest, the Adam optimizer seeks to solve

min
Φ

Lfine-tuning(Φ) := f(H
(L)
Φ ;Wtest),

initialized with the pre-trained parameters.

Moreover, to enable the GNN model to fully adapt to specific problem instances, the pre-training
phase can be omitted, enabling the model to be directly trained and tested on the same instance.
While this direct approach may necessitate more computational time, it often results in improved
performance regarding the objective function. Consequently, users can choose to include a pre-
training phase based on the specific requirements of their application scenarios.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

We compare the performance of ROS against traditional methods and L2O algorithms for solving
the Max-k-Cut problem. Additionally, we assess the impact of the “Pre-train” stage in the GNN
parametrization-based optimization. The source code is available at https://anonymous.
4open.science/r/ROS_anonymous-1C88/.

Baseline Algorithms. We denote our proposed algorithms by ROS and compare them against both
traditional algorithms and learning-based methods. When the pre-training step is skipped, we refer
to our algorithm as ROS-vanilla. The following traditional Max-k-Cut algorithms are considered
as baselines: (i) GW (Goemans & Williamson, 1995): an method with a 0.878-approximation guaran-
tee based on semi-definite relaxation; (ii) BQP (Gui et al., 2018): a local search method designed for
binary quadratic programs; (iii) Genetic (Li & Wang, 2016): a genetic algorithm specifically for
Max-k-Cut problems; (iv) MD: a mirror descent algorithm that addresses the relaxed problem P with
a convergence tolerance at 10−8 and adopts the same random sampling procedure; (v) LPI (Goudet

6

https://anonymous.4open.science/r/ROS_anonymous-1C88/
https://anonymous.4open.science/r/ROS_anonymous-1C88/

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

N=100
 k=2

N=100
 k=3

N=1,000
 k=2

N=1,000
 k=3

N=10,000
 k=2

N=10,000
 k=3

10−1

100

101

102

103

Ti
m
e
(s
)

N/AGW
BQP
Genetic
MD
PI-GNN
ROS

(a) Random Regular Graph

G70
 k=2

G70
 k=3

G72
 k=2

G72
 k=3

G77
 k=2

G77
 k=3

G81
 k=2

G81
 k=3

101

102

Ti
m
e
(s
)

MD
Rank2
PI-GNN
ROS

(b) Gset

Figure 2: The computational time comparison of Max-k-Cut problems.

et al., 2024): an evolutionary algorithm featuring a large population organized across different is-
lands; (vi) MOH (Ma & Hao, 2017): a heuristic algorithm based on multiple operator heuristics,
employing various distinct search operators within the search phase. (vii) Rank2 (Burer et al.,
2002): a heuristic based on rank-2 relaxation. For the L2O method, we primarily examine the
state-of-the-art baseline: (viii) PI-GNN (Schuetz et al., 2022): A cutting-edge L2O method capable
of solving QUBO problems in dozens of seconds, delivering commendable performance. It is the
first method to eliminate the dependence on large, labeled training datasets typically required by
supervised learning approaches.

Datasets. The datasets utilized in this paper comprise random regular graphs from Schuetz et al.
(2022) and the Gset benchmark from Ye (2003). For the random regular graphs, we employ the
random_regular_graph from the NetworkX library (Hagberg et al., 2008) to generate r-
regular graphs, which are undirected graphs in which all nodes have a degree of r, with all edge
weights equal to 1. The Gset benchmark is constructed using a machine-independent graph gen-
erator, encompassing toroidal, planar, and randomly weighted graphs with vertex counts ranging
from 800 to 20, 000 and edge densities between 2% and 6%. The edge weights in these graphs are
constrained to values of 1, 0, or −1. Specifically, the training dataset includes 500 3-regular graphs
and 500 5-regular graphs, each containing 100 nodes, tailored for the cases where k = 2 and k = 3,
respectively. The testing set for random regular graphs consists 20 3-regular graphs and 20 5-regular
graphs for both k = 2 and k = 3 tasks, with node counts of 100, 1, 000, and 10, 000, respectively.
Moreover, the testing set of Gset encompasses all instances included in the Gset benchmark.

Model Settings. ROS is designed as a two-layer GNN, with both the input and hidden dimensions
set to 100. To address the issue of gradient vanishing, we apply a graph normalization technique as
proposed by Cai et al. (2021). The ROSmodel undergoes pre-training using the Adam optimizer with
a learning rate of 10−2 for one epoch. During the fine-tuning stage, the model is further optimized
using the same Adam optimizer and learning rate of 10−2. An early stopping strategy is employed,
with a tolerance of 10−2 and a patience of 100 iterations, terminating training if no improvement
is observed over this duration. Finally, in the random sampling stage, we execute Algorithm 1 for
T = 100 independent trials and return the best solution obtained.

Evaluation Configuration. All our experiments were conducted on an NVIDIA RTX 3090 GPU,
using Python 3.8.19 and PyTorch 2.2.0.

4.2 PERFORMANCE COMPARISON AGAINST BASELINES

4.2.1 COMPUTATIONAL TIME

We evaluated the performance of ROS against baseline algorithms GW, BQP, Genetic, MD, and
PI-GNN on random regular graphs, focusing on computational time for both the Max-Cut and Max-
3-Cut tasks. The experiments were conducted across three problem sizes: N = 100, N = 1,000,
and N = 10,000, as illustrated in Figure 2a. Additionally, Figure 2b compares the scalable methods
MD, Rank2, and PI-GNN on problem instances from the Gset benchmark with N ≥ 10,000. “N/A”
denotes a failure to return a solution within 30 minutes. A comprehensive summary of the results for

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Objective value comparison of Max-k-Cut problems on random regular graphs.

Methods N=100 N=1,000 N=10,000

k = 2 k = 3 k = 2 k = 3 k = 2 k = 3

GW 130.20±2.79 – N/A – N/A –
BQP 131.55±2.42 239.70±1.82 1324.45±6.34 2419.15±6.78 N/A N/A

Genetic 127.55±2.82 235.50±3.15 1136.65±10.37 2130.30±8.49 N/A N/A
MD 127.20±2.16 235.50±3.29 1250.35±11.21 2344.85±9.86 12428.85±26.13 23341.20±32.87

PI-GNN 122.75±4.36 – 1263.95±21.59 – 12655.05±94.25 –
ROS 128.20±2.82 240.30±2.59 1283.75±6.89 2405.75±5.72 12856.85±26.50 24085.95±21.88

Table 2: Objective value comparison of Max-k-Cut problems on Gset instances.

Methods G70 (N=10,000) G72 (N=10,000) G77 (N=14,000) G81 (N=20,000)

k = 2 k = 3 k = 2 k = 3 k = 2 k = 3 k = 2 k = 3

MD 8551 9728 5638 6612 7934 9294 11226 13098
Rank2 9529 – 6820 – 9670 – 13662 –
PI-GNN 8956 – 4544 – 6406 – 8970 –
ROS 8916 9971 6102 7297 8740 10329 12332 14464

all Gset instances on Max-Cut and Max-3-Cut, including comparisons with state-of-the-art methods
LPI and MOH, is presented in Table 3 and Table 4 in the Appendix.

The results depicted in Figure 2a indicate that ROS efficiently solves all problem instances within
seconds, even for large problem sizes of N = 10, 000. In terms of baseline performance, the
approximation algorithm GW performs efficiently on instances with N = 100, but it struggles with
larger sizes such as N = 1, 000 and N = 10, 000 due to the substantial computational burden
associated with solving the underlying semi-definite programming problem. Heuristic methods such
as BQP and Genetic can manage cases up to N = 1, 000 in a few hundred seconds, yet they
fail to solve larger instances with N = 10, 000 because of the high computational cost of each
iteration. Notably, MD is the only method capable of solving large instances within a reasonable
time frame; however, when N reaches 10, 000, the computational time for MD approaches 15 times
that of ROS. Regarding learning-based methods, PI-GNN necessitates retraining and prediction for
each test instance, with test times exceeding dozens of seconds even for N = 100. In contrast, ROS
solves these large instances in merely a few seconds. Throughout the experiments, ROS consistently
completes its tasks in under 10 seconds, requiring only 10% of the computational time utilized by
PI-GNN. Figure 2b illustrates the results for the Gset benchmark, where ROS efficiently solves the
largest instances in just a few seconds, while other methods, such as Rank2, take tens to hundreds
of seconds for equivalent tasks. Remarkably, ROS utilizes only about 1% of the computational time
required by PI-GNN.

4.2.2 OBJECTIVE VALUE

We also evaluate the performance of ROS on random regular graphs and the Gset benchmark con-
cerning the objective values of Problem (1). The results for the random regular graphs and Gset are
presented in Tables 1 and 2, respectively. Note that “–” indicates that the method is unable to handle
Max-k-Cut problems.

The results for random regular graphs, presented in Table 1, indicate that ROS effectively addresses
both k = 2 and k = 3 cases, producing high-quality solutions even for large-scale problem in-
stances. In contrast, traditional methods such as GW and the L2O method PI-GNN are restricted to
k = 2 and fail to generalize to the general k, i.e., k = 3. While GW achieves high-quality solu-
tions for the Max-Cut problem with an instance size of N = 100, it cannot generalize to arbitrary
k without integrating additional randomized algorithms to yield discrete solutions. Similarly, the
L2O method PI-GNN cannot manage k = 3 because the Max-k-Cut problem cannot be modeled
as a QUBO problem. Furthermore, its heuristic rounding lacks theoretical guarantees, which results
in sub-optimal performance regarding objective function values. Traditional methods such as BQP

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

N=100
 k=2

N=100
 k=3

N=1,000
 k=2

N=1,000
 k=3

N=10,000
 k=2

N=10,000
 k=3

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Ra
tio

 o
f O

bj
ec
tiv
e
Va
lu
e

ratio=1

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Ra
tio

 o
f C

om
pu

tin
g
Ti
m
e

(a) Random regular graph

G70
 k=2

G70
 k=3

G72
 k=2

G72
 k=3

G77
 k=2

G77
 k=3

G81
 k=2

G81
 k=3

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Ra
tio

 o
f O

bj
ec
tiv
e
Va
lu
e

ratio=1

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Ra
tio

 o
f C

om
pu

tin
g
Ti
m
e

(b) Gset

Figure 3: The ratio of computational time and objective value comparison of Max-k-Cut problems
between ROS-vanilla and ROS.

and Genetic can accommodate k = 3, but they often become trapped in sub-optimal solutions.
Among all the baselines, only MD can handle general k while producing solutions of comparable
quality to ROS. However, MD consistently exhibits inferior performance compared to ROS across
all experiments. The results for the Gset benchmark, shown in Table 2, offer similar insights: ROS
demonstrates better generalizability compared to the traditional Rank2method and the L2O method
PI-GNN. Moreover, ROS yields higher-quality solutions than MD in terms of objective function val-
ues.

4.3 EFFECT OF THE “PRE-TRAIN” STAGE IN ROS

To evaluate the impact of the pre-training stage in ROS, we compared it with ROS-vanilla, a
variant that omits the pre-training phase (see Section 3.3). We assessed both methods based on
objective function values and computational time. Figure 3 illustrates the ratios of these metrics be-
tween ROS-vanilla and ROS. In this figure, the horizontal axis represents the problem instances,
while the left vertical axis (green bars) displays the ratio of objective function values, and the right
vertical axis (red curve) indicates the ratio of computational times.

As shown in Figure 3a, during experiments on regular graphs, ROS-vanilla achieves higher
objective function values in most settings; however, its computational time is approximately 1.5
times greater than that of ROS. Thus, ROS demonstrates a faster solving speed compared to
ROS-vanilla. Similarly, in experiments conducted on the Gset benchmark (Figure 3b), ROS
reduces computational time by around 40% while maintaining performance comparable to that of
ROS-vanilla. Notably, in the Max-3-Cut problem for the largest instance, G81, ROS effectively
halves the solving time, showcasing the significant acceleration effect of pre-training. It is worth
mentioning that the ROS model was pre-trained on random regular graphs with N = 100 and gen-
eralized well to regular graphs with N = 1,000 and N = 10,000, as well as to Gset problem
instances of varying sizes and types. This illustrates ROS’s capability to generalize and accelerate
the solving of large-scale problems across diverse graph types and sizes, emphasizing the strong
out-of-distribution generalization afforded by pre-training.

In summary, while ROS-vanilla achieves slightly higher objective function values on individual
instances, it requires longer solving times and struggles to generalize to other problem instances.
This observation highlights the trade-off between a model’s ability to generalize and its capacity to
fit specific instances. Specifically, a model that fits individual instances exceptionally well may fail
to generalize to new data, resulting in longer solving times. Conversely, a model that generalizes
effectively may exhibit slightly weaker performance on specific instances, leading to a marginal
decrease in objective function values. Therefore, the choice between these two training modes
should be guided by the specific requirements of the application.

5 CONCLUSIONS

In this paper, we propose ROS, an efficient method for addressing the Max-k-Cut problem with
any arbitrary edge weights. Our approach begins by relaxing the constraints of the original dis-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

crete problem to probabilistic simplices. To effectively solve this relaxed problem, we propose an
optimization algorithm based on GNN parametrization and incorporate transfer learning by lever-
aging pre-trained GNNs to warm-start the training process. After resolving the relaxed problem,
we present a novel random sampling algorithm that maps the continuous solution back to a discrete
form. By integrating geometric landscape analysis with statistical theory, we establish the consis-
tency of function values between the continuous and discrete solutions. Experiments conducted on
random regular graphs and the Gset benchmark demonstrate that our method is highly efficient for
solving large-scale Max-k-Cut problems, requiring only a few seconds, even for instances with tens
of thousands of variables. Furthermore, it exhibits robust generalization capabilities across both
in-distribution and out-of-distribution instances, highlighting its effectiveness for large-scale opti-
mization tasks. Exploring other sampling algorithms to further boost ROS performance is a future
research direction. Moreover, the ROS framework with theoretical insights could be potentially ex-
tended to other graph-related combinatorial problems, and this direction is also worth investigating
as future work.

REFERENCES

Francis Bach et al. Learning with submodular functions: A convex optimization perspective. Foun-
dations and Trends® in machine learning, 6(2-3):145–373, 2013.

Thomas Barrett, William Clements, Jakob Foerster, and Alex Lvovsky. Exploratory combinatorial
optimization with reinforcement learning. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pp. 3243–3250, 2020.

Thomas D Barrett, Christopher WF Parsonson, and Alexandre Laterre. Learning to solve combi-
natorial graph partitioning problems via efficient exploration. arXiv preprint arXiv:2205.14105,
2022.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
mization: a methodological tour d’horizon. European Journal of Operational Research, 290(2):
405–421, 2021.

Samuel Burer, Renato DC Monteiro, and Yin Zhang. Rank-two relaxation heuristics for max-cut
and other binary quadratic programs. SIAM Journal on Optimization, 12(2):503–521, 2002.

Tianle Cai, Shengjie Luo, Keyulu Xu, Di He, Tie-yan Liu, and Liwei Wang. Graphnorm: A prin-
cipled approach to accelerating graph neural network training. In International Conference on
Machine Learning, pp. 1204–1215. PMLR, 2021.

RC Carlson and George L Nemhauser. Scheduling to minimize interaction cost. Operations Re-
search, 14(1):52–58, 1966.

Ming Chen, Yuning Chen, Yonghao Du, Luona Wei, and Yingwu Chen. Heuristic algorithms based
on deep reinforcement learning for quadratic unconstrained binary optimization. Knowledge-
Based Systems, 207:106366, 2020.

Xiaohan Chen, Jialin Liu, and Wotao Yin. Learning to optimize: A tutorial for continuous and
mixed-integer optimization. Science China Mathematics, pp. 1–72, 2024.

Amin Coja-Oghlan, Philipp Loick, Balázs F Mezei, and Gregory B Sorkin. The ising antiferro-
magnet and max cut on random regular graphs. SIAM Journal on Discrete Mathematics, 36(2):
1306–1342, 2022.

Chase Cook, Hengyang Zhao, Takashi Sato, Masayuki Hiromoto, and Sheldon X-D Tan. Gpu-
based ising computing for solving max-cut combinatorial optimization problems. Integration, 69:
335–344, 2019.

Etienne de Klerk, Dmitrii V Pasechnik, and Joost P Warners. On approximate graph colouring
and max-k-cut algorithms based on the θ-function. Journal of Combinatorial Optimization, 8:
267–294, 2004.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Caterina De Simone, Martin Diehl, Michael Jünger, Petra Mutzel, Gerhard Reinelt, and Giovanni
Rinaldi. Exact ground states of ising spin glasses: New experimental results with a branch-and-cut
algorithm. Journal of Statistical Physics, 80:487–496, 1995.

Andreas Eisenblätter. The semidefinite relaxation of the k-partition polytope is strong. In Inter-
national Conference on Integer Programming and Combinatorial Optimization, pp. 273–290.
Springer, 2002.

Alan Frieze and Mark Jerrum. Improved approximation algorithms for max k-cut and max bisection.
Algorithmica, 18(1):67–81, 1997.

Jaroslav Garvardt, Niels Grüttemeier, Christian Komusiewicz, and Nils Morawietz. Parameterized
local search for max c-cut. In Proceedings of the Thirty-Second International Joint Conference
on Artificial Intelligence, pp. 5586–5594, 2023.

Maxime Gasse, Simon Bowly, Quentin Cappart, Jonas Charfreitag, Laurent Charlin, Didier Chételat,
Antonia Chmiela, Justin Dumouchelle, Ambros Gleixner, Aleksandr M Kazachkov, et al. The
machine learning for combinatorial optimization competition (ml4co): Results and insights. In
NeurIPS 2021 competitions and demonstrations track, pp. 220–231. PMLR, 2022.

Bissan Ghaddar, Miguel F Anjos, and Frauke Liers. A branch-and-cut algorithm based on semidefi-
nite programming for the minimum k-partition problem. Annals of Operations Research, 188(1):
155–174, 2011.

Michel X Goemans and David P Williamson. Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming. Journal of the ACM (JACM), 42(6):
1115–1145, 1995.

Olivier Goudet, Adrien Goëffon, and Jin-Kao Hao. A large population island framework for the
unconstrained binary quadratic problem. Computers & Operations Research, 168:106684, 2024.

Jihong Gui, Zhipeng Jiang, and Suixiang Gao. Pci planning based on binary quadratic programming
in lte/lte-a networks. IEEE Access, 7:203–214, 2018.

Aric Hagberg, Pieter J Swart, and Daniel A Schult. Exploring network structure, dynamics, and
function using networkx. Technical report, Los Alamos National Laboratory (LANL), Los
Alamos, NM (United States), 2008.

Christopher Hojny, Imke Joormann, Hendrik Lüthen, and Martin Schmidt. Mixed-integer program-
ming techniques for the connected max-k-cut problem. Mathematical Programming Computa-
tion, 13(1):75–132, 2021.

Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning framework for
combinatorial optimization on graphs. Advances in Neural Information Processing Systems, 33:
6659–6672, 2020.

Richard M Karp. Reducibility among combinatorial problems. Springer, 2010.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial opti-
mization algorithms over graphs. Advances in neural information processing systems, 30, 2017.

Panxing Li and Jing Wang. Pci planning method based on genetic algorithm in lte network. Telecom-
munications Science, 32(3):2016082, 2016.

An Ly, Raj Sawhney, and Marina Chugunova. Data clustering and visualization with recursive
goemans-williamson maxcut algorithm. In 2023 International Conference on Computational Sci-
ence and Computational Intelligence (CSCI), pp. 496–500. IEEE, 2023.

Fuda Ma and Jin-Kao Hao. A multiple search operator heuristic for the max-k-cut problem. Annals
of Operations Research, 248:365–403, 2017.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 4602–4609, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ankur Nath and Alan Kuhnle. A benchmark for maximum cut: Towards standardization of the
evaluation of learned heuristics for combinatorial optimization. arXiv preprint arXiv:2406.11897,
2024.

Jan Poland and Thomas Zeugmann. Clustering pairwise distances with missing data: Maximum
cuts versus normalized cuts. In International Conference on Discovery Science, pp. 197–208.
Springer, 2006.

Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Combinatorial optimization with
physics-inspired graph neural networks. Nature Machine Intelligence, 4(4):367–377, 2022.

Nimita Shinde, Vishnu Narayanan, and James Saunderson. Memory-efficient approximation al-
gorithms for max-k-cut and correlation clustering. Advances in Neural Information Processing
Systems, 34:8269–8281, 2021.

Jan Toenshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Graph neural networks for maxi-
mum constraint satisfaction. Frontiers in artificial intelligence, 3:580607, 2021.

Jan Tönshoff, Berke Kisin, Jakob Lindner, and Martin Grohe. One model, any csp: Graph neural net-
works as fast global search heuristics for constraint satisfaction. arXiv preprint arXiv:2208.10227,
2022.

Yinyu Ye. The gset dataset. https://web.stanford.edu/~yyye/yyye/Gset/, 2003.

12

https://web.stanford.edu/~yyye/yyye/Gset/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A PROOF OF THEOREM 1

Proof. Before proceeding with the proof of Theorem 1, we first define the neighborhood of a vector
x̄ ∈ ∆k, and establish results of Lemma 1 and Lemma 2.

Definition 2. Let x̄ = (x̄1, · · · , x̄k) denote a point in ∆k. We define the neighborhood induced by
x̄ as follows:

Ñ (x̄) :=

(x1, · · · ,xk) ∈ ∆k

∣∣∣∣∣∣
∑

j∈K(x̄)

xj = 1

 ,

where K(x̄) = {j ∈ {1, · · · , k} | x̄j > 0}.

Lemma 1. Given X·i ∈ Ñ (X ·i), it follows that

K(X·i) ⊆ K(X ·i).

Proof. Suppose there exists j ∈ K(X·i) such that j /∈ K(X ·i), implying Xji > 0 and Xji = 0.

We then have ∑
l∈K(X·i)

Xli +Xji ≤
k∑

l=1

Xli = 1,

which leads to ∑
l∈K(X·i)

Xli ≤ 1−Xji < 1,

contradicting with the fact that X·i ∈ Ñ (X ·i).

Lemma 2. Let X be a globally optimal solution to P, then

f(X;W) = f(X;W),

where X has only the ith column X·i ∈ Ñ (X ·i), and other columns are identical to those of X .
Moreover, X is also a globally optimal solution to P̄ .

Proof. The fact that X is a globally optimal solution to P̄ follows directly from the equality
f(X;W) = f(X;W). Thus, it suffices to prove this equality. Consider that X and X differ
only in the ith column, and X·i ∈ Ñ (X ·i). We can rewrite the objective value function as

f(X;W) = g(X·i;X·−i) + h(X·−i),

where X·−i represents all column vectors of X except the ith column. The functions g and h are
defined as follows:

g(X·i;X·−i) =

N∑
j=1

WijX
⊤
·i X·j +

N∑
j=1

WjiX
⊤
·jX·i −WiiX

⊤
·i X·i,

h(X·−i) =

N∑
l=1,l ̸=i

N∑
j=1,j ̸=i

WljX
⊤
·l X·j

To establish that f(X;W) = f(X;W), it suffices to show that

g(X·i;X·−i) = g(X ·i;X·−i)

as X·−i = X ·−i.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Rewriting g(X·i;X·−i), we obtain

g(X·i;X·−i) =

N∑
j=1

WijX
⊤
·i X·j +

N∑
j=1

WjiX
⊤
·jX·i

= 2

N∑
j=1

WijX
⊤
·i X·j

= 2X⊤
·i

N∑
j=1,j ̸=i

WijX·j

= 2X⊤
·i Y·i,

where Y·i :=
∑N

j=1,j ̸=i WijX·j .

If |K(X ·i)| = 1, then there is only one non-zero element in X ·i equal to one. Therefore,
g(X ·i;X·−i) = g(X·i;X·−i) since X·i = X ·i.

For the case where |K(X ·i)| > 1, we consider any indices j, l ∈ K(X ·i) such that Xji,X li > 0.
Then, there exists ϵ > 0 such that we can construct a point x̃ ∈ ∆k where the jth element is set to
Xji − ϵ, the lth element is set to X li + ϵ, and all other elements remain the same as in X ·i. Since
X is a globally optimum of the function f(X;W), it follows that X ·i is also a global optimum for
the function g(X ·i;X·−i). Thus, we have

g(X ·i;X·−i) ≤ g(x̃;X·−i)

X
⊤
·iY·i ≤ x̃⊤Y·i

= X
⊤
·iY·i − ϵYji + ϵYli,

which leads to the inequality

Yji ≤ Yli. (3)

Next, we can similarly construct another point x̂ ∈ ∆k with its jth element equal to Xji + ϵ, the
kth element equal to Xki − ϵ, and all other elements remain the same as in X ·i. Subsequently, we
can also derive that

g(X ·i;X·−i) ≤ g(x̂;X·−i)

= X
⊤
·iY·i + ϵYji − ϵYli,

which leads to another inequality

Yli ≤ Yji. (4)

Consequently, combined inequalities (3) and (4), we have

Yji = Yli,

for j, l ∈ K(X ·i).

From this, we can deduce that

Yj1i = Yj2i = · · · = Yj|K(X·i)|
i = t,

where j1, · · · , j|K(X·i)| ∈ K(X ·i).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Next, we find that

g(X ·i;X·−i) = 2X
⊤
·iY·i

= 2

k∑
j=1

XjiYji

= 2

N∑
j=1,j∈K(X·i)

XjiYji

= 2t

N∑
j=1,j∈K(X·i)

Xji

= 2t.

Similarly, we have

g(X·i;X·−i) = 2X⊤
·i Y·i

= 2

k∑
j=1

XjiYji

= 2
∑

j=1,j∈K(X·i)

XjiYji

Lemma 1
= 2t

∑
j=1,j∈K(X·i)

Xji

= 2t

= g(X ·i)

Accordingly, we conclude that

g(X·i;X·−i) = g(X ·i;X·−i),

which leads us to the result

f(X;W) = f(X;W),

where X·i ∈ Ñ (X ·i), X·−i = X ·−i.

Accordingly, for any X ∈ N (X), we iteratively apply Lemma 2 to each column of X while holding
the other columns fixed, thereby proving Theorem 1.

B PROOF OF THEOREM 2

Proof. Based on X , we can construct the random variable X̃ , where X̃·i ∼ Cat(x;p = X ·i). The
probability mass function is given by

P(X̃·i = eℓ) = Xℓi, (5)

where ℓ = 1, · · · , k.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Next, we have

EX̃ [f(X̃;W)] = EX̃ [X̃WX̃⊤] = EX̃ [

N∑
i=1

N∑
j=1

WijX̃
⊤
·i X̃·j]

=

N∑
i=1

N∑
j=1

WijEX̃·iX̃·j
[X̃⊤

·i X̃·j]

=

N∑
i=1

N∑
j=1

WijEX̃·iX̃·j
[1(X̃·i = X̃·j)]

=

N∑
i=1

N∑
j=1

WijP(X̃·i = X̃·j)

=

N∑
i=1

N∑
j=1,j ̸=i

WijP(X̃·i = X̃·j). (6)

Since X̃·i and X̃·j are independent for i ̸= j, we have

P(X̃·i = X̃·j) =

k∑
ℓ=1

P(X̃·i = X̃·j = eℓ)

=

k∑
ℓ=1

P(X̃·i = eℓ, X̃·j = eℓ)

=

k∑
ℓ=1

P(X̃·i = eℓ)P(X̃·j = eℓ)

=

k∑
ℓ=1

XℓiXℓj

= X
⊤
·iX ·j . (7)

Substitute (7) into (6), we obtain

EX̃ [f(X̃;W)] =
N∑
i=1

N∑
j=1

WijX
⊤
·iX ·j = f(X;W). (8)

C THE COMPLETE RESULTS ON GSET INSTANCES

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Ta
bl

e
3:

C
om

pl
et

e
re

su
lts

on
G

se
ti

ns
ta

nc
es

fo
rM

ax
-C

ut
.“

⋆
”

in
di

ca
te

s
m

is
si

ng
re

su
lts

fr
om

th
e

lit
er

at
ur

e.

In
st

an
ce

|V
|

|E
|

G
W

M
D

R
a
n
k
2

P
I
-
G
N
N

G
e
n
e
t
i
c

B
Q
P

M
O
H

L
P
I

R
O
S
-
v
a
n
i
l
l
a

R
O
S

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

G
1

80
0

19
17

6
11

29
9

12
28

.0
11

32
0

5.
1

⋆
⋆

11
25

8
44

.7
10

92
9

58
7.

4
11

40
6

11
.3

11
62

4
1.

5
11

62
4

7
11

42
3

2.
6

11
39

5
1.

7
G

2
80

0
19

17
6

11
29

9
12

25
.4

11
25

5
5.

3
⋆

⋆
11

25
8

45
.6

10
92

6
58

8.
3

11
42

6
11

.7
11

62
0

4.
6

11
62

0
8

11
46

2
2.

6
11

46
7

1.
8

G
3

80
0

19
17

6
11

28
9

12
43

.2
11

22
2

5.
3

⋆
⋆

11
26

2
45

.3
10

93
3

59
6.

8
11

39
7

11
.0

11
62

2
1.

3
11

62
2

10
11

51
0

2.
7

11
37

0
1.

9
G

4
80

0
19

17
6

11
20

7
12

17
.8

11
28

0
4.

8
⋆

⋆
11

21
6

44
.9

10
94

5
58

0.
5

11
43

0
11

.2
11

64
6

5.
2

11
64

6
7

11
41

6
2.

6
11

45
9

2.
1

G
5

80
0

19
17

6
11

25
6

12
61

.8
11

15
6

3.
7

⋆
⋆

11
18

5
46

.2
10

86
9

59
8.

2
11

40
6

11
.0

11
63

1
1.

0
11

63
1

7
11

50
5

2.
6

11
40

8
1.

7
G

6
80

0
19

17
6

17
76

12
61

.6
17

55
6.

9
⋆

⋆
14

18
20

1.
4

14
35

58
1.

2
19

91
11

.4
21

78
3.

0
21

78
14

19
94

2.
5

19
07

1.
7

G
7

80
0

19
17

6
16

94
13

36
.4

16
35

5.
9

⋆
⋆

12
80

19
1.

7
12

73
58

7.
5

17
80

11
.1

20
06

3.
0

20
06

7
18

02
2.

6
18

04
1.

8
G

8
80

0
19

17
6

16
93

12
35

.2
16

51
6.

1
⋆

⋆
12

85
20

1.
0

12
41

59
1.

8
17

58
11

.1
20

05
5.

7
20

05
10

18
76

2.
8

17
75

1.
8

G
9

80
0

19
17

6
16

76
12

15
.0

17
20

8.
0

⋆
⋆

13
32

20
1.

5
13

45
58

2.
3

18
45

14
.6

20
54

3.
2

20
54

13
18

39
2.

6
18

76
1.

9
G

10
80

0
19

17
6

16
75

12
27

.3
17

00
7.

3
⋆

⋆
12

99
20

1.
4

13
13

58
9.

5
18

16
10

.9
20

00
68

.1
20

00
10

18
11

2.
6

17
55

1.
8

G
11

80
0

16
00

N
/A

N
/A

46
6

3.
0

55
4

3.
9

36
8

22
.4

40
6

50
9.

4
54

0
11

.0
56

4
0.

2
56

4
11

49
6

1.
8

49
4

1.
5

G
12

80
0

16
00

N
/A

N
/A

46
6

2.
4

55
2

3.
8

38
6

21
.8

38
8

51
4.

8
53

4
11

.0
55

6
3.

5
55

6
16

49
8

1.
9

49
4

1.
4

G
13

80
0

16
00

N
/A

N
/A

48
6

3.
0

57
2

3.
5

36
2

20
.6

42
6

52
0.

0
56

0
10

.8
58

2
0.

9
58

2
23

51
8

1.
9

52
4

1.
5

G
14

80
0

46
94

29
42

17
16

.6
29

30
3.

1
30

53
5.

5
22

48
41

.9
28

55
56

4.
2

29
85

11
.1

30
64

25
1.

3
30

64
11

9
29

32
1.

5
29

53
1.

8
G

15
80

0
46

61
N

/A
N

/A
29

32
3.

1
30

39
5.

9
21

99
40

.8
28

36
54

7.
7

29
66

11
.1

30
50

52
.2

30
50

80
29

20
1.

8
28

71
1.

4
G

16
80

0
46

72
N

/A
N

/A
29

37
3.

8
⋆

⋆
23

59
50

.8
28

48
54

1.
3

29
87

14
.3

30
52

93
.7

30
52

69
29

17
1.

7
29

16
1.

3
G

17
80

0
46

67
29

16
17

38
.2

29
22

3.
3

⋆
⋆

20
61

41
.3

28
29

55
8.

9
29

67
12

.1
30

47
12

9.
5

30
47

10
4

29
32

1.
9

29
14

1.
5

G
18

80
0

46
94

83
8

87
1.

7
82

5
3.

7
⋆

⋆
59

6
34

.9
64

3
56

7.
0

92
2

11
.2

99
2

11
2.

7
99

2
40

90
3

2.
1

90
5

1.
7

G
19

80
0

46
61

76
3

12
45

.4
74

0
3.

6
⋆

⋆
52

8
31

.1
57

1
57

1.
2

81
6

11
.4

90
6

26
6.

9
90

6
49

80
8

2
77

2
1.

5
G

20
80

0
46

72
78

1
10

15
.6

76
7

3.
5

93
9

5.
6

59
2

33
.8

63
3

56
5.

8
86

0
11

.9
94

1
43

.7
94

1
31

84
3

2.
1

78
8

1.
8

G
21

80
0

46
67

82
1

13
50

.3
78

4
3.

0
92

1
5.

6
61

7
32

.4
62

0
57

2.
2

83
7

14
.1

93
1

15
5.

3
93

1
32

85
8

2.
1

84
8

1.
6

G
22

20
00

19
99

0
N

/A
N

/A
12

77
7

12
.2

13
33

1
22

.3
12

75
7

37
.5

N
/A

N
/A

13
00

4
95

.6
13

35
9

35
2.

4
13

35
9

41
3

13
02

8
2.

6
13

00
7

2.
7

G
23

20
00

19
99

0
N

/A
N

/A
12

68
8

10
.2

13
26

9
18

.9
12

71
8

38
.0

N
/A

N
/A

12
95

8
95

.6
13

34
4

43
3.

8
13

34
2

15
0

13
04

8
2.

9
12

93
6

1.
9

G
24

20
00

19
99

0
N

/A
N

/A
12

72
1

10
.0

13
28

7
27

.3
12

56
5

37
.5

N
/A

N
/A

13
00

2
95

.0
13

33
7

77
7.

9
13

33
7

23
4

13
03

5
1.

9
12

93
3

2.
4

G
25

20
00

19
99

0
N

/A
N

/A
12

72
5

11
.7

⋆
⋆

12
61

7
37

.9
N

/A
N

/A
12

96
8

10
2.

6
13

34
0

44
2.

5
13

34
0

25
8

13
04

0
2

12
94

7
1.

9
G

26
20

00
19

99
0

N
/A

N
/A

12
72

5
10

.8
⋆

⋆
12

72
5

37
.2

N
/A

N
/A

12
96

6
96

.9
13

32
8

53
5.

1
13

32
8

29
1

13
05

4
2.

5
12

95
4

3.
5

G
27

20
00

19
99

0
N

/A
N

/A
26

32
11

.2
⋆

⋆
22

34
56

.8
N

/A
N

/A
30

62
98

.9
33

41
42

.3
33

41
15

2
29

93
2.

8
29

71
2.

1
G

28
20

00
19

99
0

N
/A

N
/A

27
62

11
.2

⋆
⋆

20
69

58
.1

N
/A

N
/A

29
63

96
.8

32
98

70
7.

2
32

98
19

7
29

85
2.

6
29

23
1.

9
G

29
20

00
19

99
0

N
/A

N
/A

27
36

12
.3

⋆
⋆

21
58

71
.2

N
/A

N
/A

30
44

96
.4

34
05

55
5.

2
34

05
29

3
30

56
2.

9
30

89
1.

9
G

30
20

00
19

99
0

N
/A

N
/A

27
74

11
.7

33
77

23
.8

22
34

52
.6

N
/A

N
/A

30
74

99
.3

34
13

33
0.

5
34

13
41

0
30

04
2.

8
30

25
2.

9
G

31
20

00
19

99
0

N
/A

N
/A

27
36

11
.5

32
55

19
.6

22
08

81
.4

N
/A

N
/A

29
98

96
.3

33
10

59
2.

6
33

10
41

2
30

15
2.

1
29

43
1.

9
G

32
20

00
40

00
N

/A
N

/A
11

36
6.

8
13

80
13

.1
95

6
30

.7
N

/A
N

/A
13

38
92

.7
14

10
65

.8
14

10
33

0
12

40
2.

2
12

26
1.

7
G

33
20

00
40

00
N

/A
N

/A
11

06
6.

6
13

52
12

.6
88

0
33

.7
N

/A
N

/A
13

02
89

.3
13

82
50

4.
1

13
82

34
9

12
24

2.
3

12
08

1.
7

G
34

20
00

40
00

N
/A

N
/A

11
18

5.
8

13
58

9.
8

91
2

32
.6

N
/A

N
/A

13
14

95
.6

13
84

84
.2

13
84

30
2

12
38

2.
3

12
20

1.
6

G
35

20
00

11
77

8
N

/A
N

/A
73

58
9.

4
⋆

⋆
55

74
39

.5
N

/A
N

/A
74

95
95

.2
76

86
79

6.
7

76
86

10
70

72
45

1.
9

72
60

1.
9

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Ta
bl

e
3:

C
on

tin
ue

d.

In
st

an
ce

|V
|

|E
|

G
W

M
D

R
a
n
k
2

P
I
-
G
N
N

G
e
n
e
t
i
c

B
Q
P

M
O
H

L
P
I

R
O
S
-
v
a
n
i
l
l
a

R
O
S

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

G
36

20
00

11
76

6
N

/A
N

/A
73

36
10

.1
⋆

⋆
55

96
36

.5
N

/A
N

/A
74

90
95

.3
76

80
66

4.
5

76
80

57
90

72
35

2.
4

71
07

1.
5

G
37

20
00

11
78

5
N

/A
N

/A
74

00
9.

3
⋆

⋆
60

92
37

.1
N

/A
N

/A
74

98
95

.4
76

91
65

2.
8

76
91

40
82

71
64

1.
7

71
41

1.
5

G
38

20
00

11
77

9
N

/A
N

/A
73

43
8.

6
⋆

⋆
59

82
38

.1
N

/A
N

/A
75

07
10

0.
6

76
88

77
9.

7
76

88
61

4
71

14
1.

6
71

73
1.

8
G

39
20

00
11

77
8

N
/A

N
/A

19
98

9.
2

⋆
⋆

14
61

20
1.

5
N

/A
N

/A
21

96
94

.4
24

08
78

7.
7

24
08

34
7

21
07

2.
5

21
65

1.
7

G
40

20
00

11
76

6
N

/A
N

/A
19

71
9.

0
⋆

⋆
14

35
20

1.
0

N
/A

N
/A

21
69

97
.3

24
00

47
2.

5
24

00
31

4
22

07
2.

7
21

28
2.

5
G

41
20

00
11

78
5

N
/A

N
/A

19
69

9.
1

⋆
⋆

14
78

10
5.

5
N

/A
N

/A
21

83
10

5.
8

24
05

37
7.

4
24

05
28

6
21

20
1.

6
21

39
2.

2
G

42
20

00
11

77
9

N
/A

N
/A

20
75

9.
5

⋆
⋆

15
08

20
1.

6
N

/A
N

/A
22

55
95

.5
24

81
77

7.
4

24
81

32
8

22
00

2.
2

22
35

2.
4

G
43

10
00

99
90

63
40

17
84

.5
63

80
5.

0
⋆

⋆
64

34
40

.9
59

76
91

4.
4

65
09

18
.0

66
60

1.
2

66
60

19
65

39
2.

7
64

71
1.

7
G

44
10

00
99

90
63

51
14

86
.7

63
27

5.
0

⋆
⋆

63
67

40
.8

60
09

91
4.

3
64

63
18

.5
66

50
5.

3
66

50
20

64
98

2.
5

64
72

1.
7

G
45

10
00

99
90

63
55

15
82

.0
63

29
4.

9
⋆

⋆
63

41
41

.6
60

06
92

1.
5

64
89

22
.4

66
54

6.
9

66
54

19
65

28
2.

4
64

89
1.

7
G

46
10

00
99

90
63

57
16

12
.8

63
00

4.
8

⋆
⋆

63
12

41
.1

59
78

91
6.

2
64

85
18

.4
66

49
67

.3
66

49
21

64
98

2.
5

64
99

2.
5

G
47

10
00

99
90

N
/A

N
/A

63
69

4.
7

⋆
⋆

63
91

40
.4

59
48

91
2.

4
64

91
18

.4
66

57
43

.3
66

57
25

64
97

2.
5

64
89

1.
8

G
48

30
00

60
00

N
/A

N
/A

50
06

10
.6

60
00

13
.1

54
02

30
.7

N
/A

N
/A

60
00

30
0.

4
60

00
0.

0
60

00
94

56
40

3.
2

54
98

2.
1

G
49

30
00

60
00

N
/A

N
/A

50
86

10
.1

60
00

11
.4

54
34

30
.5

N
/A

N
/A

60
00

30
3.

0
60

00
0.

0
60

00
93

55
80

3.
1

54
52

2.
2

G
50

30
00

60
00

N
/A

N
/A

51
56

11
.3

58
56

15
.7

54
58

30
.0

N
/A

N
/A

58
80

29
9.

8
58

80
53

2.
1

58
80

90
56

56
3.

2
55

82
1.

9
G

51
10

00
59

09
N

/A
N

/A
36

93
4.

1
⋆

⋆
28

41
40

.6
35

68
88

7.
9

37
59

17
.7

38
48

18
9.

2
38

48
14

5
36

29
1.

5
36

77
1.

7
G

52
10

00
59

16
N

/A
N

/A
36

95
4.

7
⋆

⋆
26

15
41

.2
35

75
89

7.
7

37
71

18
.5

38
51

20
9.

7
38

51
11

9
35

26
1.

3
36

41
1.

6
G

53
10

00
59

14
N

/A
N

/A
36

70
4.

5
⋆

⋆
28

13
41

.1
35

45
87

2.
8

37
52

18
.0

38
50

29
9.

3
38

50
18

2
36

33
1.

5
36

58
1.

6
G

54
10

00
59

16
N

/A
N

/A
36

82
4.

4
⋆

⋆
27

90
41

.3
35

48
88

0.
1

37
53

18
.0

38
52

19
0.

4
38

52
14

0
36

53
1.

6
36

42
1.

3
G

55
50

00
12

49
8

N
/A

N
/A

94
62

24
.4

10
24

0
39

.7
96

78
31

.9
N

/A
N

/A
98

62
11

42
.1

10
29

9
12

30
.4

10
29

9
65

94
98

19
2.

1
97

79
2.

9
G

56
50

00
12

49
8

N
/A

N
/A

32
03

23
.8

39
43

33
.5

27
54

21
7.

2
N

/A
N

/A
37

10
11

47
.6

40
16

99
0.

4
40

17
49

44
5

34
44

2
34

75
2.

5
G

57
50

00
10

00
0

N
/A

N
/A

27
70

17
.3

34
12

32
.2

22
66

21
8.

4
N

/A
N

/A
33

10
11

20
.8

34
94

15
28

.3
34

94
34

94
30

40
1.

7
30

78
2.

5
G

58
50

00
29

57
0

N
/A

N
/A

18
45

2
29

.2
⋆

⋆
14

60
7

39
.7

N
/A

N
/A

18
81

3
11

76
.6

19
28

8
15

22
.3

19
29

4
65

73
7

17
63

2
2.

3
17

57
4

1.
8

G
59

50
00

29
57

0
N

/A
N

/A
50

99
31

.6
⋆

⋆
37

53
21

6.
8

N
/A

N
/A

54
90

11
83

.4
60

87
24

98
.8

60
88

65
11

2
53

43
1.

9
54

07
4.

7
G

60
70

00
17

14
8

N
/A

N
/A

13
00

4
34

.8
14

08
1

57
13

25
7

34
.0

N
/A

N
/A

N
/A

N
/A

14
19

0
29

45
.4

14
19

0
44

80
2

13
43

3
2

13
40

2
2

G
61

70
00

17
14

8
N

/A
N

/A
45

92
36

.0
56

90
64

39
63

23
3.

0
N

/A
N

/A
N

/A
N

/A
57

98
66

03
.3

57
98

74
37

3
50

37
3.

8
50

11
2

G
62

70
00

14
00

0
N

/A
N

/A
39

22
26

.1
47

40
47

31
50

22
9.

4
N

/A
N

/A
N

/A
N

/A
48

68
55

68
.6

48
72

26
53

7
42

52
3.

8
42

94
2.

8
G

63
70

00
41

45
9

N
/A

N
/A

25
93

8
45

.1
⋆

⋆
19

61
6

38
.0

N
/A

N
/A

N
/A

N
/A

27
03

3
64

92
.1

27
03

3
52

72
6

24
18

5
1.

7
24

27
0

1.
5

G
64

70
00

41
45

9
N

/A
N

/A
72

83
43

.7
85

75
67

.6
54

91
20

5.
6

N
/A

N
/A

N
/A

N
/A

87
47

40
11

.1
87

52
49

15
8

75
08

2.
3

76
57

3
G

65
80

00
16

00
0

N
/A

N
/A

45
20

32
.5

⋆
⋆

36
80

23
2.

8
N

/A
N

/A
N

/A
N

/A
55

60
47

09
.5

55
62

21
73

7
48

78
4.

4
48

26
2.

5
G

66
90

00
18

00
0

N
/A

N
/A

51
00

37
.3

⋆
⋆

41
12

24
1.

3
N

/A
N

/A
N

/A
N

/A
63

60
60

61
.9

63
64

34
06

2
55

70
5.

5
55

80
3.

3
G

67
10

00
0

20
00

0
N

/A
N

/A
55

92
43

.4
⋆

⋆
44

94
25

2.
3

N
/A

N
/A

N
/A

N
/A

69
42

42
14

.3
69

48
61

55
6

60
90

6.
2

60
10

1.
9

G
70

10
00

0
99

99
N

/A
N

/A
85

51
54

.3
95

29
94

.4
89

56
34

.5
N

/A
N

/A
N

/A
N

/A
95

44
87

32
.4

95
94

28
82

0
90

04
4.

9
89

16
3.

4
G

72
10

00
0

20
00

0
N

/A
N

/A
56

38
44

.2
68

20
86

.6
45

44
25

3.
0

N
/A

N
/A

N
/A

N
/A

69
98

65
86

.6
70

04
42

54
2

60
66

6.
2

61
02

3.
9

G
77

14
00

0
28

00
0

N
/A

N
/A

79
34

66
.0

96
70

10
9.

4
64

06
34

9.
4

N
/A

N
/A

N
/A

N
/A

99
28

98
63

.6
99

26
66

66
2

86
78

9
87

40
8.

1
G

81
20

00
0

40
00

0
N

/A
N

/A
11

22
6

13
0.

8
13

66
2

14
0.

5
89

70
55

7.
7

N
/A

N
/A

N
/A

N
/A

14
03

6
20

42
2.

0
14

03
0

66
69

1
12

26
0

13
.7

12
33

2
9.

3

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Ta
bl

e
4:

C
om

pl
et

e
re

su
lts

on
G

se
ti

ns
ta

nc
es

fo
rM

ax
-3

-C
ut

.

In
st

an
ce

|V
|

|E
|

M
D

G
e
n
e
t
i
c

B
Q
P

M
O
H

R
O
S
-
v
a
n
i
l
l
a

R
O
S

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

G
1

80
0

19
17

6
14

73
5

9.
6

14
07

5
59

5.
3

14
88

0
16

.5
15

16
5

55
7.

3
14

94
9

2.
8

14
96

1
1.

9
G

2
80

0
19

17
6

14
78

7
8.

4
14

03
5

59
5.

3
14

84
5

17
.0

15
17

2
33

3.
3

15
03

3
2.

8
14

93
2

2.
3

G
3

80
0

19
17

6
14

66
3

6.
5

14
10

5
58

8.
6

14
87

2
17

.0
15

17
3

26
9.

6
15

01
6

2.
9

14
91

4
1.

9
G

4
80

0
19

17
6

14
71

6
6.

9
14

05
5

58
8.

7
14

88
6

17
.1

15
18

4
30

0.
6

14
98

4
3.

3
14

96
1

1.
9

G
5

80
0

19
17

6
14

68
1

8.
1

14
10

4
59

1.
9

14
84

7
17

.3
15

19
3

98
.2

15
00

6
3.

2
14

96
2

2.
9

G
6

80
0

19
17

6
21

61
7.

8
15

04
60

4.
4

23
02

25
.0

26
32

30
7.

3
24

36
2.

8
23

61
1.

8
G

7
80

0
19

17
6

20
17

8.
9

12
60

58
9.

9
20

81
16

.6
24

09
38

1.
0

21
88

2.
1

21
88

2.
4

G
8

80
0

19
17

6
19

38
7.

7
12

52
58

9.
7

20
96

19
.3

24
28

45
6.

5
22

37
2.

8
21

71
2.

1
G

9
80

0
19

17
6

20
31

8.
2

13
26

60
4.

4
20

99
16

.5
24

78
28

2.
0

22
46

2.
8

21
85

2.
2

G
10

80
0

19
17

6
19

61
7.

5
12

66
59

3.
3

20
55

18
.2

24
07

56
9.

3
22

01
2.

9
21

81
2.

3
G

11
80

0
16

00
55

3
4.

0
41

4
55

4.
5

62
4

16
.4

66
9

14
3.

8
61

6
2

59
1

1.
4

G
12

80
0

16
00

53
0

4.
4

38
8

54
3.

6
60

8
17

.4
66

0
10

0.
7

60
4

2
58

2
1.

5
G

13
80

0
16

00
55

8
4.

0
42

5
55

0.
8

63
8

18
.9

68
6

45
9.

4
61

7
2

62
9

1.
4

G
14

80
0

46
94

38
44

5.
0

36
79

57
1.

1
39

00
16

.9
40

12
88

.2
39

14
2.

8
38

92
2.

1
G

15
80

0
46

61
38

15
4.

8
36

25
56

7.
6

38
85

17
.3

39
84

80
.3

38
17

1.
9

38
38

2
G

16
80

0
46

72
38

25
5.

3
36

42
56

1.
5

38
96

18
.2

39
91

1.
3

38
43

2.
3

38
45

1.
6

G
17

80
0

46
67

38
15

5.
3

36
40

55
8.

7
38

86
20

.2
39

83
7.

8
38

41
2.

4
38

52
1.

6
G

18
80

0
46

94
99

2
4.

5
70

4
58

4.
0

10
83

18
.7

12
07

0.
3

10
94

2.
2

10
67

1.
7

G
19

80
0

46
61

86
9

4.
4

59
5

58
4.

2
96

2
17

.0
10

81
0.

2
97

2
2.

1
96

7
1.

7
G

20
80

0
46

72
92

8
4.

5
58

9
57

6.
8

97
7

17
.0

11
22

13
.3

10
06

2.
2

99
3

1.
8

G
21

80
0

46
67

93
6

4.
9

61
2

57
6.

3
98

4
17

.5
11

09
55

.8
10

11
2.

2
97

5
1.

5
G

22
20

00
19

99
0

16
40

2
15

.2
N

/A
N

/A
16

59
9

13
5.

5
17

16
7

28
.5

16
79

0
3.

3
16

60
1

2.
2

G
23

20
00

19
99

0
16

42
2

15
.0

N
/A

N
/A

16
62

6
13

5.
6

17
16

8
45

.1
16

81
9

3.
9

16
70

2
2.

1
G

24
20

00
19

99
0

16
45

2
16

.1
N

/A
N

/A
16

59
1

13
7.

7
17

16
2

16
.3

16
80

1
3.

6
16

75
4

3
G

25
20

00
19

99
0

16
40

7
16

.2
N

/A
N

/A
16

66
1

14
1.

8
17

16
3

64
.8

16
79

5
2.

1
16

67
3

1.
8

G
26

20
00

19
99

0
16

42
2

15
.3

N
/A

N
/A

16
60

8
13

6.
3

17
15

4
44

.8
16

75
8

3.
1

16
66

5
2

G
27

20
00

19
99

0
32

50
16

.4
N

/A
N

/A
34

75
13

4.
3

40
20

53
.2

35
17

1.
7

35
32

2
G

28
20

00
19

99
0

31
98

16
.1

N
/A

N
/A

34
33

13
6.

4
39

73
38

.9
35

07
3

34
14

2.
1

G
29

20
00

19
99

0
33

24
16

.0
N

/A
N

/A
35

82
13

6.
2

41
06

68
.2

36
34

3.
4

35
96

2
G

30
20

00
19

99
0

33
20

16
.2

N
/A

N
/A

35
78

13
3.

6
41

19
15

0.
4

36
56

3.
1

36
54

3.
4

G
31

20
00

19
99

0
32

43
17

.0
N

/A
N

/A
34

39
13

1.
0

40
03

12
4.

7
35

96
3

35
25

2.
5

G
32

20
00

40
00

13
42

11
.1

N
/A

N
/A

15
45

12
9.

3
16

53
16

0.
1

14
88

2.
5

14
82

1.
7

G
33

20
00

40
00

12
84

10
.7

N
/A

N
/A

15
17

12
6.

2
16

25
62

.6
14

49
2.

5
14

54
2

G
34

20
00

40
00

12
92

10
.9

N
/A

N
/A

14
99

12
6.

0
16

07
88

.9
14

18
2.

4
14

35
1.

7
G

35
20

00
11

77
8

96
44

14
.2

N
/A

N
/A

98
16

13
8.

1
10

04
6

66
.2

92
25

2
95

36
1.

7

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Ta
bl

e
4:

C
on

tin
ue

d.

In
st

an
ce

|V
|

|E
|

M
D

G
e
n
e
t
i
c

B
Q
P

M
O
H

R
O
S
-
v
a
n
i
l
l
a

R
O
S

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

O
bj

.↑
Ti

m
e

(s
)↓

G
36

20
00

11
76

6
96

00
13

.6
N

/A
N

/A
97

86
13

8.
6

10
03

9
74

.3
93

72
2.

1
95

81
2.

3
G

37
20

00
11

78
5

96
32

14
.9

N
/A

N
/A

98
21

13
9.

2
10

05
2

3.
4

88
93

1.
4

94
22

1.
5

G
38

20
00

11
77

9
96

29
14

.0
N

/A
N

/A
97

75
14

2.
3

10
04

0
11

6.
6

94
89

2.
5

93
70

1.
5

G
39

20
00

11
77

8
23

68
13

.4
N

/A
N

/A
26

00
13

2.
8

29
03

9.
0

26
21

2.
5

25
57

2.
2

G
40

20
00

11
76

6
23

15
13

.3
N

/A
N

/A
25

68
13

1.
2

28
70

82
.8

24
74

2
25

24
2.

4
G

41
20

00
11

78
5

23
86

12
.7

N
/A

N
/A

26
06

12
9.

9
28

87
87

.7
25

21
3.

2
25

84
2.

5
G

42
20

00
11

77
9

24
90

13
.1

N
/A

N
/A

26
82

12
9.

2
29

80
2.

5
26

38
2.

7
26

13
2.

2
G

43
10

00
99

90
82

14
8.

1
76

24
92

6.
7

83
29

29
.9

85
73

38
0.

3
84

14
2.

6
83

49
2.

3
G

44
10

00
99

90
81

87
7.

0
76

17
91

9.
0

83
26

27
.7

85
71

61
6.

8
83

69
2.

6
83

11
1.

7
G

45
10

00
99

90
82

26
7.

7
76

02
92

6.
7

82
96

34
.2

85
66

18
6.

2
83

97
2.

9
83

42
1.

8
G

46
10

00
99

90
82

29
7.

5
76

35
91

8.
7

83
12

27
.8

85
68

21
5.

3
84

09
2.

6
83

39
1.

7
G

47
10

00
99

90
82

11
7.

2
76

19
92

8.
0

83
22

27
.3

85
72

23
9.

4
83

86
2.

6
83

57
2.

2
G

48
30

00
60

00
58

06
14

.7
N

/A
N

/A
59

98
39

4.
8

60
00

0.
4

59
54

2.
8

59
12

2
G

49
30

00
60

00
57

94
14

.4
N

/A
N

/A
59

98
40

4.
0

60
00

0.
9

59
38

2.
8

59
14

1.
8

G
50

30
00

60
00

58
23

14
.5

N
/A

N
/A

60
00

42
7.

1
60

00
11

9.
2

59
38

2.
9

59
18

1.
8

G
51

10
00

59
09

48
05

6.
6

45
82

88
9.

5
49

22
28

.6
50

37
47

.9
48

14
2.

4
48

20
1.

7
G

52
10

00
59

16
48

49
6.

4
45

71
90

8.
1

49
10

27
.8

50
40

0.
7

47
96

1.
9

48
66

1.
9

G
53

10
00

59
14

48
45

6.
8

45
68

89
8.

6
49

20
27

.6
50

39
22

3.
9

48
46

2.
6

48
08

1.
6

G
54

10
00

59
16

48
36

6.
4

45
62

91
1.

7
49

21
30

.1
50

36
13

4.
0

48
33

2.
2

47
85

1.
4

G
55

50
00

12
49

8
11

61
2

37
.9

N
/A

N
/A

12
04

2
15

06
.0

12
42

9
38

3.
1

12
01

0
2.

1
11

96
5

2.
6

G
56

50
00

12
49

8
37

16
38

.5
N

/A
N

/A
42

05
13

41
.5

47
52

56
9.

2
40

85
3.

3
40

37
2.

1
G

57
50

00
10

00
0

32
46

33
.0

N
/A

N
/A

38
17

13
17

.2
40

83
53

5.
6

35
97

3.
3

35
95

2.
8

G
58

50
00

29
57

0
24

09
9

47
.1

N
/A

N
/A

24
60

3
14

68
.3

25
19

5
57

6.
0

22
74

8
2.

1
23

27
4

1.
9

G
59

50
00

29
57

0
60

57
46

.3
N

/A
N

/A
66

31
13

77
.1

72
62

27
.5

61
33

1.
7

64
48

3.
5

G
60

70
00

17
14

8
15

99
3

58
.5

N
/A

N
/A

N
/A

N
/A

17
07

6
68

3.
0

16
46

7
2.

6
16

39
8

2.
3

G
61

70
00

17
14

8
53

74
57

.7
N

/A
N

/A
N

/A
N

/A
68

53
50

3.
1

58
81

2.
5

58
61

3.
6

G
62

70
00

14
00

0
44

97
49

.7
N

/A
N

/A
N

/A
N

/A
56

85
24

2.
4

49
83

3.
4

50
86

2.
7

G
63

70
00

41
45

9
33

86
1

73
.4

N
/A

N
/A

N
/A

N
/A

35
32

2
65

8.
5

32
86

8
4

31
92

6
1.

9
G

64
70

00
41

45
9

87
73

73
.4

N
/A

N
/A

N
/A

N
/A

10
44

3
18

6.
9

89
11

2.
8

91
71

2.
5

G
65

80
00

16
00

0
52

12
59

.6
N

/A
N

/A
N

/A
N

/A
64

90
32

4.
7

57
35

3.
5

57
75

2.
6

G
66

90
00

18
00

0
59

48
69

.0
N

/A
N

/A
N

/A
N

/A
74

16
54

2.
5

65
01

5.
4

66
10

3.
9

G
67

10
00

0
20

00
0

65
45

79
.0

N
/A

N
/A

N
/A

N
/A

80
86

75
6.

7
70

01
3.

5
72

59
4.

1
G

70
10

00
0

99
99

97
18

74
.8

N
/A

N
/A

N
/A

N
/A

99
99

7.
8

99
82

4.
2

99
71

2.
5

G
72

10
00

0
20

00
0

66
12

79
.2

N
/A

N
/A

N
/A

N
/A

81
92

27
1.

2
72

10
5.

1
72

97
3.

5
G

77
14

00
0

28
00

0
92

94
14

2.
3

N
/A

N
/A

N
/A

N
/A

11
57

8
15

4.
9

10
19

1
8.

6
10

32
9

8.
5

G
81

20
00

0
40

00
0

13
09

8
24

1.
1

N
/A

N
/A

N
/A

N
/A

16
32

1
33

1.
2

14
41

8
20

.2
14

46
4

9.
7

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

D EVALUATION ON GRAPH COLORING DATASET

To further verify the performance of ROS, we conduct numerical experiments on the publicly avail-
able COLOR dataset (three benchmark instances: anna, david, and huck). The COLOR dataset
provides dense problem instances with relatively large known chromatic numbers (χ ∼ 10), which
is suitable for testing the performance on Max-k-Cut tasks. As reported in Tables 5 and 6, ROS
achieves superior performances across nearly all settings with the least computational time (in sec-
onds).

Table 5: Objective values returned by each method on the COLOR dataset.

Methods anna david huck

k = 2 k = 3 k = 2 k = 3 k = 2 k = 3

MD 339 421 259 329 184 242
PI-GNN 322 - 218 - 170 -
ecord 351 - 267 - 191 -
ANYCSP 351 - 267 - 191 -
ROS 351 421 266 338 191 244

Table 6: Computational time for each method on the COLOR dataset.

Methods anna david huck

k = 2 k = 3 k = 2 k = 3 k = 2 k = 3

MD 2.75 2.08 2.78 2.79 2.62 2.82
PI-GNN 93.40 - 86.84 - 102.57 -
ecord 4.87 - 4.74 - 4.88 -
ANYCSP 159.35 - 138.14 - 127.36 -
ROS 1.21 1.23 1.18 1.15 1.11 1.10

E ABLATION STUDY

E.1 MODEL ABLATION

We conducted additional ablation studies to clarify the contributions of different modules.

Effect of Neural Networks: We consider two cases: (i) replace GNNs by multi-layer perceptrons
(denoted by ROS-MLP) in our ROS framework and (ii) solve the relaxation via mirror descent (de-
noted by MD). Experiments on the Gset dataset show that ROS consistently outperforms ROS-MLP
and MD, highlighting the benefits of using GNNs for the relaxation step.

Effect of Random Sampling: We compared ROS with PI-GNN, which employs heuristic round-
ing instead of our random sampling algorithm. Results indicate that ROS generally outperforms
PI-GNN, demonstrating the importance of the sampling procedure.

These comparisons, detailed in Tables 7 and 8, confirm that both the GNN-based optimization and
the random sampling algorithm contribute significantly to the overall performance.

E.2 SAMPLE EFFECT ABLATION

We investigated the effect of the number of sampling iterations and report the results in Tables 9, 10,
11, and 12.

Objective Value (Table 9, Table 11): The objective values stabilize after approximately 5 sampling
iterations, demonstrating strong performance without requiring extensive sampling.

Sampling Time (Table 10, Table 12): The time spent on sampling remains negligible compared to
the total computational time, even with an increased number of samples.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 7: Objective values returned by each method on Gset.

Methods G70 G72 G77 G81

k = 2 k = 3 k = 2 k = 3 k = 2 k = 3 k = 2 k = 3

ROS-MLP 8867 9943 6052 6854 8287 9302 12238 12298
PI-GNN 8956 – 4544 – 6406 – 8970 –

MD 8551 9728 5638 6612 7934 9294 11226 13098
ROS 8916 9971 6102 7297 8740 10329 12332 14464

Table 8: Computational time for each method on Gset.

Methods G70 G72 G77 G81

k = 2 k = 3 k = 2 k = 3 k = 2 k = 3 k = 2 k = 3

ROS-MLP 3.49 3.71 3.93 4.06 8.39 9.29 11.98 16.97
PI-GNN 34.50 – 253.00 – 349.40 – 557.70 –

MD 54.30 74.80 44.20 79.20 66.00 142.30 130.80 241.10
ROS 3.40 2.50 3.90 3.50 8.10 8.50 9.30 9.70

These results highlight the efficiency of our sampling method, achieving stable and robust perfor-
mance with little computational cost.

F COMPARISON AGAINST ADDITIONAL BASELINES ON GSET

We have conducted additional experiments comparing ROS against ANYCSP and ECORD on the
Gset benchmark for Max-Cut, focusing on both solution quality and computational efficiency. The
results are presented below.

Results on Gset (unweighted) with Edge Weights of ±1: Tables 13 and 14 present the comparison
of objective values and inference times for each method on unweighted Gset instances. Although
ANYCSP achieves marginally better objective values, its computational time is considerably longer.
ECORD, on the other hand, fails to generate competitive solutions. In contrast, our ROS framework
strikes an optimal balance, delivering high-quality solutions in a fraction of the time required by
ANYCSP.

Weighted Max-Cut has numerous applications, including but not limited to physics (De Simone
et al., 1995), power networks (Hojny et al., 2021), and data clustering (Poland & Zeugmann, 2006).
To demonstrate the capability of our ROS framework in solving general Max-k-Cut problems, we
evaluate the performance of ROS, ANYCSP, and ECORD in this context.

Results on Gset with Arbitrary Edge Weights. We modified the four largest Gset instances (G70,
G72, G77, and G81) to incorporate arbitrary edge weights. Specifically, we perturb the edge weights
uniformly within the range [−10%, 10%] for each Gset benchmark and generate 10 instances. The
averaged results, along with their standard deviations, summarized in Tables 15 and 16, reveal the
limitations of both ANYCSP and ECORD in this setting. ANYCSP fails to produce meaningful so-
lutions due to its CSP-based formulation, which overlooks edge weights, and ECORD again demon-
strates poor performance. In contrast, ROS consistently generates high-quality solutions while main-
taining computational efficiency, showcasing its robustness and versatility across different scenarios.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 9: Objective value results corresponding to the times of sample T on Gset.

T
G70 G72 G77 G81

k = 2 k = 3 k = 2 k = 3 k = 2 k = 3 k = 2 k = 3

1 8911 9968 6100 7305 8736 10321 12328 14460
5 8915 9969 6102 7304 8740 10326 12332 14462

10 8915 9971 6102 7305 8740 10324 12332 14459
25 8915 9971 6102 7307 8740 10326 12332 14460
50 8915 9971 6102 7307 8740 10327 12332 14461
100 8916 9971 6102 7308 8740 10327 12332 14462

Table 10: Sampling time results corresponding to the times of sample T on Gset.

T
G70 G72 G77 G81

k = 2 k = 3 k = 2 k = 3 k = 2 k = 3 k = 2 k = 3

1 0.0011 0.0006 0.0011 0.0006 0.0020 0.0010 0.0039 0.0020
5 0.0030 0.0029 0.0029 0.0030 0.0053 0.0053 0.0099 0.0098
10 0.0058 0.0059 0.0058 0.0058 0.0104 0.0104 0.0196 0.0196
25 0.0144 0.0145 0.0145 0.0145 0.0259 0.0260 0.0489 0.0489
50 0.0289 0.0289 0.0288 0.0289 0.0517 0.0518 0.0975 0.0977

100 0.0577 0.0577 0.0576 0.0578 0.1033 0.1037 0.1949 0.1953

Table 11: Objective value results corresponding to the times of sample T on random regular graphs.

T
n = 100 n = 1000 n = 10000

k = 2 k = 3 k = 2 k = 3 k = 2 k = 3

1 127 245 1293 2408 12856 24103
5 127 245 1293 2410 12863 24103

10 127 245 1293 2410 12862 24103
25 127 245 1293 2410 12864 24103
50 127 245 1293 2410 12864 24103
100 127 245 1293 2410 12864 24103

Table 12: Sampling time results corresponding to the times of sample T on random regular graphs.

T
n = 100 n = 1000 n = 10000

k = 2 k = 3 k = 2 k = 3 k = 2 k = 3

1 0.0001 0.0001 0.0001 0.0001 0.0006 0.0006
5 0.0006 0.0006 0.0007 0.0007 0.0030 0.0030

10 0.0011 0.0011 0.0014 0.0013 0.0059 0.0059
25 0.0026 0.0026 0.0033 0.0031 0.0145 0.0145
50 0.0052 0.0052 0.0065 0.0060 0.0289 0.0289

100 0.0103 0.0103 0.0128 0.0122 0.0577 0.0578

Table 13: Objective values returned by each method on Gset for k = 2.

Methods G70 G72 G77 G81

Ecord 5137 206 382 358
ANYCSP 9417 6826 9694 13684
ROS 8916 6102 8740 12332

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 14: Computational time for each method on Gset for k = 2.

Methods G70 G72 G77 G81

Ecord 1.4 1.2 1.7 2.4
ANYCSP 180.0 180.0 180.0 180.0
ROS 3.4 3.9 8.1 9.3

Table 15: Objective value on Gset with arbitrary edge weights for k = 2.

Methods G70 G72 G77 G81

Ecord 5154.28± 28.26 254.46± 37.22 344.79± 29.73 280.09± 33.11
ANYCSP 5198.87± 69.76 −15.57± 57.88 81.76± 69.97 33.49± 50.31
ROS 8941.80± 17.79 6165.62± 50.81 8737.59± 114.24 12325.85± 87.98

Table 16: Computational time comparison on Gset with arbitrary edge weights for k = 2.

Methods G70 G72 G77 G81

Ecord 3.39± 0.11 3.43± 0.12 3.89± 0.03 4.76± 0.05
ANYCSP 180.56± 0.08 180.52± 0.03 180.57± 0.11 180.68± 0.10
ROS 2.97± 0.56 4.32± 2.03 6.97± 3.58 9.24± 3.43

24

	Introduction
	Preliminaries
	Max-k-Cut Problems
	Graph Neural Networks

	A Relax-Optimize-and-Sample Framework
	Probability Simplex Relaxations
	Random Sampling
	GNN Parametrization-Based Optimization

	Experiments
	Experimental Settings
	Performance Comparison against Baselines
	 Computational Time
	Objective Value

	Effect of the "Pre-train" Stage in ROS

	Conclusions
	Proof of Theorem 1
	Proof of Theorem 2
	The Complete Results on Gset Instances
	Evaluation on graph coloring dataset
	Ablation Study
	Model Ablation
	Sample Effect Ablation

	Comparison Against Additional Baselines on Gset

