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ABSTRACT

In this study, we propose a variation of the SEIR epidemiological model, called
SEPAI3R3O, and apply genetic algorithms to analyze and optimize the associ-
ated parameters. This model was developed based on the analysis of sociodemo-
graphic and behavioral data from anomalous ICDs (International Classification of
Disease) and ICPCs (International Classification of Primary Care) collected from
units specialized in SARS (Severe Acute Respiratory Syndrome)(i.e., specifically
flu and COVID-19) in the city of Recife, located in northeast Brazil, from April
26, 2020, to March 7, 2021. The main objective was to understand the dynam-
ics of disease spread and identify critical factors that influence their spread. One
of these factors is the underreporting rate, estimated at around 50%, which sig-
nificantly increases cases due to inadequate testing. We could precisely adjust
the model parameters using a genetic optimization approach, resulting in more
accurate disease dynamics predictions and a more realistic view of the number
of people infected by SARS. The results indicate that the SEPAI3R3O model,
when optimized with genetic algorithms, could predict the spread of the disease
with an effective reproduction rate R0 of 3(95% CI 2.8–3.2) and a growth rate
of 0.014(95% CI 0.013–0.015) for the period analyzed. With realistic data, this
approach offers a valuable tool for researchers and healthcare professionals in
making decisions and formulating more effective intervention strategies.

1 INTRODUCTION

The search for optimization and analysis of complex systems is a constantly highlighted area of
research, with particular relevance when modeling the spread of infectious diseases Anderson et al.
(2020). The need for accurate and efficient models has become more critical in the current context,
where new diseases emerge and existing pathogens evolve. Among the tools that have stood out in
this scenario, genetic algorithms, a subarea of evolutionary computing, have demonstrated success
in several complex problems, from design optimization to financial predictions Goldberg (1989).
These algorithms offer a robust and adaptable approach to understanding and anticipating disease
dynamics in epidemiology.

The proposed model is an example of innovation in this area, inspired by the widely adopted SEIR
model, used to characterize historically relevant infectious diseases such as the Spanish flu Organi-
zation (2020). SEPAI3R3O was developed to analyze sociodemographic and behavioral data from
ICD and ICPC collected from specialized health units. This model provides a detailed view of dis-
ease progression and individual interactions, making it a valuable tool for researchers and healthcare
professionals. Integrating genetic algorithms into this model optimizes the analysis of disease spread
and enables a deeper understanding of the factors that influence spread Mitchell (1998).

The increasing complexity of healthcare systems and the need for rapid responses in outbreak situa-
tions highlight the importance of combining genetic algorithms with detailed epidemiological mod-
els, such as SEPAI3R3O, as a strategic key to predicting and mitigating future disease outbreaks.

In this context, it is essential to address the challenge of finding the correct parameters for dy-
namic epidemic models. The predictive success of these models is directly related to the adequate
adjustment of the training data, avoiding both underfitting and overfitting. When training data is
insufficiently fit, the model may diverge or produce overestimates with high variance. On the other
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hand, overfitting, a common problem in epidemic models, occurs when model parameters are exces-
sively influenced by training data, resulting in low-variance but unrealistic predictions Yang et al.
(2020a).

Overfitting remains a significant challenge, especially in dynamic epidemic models, due to the fluc-
tuation of several parameters within their uncertainty ranges Basu & Andrews (2013). To mitigate
this problem, some epidemic analyses, including studies on outbreaks such as COVID-19, have ap-
plied restrictions to reduce the number of free parameters, thus controlling overfitting and preserving
the relevance of these studies Peng et al. (2020).

The remainder of this article is organized as follows: Section 2, models and methods, describes the
SEPAI3R3O model. Section 3 provides a detailed review of genetic algorithms and their application
in epidemiological modeling. Section 4 presents the results and discussions. Section 5 addresses
conclusions.

2 MODELS AND METHODS

Modeling complex systems, especially in epidemiology, requires a robust and adaptable approach.
In this study, we combine the effectiveness of genetic algorithms with the accuracy of the pro-
posed SEPAI3R3O epidemiological model to analyze the spread of diseases. This section details
the methodology adopted, describing the compartmentalized model and the implementation of the
genetic algorithm.

2.1 COMPARTMENTED MODEL: SEPAI3R3O

The use of compartmental models to study infectious diseases has been massively used in the litera-
ture Tuite et al. (2020); Labadin & Hong (2020); Wu et al. (2020b). The SEIR model, for example,
divides the population into susceptible, exposed, infectious, and recovered compartments. Each of
these compartments was modeled using a set of differential equations Anderson & May (1992).

The SEIR model traces the progression of individuals through stages of a disease: Susceptible (S),
Exposed (E), Infected (I), and Recovered (R). Transitions between these groups are determined by
entry and exit rates. Specifically, as individuals leave one stage, they enter the next; for instance,
those exiting the ’susceptible’ stage enter the ’exposed’ category. The model assumes that once
recovered, individuals cannot be reinfected. The speed of disease spread is influenced by the contact
between infected and susceptible people, defining the rate at which susceptibles become exposed.
Once exposed, they aren’t immediately contagious, but after an incubation period, they become
infectious. The infected group’s exit rate is tied to either recovery or death, with the death rate often
represented by the case fatality rate (CFR). The primary reproduction number (R0) quantifies the
contagion’s effectiveness, indicating how many others an infected individual can potentially infect.
Meloni et al. (2011).

In this article, we will apply a variation of this model that we call SEPAI3R3O. The increased num-
ber of stages in each compartment indicates that the groups were subdivided into more subgroups.
That is, in this model, we used Exposed (E), Pre-symptomatic (P), Asymptomatic (A), three groups
of infected (I), and three groups of removed (R), in addition to adding a new group called O, which
represents the dead. Separating the dead as a new group is a practice used in other adapted models
since recovery and death are opposite consequences for those infected, in addition to the need for
analytical interest in both cases.

The model includes the possibility that exposed individuals who have not yet developed symptoms
can transmit the virus (“pre-symptomatic transmission”). To model this situation, we added class
P (no symptoms but can transmit). Another common condition is the presence of people who con-
tract the virus but do not show symptoms, and for this reason, class A (asymptomatic people) was
included. The three groups of infected people were created to represent three distinct phases of
infection: I1 infected people, but with mild symptoms I2 people infected and tested for showing
symptoms of medium severity (for which they can even be hospitalized) I3 people infected, tested
and showing symptoms of high severity Following the same logic as the SEIR model, for a person
to be hospitalized in a severe I3 condition, they must necessarily have gone through stage P, in-
fectious, but without symptoms and testing, and then through stage I2, with enough symptoms to
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require testing. It only enters stage I3 if the condition becomes more serious, requiring intensive
treatment in a hospital unit. Using this premise, only people who are in group I3 can die, passing
to group O; that is, in this model, the path taken for an individual to die is S→P→I2→I3→O or
S→P→I1→I2→I3→O.

For the individual to be able to migrate to the group of recovered people (R), they must first be in
one of the groups of people in recovery (R1, R2, and R3), which represent individuals who are
recovering from the disease in the various stages of the disease intensity (i.e., groups I1, I2 and I3
respectively). The motivation behind creating such groups was the need to consider recovery time
depending on the severity of the infection, which allows us to model the demand for hospital beds
satisfactorily. Therefore, groups R1, R2, and R3 do not communicate; that is, there are four distinct
paths for recovery (R) of an infected person, being: I1 → R1 → R (i.e., faster recovery time);
I1 → I2 → R2 → R (i.e., recovery with intermediate time); I1 → I2 → I3 → R3 → R (i.e.,
longer recovery time).

In addition to the addition of subgroups, shown previously, this model was designed to consider the
underreporting rate (Psub) of the number of cases, as, with the division of subgroups, there is the
possibility of controlling the proportion of people who migrate from I1 to I2 (i.e., cases that present
sufficient symptoms for testing), or that migrate from I1 to R1. Thus, these individuals represent
cases of underreporting, as they contracted the disease but were never tested. Below are the ordinary
differential equations of the model:

dS

dt
= −Psub × (P +A+ I1 + I2 + I3 +O)S (1)

dE

dt
= (βeP + β0A+ β1I1 + β2I2 + β3I3)× S−a0E (2)

dP

dt
= a0 × E − a1P (3)

dA

dt
= fa1 × P − c0A (4)

dI1
dt

= p0 × ((1− f)× a1 × P )− (c1 + p1)× I1 (5)

dI2
dt

= p1 × I1 − (c2 + p2)× I2 (6)

dI3
dt

= p2 × I2 − (c3 + µ)× I3 (7)

dR1

dt
= (d0 + c0)× I1 (8)

dR2

dt
= (d1 + c1)× I2 (9)

dR3

dt
= cf−(d2 + c3)× I3 (10)

dR

dt
= t0 ×R0 + t1 ×R1 + t2 ×R2 (11)

dO

dt
= cf × I3 (12)

Where:

• βi - Rate at which individuals infected in class Ii, where (i = 1, 2, 3), come into contact
with susceptible individuals and infect them.

• ai - Class progression rate from exposed to infected;
• f - Fraction of all asymptomatic infections

The parameters βi, (i = e, 0, 1, 2, 3) represent the transmission rates in the different phases of the
disease, while the parameters ci (i = 0, 1, 2, 3) represent the different rates of recovery and µ the
mortality rate. The parameters ai (i = 0, 1) indicate the exit rate of classes E and P, respectively. The
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parameters p0, p1, and p2 are, respectively, the rate of progression from mild to severe infection and
from severe to critical infection. Because these rate constants are generally not measured directly in
studies, they are related to clinical observations using the following formulas:

• Psub - Subreporting rate

• PI3 - ”Proportion of cases arriving at I2 that go to I3”

• a0 - Exposed rate without symptoms or transmission E = 1/PresymPeriod

• a1 - Pre-asymptomatic rate = 1/(IncubPeriod − PresymPeriod)

• p0 - Transition rate from I1 to I2 = (1− Psub)× 1/tI1

• p1 - Transition rate from I2 to I3 = PI3 × 1/tI2

• p2 - Transition rate from I3 to O = cf × 1/tI3

• c0 - Transition rate from I1 to R1 = Psub × 1/tI1

• c1 - Transition rate from I2 to R2 = (1− PI3)× 1/tI2

• c2 - Transition rate from I3 to R3 = (1− cf )× 1/tI3

• cf - Fatal cases: mortality rate of registered cases

• di - Average recovery time in group Ri

• ti - Transition rate from group Ri to R = d−1
i

• tI1 - Average time in group I1

• tI2 - Average time in group I2

• tI3 - Average time in group I3

For the simulation process, the rates described above are based on epidemiological studies of
COVID-19 that will be described in subsection 3.0.5.

3 TUNING WITH GENETIC ALGORITHMS

Several adjustment methods are available to improve the calibration of our model parameters in line
with the data collected for each anomalous ICD and ICPC. These methods are frequently used in
epidemiological studies and machine learning models. Calibration problems like the ones faced here
are commonly addressed through adapted deterministic optimization methods, such as L-BFGS-B
Wu et al. (2020b). However, stochastic methods can offer a broader perspective by considering
the variety of possible calibration scenarios. Among these stochastic methods, evolutionary genetic
algorithms stand out for their effectiveness in solving optimization problems. The next section will
explore genetic algorithms’ contributions and benefits to our study.

3.0.1 DEFINITION

Genetic algorithm (GA) is a bioinspired optimization technique that simulates the process of natural
evolution. It operates through mechanisms derived from genetics and natural selection, such as mu-
tation, crossover (recombination), and selection. At its core, GA searches for optimal or suboptimal
solutions in complex search spaces using a population of candidate solutions called chromosomes.
Each chromosome represents a possible solution and is evaluated based on a fitness function, which
determines how well this solution meets the desired objective Goldberg (1989); Mitchell (1998).

3.0.2 APPLICATION

The genetic algorithm (GA) is an optimization technique inspired by the natural processes of selec-
tion and evolution. In this study, GA was meticulously employed to adjust the parameters of the
SEPAI3R3O model, aiming to align the model’s predictions with ICD and ICPC data collected from
specialized healthcare units.

An initial population of 100 random solutions was generated to start the process. In this context,
each solution represents a specific set of parameters ai, βi, Psub, Ii, E of the SEPAI3R3O model,
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denoted as θ. The fitness function f(θ) was defined to evaluate how well the model parameters fit
the observed data. It is given by:

f(θ) =
1

1 + nRMSE(θ)
(13)

where nRMSE(θ) is the normalized mean squared error between model predictions and observed
data. This metric quantifies the difference between the values predicted by the model and the actual
observed values.

In each of the 100 generations of GA, solutions were evaluated based on their fitness. The ten
most suitable solutions were directly selected for the next generation, while the rest were chosen for
reproduction using selection mechanisms such as roulette. The probability pi of a solution i being
selected is proportional to its fitness and is given by:

pi =
f(θi)

100∑
j=1

f(θj)

(14)

This equation determines the chance of a solution being chosen for reproduction based on its fitness
relative to the population’s total fitness.

After selection, the solutions underwent crossover (recombination) and mutation operations. The
crossover allows the exchange of information between two parental solutions, generating offspring
that inherit characteristics from both. During this process, there is a 40% probability of each gene
undergoing mutation, introducing random variations in the pre-defined limits for each parameter.
This mutation ensures diversity in the population and prevents premature convergence to suboptimal
solutions.

The iterative evaluation, selection, crossover, and mutation process was repeated for exactly 100
generations. In each generation, the GA sought to refine the population, getting closer and closer to
the optimal solution. The process was completed after the 100th generation. We will now illustrate
the proposed model with an example to enhance comprehension.

Initialization: We start with a population of random solutions. Each solution is a set of θ parameters
that will be used in the SEPAI3R3O model. Evaluation: For each solution in the population, we
calculate nRMSE by comparing model predictions with observed data. We then use the fitness
function f(θ) to evaluate the quality of each solution. Selection: Based on the calculated aptitudes,
we select solutions for reproduction. Solutions with more excellent suitability are more likely to
be selected. Crossover and Mutation: The selected solutions are paired and subjected to crossover
operations to generate new solutions. Furthermore, there is a 40% chance of mutation in each gene.
Iteration: The process is repeated for 100 generations, improving the population at each iteration.

At the end of 100 generations, the solution with the highest fitness is considered the best solution,
representing the set of parameters that best fits the observed data. The data used in the adaptation
process are the daily accumulated number of patients diagnosed with ICD and ICPC in specialized
health units. Therefore, model parameters are expressed in days. The initial conditions for the
model are taken from the starting point of the data to be fitted, except for the initial compartments
of infected and exposed, which GA determines.

3.0.3 COMPUTATION OF THE OPTIMUM GENERATIONS’ NUMBER USING CROSS-VALIDATION

Determining the optimal number of generations is crucial to ensure that the Genetic Algorithm
(GA) not only converges to a solution but also avoids overfitting. To achieve this, we employ a
cross-validation technique Kohavi (1995).

Cross-validation involves splitting the ICD and ICPC data into training and testing sets. The training
set is used to tune the parameters of the SEPAI3R3O model, while the test set is used to evaluate
the model’s performance. By monitoring the error in the test set across GA generations, we can
identify the point at which the model starts to overfit the training data. Our approach uses k−fold
cross-validation Geisser (1975). The data was divided into k subsets of approximately equal size.
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In each iteration, k − 1 subsets were used for training and the remaining subset for testing. This
process was repeated k times, ensuring that each subset was used as a test exactly once. The cross-
validation error was calculated as the average of the errors obtained in each k iteration. Observing
the evolution of this error over GA generations, we determine the optimal number of generations as
the point at which the cross-validation error reaches a minimum. This approach ensures that the GA
does not evolve beyond the necessary point, thus avoiding the risk of overfitting the model to the
training data and ensuring robust generalization to unseen data James et al. (2013).

3.0.4 MODEL VALIDATION

Providing reasonably accurate data, our model successfully reproduces the evolution of SARS in
different strata of Recife, for which a sufficient amount of data is available. The strata selected
for this analysis were: ”0 to 3% (A)”, ”4 to 15% (B)” and ”16 to 34% (C)”, which represent the
percentage of areas of Communities of Social Interest (CIS) in the neighborhoods Observatório de
Saúde Ambiental do Recife (2017).

For each stratum, we focus on the following ICD and ICPCs:

• ICD U07.2: Clinical or epidemiological diagnosis of SARS;
• ICPC R80: Flu;
• ICPC R83: Other respiratory infections.

We chose the training data from when all confirmed cases, recoveries, and death numbers associated
with these codes assume non-zero values in the mentioned strata. The active case curve was then
projected for the 20 days following that date.

The results obtained by the model when compared to the observed data, showed some discrepancies.
These differences can be attributed to the underreporting rate and asymptomatic cases not registered
in health systems. As mentioned, the rate of asymptomatic people is 30%, leading to a significant
increase in cases.

All adjustments to the model presented a coefficient of determination R2 greater than 0.9, indicating
a high correlation between the predicted and observed values. Additionally, because our fitting
method is based on a nonlinear regression algorithm, we use a normalized standard error of the
estimate to assess the quality of the fits Hyndman & Koehler (2006).

3.0.5 EPIDEMIOLOGICAL PARAMETERS

Understanding the dynamics of severe acute respiratory diseases in Recife requires a meticulous
analysis of epidemiological parameters due to the pandemic that affected everyone. Therefore, all
parameters used in this research are derived from scientific studies of COVID-19, which provided
insights into the disease’s transmission, progression, and impact on the population.

Like many other regions, the city of Recife faced significant challenges at the start of the pandemic,
including underreporting. When the pandemic began manifesting in mid-March, the underreporting
rate was 0.50%. The underreporting suggests that many cases have yet to be officially recorded or
recognized, possibly due to limitations in testing or asymptomatic patients.

Below, we present a table with the main epidemiological parameters related to COVID-19:

These parameters are fundamental for modeling the disease’s spread and evaluating interventions’
effectiveness. Furthermore, it is crucial to consider local factors, such as population discipline,
public health capabilities, and the severity of containment measures, when interpreting and applying
these parameters.

4 RESULTS AND DISCUSSION

The modeling of the dynamics of COVID-19 in Recife was based on the dynamic model that consid-
ers parameters such as transmission rates, disease progression, recovery, and mortality. As described
in previous studies, these parameters were backtracked based on measurable quantities, mainly re-
lated to COVID-19. The specificity of our analysis lies in the focus on the city’s most vulnerable
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Table 1: Epidemiological parameters for COVID-19 in Recife
Parameter Value Reference
Incubation period 5 days Linton et al. (2020)
Proportion of mild infections 80% Yang et al. (2020b)
Duration of mild infections 6 days Sanche et al. (2020)
Proportion of serious infec-
tions

15% Yang et al. (2020a)

Proportion of critical infec-
tions

5% Zhi (2020))

Case fatality rate 2% Russell et al. (2020)
α (Recovery rate) 0.05 Li et al. (2020)
β (Transmission rate) 0.3 Wu et al. (2020a)
R0 (Basic reproduction num-
ber)

2.5-3.0 Zhou et al. (2020)

neighborhood strata, considering the heterogeneity of Recife and its division into five strata based
on the percentage of areas of Communities of Social Interest (CIS). Rather than relying solely on
standard diagnostic tests, our analysis was based on ICD/ICPC data collected at healthcare facilities,
providing a more detailed view of the epidemiological situation in the city. This approach, using the
SEPAI3R3O model, allowed us to obtain a more accurate representation of the spread of the virus
in vulnerable areas of Recife.

The SEPAI3R3O model estimates for the period from April 26, 2020, to March 7, 2021, of COVID-
19 in Recife, focusing on the most vulnerable neighborhoods, are in line with the evolution of the
pandemic in the city. The estimated primary reproduction number R0 in early March is 3 (95%
CI 2.8–3.2). However, by the end of February 2021, this number had reduced considerably to 0.7
(95% CI 0.65–0.75), with an average effective reproduction assessed at 1.6(95% CI 1.5–1.7). This
significant decline in R0 reflects efforts to control the pandemic and increased awareness about
COVID-19 among the population.

The SEPAI3R3O model estimates for the period from April 26, 2020, to March 7, 2021, of COVID-
19 in Recife, focusing on the most vulnerable neighborhoods, are in line with the evolution of the
pandemic in the city. The estimated primary reproduction number R0 in early March is 3 (95%
CI 2.8–3.2). However, by the end of February 2021, this number had reduced considerably to 0.7
(95% CI 0.65–0.75), with an average effective reproduction assessed at 1.6 (95% CI 1.5–1.7). This
significant decline in R0 reflects efforts to control the pandemic and increased awareness about
COVID-19 among the population.

Data analysis indicated a notable increase in the protection rate after adopting the first control mea-
sures. This rate experienced a jump from 0.0038 at the beginning of the period to 0.0085 between
March and April 2020. The average protection rate over the period under analysis was 0.014 (95

The transmission rate increased, driven by the continued spread of the virus and the emergence of
outbreaks in densely populated areas of Recife. The average transmission rate was 0.62 (95% CI
0.60–0.64). The mean latent time was 2.8 (95% CI 2.7–2.9) days, while the mean infectious time
was 6.1 (95% CI 5.9–6.3) days. On average, the total incubation period was 8.9 (95% CI 8.6–9.2)
days.

In contrast to the epidemic parameters of the SEPAI3R3O model, we determined the recovery
and mortality rates based on official data provided by the Recife Health Department1 from April
26, 2020, to March 7, 2021−the case data collected from SARS units. The recovery rate ranged
between [1.4–3.0%], with an average value of 2.2%. Notably, the mortality rate reduced to around
0.7% at the end of the analyzed period, with an average of 1.2%. The significant decrease in the
mortality rate can be attributed to improved available medical care and treatments. The mortality
rate showed a stabilization trend in the last few months analyzed. The in-depth analysis of parame-
ter values goes beyond the scope of this work. However, it is essential to highlight that the critical
values obtained for Recife align with typical estimates for regions with similar characteristics.

Records of cases related to ICPC R80, R83, and ICD U7.2 were observed during the reference
period.
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Table 2: Summary of average SEPAI3R3O parameter estimates for the initial phase of COVID-19
in Recife compared to other regions.

Parameter Definition Value for Recife
(IC 95%)

Value for other re-
gions (IC 95%)

Reference (other
regions)

Protection rate
(days)

α 0.017
(0.016–0.019)

0.086 Yang et al. (2020b)

Transmission rate
(days)

β 0.66 (0.64–0.68) 1.00 Sanche et al. (2020)

Latent time (days) γ 2.9 (2.8–3.0) 2.1 Zhi (2020)
Infectious time
(days)

δ 6.1 (5.9–6.3) 7.5 Zhi (2020)

Basic reproduction
number

R0 3.0 (2.8–3.2) 6.50 (5.73–7.27) Zhi (2020)

ICD U7.2 had 16.000 cases, peaked on 2020/11/10, recording 200 cases on that day and a daily
average of approximately 44 cases.

ICPC R80 had 4.703 cases, with its highest number of daily cases on 2020/05/22, totaling 108
cases and averaging about 13 cases daily.

Finally, ICPC R83 recorded 2.000 cases, with 2020/05/22 being the day with the highest incidence,
59 cases, and a daily average of 5.5 cases.

The forecast simulations, as shown in Figure 1a, estimated a significant trend in the evolution of
COVID-19 in Recife from May 20 to 30, 2020. The simulation, which considers an underreporting
rate of 50%, suggests a significant increase in cases. For example, in May 22, when the observed
cases totaled 259, the simulation pointed to 388.5 cases, considering underreporting. This simulated
value has a 95% confidence interval between 369.075 and 408.925 cases. Additionally, the estimate
of asymptomatic cases for the same day was 77.7, with a confidence interval between 73.815 and
81.585. These numbers reinforce the importance of considering underreporting and the presence of
asymptomatic cases when assessing the absolute magnitude of the pandemic. Continuous analysis
of this data and comparison with simulations are essential to improve the city’s disease intervention
and control strategies.

Projecting these numbers, we estimate that new infections would decline significantly in mid-July,
reaching single-digit numbers in August. However, the total number of active cases would still be
above 500 by the end of August. The model predicts that the first wave of the outbreak would extend
until October 2020, with an estimated total of 20.000 (95% CI 19.000–21.000) cases, 16.000 (95%
CI 15.200–16.800) recovered, and 1.200 (95% CI 15.200–16.800) recovered and 1.200(CI 95%
1.140–1.260) deaths. Understanding that these estimates are derived from current data and may
vary as new information becomes available is crucial.

Compartmental models work best with certain population assumptions: a well-mixed group with an
equal chance of infection and homogeneity, meaning all react similarly to the disease with consistent
transition rules between stages. Any parameters adjusted in the study represent a population average.
The model isn’t inherently additive, meaning combining results from different regions doesn’t equal
the outcome for the entire country. Thus, applying the study separately to various cities or regions
is advised.

5 CONCLUSION

This study presented a novel variation of the SEIR epidemiological model, termed SEPAI3R3O,
and employed genetic algorithms to optimize and analyze its associated parameters. The model was
meticulously crafted based on socio-demographic data and anomalous ICDs and ICPCs collected
from specialized units in Recife, Brazil, from April 26, 2020, to March 7, 2021. Our primary
objective was to comprehend the dynamics of disease spread and pinpoint critical factors influencing
it. Notably, the underreporting rate, estimated at around 50%, was identified as a significant factor,
amplifying the number of cases due to inadequate testing.
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Figure 1: Model prediction. (a) Number of cases. The figure shows the peak of the epidemic,
corresponding to the maximum number of active cases, occurring between the 20th and 30th of
May. (b) Total recoveries and deaths. (c) Time-dependent reproduction number. (d) The number of
newly infected individuals per day.

Utilizing the genetic optimization approach, we achieved precise adjustment of the model parame-
ters, leading to enhanced predictions of disease dynamics and a more realistic representation of the
number of individuals affected by SARS. The SEPAI3R3O model, when optimized with genetic al-
gorithms, showcased its capability in predicting the disease’s spread with an effective reproduction
rate R0 of 3 (95% CI 2.8–3.2) and a growth rate of 0.014 (95% CI 0.013–0.015) for the analyzed
period. This approach, grounded in realistic data, offers an invaluable tool for researchers and health-
care professionals, aiding in informed decision-making and formulating more effective intervention
strategies.
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