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Abstract

Learning-based video compression is currently a popular research topic, offering
the potential to compete with conventional standard video codecs. In this context,
Implicit Neural Representations (INRs) have previously been used to represent
and compress image and video content, demonstrating relatively high decoding
speed compared to other methods. However, existing INR-based methods have
failed to deliver rate quality performance comparable with the state of the art in
video compression. This is mainly due to the simplicity of the employed network
architectures, which limit their representation capability. In this paper, we propose
HiNeRV, an INR that combines light weight layers with novel hierarchical posi-
tional encodings. We employs depth-wise convolutional, MLP and interpolation
layers to build the deep and wide network architecture with high capacity. HiNeRV
is also a unified representation encoding videos in both frames and patches at the
same time, which offers higher performance and flexibility than existing meth-
ods. We further build a video codec based on HiNeRV and a refined pipeline for
training, pruning and quantization that can better preserve HiNeRV’s performance
during lossy model compression. The proposed method has been evaluated on both
UVG and MCL-JCV datasets for video compression, demonstrating significant
improvement over all existing INRs baselines and competitive performance when
compared to learning-based codecs (72.3% overall bit rate saving over HNeRV and
43.4% over DCVC on the UVG dataset, measured in PSNR). 1

1 Introduction

Implicit neural representations (INRs) have become popular due to their ability to represent and
encode various scenes [37], images [45] and videos [45, 11]. INRs typically learn a coordinate
to value mapping (e.g. mapping a pixel or voxel index to its color and/or occupancy) to support
implicit reconstruction of the original signal. While these representations are usually instantiated
as multilayer perceptrons (MLPs), existing MLP-based network can only represent video content
with a low reconstruction quality and speed [11]. To address this limitation, recent works have
employed Convolutional Neural Networks (CNNs) to perform a frame index to video frame mapping
[11, 29, 5, 25, 10]. These CNN-based INRs are capable of reconstructing video content with higher
quality and with a faster decoding speed, when compared to MLP-based approaches [45]. When using
INRs for encoding videos, video compression can then be achieved by performing model compression
for the individual input video. However, existing INR-based algorithms remain significantly inferior
to state-of-the-art standard-based [52, 47, 8] and learning-based codecs [26, 41, 27, 28, 35]. For
example, none of these INR-based codecs can compete with HEVC x265 [2] (veryslow preset).
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HNeRV
31.4dB PSNR@0.101bpp

HiNeRV (ours)
36.6dB PSNR@0.051bpp

Figure 1: (Left) Visual comparison between HNeRV [10] and HiNeRV (ours) for compressed content (cropped).
HiNeRV offers improved visual quality with approximately half the bit rate compared to HNeRV (PSNR and
bitrate values are for the whole sequence). (Right) Video regression with different epochs for a representation
task. HiNeRV (ours) with only 37 epochs achieves similar reconstruction quality to HNeRV [10] with 300
epochs.

Most INR-based models for videos [11, 29, 5, 25, 10] employ conventional convolutional layers or
sub-pixel convolutional layers [42], which are less parameter efficient, and hence limit representation
capacity within a given storage budget. In addition, most existing work employs Fourier-based
positional encoding [37]; this has a long training time and can only achieve sub-optimal reconstruction
quality [11, 29, 5]. In video compression, the training of INR models is equivalent to the encoding
process, implying that most INR-based codecs require a long encoding runtime to obtain a satisfactory
rate-quality performance [11]. However, some recent non-video INR models have utilized feature
grids or a combination of grids and MLPs as the representation to speed up the convergence of INRs;
this has improved the encoding speed by several orders of magnitude [15, 48, 38, 9].

In this paper, we propose a new INR model based on Hierarchically-encoded Neural Representation
for video compression, HiNeRV. We replace commonly used sub-pixel conventional layers [42]
in existing INRs for upsampling [11, 29, 5, 25, 10] by a new upsampling layer which embodies
bilinear interpolation with hierarchical encoding that is sampled from multi-resolution local feature
grids. These local grids offer increased parameter efficiency, as the number of parameters increases
with the upsampling factor instead of the resolution. Moreover, the network is primarily based on
MLPs and depth-wise convolutional layers (rather than dense convolutional layers). This enhances
the representation capability and maximizes the performance for a given parameter count. This
architectural design allows us to build a much deeper and wider network which offers a significantly
better video encoding performance when compared to state-of-the-art INR-based coding approaches.

Furthermore, instead of learning a frame- [11] or patch-wise [5] representation, we show that
by simply training with overlapped patches, HiNeRV can be seamlessly switched between both
representation types, achieving a unified representation with improved performance compared to both
frame-based and patch-based settings. This also provides flexibility for hardware implementation,
where encoding and decoding processes can be performed either using frames to optimize the
computational complexity, or as patches to minimize the memory footprint.

To achieve competitive coding performance, we also refine the model compression pipeline in [11],
where pruning and fine-tuning are followed by model training, before quantization is applied. First,
we used an adaptive pruning technique to reduce the negative impact of model pruning. Secondly,
quantization-aware training is applied for fine-tuning the model performance before quantization.
This enables lower bit depth quantization which achieves an improve rate-distortion trade-off.

The proposed method has been tested against existing INR-based video coding methods and state-of-
the-art conventional and learning-based video codecs on the UVG [36] and MCL-JCV [51] datasets.
Notwithstanding the fact that HiNeRV has not been end-to-end optimized for video compression (i.e.
pruning, quantization and entropy coding are not included in the training loop), it still significantly
outperforms all INR-based methods (e.g., 72.3% overall BD-rate gain over HNeRV on the UVG
database, measured in PSNR), and is also competitive compared with existing conventional and
end-to-end learning-based video codec (e.g., 43.4% over DCVC, 38.7% over x265 veryslow).

The primary contributions of this work are summarized below:

1) We propose HiNeRV, a new INR employing hierarchical encoding based neural representation.

2) We employ a unified representation by adding padding, which trades a small computation overhead
for additional flexibility and performance gain.
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3) We build a video codec based on HiNeRV and refine the model compression pipeline to better
preserve the reconstruction quality of INRs by using adaptive pruning and quantization-aware training.

4) The compression performance of the proposed method is superior to existing INR models, and is
comparable to many conventional/learning-based video coding algorithms. As far as we are aware, it
is the first INR-based codec to significantly outperform HEVC (x265 veryslow) [39].

2 Related work

2.1 Video compression

Video compression has long been a fundamental task in the field of computer vision and multimedia
processing. As alternatives to the already popularized conventional codecs such as H.264/AVC [52],
H.265/HEVC [47], and H.266/VVC [8], there has been a rapid increase in the adoption of deep
learning techniques for video compression in recent years. This has typically involved replacing
certain modules (e.g., motion compensation [3, 54], transform coding [55, 16] and entropy coding
[6]) in the conventional pipeline with powerful learning-based models [53, 35].

In contrast, there has also been significant activity focused on the development of new coding
architectures which allow end-to-end optimization. Lu et al. [32] proposed DVC that was further
extended to enable major operations in both the pixel and the feature spaces [21, 20]. An alternative
approach has focused on conditional [26, 30] instead of predictive coding to reduce the overall bitrate
by estimating the probability model over several video frames. Furthermore, the characteristics of
the differentiable frameworks have been exploited by [19, 49, 44], where both encoder and decoder
(typically signaled by a model stream containing updated parameters) are overfitted to the video data
during the evaluation to further enhance compression efficiency.

While effective, with some recent work [53, 43, 28] claiming to outperform the latest compression
standards, these methods still follow the pipeline of conventional codecs, which may constrain the
development of neural video compression methods. Moreover, learning-based video compression
methods tend to be much more computational complex and often yield much slower decoding speed
than conventional codecs. This often renders them impractical for real-time applications, especially
considering the prevalence of high-quality and high-resolution videos consumed nowadays.

2.2 Implicit neural representation

Implicit neural representations (INRs) are being increasingly used to represent complicated natural
signals such as images [45, 12, 14, 23], videos [45, 11], and vector-valued, volumetric content [37].
This type of approach benefits from incorporating positional encoding - a technique that embeds
the positional input into a higher-dimensional feature space. Periodic functions [45, 33, 37] have
first been utilized to improve the network’s capability for learning high frequency information, and
grid features [48, 38, 9] have then been applied to address their slow convergence speed and further
improve the reconstruction quality.

More recently, Neural Representations for Videos (NeRV) [11] has re-formulated the INR for
video signals to be frame-wise, achieving competitive reconstruction performance with very high
decoding speed. NeRV approaches have inspired a trend of utilizing CNNs to encode the RGB
values of videos with 1D frame coordinates [11, 29, 25, 10] or with 3D patch coordinates [5], and
have demonstrated promise in various video tasks, including denoising [11], frame interpolation
[11, 29, 25, 10], inpainting [5, 10], super-resolution [13] and video compression [11, 29, 5, 25, 10].

When INRs are applied for image and video compression, they typically convert the signal com-
pression task into a model compression problem by incorporating weight pruning, quantization and
entropy coding [17]. NeRV [11] and related works [29, 5, 25, 10] adopt the above approach for video
compression. Although these have demonstrated fast decoding capability, they do not yet achieve a
rate-distortion performance comparable to either conventional or learning-based codecs.

3 Method

Following the approach adopted in previous work [45, 11], we consider a video regression task where
a neural network encodes a video V by mapping coordinates to either individual frames, patches or
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pixels, where V ∈ RT×H×W×C , T , H , W and C are the number of frames in V , the height, the
width and the number of channels of the video frames, respectively.

Fig. 2 (top) illustrates the high level structure of the proposed model, HiNeRV, which contains a
base encoding layer, a stem layer, N HiNeRV blocks, and a head layer. In HiNeRV, each RGB video
frame is spatially segmented into patches of size M ×M , where each patch is reconstructed by one
forward pass. The model first takes a patch coordinate (i, j, t) to compute the base feature maps
X0 with size M0 ×M0 × C0. Here we always refer the coordinates to the integer index, such that
0 ≤ t < T , 0 ≤ j < H

M and 0 ≤ i < W
M . The following N HiNeRV blocks then upsample and

process the feature maps progressively, where the n-th block produces the intermediate feature maps
Xn that have the size Mn×Mn×Cn (MN = M ). Finally, a head layer is used to project the feature
maps to the output, Y , with the target size M ×M × C.

3.1 Base encoding and stem

HiNeRV first maps the input patch coordinates into the base feature maps, X0, by

X0 = Fstem(γbase(i, j, t)). (1)

To compute the base feature maps, we first calculate the pixel coordinates (related to the corresponding
video frame) of the patch. For a patch with size M0 × M0, the frame-based pixel coordinates
(uframe, vframe) can be computed by the patch-based pixel coordinates (upatch, vpatch) for 0 ≤
upatch, vpatch < M0, such that uframe = i×M0 + upatch and vframe = j ×M0 + vpatch. Then,
by using the frame-based pixel coordinates, the positional encoding γbase(i, j, t) can be interpolated
from the learned feature grids [25]. After that, we employ a stem convolutional layer Fstem for
projecting the feature maps to a desired number of channels C0.

It is noted that most existing INRs for video [11, 29, 5, 10] utilize the Fourier style encoding, i.e. they
apply sin and cos functions to map coordinates into the positional encoding. However, such encoding
contains only positional information, which requires additional layers (e.g. MLPs) to transform it
into informative features. In contrast, we adopt grid-based encoding [25] as they that contain richer
information than the Fourier encoding. Specifically, we use the multi-resolution temporal grids that
were introduced in FFNeRV [25], where the various feature grids have different temporal resolutions.
In FFNeRV, linear interpolation over the temporal dimension is used to obtain a slice that is used as
the input feature map. In our case, we utilize both of the frame index and the frame-based coordinates,
i.e., (uframe, vframe, t), for interpolating the feature patches.

Although both high temporal resolution and a large number of channels are desirable for enhancing
the expressiveness of the feature grids, this can result in greater model sizes and hence higher bitrates
when the model is used for compression tasks. To maintain a compact multi-resolution grid, we
increase the number of channels when reducing the temporal resolution at each grid level, i.e. the size
of a grid is ⌊Tgrid

2l
⌋ ×Hgrid ×Wgrid × (Cgrid × 2l), for 0 ≤ l < Lgrid. Here Lgrid is the number

of grids and Tgrid ×Hgrid ×Wgrid × Cgrid is the size of the first level grid.

3.2 HiNeRV block

The obtained base feature maps are then processed by N HiNeRV blocks, which progressively
upsample and process the feature maps. Specifically, the n-th HiNeRV block, where 0 < n ≤
N , upsamples the input feature maps Xn−1 with size Mn−1 × Mn−1 × Cn−1 through bilinear
interpolation Un with a scaling factor Sn, such that Mn = Mn−1×Sn. We use bilinear interpolation,
mainly due to its low computational cost and its capability to compute smooth upsampled maps. The
HiNeRV block then computes a hierarchical encoding γn(i, j, t), matches its number of channels by a
linear layer Fenc and adds it to the upsampled feature maps, where γn(i, j, t) matches the upsampled
feature map size (see Section 3.4). Finally, it applies a set of network layers Fn to enhance the
representation to obtain the output Xn, where we specify the number of layers by Dn. For all the
HiNeRV blocks except the first one (1 < n ≤ N ), the first layer in Fn also reduces the number of
channels by a factor, R, such that Cn = ⌊ C0

Rn−1 ⌋, to save the computational cost for processing high
spatial resolution maps. The output of the n-th HiNeRV block, Xn, has a size of Mn ×Mn × Cn,
and can be written as

Xn =Fn(Un(Xn−1) + Fenc(γn(i, j, t))), 0 < n ≤ N (2)
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Figure 2: Top: The HiNeRV architecture. Bottom left: The HiNeRV block. HiNeRV block take feature maps
Xn−1 and patch index (i, j, t) as input, upsample the feature maps, enhances it with the hierarchical encoding,
then computes the transformed maps Xn. Bottom right: The local grid. In HiNeRV, the hierarchical encoding is
computed by performing interpolation from the local grid, where the modulo of the coordinates is being used.

Figure 2 (bottom-left) shows the structure of HiNeRV block. Due to its observed superior performance,
we employ ConvNeXt [31] as the network block in Fn, a combination of the MLP layer with depth-
wise convolution. We also apply Layer Normalization [4] before the interpolation and the MLP
layers, and we only use shortcut connections when the input and output dimensions are matched.

3.3 Head layer

The final output patch Y is computed by applying a linear layer with sigmoid activation, denoted by
Fhead, on the output of the N -th HiNeRV block,

Y = Fhead(XN ) (3)

3.4 Upsampling with the hierarchical encoding

Existing NeRV-based approaches [11, 29, 5, 25, 10] use the sub-pixel convolutional layer [42] for
feature map up-scaling. However, this has a high parameter complexity: K2 × S2 ×C1 ×C2, where
K, S, C1 and C2 represent the kernel size, the upsampling factor, the number of input and output
channels, respectively. While neighboring features are highly correlated, the convolutional layer
does not take this into account and learns a dense weight matrix to perform upsampling. This is
inefficient especially when the model size is the concern for tasks like compression [11], because the
low parameter efficiency limits the maximum depth and width of the networks, and thus the capacity.

Previous work [11] has shown that bilinear interpolation does not perform as well as convolutional
layers. However, we observed that it is actually a better choice when the parameter count is fixed. By
performing interpolation, we can utilize the saved parameter budget to build a network with higher
capacity. While we can generate high-resolution maps using parameter-free bilinear interpolation,
the resulting maps are smoothed, and subsequent neural network layers may struggle to produce
high-frequency output from them. One way to model high-frequency signals is to introduce positional
encoding [37] during upsampling. As mentioned in Section 3.1, grid-based encoding is preferred
due to the good representation performance. However, adopting it to enhance high-resolution feature
maps can be costly, as it requires high-dimensional grids. To address this limitation, we introduce
a novel grid-based encoding approach called hierarchical encoding, which boosts the upsampling
capability of bilinear interpolation without significantly increasing the storage cost.

Unlike normal grid-based encoding, which computes the encoding using global coordinates, hier-
archical encoding utilizes local coordinates to encode relative positional information. Specifically,
the local coordinate is the relative position of a pixel in the upsampled feature map to its nearest
pixel in the original feature map. Because local coordinates have a much smaller range of values, the
required feature grid is also much smaller. Moreover, when both the base encoding and hierarchical
encoding are used, every position can be represented hierarchically, allowing us to efficiently encode
positional information on high-resolution feature maps. During upsampling, the upsampled feature
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maps are first produced through bilinear interpolation with an up-scaling factor Sn. Then, for all
frame-based pixel coordinates (uframe, vframe) in the upsampled feature maps, we compute the
corresponding local pixel coordinates by ulocal = uframe mod Sn and vlocal = vframe mod Sn,
and employ them to compute the encoding.

It is noted that the above encoding approach is similar to applying a convolutional layer over a
constant feature map. To further enhance the capacity of this encoding, we model the feature grids as
multi-temporal resolution grids [25], which can provide richer temporal information, similar to the
base encoding. In the n-th HiNeRV block, there are Llocal levels of grids and the l-level grid has a
size of ⌊Tlocal

2l
⌋ × Sn × Sn × (⌊Clocal

Rn−1 ⌋ × 2l). The size of the local grids is scaled with the factor Sn

and can be adjusted by the hyper-parameter Tlocal and Clocal. The number of channels of the grids
is also scaled in proportion to the width of the HiNeRV block, i.e. by the reduction factor R. To
obtain the hierarchical encoding, we perform trilinear interpolation by utilizing the frame index t
with the local coordinate, i.e., (ulocal, vlocal, t), to extract encodings from all levels, then concatenate
the encodings and apply a linear layer Fenc to match the encoding channels to the feature maps. To
distinguish the grids for interpolating the hierarchical encoding from the one for the base encoding,
i.e. the temporal grids, we refer these grids as the temporal local grids, because the hierarchical
encoding is interpolated from these grids by using the local pixel coordinates. In Section 4.3, we
demonstrated that the hierarchical encoding contributes to the superior performance HiNeRV. The
process of upsampling with local encoding is shown in Figure 2 (bottom right).

3.5 Unifying frame-wise and patch-wise representations

Recent publications on INR for video can be classified into frame-wise [11, 29, 25, 10] or patch-wise
representations [5]. Actually, in many of these networks, the initial feature maps can be easily
computed either frame-wise or patch-wise, as the positional encoding depends only on the corre-
sponding pixel coordinates. However, these two types of representations are not switchable because
of boundary effects. In HiNeRV, we adopt a simple technique to unify frame-wise and patch-wise
representations. When configuring HiNeRV as a patch-wise representation, we perform computation
in overlapped patches, where we refer to the overlapped part as paddings, and the amount of padding
pixels depends on the network configuration (e.g. the kernel sizes and/or the number of bilinear
interpolation/convolutional layers). Such overlapped patches have previously been used for tasks
such as super-resolution [22], but have not been applied in NeRV-based methods. When performing
encoding in patches without proper padding, missing values for operations such as convolution
can result in discontinuities between patch boundaries. Moreover, networks trained in patches do
not perform well when inferencing in frames due to boundary effects. In our implementation, we
perform intermediate computation with padded patches and crop the non-overlapped parts as the
output patches, while with the frame configuration, paddings are not required. By adding paddings,
we ensure generation of the same output for both frame-wise and patch-wise configurations.

Although adding paddings introduces additional computational overheads, it does provide the fol-
lowing benefits: (i) it allows parallel computation within the same frame, and reduces the minimum
memory requirement for performing forward and backward passes. This shares a design concept with
conventional block-based video codecs, and can potentially benefit the compression of immersive
video content with higher spatial resolutions (where performing frame-wise calculation may not be
supported by the hardware); (ii) It improves the training efficiency when compared to a frame-wise
representation, as we can randomly sample patches during training [22], which can better approximate
the true gradient and speed up the convergence; (iii) It can also enhance the final reconstruction quality
compared to a patch-wise representation without suffering boundary effects. By applying the above
technique, HiNeRV can be flexibly configured as either frame-based or patch-based representation
without retraining. Our ablation study verifies these benefits by comparing this approach to both the
frame-based and patch-based variants (see Section 4.3).

3.6 The model compression pipeline

To further enhance the video compression performance, we refined the original model compression
pipeline in NeRV [11], which has been used in a series of related work [29, 5, 25, 10]. In [11],
model training is followed by weight pruning with fine-tuning to lower model sizes. Post-training
quantization is then utilized to reduce the precision of each weight, while entropy coding is further
employed for lossless compression. In this work, we made two primary changes to this pipeline:
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(i) applying an adaptive weighting to the parameters in different layers for pruning, and (ii) using
quantization-aware training with Quant-Noise [46] to minimize the quantization error.

Model Pruning in NeRV [11, 29, 5, 25, 10] is typically performed globally with respect to the
magnitude of individual weights, with fine-tuning applied after pruning [18]. While various non-
magnitude based pruning methods exist (e.g. OBD [24]), here we developed a simple, modified
magnitude-based method for network pruning. Intuitively, we assume that wider layers have more
redundancy within their parameters - hence pruning these layers tends to have less impact than on
the shallower layers. To alleviate the negative impact of pruning, we weight each neuron using both
its ℓ1 norm and the size of the corresponding layer. Specifically, for a layer with P parameters,
θp, 0 < p ≤ P , we compute a score, |θp|

Pλ , which reflects the neuron importance, where λ is a
hyper-parameter (0.5 in our experiments). The pruning is then performed as usual. By applying this
weighting scheme, layers with fewer parameters, such as depth-wise convolutional layers and output
layers, have less chance to be pruned, while layers in the early stage of the network are more likely to
be pruned.

Weight quantization plays an important role in model compression, significantly reducing final
model size [11]. While the results in [11] have shown that the quantization error is not significant when
reducing the weight bit depth to 8 bits, further increasing the quantization level is still meaningful
for compression tasks. Unlike other related works [11, 29, 5, 25, 10] that adopted 8 bit quantization,
we found that an improved rate-distortion trade-off can be achieved by using 6 bits quantization if a
quantization-aware training methodology is applied. In particular, we perform a short fine-tuning
with Quant-Noise [46] after weight pruning, which can effectively reduce the quantization error.
However, unlike the original implementation, we do not use STE [7] for computing the gradient of
the quantized weights due to its inferior performance.

4 Experiments

4.1 Video representation

To evaluate the effectiveness of the proposed model we benchmarked HiNeRV against five related
works: NeRV [11], E-NeRV [29], PS-NeRV [5], FFNeRV [25] and HNeRV [10] on the Bunny [1]
(1280× 720 with 132 frames) and the UVG datasets [36] (7 videos at 1920× 1080 with a total of
3900 frames). For each video, we trained all networks at multiple scales, and kept their number of
parameters similar at each scale. Three scales were set up to target the S/M/L scales in NeRV [11] for
the UVG datasets, while two different scales XXS/XS together with scale S were configured for the
Bunny dataset. We reported the encoding and decoding speeds in frames per second, measured with
A100 GPU. The number of parameters corresponding to each scale are reported in Table 1 and 2.

For all models tested, we set the number of training epochs to 300 and batch size (in video frames)
to 1. We used the same optimizer as in [11], and employed the same learning objectives for all
NeRV-based methods as in the original literature [11, 29, 5, 25, 10]. For HiNeRV, we empirically
found that it is marginally better to adopt a larger learning rate of 2e− 3 with global norm clipping
which is commonly used for Transformer-based networks [50]. We used the learning rate of 5e− 4
which is a common choice for the other networks as in their original literature [11, 29, 5, 25]. We
also adopted a combination of ℓ1 loss and MS-SSIM loss (with a small window size of 5× 5 rather
than 11× 11) for HiNeRV, as we observed that the MS-SSIM loss with a small window size leads
to a better performance. For HiNeRV and PS-NeRV [5], we randomly sample patches instead of
frames during training, but we scale the number of patches in each batch to keep the same effective
batch size. It is noted that the original configuration of HNeRV [10] has an input/output size of
1280× 640/1920× 960 with strides (5, 4, 4, 2, 2)/(5, 4, 4, 3, 2), and we pad the frames of HNeRV in
order to fit the 1280 × 720/1920 × 1080 videos. This was found to work better than changing the
strides in HNeRV. Detailed configuration of HiNeRV is summarized in the Supplementary Material.

It can be observed (Table 1 and 2) that our proposed HiNeRV outperforms all benchmarked models
in terms of reconstruction quality at each scale on both Bunny [1] and UVG [36] datasets. We also
note that HiNeRV performs better than all the other methods on all test sequences (with various
spatial and temporal characteristics) in the UVG database, exhibiting better reconstruction quality in
terms of PSNR. In particular, for some video sequences where existing INRs performed poorly [10],
HiNeRV offers significant improvement (>7.9dB over NeRV on ReadySetGo). While the encoding
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Table 1: Video representation results on the Bunny dataset [1] (for XXS/XS/S scales).
Model Size MACs Encoding FPS Decoding FPS PSNR

NeRV 0.83M/1.64M/3.20M 25G/57G/101G 131.9/93.6/81.8 308.5/229.1/202.3 26.82/29.61/32.56
E-NeRV 0.88M/1.65M/3.31M 26G/101G/104G 104.7/68.0/68.7 254.3/175.8/174.8 29.03/31.75/36.69

PS-NeRV 0.90M/1.68M/3.35M 29G/238G/240G 90.6/36.1/36.0 228.1/96.1/96.0 28.47/30.31/34.78
HNeRV 0.82M/1.66M/3.28M 23G/48G/94G 100.0/80.8/64.2 317.4/251.6/192.5 31.08/33.68/36.95
FFNeRV 0.91M/1.66M/3.19M 26G/58G/102G 62.1/51.5/47.9 108.4/95.2/90.5 30.37/33.83/37.01
HiNeRV 0.77M/1.59M/3.25M 23G/47G/96G 37.6/27.7/20.0 132.1/103.9/76.7 36.37/38.94/41.14

Table 2: Video representation results with the UVG dataset [36] (for S/M/L scales). Results are in PSNR. FPS is
the encoding/decoding rate.

Model Size MACs FPS Beauty Bosph. Honey. Jockey Ready. Shake. Yacht. Avg.

NeRV 3.31M 227G 32.4/90.0 32.83 32.20 38.15 30.30 23.62 33.24 26.43 30.97
E-NeRV 3.29M 230G 20.7/75.9 33.13 33.38 38.87 30.61 24.53 34.26 26.87 31.75
PS-NeRV 3.24M 538G 14.7/42.6 32.94 32.32 38.39 30.38 23.61 33.26 26.33 31.13
HNeRV 3.26M 175G 24.6/93.4 33.56 35.03 39.28 31.58 25.45 34.89 28.98 32.68
FFNeRV 3.40M 228G 19.0/49.3 33.57 35.03 38.95 31.57 25.92 34.41 28.99 32.63
HiNeRV 3.19M 181G 10.1/35.5 34.08 38.68 39.71 36.10 31.53 35.85 30.95 35.27

NeRV 6.53M 228G 32.0/90.1 33.67 34.83 39.00 33.34 26.03 34.39 28.23 32.78
E-NeRV 6.54M 245G 20.5/74.6 33.97 35.83 39.75 33.56 26.94 35.57 28.79 33.49
PS-NeRV 6.57M 564G 14.6/42.0 33.77 34.84 39.02 33.34 26.09 35.01 28.43 32.93
HNeRV 6.40M 349G 20.1/68.5 33.99 36.45 39.56 33.56 27.38 35.93 30.48 33.91
FFNeRV 6.44M 229G 18.9/49.3 33.98 36.63 39.58 33.58 27.39 35.91 30.51 33.94
HiNeRV 6.49M 368G 8.4/29.1 34.33 40.37 39.81 37.93 34.54 37.04 32.94 36.71

NeRV 13.01M 230G 31.7/89.8 34.15 36.96 39.55 35.80 28.68 35.90 30.39 34.49
E-NeRV 13.02M 285G 21.0/68.1 34.25 37.61 39.74 35.45 29.17 36.97 30.76 34.85
PS-NeRV 13.07M 608G 14.1/41.4 34.50 37.28 39.58 35.34 28.56 36.51 30.28 34.61
HNeRV 12.87M 701G 15.6/52.7 34.30 37.96 39.73 35.47 29.67 37.16 32.31 35.23
FFNeRV 12.66M 232G 18.4/49.3 34.28 38.48 39.74 36.72 30.75 37.08 32.36 35.63
HiNeRV 12.82M 718G 5.5/19.9 34.66 41.83 39.95 39.01 37.32 38.19 35.20 38.02

and decoding speeds of HiNeRV are slower than that of other methods, HiNeRV achieves a higher
overall PSNR figure with fewer MACs. Further optimization may help reduce its latency. In the
Supplementary Material, we conducted experiments with faster variants of HiNeRV, demonstrating
that HiNeRV can achieve a satisfactory trade-off among latency, model size and reconstruction quality
simultaneously.

Figure 1 (right) shows the performance of HiNeRV, NeRV and HNeRV (at scale S) in terms of the
reconstruction quality with various epochs of training. We observe that our model with 37 epochs
achieves similar reconstruction quality of HNeRV with 300 epochs on both datasets.

4.2 Video compression

To evaluate video compression performance, we compared HiNeRV with two INR-based models:
NeRV [11] and HNeRV [10]; with two conventional codecs: HEVC/H.265 HM 18.0 (Main Profile
with Random Access) [39, 40] and x265 (veryslow preset with B frames) [2]; and with two state-
of-the-art learning-based codecs: DCVC [26], DCVC-HEM [27] and VCT [35]. These were all
compared using two test databases: UVG [36] and MCL-JCV [51]. Unlike previous work [11, 5],
which concatenates the videos and uses a single network to compress multiple videos, we train
all the models for each video separately. For the training of NeRV, HNeRV and HiNeRV, we use
the configurations described in Section 4.1, but with two more scales, namely XL and XXL, for
encoding videos with the highest rate (See the Supplementary Material). We apply pruning and
quantization as described in Section 3.6. In particular, we prune these three models to remove 15% of
their weights and fine-tune the models for another 60 epochs. These models are further optimized
with Quant-Noise [46] with 90% noise ratio for 30 epochs. Here we use the same learning rate
scheduling for fine-tuning, but employ 10% of the original learning rate in the optimization with
Quant-Noise. To obtain the actual rate, we perform arithmetic entropy coding [34] and combine all
essential information including the pruning masks and the quantization parameters into bitstreams.

Figure 3 reports the overall rate quality performance on the UVG [36] and the MCL-JCV [51]
datasets. Table 3 summarizes the average Bjøntegaard Delta (BD) rate results for both databases. All
results show that HiNeRV offers competitive coding efficiency compared to most conventional codecs
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Table 3: BD-Rate (Measured in PSNR/MS-SSIM) results on the UVG [36] and MCL-JCV [51] datasets.
Dataset Metric x265 (veryslow) HM (RA) DCVC DCVC-HEM VCT NeRV HNeRV

UVG PSNR -38.66% 7.54% -43.44% 25.23% -34.28% -74.12% -72.29%
MS-SSIM -62.70% -41.41% -34.50% 49.03% -23.69% -73.76% -83.86%

MCL-JCV PSNR -23.39% 31.09% -24.59% 35.83% -17.03% -80.19% -66.56%
MS-SSIM -44.12% -2.65% -17.32% 80.73% 12.10% -82.28% -79.42%

Figure 3: Video compression results on the UVG [36] and the MCL-JCV datasets [51].

and learning-based methods. This represents a significant improvement over existing NeRV-based
approaches (this is also confirmed by the visual comparison with HNeRV in Figure 1). In particular,
it is observed that HiNeRV outperforms x265 (veryslow) [2], DCVC [26] and VCT [35] based on
PSNR. As far as we are aware, this is the first INR-based codec which can achieve such performance.
We also observe that HiNeRV offers better performance compared to H.265 HM (Random Access)
based on MS-SSIM. It should be noted that the results of each learning-based codec reported here are
based on two model checkpoints, one for optimizing PSNR and the other for MS-SSIM, while all the
results for HiNeRV are however based on the same checkpoint.

Despite the fact that HiNeRV has not been fully optimized end-to-end (entropy encoding and
quantization are not optimized in the loop), it nonetheless outperforms many state-of-the-art end-to-
end optimized learning-based approaches. This demonstrates the significant potential of utilizing
INRs for video compression applications. In the Supplementary Material, comparison with additional
baseline is provided.

4.3 Ablation study

To verify the contribution of various components in HiNeRV, we generated a number of variants of
the original model, and evaluated them for video representation on the UVG dataset [36] (all the
sequences were down-sampled to 1280 × 720 for reduction the amount of computation). For all
experiments, we followed the settings in Section 4.1, and performed training targeting scale S (by
adjusting the width of the network to keep the similar model sizes). All results are shown in Table 4.
We also included the results of NeRV [11] and HNeRV [10] for reference.

Bilinear interpolation with hierarchical encoding. The contribution of bilinear interpolation with
hierarchical encoding was verified by comparing it with alternative upsampling layers, sub-pixel
convolutional layer [42] with 1× 1 (V1) and 3× 3 (V2) kernel sizes.
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Table 4: Ablation studies of HiNeRV with the UVG dataset [36]. Results are in PSNR.
Model Size Beauty Bosph. Honey. Jockey Ready. Shake. Yacht. Avg.

NeRV 3.20M 34.03 32.77 39.59 30.39 23.88 33.85 26.88 31.63
HNeRV 3.22M 35.04 35.72 41.11 32.20 25.88 35.75 29.69 33.63
HiNeRV 3.17M 35.67 39.37 41.61 36.94 31.98 36.74 31.57 36.27

(V1) w/ Sub-Conv1x1 3.16M 35.28 36.63 41.58 34.64 29.12 36.31 29.91 34.78
(V2) w/ Sub-Conv3x3 3.15M 34.96 35.35 41.14 32.80 27.18 35.34 29.14 33.70

(V3) w/o Encoding 3.17M 35.64 39.18 41.58 36.16 30.92 36.68 31.50 35.95
(V4) w/ Fourier enc. 3.17M 35.62 39.07 41.59 36.00 30.91 36.81 31.47 35.92
(V5) w/ Fourier (local) enc. 3.17M 35.59 38.99 41.54 35.77 30.61 36.57 31.30 35.77
(V6) w/ Grid (local) enc. 3.19M 35.65 39.26 41.58 36.17 30.93 36.72 31.55 35.98

(V7) w/ MLP 3.19M 35.10 37.17 41.35 34.77 29.10 35.58 29.76 34.69
(V8) w/ Conv3x3 3.17M 35.35 37.86 41.37 35.13 29.70 36.10 30.31 35.12

(V9) w/ Frame-wise 3.17M 35.68 39.22 41.54 36.69 31.49 36.54 31.54 36.10
(V10) w/ Patch-wise 3.17M 35.46 38.30 41.55 35.04 30.06 36.51 30.77 35.38

(V11) w/ Nearest Neighbor 3.17M 35.60 39.12 41.64 36.52 31.51 36.82 31.33 36.08

Upsampling encodings. Four variants are trained to confirm the effectiveness of the upsampling
encodings including (V3) w/o encoding; (V4) with the Fourier encoding [37]; (V5) using Fourier
encoding with local coordinates (computed in the hierarchical encoding); (V6) using the grid-based
encoding with local coordinates, i.e. the hierarchical encoding without the temporal dimension.

ConvNeXt block. The employed ConvNeXt block [31] has been compared with (V7) the MLP block
in transformer [50]; (V8) the block containing two convolutional layers with , where we use 3×3 and
1× 1 kernel size to keep the receptive field consistent with the ConvNeXt block used in our paper.

Unified representations. V9 and V10 have been generated for frame- and patch-wise configurations.

Interpolation methods. V11 replaces the bilinear interpolation by the nearest neighbor interpolation.

The ablation study results are presented in Table. 4 which shows that the full HiNeRV model
outperforms all alternatives (V1-V11) on the UVG dataset in terms of the overall reconstruction
quality. This confirms the contribution of each primary component of the design. More discussion
regarding the results can be found in the Supplementary Material.

5 Conclusion

In this paper, a new neural representation model, HiNeRV, has been proposed for video compression,
which exhibits superior coding performance over many conventional and learning-based video
codecs (including those based on INRs). The improvements demonstrated are associated with new
innovations including bilinear interpolation based hierarchical encoding, a unified representation and
a refined model compression pipeline.

Despite the fact that HiNeRV has not been fully optimized end-to-end (entropy encoding and
quantization are not optimized in the loop), it nonetheless achieves comparable performance to
state-of-the-art end-to-end optimized learning-based approaches, with significant improvement over
existing NeRV-based algorithms. This demonstrates the great potential of utilizing INRs for video
compression applications. For example, this is the first INR-based video codec which can outperform
HEVC HM Random Access mode based on MS-SSIM.

Future work should focus on incorporation of entropy coding and quantization to achieve full
end-to-end optimization.
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