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ABSTRACT

The Max-k-Cut problem is a fundamental combinatorial optimization challenge
that generalizes the classic NP-complete Max-Cut problem. While relaxation
techniques are commonly employed to tackle Max-k-Cut, they often lack guar-
antees of equivalence between the solutions of the original problem and its relax-
ation. To address this issue, we introduce the Relax-Optimize-and-Sample (ROS)
framework. In particular, we begin by relaxing the discrete constraints to the con-
tinuous probability simplex form. Next, we pre-train and fine-tune a graph neural
network model to efficiently optimize the relaxed problem. Subsequently, we pro-
pose a sampling-based construction algorithm to map the continuous solution back
to a high-quality Max-k-Cut solution. By integrating geometric landscape analysis
with statistical theory, we establish the consistency of function values between the
continuous solution and its mapped counterpart. Extensive experimental results
on random regular graphs and the Gset benchmark demonstrate that the proposed
ROS framework effectively scales to large instances with up to 20, 000 nodes in
just a few seconds, outperforming state-of-the-art algorithms. Furthermore, ROS
exhibits strong generalization capabilities across both in-distribution and out-of-
distribution instances, underscoring its effectiveness for large-scale optimization
tasks.

1 INTRODUCTION

The Max-k-Cut problem involves partitioning the vertices of a graph into k disjoint subsets in such
a way that the total weight of edges between vertices in different subsets is maximized. This prob-
lem represents a significant challenge in combinatorial optimization and finds applications across
various fields, including telecommunication networks (Eisenblätter, 2002; Gui et al., 2018), data
clustering (Poland & Zeugmann, 2006; Ly et al., 2023), and theoretical physics (Cook et al., 2019;
Coja-Oghlan et al., 2022). The Max-k-Cut problem is known to be NP-complete, as it generalizes
the well-known Max-Cut problem, which is one of the 21 classic NP-complete problems identified
by Karp (2010).

Significant efforts have been made to develop methods for solving Max-k-Cut problems (Nath &
Kuhnle, 2024). Ghaddar et al. (2011) introduced an exact branch-and-cut algorithm based on semi-
definite programming, capable of handling graphs with up to 100 vertices. For larger instances, vari-
ous polynomial-time approximation algorithms have been proposed. Goemans & Williamson (1995)
addressed the Max-Cut problem by first solving a semi-definite relaxation to obtain a fractional so-
lution, then applying a randomization technique to convert it into a feasible solution, resulting in a
0.878-approximation algorithm. Building on this, Frieze & Jerrum (1997) extended the approach to
Max-k-Cut, offering feasible solutions with approximation guarantees. de Klerk et al. (2004) further
improved these guarantees, while Shinde et al. (2021) optimized memory usage. Despite their strong
theoretical performance, these approximation algorithms involve solving computationally intensive
semi-definite programs, rendering them impractical for large-scale Max-k-Cut problems. A vari-
ety of heuristic methods have been developed to tackle the scalability challenge. For the Max-Cut
problem, Burer et al. (2002) proposed rank-two relaxation-based heuristics, and Goudet et al. (2024)
introduced a meta-heuristic approach using evolutionary algorithms. For Max-k-Cut, heuristics such
as genetic algorithms (Li & Wang, 2016), greedy search (Gui et al., 2018), multiple operator heuris-
tics (Ma & Hao, 2017), and local search (Garvardt et al., 2023) have been proposed. While these
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Figure 1: The Relax-Optimize-and-Sample framework.

heuristics can handle much larger Max-k-Cut instances, they often struggle to balance efficiency and
solution quality.

Recently, machine learning techniques have gained attention for enhancing optimization algo-
rithms (Bengio et al., 2021; Gasse et al., 2022; Chen et al., 2024). Several studies, including Khalil
et al. (2017); Barrett et al. (2020); Chen et al. (2020); Barrett et al. (2022), framed the Max-Cut
problem as a sequential decision-making process, using reinforcement learning to train policy net-
works for generating feasible solutions. However, RL-based methods often suffer from extensive
sampling efforts and increased complexity in action space when extended to Max-k-Cut, and hence
entails significantly longer training and testing time. Karalias & Loukas (2020) focuses on subset
selection, including Max-Cut as a special case. It trains a graph neural network (GNN) to produce
a distribution over subsets of nodes of an input graph by minimizing a probabilistic penalty loss
function. After the network has been trained, a randomized algorithm is employed to sequentially
decode a valid Max-Cut solution from the learned distribution. A notable advancement by Schuetz
et al. (2022) reformulated Max-Cut as a quadratic unconstrained binary optimization (QUBO), re-
moving binarity constraints to create a differentiable loss function. This loss function was used to
train a GNN, followed by a simple projection onto integer variables after unsupervised training. The
key feature of this approach is solving the Max-Cut problem during the training phase, eliminat-
ing the need for a separate testing stage. Although this method can produce high-quality solutions
for Max-Cut instances with millions of nodes, the computational time remains significant due to
the need to optimize a parameterized GNN from scratch. The work of Tönshoff et al. (2022) first
formulated the Max-Cut problem as a constraint satisfaction problem and then proposed a novel
GNN-based reinforcement learning approach. This method outperforms prior neural combinatorial
optimization techniques and conventional search heuristics. However, to the best of our knowledge,
it is limited to unweighted Max-k-Cut problems.

In this work, we propose a GNN-based Relax-Optimize-and-Sample (ROS) framework for efficiently
solving the Max-k-Cut problem with arbitrary edge weights. The framework is depicted in Figure 1.
Initially, the Max-k-Cut problem is formulated as a discrete optimization task. To handle this,
we introduce probability simplex relaxations, transforming the discrete problem into a continuous
one. We then optimize the relaxed formulation by training parameterized GNNs in an unsupervised
manner. To further improve efficiency, we apply transfer learning, utilizing pre-trained GNNs to
warm-start the training process. Finally, we refine the continuous solution using a random sampling
algorithm, resulting in high-quality Max-k-Cut solutions.

The key contributions of our work are summarized as follows:

• Novel Framework. We propose a scalable ROS framework tailored to the weighted Max-
k-Cut problem with arbitrary signs, built on solving continuous relaxations using efficient
learning-based techniques.
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• Theoretical Foundations. We conduct a rigorous theoretical analysis of both the relaxation
and sampling steps. By integrating geometric landscape analysis with statistical theory, we
demonstrate the consistency of function values between the continuous solution and its
sampled discrete counterpart.

• Superior Performance. Comprehensive experiments on public benchmark datasets show
that our framework produces high-quality solutions for Max-k-Cut instances with up to
20, 000 nodes in just a few seconds. Our approach significantly outperforms state-of-the-art
algorithms, while also demonstrating strong generalization across various instance types.

2 PRELIMINARIES

2.1 MAX-k-CUT PROBLEMS

Let G = (V, E) represent an undirected graph with vertex set V and edge set E . Each edge (i, j) ∈ E
is assigned an arbitrary weight Wij ∈ R, which can have any sign. A cut in G refers to a partition
of its vertex set. The Max-k-Cut problem involves finding a k-partition (V1, . . . ,Vk) of the vertex
set V such that the sum of the weights of the edges between different partitions is maximized.

To represent this partitioning, we employ a k-dimensional one-hot encoding scheme. Specifically,
we define a k ×N matrix X ∈ Rk×N where each column represents a one-hot vector. The Max-k-
Cut problem can be formulated as:

max
X∈Rk×N

1

2

N∑
i=1

N∑
j=1

Wij

(
1−X⊤

·i X·j
)

s. t. X·j ∈ {e1, e2, . . . , ek} ∀j ∈ V,

(1)

where X·j denotes the jth column of X , W is a symmetric matrix with zero diagonal entries, and
eℓ ∈ Rk is a one-hot vector with the ℓth entry set to 1. This formulation aims to maximize the
total weight of edges between different partitions, ensuring that each node is assigned to exactly
one partition, represented by the one-hot encoded vectors. We remark that weighted Max-k-Cut
problems with arbitrary signs is a generalization of classic Max-Cut problems and arise in many
interesting applications (De Simone et al., 1995; Poland & Zeugmann, 2006; Hojny et al., 2021).

2.2 GRAPH NEURAL NETWORKS

GNNs are powerful tools for learning representations from graph-structured data. GNNs operate by
iteratively aggregating information from a node’s neighbors, enabling each node to capture increas-
ingly larger sub-graph structures as more layers are stacked. This process allows GNNs to learn
complex patterns and relationships between nodes, based on their local connectivity.

At the initial layer (l = 0), each node i ∈ V is assigned a feature vector h
(0)
i , which typically

originates from node features or labels. The representation of node i is then recursively updated at
each subsequent layer through a parametric aggregation function fΦ(l) , defined as:

h
(l)
i = fΦ(l)

(
h
(l−1)
i , {h(l−1)

j : j ∈ N (i)}
)
, (2)

where Φ(l) represents the trainable parameters at layer l, N (i) denotes the set of neighbors of node
i, and h

(l)
i is the node’s embedding at layer l for l ∈ {1, 2, · · · , L}. This iterative process enables

the GNN to propagate information throughout the graph, capturing both local and global structural
properties.

3 A RELAX-OPTIMIZE-AND-SAMPLE FRAMEWORK

In this work, we leverage continuous optimization techniques to tackle Max-k-Cut problems, intro-
ducing a novel ROS framework. Acknowledging the inherent challenges of discrete optimization,
we begin by relaxing the problem to probability simplices and concentrate on optimizing this relaxed
version. To achieve this, we propose a machine learning-based approach. Specifically, we model the
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relaxed problem using GNNs, pre-training the GNN on a curated graph dataset before fine-tuning
it on the specific target instance. After obtaining high-quality solutions to the relaxed continuous
problem, we employ a random sampling procedure to derive a discrete solution that preserves the
same objective value.

3.1 PROBABILITY SIMPLEX RELAXATIONS

To simplify the formulation of the problem (1), we remove constant terms and negate the objective
function, yielding an equivalent formulation expressed as follows:

min
X∈X

f(X;W ) := Tr(XWX⊤), (P)

where X :=
{
X ∈ Rk×N : X·j ∈ {e1, e2, . . . , ek},∀j ∈ V

}
. It is important to note that the matrix

W is indefinite due to its diagonal entries being set to zero.

Given the challenges associated with solving the discrete problem P, we adopt a naive relaxation
approach, obtaining the convex hull of X as the Cartesian product of N k-dimensional probability
simplices, denoted by ∆N

k . Consequently, the discrete problem P is relaxed into the following
continuous optimization form:

min
X∈∆N

k

f(X;W ). (P)

Before optimizing problem P, we will characterize its geometric landscape. To facilitate this, we
introduce the following definition.

Definition 1. Let X denote a point in ∆N
k . We define the neighborhood induced by X as follows:

N (X) :=

{
X ∈ ∆N

k

∣∣∣∣∣
∑

i∈K(X·j)

Xij = 1, ∀j ∈ V
}
,

where K(X ·j) := {i ∈ {1, . . . , k} | Xij > 0}.

The set N (X) represents a neighborhood around X , where each point in N (X) can be derived by
allowing each non-zero entry of the matrix X to vary freely, while the other entries are set to zero.
Utilizing this definition, we can establish the following theorem.

Theorem 1. Let X denote a globally optimal solution to P, and let N (X) be its induced neighbor-
hood. Then

f(X;W ) = f(X;W ), ∀X ∈ N (X).

Theorem 1 states that for a globally optimal solution X , every point within its neighborhood N (X)
shares the same objective value as X , thus forming a basin in the geometric landscape of f(X;W ).
If X ∈ X (i.e., an integer solution), then N (X) reduces to the singleton set

{
X
}

. Conversely, if
X /∈ X , there exist

∏
j∈V |K(X ·j)| unique integer solutions within N (X) that maintain the same

objective value as X . This indicates that once a globally optimal solution to the relaxed problem P
is identified, it becomes straightforward to construct an optimal solution for the original problem P
that preserves the same objective value.

According to Carlson & Nemhauser (1966), among all globally optimal solutions to the relaxed
problem P, there is always at least one integer solution. Theorem 1 extends this result, indicating
that if the globally optimal solution is fractional, we can provide a straightforward and efficient
method to derive its integer counterpart. We remark that it is highly non-trivial to guarantee that the
feasible Max-k-Cut solution obtained from the relaxation one has the same quality.

Example. Consider a Max-Cut problem (k = 2) associated with the weight matrix W . We optimize
its relaxation and obtain the optimal solution X⋆.

W :=

(
0 1 1
1 0 1
1 1 0

)
,X⋆ :=

(
p 1 0

1− p 0 1

)
,

4
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where p ∈ [0, 1]. From the neighborhood N (X), We can identify the following integer solutions
that maintain the same objective value.

X⋆
1 =

(
0 1 0
1 0 1

)
,X⋆

2 =

(
1 1 0
0 0 1

)
.

Given that P is a non-convex program, identifying its global minimum is challenging. Consequently,
the following two critical questions arise.

Q1. Since solving P to global optimality is NP-hard, how to efficiently optimize P for high-
quality solutions?

Q2. Given X ∈ ∆N
k \ X as a high-quality solution to P, can we construct a feasible solution

X̂ ∈ X to P such that f(X̂;W ) = f(X;W )?

We provide a positive answer to Q2 in Section 3.2, while our approach to addressing Q1 is deferred
to Section 3.3.

3.2 RANDOM SAMPLING

Let X ∈ ∆N
k \ X be a feasible solution to the relaxation P. Our goal is to construct a feasible

solution X ∈ X for the original problem P, ensuring that the corresponding objective values are
equal. Inspired by Theorem 1, we propose a random sampling procedure, outlined in Algorithm 1.
In this approach, we sample each column X·i of the matrix X from a categorical distribution char-
acterized by the event probabilities X ·i (denoted as Cat(x;p = X ·i) in Step 3 of Algorithm 1).
This randomized approach yields a feasible solution X̂ for P. However, since Algorithm 1 incorpo-
rates randomness in generating X̂ from X , the value of f(X̂;W ) becomes random as well. This
raises the critical question: is this value greater or lesser than f(X;W )? We address this question
in Theorem 2.

Algorithm 1 Random Sampling

1: Input: X ∈ ∆N
k ▷ any feasible solution to P

2: for i = 1 to N do ▷ each dimension is independent
3: X̂·i ∼ Cat(x;p = X ·i) ▷ sampling from a categorical distribution
4: end for
5: Output: X̂ ∈ X ▷ a feasible solution to P

Theorem 2. Let X and X̂ denote the input and output of Algorithm 1, respectively. Then, we have
EX̂ [f(X̂;W )] = f(X;W ).

Theorem 2 states that f(X̂;W ) is equal to f(X;W ) in expectation. This implies that the random
sampling procedure operates on a fractional solution, yielding Max-k-Cut feasible solutions with
the same objective values in a probabilistic sense. While the Lovász-extension-based method (Bach
et al., 2013) also offers a framework for continuous relaxation, achieving similar theoretical results
for arbitrary k and edge weights Wi,j ∈ R is not always guaranteed. In practice, we execute
Algorithm 1 T times and select the solution with the lowest objective value as our best result. We
remark that the theoretical interpretation in Theorem 2 distinguishes our sampling algorithm from
the existing ones in the literature (Toenshoff et al., 2021; Karalias & Loukas, 2020).

3.3 GNN PARAMETRIZATION-BASED OPTIMIZATION

To solve the problem P, we propose an efficient learning-to-optimize (L2O) method based on GNN
parametrization. This approach reduces the laborious iterations typically required by classical opti-
mization methods (e.g., mirror descent). Additionally, we introduce a “pre-train + fine-tune” strat-
egy, where the model is endowed with prior graph knowledge during the pre-training phase, signifi-
cantly decreasing the computational time required to optimize P.
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GNN Parametrization. The Max-k-Cut problem can be framed as a node classification task, allow-
ing us to leverage GNNs to aggregate node features, and obtain high-quality solutions. Initially, we
assign a random embedding h

(0)
i to each node i in the graph G, as defined in Section 2. We adopt

the GNN architecture proposed by Morris et al. (2019), utilizing an L-layer GNN with updates at
layer l defined as follows:

h
(l)
i := σ

Φ
(l)
1 h

(l−1)
i +Φ

(l)
2

∑
j∈N (i)

wjih
(l−1)
j

 ,

where σ(·) is an activation function, and Φ
(l)
1 and Φ

(l)
2 are the trainable parameters at layer l for

l ∈ {1, . . . , L}. This formulation facilitates efficient learning of node representations by leveraging
both node features and the underlying graph structure. After processing through L layers of GNN,
we obtain the final output H(L)

Φ := [h
(L)
1 , . . . ,h

(L)
N ] ∈ Rk×N . A softmax activation function is then

applied in the last layer to ensure H
(L)
Φ ∈ ∆N

k , making the final output feasible for P .

“Pre-train + Fine-tune” Optimization. We propose a “pre-train + fine-tune” framework for learn-
ing the trainable weights of GNNs. Initially, the model is trained on a collection of pre-collected
datasets to produce a pre-trained model. Subsequently, we fine-tune this pre-trained model for each
specific problem instance. This approach equips the model with prior knowledge of graph structures
during the pre-training phase, significantly reducing the overall solving time. Furthermore, it allows
for out-of-distribution generalization due to the fine-tuning step.

The trainable parameters Φ := (Φ
(1)
1 ,Φ

(1)
2 , . . . ,Φ

(L)
1 ,Φ

(L)
2 ) in the pre-training phase are optimized

using the Adam optimizer with random initialization, targeting the objective

min
Φ

Lpre-training(Φ) :=
1

M

M∑
m=1

f(H
(L)
Φ ;W

(m)
train ),

where D := {W (1)
train, . . . ,W

(M)
train } represents the pre-training dataset. In the fine-tuning phase, for a

problem instance represented by Wtest, the Adam optimizer seeks to solve

min
Φ

Lfine-tuning(Φ) := f(H
(L)
Φ ;Wtest),

initialized with the pre-trained parameters.

Moreover, to enable the GNN model to fully adapt to specific problem instances, the pre-training
phase can be omitted, enabling the model to be directly trained and tested on the same instance.
While this direct approach may necessitate more computational time, it often results in improved
performance regarding the objective function. Consequently, users can choose to include a pre-
training phase based on the specific requirements of their application scenarios.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

We compare the performance of ROS against traditional methods and L2O algorithms for solving
the Max-k-Cut problem. Additionally, we assess the impact of the “Pre-train” stage in the GNN
parametrization-based optimization. The source code is available at https://anonymous.
4open.science/r/ROS_anonymous-1C88/.

Baseline Algorithms. We denote our proposed algorithms by ROS and compare them against both
traditional algorithms and learning-based methods. When the pre-training step is skipped, we refer
to our algorithm as ROS-vanilla. The following traditional Max-k-Cut algorithms are considered
as baselines: (i) GW (Goemans & Williamson, 1995): an method with a 0.878-approximation guaran-
tee based on semi-definite relaxation; (ii) BQP (Gui et al., 2018): a local search method designed for
binary quadratic programs; (iii) Genetic (Li & Wang, 2016): a genetic algorithm specifically for
Max-k-Cut problems; (iv) MD: a mirror descent algorithm that addresses the relaxed problem P with
a convergence tolerance at 10−8 and adopts the same random sampling procedure; (v) LPI (Goudet
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Figure 2: The computational time comparison of Max-k-Cut problems.

et al., 2024): an evolutionary algorithm featuring a large population organized across different is-
lands; (vi) MOH (Ma & Hao, 2017): a heuristic algorithm based on multiple operator heuristics,
employing various distinct search operators within the search phase. (vii) Rank2 (Burer et al.,
2002): a heuristic based on rank-2 relaxation. For the L2O method, we primarily examine the
state-of-the-art baseline: (viii) PI-GNN (Schuetz et al., 2022): A cutting-edge L2O method capable
of solving QUBO problems in dozens of seconds, delivering commendable performance. It is the
first method to eliminate the dependence on large, labeled training datasets typically required by
supervised learning approaches.

Datasets. The datasets utilized in this paper comprise random regular graphs from Schuetz et al.
(2022) and the Gset benchmark from Ye (2003). For the random regular graphs, we employ the
random_regular_graph from the NetworkX library (Hagberg et al., 2008) to generate r-
regular graphs, which are undirected graphs in which all nodes have a degree of r, with all edge
weights equal to 1. The Gset benchmark is constructed using a machine-independent graph gen-
erator, encompassing toroidal, planar, and randomly weighted graphs with vertex counts ranging
from 800 to 20, 000 and edge densities between 2% and 6%. The edge weights in these graphs are
constrained to values of 1, 0, or −1. Specifically, the training dataset includes 500 3-regular graphs
and 500 5-regular graphs, each containing 100 nodes, tailored for the cases where k = 2 and k = 3,
respectively. The testing set for random regular graphs consists 20 3-regular graphs and 20 5-regular
graphs for both k = 2 and k = 3 tasks, with node counts of 100, 1, 000, and 10, 000, respectively.
Moreover, the testing set of Gset encompasses all instances included in the Gset benchmark.

Model Settings. ROS is designed as a two-layer GNN, with both the input and hidden dimensions
set to 100. To address the issue of gradient vanishing, we apply a graph normalization technique as
proposed by Cai et al. (2021). The ROSmodel undergoes pre-training using the Adam optimizer with
a learning rate of 10−2 for one epoch. During the fine-tuning stage, the model is further optimized
using the same Adam optimizer and learning rate of 10−2. An early stopping strategy is employed,
with a tolerance of 10−2 and a patience of 100 iterations, terminating training if no improvement
is observed over this duration. Finally, in the random sampling stage, we execute Algorithm 1 for
T = 100 independent trials and return the best solution obtained.

Evaluation Configuration. All our experiments were conducted on an NVIDIA RTX 3090 GPU,
using Python 3.8.19 and PyTorch 2.2.0.

4.2 PERFORMANCE COMPARISON AGAINST BASELINES

4.2.1 COMPUTATIONAL TIME

We evaluated the performance of ROS against baseline algorithms GW, BQP, Genetic, MD, and
PI-GNN on random regular graphs, focusing on computational time for both the Max-Cut and Max-
3-Cut tasks. The experiments were conducted across three problem sizes: N = 100, N = 1,000,
and N = 10,000, as illustrated in Figure 2a. Additionally, Figure 2b compares the scalable methods
MD, Rank2, and PI-GNN on problem instances from the Gset benchmark with N ≥ 10,000. “N/A”
denotes a failure to return a solution within 30 minutes. A comprehensive summary of the results for
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Table 1: Objective value comparison of Max-k-Cut problems on random regular graphs.

Methods N=100 N=1,000 N=10,000

k = 2 k = 3 k = 2 k = 3 k = 2 k = 3

GW 130.20±2.79 – N/A – N/A –
BQP 131.55±2.42 239.70±1.82 1324.45±6.34 2419.15±6.78 N/A N/A

Genetic 127.55±2.82 235.50±3.15 1136.65±10.37 2130.30±8.49 N/A N/A
MD 127.20±2.16 235.50±3.29 1250.35±11.21 2344.85±9.86 12428.85±26.13 23341.20±32.87

PI-GNN 122.75±4.36 – 1263.95±21.59 – 12655.05±94.25 –
ROS 128.20±2.82 240.30±2.59 1283.75±6.89 2405.75±5.72 12856.85±26.50 24085.95±21.88

Table 2: Objective value comparison of Max-k-Cut problems on Gset instances.

Methods G70 (N=10,000) G72 (N=10,000) G77 (N=14,000) G81 (N=20,000)

k = 2 k = 3 k = 2 k = 3 k = 2 k = 3 k = 2 k = 3

MD 8551 9728 5638 6612 7934 9294 11226 13098
Rank2 9529 – 6820 – 9670 – 13662 –
PI-GNN 8956 – 4544 – 6406 – 8970 –
ROS 8916 9971 6102 7297 8740 10329 12332 14464

all Gset instances on Max-Cut and Max-3-Cut, including comparisons with state-of-the-art methods
LPI and MOH, is presented in Table 3 and Table 4 in the Appendix.

The results depicted in Figure 2a indicate that ROS efficiently solves all problem instances within
seconds, even for large problem sizes of N = 10, 000. In terms of baseline performance, the
approximation algorithm GW performs efficiently on instances with N = 100, but it struggles with
larger sizes such as N = 1, 000 and N = 10, 000 due to the substantial computational burden
associated with solving the underlying semi-definite programming problem. Heuristic methods such
as BQP and Genetic can manage cases up to N = 1, 000 in a few hundred seconds, yet they
fail to solve larger instances with N = 10, 000 because of the high computational cost of each
iteration. Notably, MD is the only method capable of solving large instances within a reasonable
time frame; however, when N reaches 10, 000, the computational time for MD approaches 15 times
that of ROS. Regarding learning-based methods, PI-GNN necessitates retraining and prediction for
each test instance, with test times exceeding dozens of seconds even for N = 100. In contrast, ROS
solves these large instances in merely a few seconds. Throughout the experiments, ROS consistently
completes its tasks in under 10 seconds, requiring only 10% of the computational time utilized by
PI-GNN. Figure 2b illustrates the results for the Gset benchmark, where ROS efficiently solves the
largest instances in just a few seconds, while other methods, such as Rank2, take tens to hundreds
of seconds for equivalent tasks. Remarkably, ROS utilizes only about 1% of the computational time
required by PI-GNN.

4.2.2 OBJECTIVE VALUE

We also evaluate the performance of ROS on random regular graphs and the Gset benchmark con-
cerning the objective values of Problem (1). The results for the random regular graphs and Gset are
presented in Tables 1 and 2, respectively. Note that “–” indicates that the method is unable to handle
Max-k-Cut problems.

The results for random regular graphs, presented in Table 1, indicate that ROS effectively addresses
both k = 2 and k = 3 cases, producing high-quality solutions even for large-scale problem in-
stances. In contrast, traditional methods such as GW and the L2O method PI-GNN are restricted to
k = 2 and fail to generalize to the general k, i.e., k = 3. While GW achieves high-quality solu-
tions for the Max-Cut problem with an instance size of N = 100, it cannot generalize to arbitrary
k without integrating additional randomized algorithms to yield discrete solutions. Similarly, the
L2O method PI-GNN cannot manage k = 3 because the Max-k-Cut problem cannot be modeled
as a QUBO problem. Furthermore, its heuristic rounding lacks theoretical guarantees, which results
in sub-optimal performance regarding objective function values. Traditional methods such as BQP

8
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(b) Gset

Figure 3: The ratio of computational time and objective value comparison of Max-k-Cut problems
between ROS-vanilla and ROS.

and Genetic can accommodate k = 3, but they often become trapped in sub-optimal solutions.
Among all the baselines, only MD can handle general k while producing solutions of comparable
quality to ROS. However, MD consistently exhibits inferior performance compared to ROS across
all experiments. The results for the Gset benchmark, shown in Table 2, offer similar insights: ROS
demonstrates better generalizability compared to the traditional Rank2method and the L2O method
PI-GNN. Moreover, ROS yields higher-quality solutions than MD in terms of objective function val-
ues.

4.3 EFFECT OF THE “PRE-TRAIN” STAGE IN ROS

To evaluate the impact of the pre-training stage in ROS, we compared it with ROS-vanilla, a
variant that omits the pre-training phase (see Section 3.3). We assessed both methods based on
objective function values and computational time. Figure 3 illustrates the ratios of these metrics be-
tween ROS-vanilla and ROS. In this figure, the horizontal axis represents the problem instances,
while the left vertical axis (green bars) displays the ratio of objective function values, and the right
vertical axis (red curve) indicates the ratio of computational times.

As shown in Figure 3a, during experiments on regular graphs, ROS-vanilla achieves higher
objective function values in most settings; however, its computational time is approximately 1.5
times greater than that of ROS. Thus, ROS demonstrates a faster solving speed compared to
ROS-vanilla. Similarly, in experiments conducted on the Gset benchmark (Figure 3b), ROS
reduces computational time by around 40% while maintaining performance comparable to that of
ROS-vanilla. Notably, in the Max-3-Cut problem for the largest instance, G81, ROS effectively
halves the solving time, showcasing the significant acceleration effect of pre-training. It is worth
mentioning that the ROS model was pre-trained on random regular graphs with N = 100 and gen-
eralized well to regular graphs with N = 1,000 and N = 10,000, as well as to Gset problem
instances of varying sizes and types. This illustrates ROS’s capability to generalize and accelerate
the solving of large-scale problems across diverse graph types and sizes, emphasizing the strong
out-of-distribution generalization afforded by pre-training.

In summary, while ROS-vanilla achieves slightly higher objective function values on individual
instances, it requires longer solving times and struggles to generalize to other problem instances.
This observation highlights the trade-off between a model’s ability to generalize and its capacity to
fit specific instances. Specifically, a model that fits individual instances exceptionally well may fail
to generalize to new data, resulting in longer solving times. Conversely, a model that generalizes
effectively may exhibit slightly weaker performance on specific instances, leading to a marginal
decrease in objective function values. Therefore, the choice between these two training modes
should be guided by the specific requirements of the application.

5 CONCLUSIONS

In this paper, we propose ROS, an efficient method for addressing the Max-k-Cut problem with
any arbitrary edge weights. Our approach begins by relaxing the constraints of the original dis-

9
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crete problem to probabilistic simplices. To effectively solve this relaxed problem, we propose an
optimization algorithm based on GNN parametrization and incorporate transfer learning by lever-
aging pre-trained GNNs to warm-start the training process. After resolving the relaxed problem,
we present a novel random sampling algorithm that maps the continuous solution back to a discrete
form. By integrating geometric landscape analysis with statistical theory, we establish the consis-
tency of function values between the continuous and discrete solutions. Experiments conducted on
random regular graphs and the Gset benchmark demonstrate that our method is highly efficient for
solving large-scale Max-k-Cut problems, requiring only a few seconds, even for instances with tens
of thousands of variables. Furthermore, it exhibits robust generalization capabilities across both
in-distribution and out-of-distribution instances, highlighting its effectiveness for large-scale opti-
mization tasks. Exploring other sampling algorithms to further boost ROS performance is a future
research direction. Moreover, the ROS framework with theoretical insights could be potentially ex-
tended to other graph-related combinatorial problems, and this direction is also worth investigating
as future work.
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A PROOF OF THEOREM 1

Proof. Before proceeding with the proof of Theorem 1, we first define the neighborhood of a vector
x̄ ∈ ∆k, and establish results of Lemma 1 and Lemma 2.

Definition 2. Let x̄ = (x̄1, · · · , x̄k) denote a point in ∆k. We define the neighborhood induced by
x̄ as follows:

Ñ (x̄) :=

(x1, · · · ,xk) ∈ ∆k

∣∣∣∣∣∣
∑

j∈K(x̄)

xj = 1

 ,

where K(x̄) = {j ∈ {1, · · · , k} | x̄j > 0}.

Lemma 1. Given X·i ∈ Ñ (X ·i), it follows that

K(X·i) ⊆ K(X ·i).

Proof. Suppose there exists j ∈ K(X·i) such that j /∈ K(X ·i), implying Xji > 0 and Xji = 0.

We then have ∑
l∈K(X·i)

Xli +Xji ≤
k∑

l=1

Xli = 1,

which leads to ∑
l∈K(X·i)

Xli ≤ 1−Xji < 1,

contradicting with the fact that X·i ∈ Ñ (X ·i).

Lemma 2. Let X be a globally optimal solution to P, then

f(X;W ) = f(X;W ),

where X has only the ith column X·i ∈ Ñ (X ·i), and other columns are identical to those of X .
Moreover, X is also a globally optimal solution to P̄ .

Proof. The fact that X is a globally optimal solution to P̄ follows directly from the equality
f(X;W ) = f(X;W ). Thus, it suffices to prove this equality. Consider that X and X differ
only in the ith column, and X·i ∈ Ñ (X ·i). We can rewrite the objective value function as

f(X;W ) = g(X·i;X·−i) + h(X·−i),

where X·−i represents all column vectors of X except the ith column. The functions g and h are
defined as follows:

g(X·i;X·−i) =

N∑
j=1

WijX
⊤
·i X·j +

N∑
j=1

WjiX
⊤
·jX·i −WiiX

⊤
·i X·i,

h(X·−i) =

N∑
l=1,l ̸=i

N∑
j=1,j ̸=i

WljX
⊤
·l X·j

To establish that f(X;W ) = f(X;W ), it suffices to show that

g(X·i;X·−i) = g(X ·i;X·−i)

as X·−i = X ·−i.
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Rewriting g(X·i;X·−i), we obtain

g(X·i;X·−i) =

N∑
j=1

WijX
⊤
·i X·j +

N∑
j=1

WjiX
⊤
·jX·i

= 2

N∑
j=1

WijX
⊤
·i X·j

= 2X⊤
·i

N∑
j=1,j ̸=i

WijX·j

= 2X⊤
·i Y·i,

where Y·i :=
∑N

j=1,j ̸=i WijX·j .

If |K(X ·i)| = 1, then there is only one non-zero element in X ·i equal to one. Therefore,
g(X ·i;X·−i) = g(X·i;X·−i) since X·i = X ·i.

For the case where |K(X ·i)| > 1, we consider any indices j, l ∈ K(X ·i) such that Xji,X li > 0.
Then, there exists ϵ > 0 such that we can construct a point x̃ ∈ ∆k where the jth element is set to
Xji − ϵ, the lth element is set to X li + ϵ, and all other elements remain the same as in X ·i. Since
X is a globally optimum of the function f(X;W ), it follows that X ·i is also a global optimum for
the function g(X ·i;X·−i). Thus, we have

g(X ·i;X·−i) ≤ g(x̃;X·−i)

X
⊤
·iY·i ≤ x̃⊤Y·i

= X
⊤
·iY·i − ϵYji + ϵYli,

which leads to the inequality

Yji ≤ Yli. (3)

Next, we can similarly construct another point x̂ ∈ ∆k with its jth element equal to Xji + ϵ, the
kth element equal to Xki − ϵ, and all other elements remain the same as in X ·i. Subsequently, we
can also derive that

g(X ·i;X·−i) ≤ g(x̂;X·−i)

= X
⊤
·iY·i + ϵYji − ϵYli,

which leads to another inequality

Yli ≤ Yji. (4)

Consequently, combined inequalities (3) and (4), we have

Yji = Yli,

for j, l ∈ K(X ·i).

From this, we can deduce that

Yj1i = Yj2i = · · · = Yj|K(X·i)|
i = t,

where j1, · · · , j|K(X·i)| ∈ K(X ·i).
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Next, we find that

g(X ·i;X·−i) = 2X
⊤
·iY·i

= 2

k∑
j=1

XjiYji

= 2

N∑
j=1,j∈K(X·i)

XjiYji

= 2t

N∑
j=1,j∈K(X·i)

Xji

= 2t.

Similarly, we have

g(X·i;X·−i) = 2X⊤
·i Y·i

= 2

k∑
j=1

XjiYji

= 2
∑

j=1,j∈K(X·i)

XjiYji

Lemma 1
= 2t

∑
j=1,j∈K(X·i)

Xji

= 2t

= g(X ·i)

Accordingly, we conclude that

g(X·i;X·−i) = g(X ·i;X·−i),

which leads us to the result

f(X;W ) = f(X;W ),

where X·i ∈ Ñ (X ·i), X·−i = X ·−i.

Accordingly, for any X ∈ N (X), we iteratively apply Lemma 2 to each column of X while holding
the other columns fixed, thereby proving Theorem 1.

B PROOF OF THEOREM 2

Proof. Based on X , we can construct the random variable X̃ , where X̃·i ∼ Cat(x;p = X ·i). The
probability mass function is given by

P(X̃·i = eℓ) = Xℓi, (5)

where ℓ = 1, · · · , k.
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Next, we have

EX̃ [f(X̃;W )] = EX̃ [X̃WX̃⊤] = EX̃ [

N∑
i=1

N∑
j=1

WijX̃
⊤
·i X̃·j ]

=

N∑
i=1

N∑
j=1

WijEX̃·iX̃·j
[X̃⊤

·i X̃·j ]

=

N∑
i=1

N∑
j=1

WijEX̃·iX̃·j
[1(X̃·i = X̃·j)]

=

N∑
i=1

N∑
j=1

WijP(X̃·i = X̃·j)

=

N∑
i=1

N∑
j=1,j ̸=i

WijP(X̃·i = X̃·j). (6)

Since X̃·i and X̃·j are independent for i ̸= j, we have

P(X̃·i = X̃·j) =

k∑
ℓ=1

P(X̃·i = X̃·j = eℓ)

=

k∑
ℓ=1

P(X̃·i = eℓ, X̃·j = eℓ)

=

k∑
ℓ=1

P(X̃·i = eℓ)P(X̃·j = eℓ)

=

k∑
ℓ=1

XℓiXℓj

= X
⊤
·iX ·j . (7)

Substitute (7) into (6), we obtain

EX̃ [f(X̃;W )] =
N∑
i=1

N∑
j=1

WijX
⊤
·iX ·j = f(X;W ). (8)

C THE COMPLETE RESULTS ON GSET INSTANCES
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D EVALUATION ON GRAPH COLORING DATASET

To further verify the performance of ROS, we conduct numerical experiments on the publicly avail-
able COLOR dataset (three benchmark instances: anna, david, and huck). The COLOR dataset
provides dense problem instances with relatively large known chromatic numbers (χ ∼ 10), which
is suitable for testing the performance on Max-k-Cut tasks. As reported in Tables 5 and 6, ROS
achieves superior performances across nearly all settings with the least computational time (in sec-
onds).

Table 5: Objective values returned by each method on the COLOR dataset.

Methods anna david huck

k = 2 k = 3 k = 2 k = 3 k = 2 k = 3

MD 339 421 259 329 184 242
PI-GNN 322 - 218 - 170 -
ecord 351 - 267 - 191 -
ANYCSP 351 - 267 - 191 -
ROS 351 421 266 338 191 244

Table 6: Computational time for each method on the COLOR dataset.

Methods anna david huck

k = 2 k = 3 k = 2 k = 3 k = 2 k = 3

MD 2.75 2.08 2.78 2.79 2.62 2.82
PI-GNN 93.40 - 86.84 - 102.57 -
ecord 4.87 - 4.74 - 4.88 -
ANYCSP 159.35 - 138.14 - 127.36 -
ROS 1.21 1.23 1.18 1.15 1.11 1.10

E ABLATION STUDY

E.1 MODEL ABLATION

We conducted additional ablation studies to clarify the contributions of different modules.

Effect of Neural Networks: We consider two cases: (i) replace GNNs by multi-layer perceptrons
(denoted by ROS-MLP) in our ROS framework and (ii) solve the relaxation via mirror descent (de-
noted by MD). Experiments on the Gset dataset show that ROS consistently outperforms ROS-MLP
and MD, highlighting the benefits of using GNNs for the relaxation step.

Effect of Random Sampling: We compared ROS with PI-GNN, which employs heuristic round-
ing instead of our random sampling algorithm. Results indicate that ROS generally outperforms
PI-GNN, demonstrating the importance of the sampling procedure.

These comparisons, detailed in Tables 7 and 8, confirm that both the GNN-based optimization and
the random sampling algorithm contribute significantly to the overall performance.

E.2 SAMPLE EFFECT ABLATION

We investigated the effect of the number of sampling iterations and report the results in Tables 9, 10,
11, and 12.

Objective Value (Table 9, Table 11): The objective values stabilize after approximately 5 sampling
iterations, demonstrating strong performance without requiring extensive sampling.

Sampling Time (Table 10, Table 12): The time spent on sampling remains negligible compared to
the total computational time, even with an increased number of samples.
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Table 7: Objective values returned by each method on Gset.

Methods G70 G72 G77 G81

k = 2 k = 3 k = 2 k = 3 k = 2 k = 3 k = 2 k = 3

ROS-MLP 8867 9943 6052 6854 8287 9302 12238 12298
PI-GNN 8956 – 4544 – 6406 – 8970 –

MD 8551 9728 5638 6612 7934 9294 11226 13098
ROS 8916 9971 6102 7297 8740 10329 12332 14464

Table 8: Computational time for each method on Gset.

Methods G70 G72 G77 G81

k = 2 k = 3 k = 2 k = 3 k = 2 k = 3 k = 2 k = 3

ROS-MLP 3.49 3.71 3.93 4.06 8.39 9.29 11.98 16.97
PI-GNN 34.50 – 253.00 – 349.40 – 557.70 –

MD 54.30 74.80 44.20 79.20 66.00 142.30 130.80 241.10
ROS 3.40 2.50 3.90 3.50 8.10 8.50 9.30 9.70

These results highlight the efficiency of our sampling method, achieving stable and robust perfor-
mance with little computational cost.

F COMPARISON AGAINST ADDITIONAL BASELINES ON GSET

We have conducted additional experiments comparing ROS against ANYCSP and ECORD on the
Gset benchmark for Max-Cut, focusing on both solution quality and computational efficiency. The
results are presented below.

Results on Gset (unweighted) with Edge Weights of ±1: Tables 13 and 14 present the comparison
of objective values and inference times for each method on unweighted Gset instances. Although
ANYCSP achieves marginally better objective values, its computational time is considerably longer.
ECORD, on the other hand, fails to generate competitive solutions. In contrast, our ROS framework
strikes an optimal balance, delivering high-quality solutions in a fraction of the time required by
ANYCSP.

Weighted Max-Cut has numerous applications, including but not limited to physics (De Simone
et al., 1995), power networks (Hojny et al., 2021), and data clustering (Poland & Zeugmann, 2006).
To demonstrate the capability of our ROS framework in solving general Max-k-Cut problems, we
evaluate the performance of ROS, ANYCSP, and ECORD in this context.

Results on Gset with Arbitrary Edge Weights. We modified the four largest Gset instances (G70,
G72, G77, and G81) to incorporate arbitrary edge weights. Specifically, we perturb the edge weights
uniformly within the range [−10%, 10%] for each Gset benchmark and generate 10 instances. The
averaged results, along with their standard deviations, summarized in Tables 15 and 16, reveal the
limitations of both ANYCSP and ECORD in this setting. ANYCSP fails to produce meaningful so-
lutions due to its CSP-based formulation, which overlooks edge weights, and ECORD again demon-
strates poor performance. In contrast, ROS consistently generates high-quality solutions while main-
taining computational efficiency, showcasing its robustness and versatility across different scenarios.
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Table 9: Objective value results corresponding to the times of sample T on Gset.

T
G70 G72 G77 G81

k = 2 k = 3 k = 2 k = 3 k = 2 k = 3 k = 2 k = 3

1 8911 9968 6100 7305 8736 10321 12328 14460
5 8915 9969 6102 7304 8740 10326 12332 14462

10 8915 9971 6102 7305 8740 10324 12332 14459
25 8915 9971 6102 7307 8740 10326 12332 14460
50 8915 9971 6102 7307 8740 10327 12332 14461
100 8916 9971 6102 7308 8740 10327 12332 14462

Table 10: Sampling time results corresponding to the times of sample T on Gset.

T
G70 G72 G77 G81

k = 2 k = 3 k = 2 k = 3 k = 2 k = 3 k = 2 k = 3

1 0.0011 0.0006 0.0011 0.0006 0.0020 0.0010 0.0039 0.0020
5 0.0030 0.0029 0.0029 0.0030 0.0053 0.0053 0.0099 0.0098
10 0.0058 0.0059 0.0058 0.0058 0.0104 0.0104 0.0196 0.0196
25 0.0144 0.0145 0.0145 0.0145 0.0259 0.0260 0.0489 0.0489
50 0.0289 0.0289 0.0288 0.0289 0.0517 0.0518 0.0975 0.0977

100 0.0577 0.0577 0.0576 0.0578 0.1033 0.1037 0.1949 0.1953

Table 11: Objective value results corresponding to the times of sample T on random regular graphs.

T
n = 100 n = 1000 n = 10000

k = 2 k = 3 k = 2 k = 3 k = 2 k = 3

1 127 245 1293 2408 12856 24103
5 127 245 1293 2410 12863 24103

10 127 245 1293 2410 12862 24103
25 127 245 1293 2410 12864 24103
50 127 245 1293 2410 12864 24103
100 127 245 1293 2410 12864 24103

Table 12: Sampling time results corresponding to the times of sample T on random regular graphs.

T
n = 100 n = 1000 n = 10000

k = 2 k = 3 k = 2 k = 3 k = 2 k = 3

1 0.0001 0.0001 0.0001 0.0001 0.0006 0.0006
5 0.0006 0.0006 0.0007 0.0007 0.0030 0.0030

10 0.0011 0.0011 0.0014 0.0013 0.0059 0.0059
25 0.0026 0.0026 0.0033 0.0031 0.0145 0.0145
50 0.0052 0.0052 0.0065 0.0060 0.0289 0.0289

100 0.0103 0.0103 0.0128 0.0122 0.0577 0.0578

Table 13: Objective values returned by each method on Gset for k = 2.

Methods G70 G72 G77 G81

Ecord 5137 206 382 358
ANYCSP 9417 6826 9694 13684
ROS 8916 6102 8740 12332
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Table 14: Computational time for each method on Gset for k = 2.

Methods G70 G72 G77 G81

Ecord 1.4 1.2 1.7 2.4
ANYCSP 180.0 180.0 180.0 180.0
ROS 3.4 3.9 8.1 9.3

Table 15: Objective value on Gset with arbitrary edge weights for k = 2.

Methods G70 G72 G77 G81

Ecord 5154.28± 28.26 254.46± 37.22 344.79± 29.73 280.09± 33.11
ANYCSP 5198.87± 69.76 −15.57± 57.88 81.76± 69.97 33.49± 50.31
ROS 8941.80± 17.79 6165.62± 50.81 8737.59± 114.24 12325.85± 87.98

Table 16: Computational time comparison on Gset with arbitrary edge weights for k = 2.

Methods G70 G72 G77 G81

Ecord 3.39± 0.11 3.43± 0.12 3.89± 0.03 4.76± 0.05
ANYCSP 180.56± 0.08 180.52± 0.03 180.57± 0.11 180.68± 0.10
ROS 2.97± 0.56 4.32± 2.03 6.97± 3.58 9.24± 3.43
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