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ABSTRACT

Second-order methods for convex optimization outperform first-order methods
in terms of theoretical iteration convergence, achieving rates up to O(k−5) for
highly-smooth functions. However, their practical performance and applications
are limited due to their multi-level structure and implementation complexity. In
this paper, we present new results on high-order optimization methods, supported
by their practical performance. First, we show that the basic high-order methods,
such as the Cubic Regularized Newton Method, exhibit global superlinear conver-
gence for µ-strongly star-convex functions, a class that includes µ-strongly convex
functions and some non-convex functions. Theoretical convergence results are
both inspired and supported by the practical performance of these methods. Sec-
ondly, we propose a practical version of the Nesterov Accelerated Tensor method,
called NATA. It significantly outperforms the classical variant and other high-order
acceleration techniques in practice. The convergence of NATA is also supported
by theoretical results. Finally, we introduce an open-source computational library
for high-order methods, called OPTAMI. This library includes various methods,
acceleration techniques, and subproblem solvers, all implemented as PyTorch op-
timizers, thereby facilitating the practical application of high-order methods to a
wide range of optimization problems. We hope this library will simplify research
and practical comparison of methods beyond first-order.

1 INTRODUCTION

In this paper, we consider the following unconstrained optimization problem:
min
x∈E

f(x), (1)

where E is a d-dimensional real value space and f(x) is a highly-smooth function

Definition 1.1 Function f has Lp - Lipschitz-continuous p-th derivative, if

∥Dpf(x)−Dpf(y)∥op ≤ Lp∥x− y∥ ∀x, y ∈ E, (2)

where Dpf(x) is a p-th order derivative, and ∥ · ∥op is an operator norm.
In the paper, we primarily focus on three main cases: p = {1; 2; 3}. We assume that the function f is
convex, although for some results, we relax this assumption to star-convexity. By x∗ we denote the
minimum of f .
Second-order methods are widely used in optimization, finding applications in diverse fields such as
machine learning, statistics, control, and economics (Polyak, 1987; Boyd and Vandenberghe, 2004;
Nocedal and Wright, 1999; Nesterov, 2018). Historically, much of the research on second-order
methods has focused on their local quadratic convergence. A well-known method achieving this
rapid local rate is the classical Newton method (Newton, 1687; Raphson, 1697; Kantorovich, 1948b).
However, it can diverge if the starting point is far from the solution (Nesterov, 1983, Example
1.2.3). To address this divergence issue, the Damped Newton method introduces a step-size (damping
coefficient) to ensure global convergence. However, the best-known global rate for the Damped
Newton method is O(T−1/3) (Berahas et al., 2022), which is slower than the gradient method’s
convergence O(T−1). The Cubic Regularized Newton (CRN) method, introduced by Nesterov and
Polyak (2006), was the first second-order method with a proper global convergence rate O(T−2),
outperforming the gradient method. Additionally, for strongly convex functions, it retains a quadratic
local convergence rate, similar to the Newton method (Doikov and Nesterov, 2022). The introduction
of CRN represented a significant milestone in the advancement of second-order optimization methods.
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Hessian approximations. In large-scale optimization problems, computing the (inverse) Hessian or
solving a linear system can be computationally expensive. Thus, it is natural to consider inexact or
stochastic algorithms to reduce these overheads. In convex optimization, several studies have explored
globally convergent second-order methods with inexact Hessians (Ghadimi et al., 2017), higher-order
methods with inexact and stochastic derivatives (Agafonov et al., 2024a;b), and adaptive stochastic
methods (Antonakopoulos et al., 2022). Recently, Quasi-Newton (QN) Hessian approximations have
been integrated into global second-order methods, resulting in algorithms that outperform first-order
methods — even when relying solely on first-order information (Kamzolov et al., 2023b; Jiang
et al., 2023; Scieur, 2023; Jiang et al., 2024). Furthermore, numerous second-order approximation
techniques have been developed for training neural networks, often surpassing state-of-the-art first-
order methods. Notable examples include Shampoo (Gupta et al., 2018), SOAP (Vyas et al., 2024),
and SOPHIA (Liu et al., 2024), which showcase the effectiveness of second-order approaches in
practical applications and benchmarks1 (Dahl et al., 2023). Such potential motivates us to study
second-order methods.

Accelerations. The Cubic Regularized Newton is the basic method in the line-up of second-order
methods. There are two main directions for its improvement: accelerated second-order methods,
including Nesterov-type acceleration (Nesterov, 2008; 2021b), near-optimal acceleration Monteiro
and Svaiter (2013); Gasnikov et al. (2019b), and optimal acceleration Kovalev and Gasnikov (2022);
Carmon et al. (2022); and third-order methods with superfast subsolver, which allows making a
third-order step without computation of third-order derivative (Nesterov, 2021b;c;a; Kamzolov, 2020).

1.1 OPTAMI: PRACTICAL PERFORMANCE OF HIGH-ORDER METHODS
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Figure 1: Third-order Nesterov’s lower-
bound function. Cubic Newton and Ba-
sic Tensor method converge superlin-
early. In contrast, GD demonstrates lin-
ear rate.

The theoretical results mentioned above highlight the sig-
nificant potential of second-order methods in optimization.
However, their practical adoption remains limited due to
the computational cost of calculating second derivatives,
the variety of acceleration techniques, and the use of dif-
ferent Hessian approximation methods to reduce iteration
costs. To address these challenges, we introduce OPTAMI,
a unified library implemented in PyTorch for second-order
and higher-order optimization methods.

One particular goal of this library is a direct comparison
of a wide variety of acceleration techniques, which in-
clude Nesterov acceleration (Nesterov, 2021b) with a rate
O(T−(p+1)); Near-Optimal Monteiro-Svaiter Accelera-
tion (Monteiro and Svaiter, 2013; Bubeck et al., 2019;
Gasnikov et al., 2019b; Kamzolov, 2020) with a rate
Õ(T−(3p+1)/2); Near-Optimal Proximal-Point Acceler-
ation (Nesterov, 2021a) with the rate Õ(T−(3p+1)/2); Optimal Acceleration (Kovalev and Gasnikov,
2022; Carmon et al., 2022) with a rate O(T−(3p+1)/2) and more Nesterov (2023). Despite the
theoretical advancements in these methods, the literature lacks a comprehensive practical comparison,
especially for higher-order methods with p = 3.

In the process of developing the library, we encountered several open challenges.

Methods exceed linear convergence in practice. We observed in experiments that second-order
and third-order methods often achieve superlinear convergence rates for µ-strongly convex
functions (Figure 1). From a theoretical standpoint, this is surprising. The lower bound is

Ω

((
L2D
µ

)2/7
+ log log

(
µ3

L2
2ε

))
for ε ≤ c1

µ3

L2
2
= c1r as established by Arjevani et al. (2019),

where r is the radius of quadratic convergence
{
x ∈ E : f(x)− f∗ ≤ c2r = c2

µ3

L2
2

}
and c1, c2 are

universal constants. The power 2/7 corresponds to the optimal accelerated method. However, this
lower bound applies only when ε ≤ c1r, which corresponds to small values of ε. In the case when
ε > c1r, meaning the desired accuracy exceeds the radius of the quadratic convergence region, it
may be possible to achieve faster global rates of Cubic Regularized Newton method than linear

1https://mlcommons.org/benchmarks/algorithms/
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Figure 2: Comparison of Basic Methods
vs Nesterov Accelerated Methods

Practical performance of accelerated methods. We also
observed that the Nesterov Accelerated Tensor Method
(Nesterov, 2021b) performs worse or on par with its non-
accelerated counterpart in practice. This contrasts with
first-order methods, where acceleration is typically ben-
eficial. These practical limitations lead to the method
being underutilized (Scieur, 2023; Carmon et al., 2022;
Antonakopoulos et al., 2022).

In our work, alongside introducing the OPTAMI library,
we aim to address these open challenges from both theo-
retical and practical perspectives.

Contributions. We summarize our key contributions as follows:

1. Global Superlinear Convergence of Second and High-order methods. Our main contri-
bution is providing theoretical guarantees for global superlinear convergence of the Cubic
Regularized Newton Method and the Basic Tensor Methods for µ-strongly star-convex
functions. These theoretical results are validated by practical performance. These results are
a significant improvement over the current state-of-the-art in second-order methods.

2. Nesterov Accelerated Tensor Method with At-Adaptation (NATA). We propose a new
practical variant of the Nesterov Accelerated Tensor Method, called NATA. This method
addresses the practical limitations of the classical version of acceleration for high-order
methods. We demonstrate the superior performance of NATA compared to both the classical
Nesterov Accelerated Tensor Method and Basic Tensor Method for p = 2 and p = 3. We
also prove a convergence theorem for NATA that matches the classical convergence rates.

3. Comparative Analysis of High-Order Acceleration Methods. We provide a practical
comparison of state-of-the-art (SOTA) acceleration techniques for high-order methods, with
a focus on the cases p = 2 and p = 3. Our experiments show that the proposed NATA
method consistently outperforms all SOTA acceleration techniques, including both optimal
and near-optimal methods.

4. Open-Source Computational Library for Optimization Methods (OPTAMI). We intro-
duce OPTAMI, an open-source library for high-order optimization methods. It facilitates
both practical research and applications in this field. Its modular architecture supports
various combinations of acceleration techniques with basic methods and their subsolvers.
All methods are implemented as PyTorch optimizers. This allows for seamless application
of high-order methods to a wide range of optimization problems, including neural networks.

2 METHODS AND NOTATION

Notation. In the paper, we consider a d-dimensional real value space E. E∗ is a dual space,
composed of all linear functionals on E. For a functional g ∈ E∗, we denote by ⟨g, x⟩ its value
at x ∈ E. For p ≥ 1, we define Dpf(x)[h1, . . . , hp] as a directional p-th order derivative of f
along hi ∈ E, i = 1, . . . , p. If all hi = h we simplify Dpf(x)[h1, . . . , hp] as Dpf(x)[h]p. So,
for example, D1f(x)[h] = ⟨∇f(x), h⟩ and D2f(x)[h]2 =

〈
∇2f(x)h, h

〉
. Note, that ∇f(x) ∈ E∗,

∇2f(x)h ∈ E∗. Now, we introduce different norms for spaces E and E∗. For a self-adjoint
positive-definite operator B : E → E∗, we can endow these spaces with conjugate Euclidian norms:

∥x∥ = ⟨Bx, x⟩1/2 , x ∈ E, ∥g∥∗ =
〈
g,B−1g

〉1/2
, g ∈ E∗.

So, for an identity matrix B = I , we get the classical 2-norm ∥x∥2 = ∥x∥I = ⟨x, x⟩1/2. We denote
e ∈ Rd as a vector of all ones and 0 ∈ Rd as a vector of all zeroes.
We introduce two types of distance measures between the starting point and the solution: for non-
accelerated methods, we consider the diameter of the level set L = {x ∈ E : f(x) ≤ f(x0)}

D = max
x∈L

∥x− x∗∥; (3)

and for accelerated methods, we use the Euclidean distance given by

R = ∥x0 − x∗∥. (4)
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2.1 METHODS IN OPTAMI LIBRARY

In this subsection, we present a detailed overview of the core methods implemented in the OPTAMI
library. Second-order methods have a more complicated structure. The library’s design is structured
into three hierarchical levels: basic methods, subsolvers, and accelerations. This modular architecture
ensures flexibility, extensibility, and adaptability to a variety of optimization tasks. It allows users
to combine multiple basic methods with various accelerations and subsolvers without the need to
implement entire methods from scratch. We leave technical details of the subsolvers to Appendix C.

BASIC METHODS. The Basic methods are the foundational building blocks of the library. These
monotone, non-accelerated methods form the backbone for constructing more sophisticated acceler-
ated algorithms. Below, we outline the primary basic methods available in the library.
Newton method. The classical (Damped) Newton method is defined as follows:

xt+1 = xt − γt
[
∇2f(xt)

]−1 ∇f(xt), (5)

where γt ∈ R+ is a step-size or damping coefficient. The Newton step originates from the second-
order Taylor expansion Φ2(x, xt):

xt+1 = argmin
x∈E

{
Φ2(x, xt) = f(xt) + ⟨∇f(xt), x− xt⟩+

〈
∇2f(xt)(x− xt), x− xt

〉}
. (6)

The solution of this problem corresponds to (5) with γt = 1. The Newton method lacks global
convergence, while the Damped Newton method exhibits a slow global convergence rate ofO(T−1/3).
This is because the approximation Φ2(x, xt) is not s not guaranteed to be an upper bound for f ,
meaning it is possible that f(x) > Φ2(x, xt).
Cubic Regularized Newton method. To address this issue, the Cubic Regularized Newton (CRN)
method was proposed

xt+1 = argminy∈E
{
ΩM2(x, xt) = Φ2(x, xt) +

M2

6 ∥x− xt∥3
}
. (7)

For the function f(x) with L2-Lipschitz Hessian, the model ΩM2(y, xt) is an upper bound of the
function f(x) forM2 ≥ L2; hence ΩM2(x, xt) ≥ f(x). This method is the first second-order method
with a global convergence rate of O

(
M2D

3

T 2

)
, which is faster than the Gradient Method (GM).

Basic Tensor method. High-order Taylor approximation of a function f can be written as follows:

Φx,p(y) = f(x) +
∑p

k=1
1
k!D

kf(x) [y − x]
k
, x, y ∈ E, (8)

where, for p = 1, we simplify notation to Φx(y). From (2), we can get the next upper-bound of the
function f(x) (Nesterov, 2018; 2021b)

|f(y)− Φx,p(y)| ≤ Lp

(p+1)!∥y − x∥p+1, (9)

which leads us to the high-order model

Ωx,Mp
(y) = Φx,p(y) +

Mp

(p+1)!∥y − x∥p+1. (10)

Now, we can formulate the Basic Tensor method

xt+1 = argminy∈E
{
Ωxt,Mp(y)

}
, (11)

where Mp ≥ pLp. For p = 1 and M1 ≥ L1, it is the gradient descent step xt+1 = xt − 1
M1

∇f(xt)
with the convergence rate O

(
M1R

2

T

)
for convex functions. For p = 2 and M2 ≥ L2, it is a CRN

Method from (7). For p = 3 and M3 ≥ 3L3, it is a Basic Third-order Method (Nesterov, 2021b):

xt+1 = xt+argmin
h∈E

{
f(xt) +∇f(xt) [h] + 1

2∇
2f(xt) [h]

2
+ 1

6D
3f(xt) [h]

3
+ M3

24 ∥h∥
4
}
, (12)

with the convergence rate O
(

M3D
4

T 3

)
. The step (12) can be performed with almost the same

computational complexity (up to a logarithmic factor) by using the Bregman Distance Gradient
Method as a subsolver (Nesterov, 2021b;c). The details are written in the Appendix C.1.

ACCELERATIONS. Compared to first-order methods, second-order and higher-order methods achieve
three types of acceleration rates: Nestrov-type acceleration with the rate O

(
T−(p+1)

)
, nearly-

optimal acceleration Õ
(
T−(3p+1)/2

)
, and optimal one O

(
T−(3p+1)/2

)
, where Õ(·) means up to a

logarithmic factor. OPTAMI library includes four key variants of acceleration techniques:
• Nesterov Accelerated Tensor Method (Algorithm 1) with a rate O(T−(p+1)) (Nesterov, 2021b);
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• Near-Optimal Tensor Acceleration (Algorithm 5) with a rate Õ(T−(3p+1)/2) (Bubeck et al., 2019;
Gasnikov et al., 2019b; Kamzolov, 2020);

• Near-Optimal Proximal-Point Acceleration Method with Segment Search (Algorithm 6) with the
rate Õ(T−(3p+1)/2) (Nesterov, 2021a);

• Optimal Acceleration (Algorithm 7) with a rate O(T−(3p+1)/2) (Kovalev and Gasnikov, 2022).

These methods are presented in detail in Section 3.1 for Nesterov acceleration, and in Appendix D
for the remaining algorithms.
3 IMPROVING PRACTICAL PERFORMANCE OF ACCELERATED METHODS
While accelerated second-order and higher-order methods provide provable theoretical advancements
over their non-accelerated counterparts, a detailed comparison of their practical performance seems
to be underexplored in the literature. Notably, techniques like Nesterov acceleration, which are highly
effective for first-order methods, can slow down second-order and higher-order methods, particularly
in the initial stages (Scieur, 2023; Carmon et al., 2022; Antonakopoulos et al., 2022). To illustrate
this, we present a practical example using the logistic regression problem (Figure 2). The accelerated
versions appear slower, which contradicts the theoretical expectations.
In this section, we first introduce a novel algorithm, NATA, that enhances the practical performance
of the Nesterov Accelerated Tensor Method while maintaining the same theoretical guarantees. We
then provide a comprehensive computational comparison of five different acceleration techniques for
second-order and higher-order optimization.
3.1 NESTEROV ACCELERATED TENSOR METHOD WITH At-ADAPTATION (NATA)
Algorithm 1 Nesterov Accelerated Tensor Method

1: Input: x0 = v0 is starting point, constant Mp, ψ0(z) = 1
p+1∥z − x0∥p+1, total number of

iterations T , and sequence At.
2: for t ≥ 0 do
3: at+1 = At+1 −At

4: yt =
At

At+1
xt +

at+1

At+1
vt

5: xt+1 = argminy∈E
{
Ωyt,Mp

(y)
}

6: ψt+1(z) = ψt(z) + at+1[f(xt+1) + ⟨∇f(xt+1), z − xt+1⟩]
7: vt+1 = argminx∈E ψt+1(z)
8: end for
9: return xT+1
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Figure 3: Basic and Nesterov Acceler-
ated Methods vs new NATA Methods.

In this subsection, we investigate the causes of the under-
performance of Nesterov Accelerated Tensor method and
propose a solution. We begin by revisiting Algorithm 1,
with further details provided in Appendix D.1. According
to the theoretical convergence result f(xt) − f(x∗) ≤
∥x∗−x0∥p+1

(p+1)At
from (Nesterov, 2021c, Theorem 2.3), the

sequence At is directly connected with the method’s per-
formance - the larger the At, the faster the convergence.
Therefore, our goal is to maximize At. Theoretically, At

should be defined as At =
νp

Lp
tp+1, where ν2 = 1

24 for
M2 = L2 and ν3 = 5

3024 for M3 = 6L3. However, the
values of νp appear to be quite small, which limits the
speed of convergence. Can these values be increased? The
answer is yes. We propose the Nesterov Accelerated Tensor Method with At-Adaptation, which
selects these parameters more aggressively, leading to faster convergence.
Theorem 3.1 For convex function f with Lp-Lipschitz-continuous p-th derivative, to find xT such
that f(xT ) − f(x∗) ≤ ε, it suffices to perform no more than T ≥ 1 iterations of the Nesterov
Accelerated Tensor Method with At-Adaptation (NATA) with Mp ≥ pLp (Algorithm 2), where

T = O

((
MpR

p+1

ε

) 1
p+1

+ logθ
(
νmax

νmin

))
. (13)

The proof is presented in the Appendix D.2. The established convergence rate of NATA matches
the original method, with an additional factor of logθ

(
νmax

νmin

)
accounting for the adaptation of νt.
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Algorithm 2 Nesterov Accelerated Tensor Method with At-Adaptation (NATA)

1: Input: x0 = v0 is starting point, ψ0(z) = 1
p+1∥z − x0∥p+1, constant Mp, total number of

iterations T , Ã0 = 0, νmin = νp, νmax ≥ νp is a maximal value of ν, θ > 1 is a scaling
parameter for ν, and ν0 ≤ νmax is a starting value of ν.

2: for t ≥ 0 do
3: νt = νtθ
4: repeat
5: νt = max

{
νt

θ , ν
min
}

6: ãt+1 = νt

Mp
((t+ 1)p+1 − tp+1) and Ãt+1 = Ãt + ãt+1

7: yt =
Ãt

Ãt+1
xt +

ãt+1

Ãt+1
vt

8: xt+1 = argminy∈E
{
Ωyt,Mp

(y)
}

9: ψt+1(z) = ψt(z) + ãt+1[f(xt+1) + ⟨∇f(xt+1), z − xt+1⟩]
10: vt+1 = argminz∈E ψt+1(z)

11: until ψt+1(vt+1) < Ãt+1f(xt+1)
12: νt+1 = min {νtθ, νmax}
13: end for
14: return xT+1

Next, we demonstrate the practical improvements of NATA compared to the classical methods. As
shown in Figure 3, one can see that the Cubic and Tensor variants of NATA significantly outperform
the classical Basic and Nesterov Accelerated Methods. We also included versions of Cubic and
Tensor NATA with fixed νt = 10 and νt = 0.5, respectively, where νt is an additional tunable
hyperparameter. This more aggressive variant of NATA can exhibit even faster practical performance,
though it may diverge if νt is not chosen carefully.
3.2 COMPUTATIONAL COMPARISION OF ACCELERATION METHODS

We now present a practical comparison of various acceleration techniques for tensor methods in
convex optimization, including Nesterov acceleration, near-optimal and optimal accelerations, as well
as the newly proposed algorithm, NATA. Specifically, our experiments focus on logistic regression,
defined as:

f(x) = 1
n

∑n
i=1 log

(
1 + e−bi⟨ai,x⟩

)
+ µ

2 ∥x∥
2
2, (14)

where ai ∈ Rd are data features and bi ∈ {−1; 1} are data labels for i = 1, . . . , n. We evaluate
performance on the a9a dataset in Figure 4 with regularizer µ = 0 and µ = 10−4 in Figure 5.
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Figure 4: Comparison of different cubic and tensor acceleration methods on Logistic Regression for
a9a dataset from the starting point x0 = 3e, where e is a vector of all ones.

Let us now discuss the performance of the methods. The new NATA acceleration outperforms all
other methods. We attribute this to NATA’s strategy of maximizing ãt and Ãt, which enables even
faster convergence in the later stages. The second-best performer is the Near-Optimal Acceleration
method. Although it struggles initially due to a large number of line-search iterations per step, it
gradually requires fewer line-search iterations — less than two per step on average — as parameters
from previous line-search steps become well-suited for the current iteration. With fewer line-search

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

iterations, the method accelerates and outpaces the remaining competitors. A promising direction for
improving this method would be to refine the line-search process through an advanced line-search
strategy. Next, the Nesterov Accelerated method starts off slower than the basic method without
acceleration. Eventually, the method accelerates and overtakes the basic version but only for the
Cubic version, as ν3 is too small for tensor methods. Near-Optimal Proximal-Point Acceleration
Method with Segment Search performs very similarly to Basic Methods with only improvement in
strongly convex case. It has much fewer iterations, but it does a safe segment search with an average
of 3 Basic steps per search. Lastly, the Optimal Acceleration method performs the worst in practice.
We believe the main issue lies in the internal parameters, which need tuning and adaptation, as we
used the theoretical parameters in our implementation. This leads to many inner iterations without
significant global progress. Improving these parameters presents an open question for future research.
More details can be found in the Appendix E.
In Figure 5, both basic optimization methods and certain accelerated variants appear to exhibit global
superlinear convergence, accelerating with each iteration even when far from the solution. This
observation naturally raises an important question: Can we theoretically prove that second-order
methods achieve global superlinear convergence? We address this question in the following section.
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Figure 5: Comparison of different cubic and tensor acceleration methods on regularized Logistic
Regression for a9a dataset and µ = 10−4 from the starting point x0 = 3e.

4 GLOBAL SUPERLINEAR CONVERGENCE OF HIGH-ORDER METHODS FOR
STRONGLY STAR-CONVEX FUNCTIONS

In this section, we establish the global superlinear convergence of high-order methods for strongly
star-convex functions. We begin by defining global superlinear convergence.

Definition 4.1 A method is said to exhibit a global superlinear convergence rate with respect to the
functional gap if there exists a sequence ζt for all t ∈ {0, . . . , T} such that

f(xt+1)−f∗

f(xt)−f∗ ≤ ζt, 1 > ζt > ζt+1 ∀t ∈ {0, . . . , T} , and ζt → 0 for t→ +∞. (15)
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f(x
t)

f(x
*)
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Basic Tensor Method, L3 = 0.25

Figure 6: Cubic Newton and Basic Ten-
sor method have areas of superlinear
convergence. In contrast, GD demon-
strates linear rate.

The essence of this definition lies in the fact that the scaling
coefficient ζt decreases with each iteration. If ζt remains
constant, the method achieves linear convergence. Con-
versely, if ζt increases over time (i.e., ζt < ζt+1), the con-
vergence becomes sublinear. Additionally, we introduce
the values αt = 1− f(xt+1)−f∗

f(xt)−f∗ ≤ 1, which typically rep-
resent the per-iteration convergence rate from f(xt+1)−
f∗ ≤ (1− αt) (f(xt)− f∗). The larger αt means faster
convergence. As for constant α ≤ αt, the method takes a
total number of T = O

(
α−1 log

(
f(x0)−f∗

ε

))
iterations

to reach ε-solution, where f(xT+1)− f∗ ≤ ε. For exam-
ple, gradient descent exhibits global linear convergence for
strongly convex functions with ζt = 1− α = 1− µ

L1+µ .

Now, to get some intuition on the performance of the methods, we begin with two simple and
classical examples: the l2-regularized logistic regression problem and the l2-regularized Nesterov’s
lower-bound function. The l2-regularized third order Nesterov’s lower-bound function from Nesterov
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(2021b) has the next form
f(x) = 1

4

∑d−1
i=1 (xi − xi+1)

4 − x1 +
µ
2 ∥x∥

2
2. (16)

Figures 1, 6 illustrate that both the Cubic Newton method and Basic Tensor method have areas
of superlinear convergence where the graphics are going down faster with each iteration (concave
downward). In contrast, gradient descent demonstrates linear convergence. To verify the behavior of
these methods, we plot the values αt = 1− f(xt+1)−f∗

f(xt)−f∗ ≤ 1.
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(a) Logistic Regression for a9a dataset starting from
the point x0 = 3e with µ = 10−4 regularizer.
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(b) Third-order Nesterov’s lower-bound function start-
ing from the point x0 = 0 with µ = 10−3 regularizer.

Figure 7: Comparison of the basic methods by the relative value 1− f(xt+1)−f∗

f(xt)−f∗ .

In Figure 7, we observe that at the beginning all methods slow down for both cases. This phase
corresponds to the region where the function’s decrease guarantee for (star-)convex functions out-
performs the function’s decrease guarantee for strongly (star-)convex functions. For example, in the
case of gradient descent, this occurs when the guarantee f(xt+1) ≤ f(xt) − 1

2L1
∥∇f(xt+1)∥2 is

better than f(xt+1) − f∗ ≤
(
1− µ

µ+L1

)
(f(xt)− f∗). Despite this region, gradient descent still

has global linear convergence for strongly (star-)convex function. As iterations proceed, gradient
descent stabilizes around αt = 10−3, which corresponds to the theoretical convergence rate κ. The
Cubic Newton method and the Basic Tensor method, however, start to accelerate and switch to a
superlinear convergence rate. This practical performance gives the intuition for the global superlinear
convergence of high-order methods.
Now, we present the theoretical results demonstrating that basic high-order methods indeed have a
global superlinear convergence for µ-strongly star-convex functions.

Definition 4.2 Let x∗ be a minimizer of the function f . For q ≥ 2 and µq ≥ 0, the function f is
µq-uniformly star-convex of degree q with respect to x∗ if for all x ∈ Rd and ∀α ∈ [0, 1]

f (αx+ (1− α)x∗) ≤ αf(x) + (1− α)f(x∗)− α(1−α)µq

q ∥x− x∗∥q. (17)

If q = 2 then the function f is µ-strongly star-convex with respect to x∗. If µq = 0 then the function
f is star-convex with respect to x∗. From this definition, we can additionally get the next useful
inequality sometimes called q-order growth condition

µq

q ∥x− x∗∥q ≤ f(x)− f(x∗). (18)

We start with a simplified version of the theorem which includes the linear convergence and then we
present the full version.

Theorem 4.3 For µ-strongly star-convex (17) function f with L2-Lipschitz-continuous Hessian (2),
Cubic Regularized Newton Method from (7) with M2 ≥ L2 converges with the rate

f(xt+1)− f∗ ≤ (1− αt) (f(xt)− f∗) , (19)

for all αt ∈ [0;α∗
t ] , where α∗

t = −1+
√
1+4κt

2κt
and κt =

(M2+L2)∥xt−x∗∥
3µ . (20)

This range includes the classical linear rate

f(xt)− f(x∗) ≤ (1− αlow)t (f(x0)− f(x∗)) for αlow = min
{

1
2 ;
√

3µ
4(M2+L2)D

}
(21)
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Proof. We start the proof by using an upper-bound (9)

f(xt+1)
(9)
≤ Φxt,2(xt+1) +

L2

6 ∥xt+1 − xt∥3
(7)
≤ min

y∈Rn

{
Φxt,2(y) +

M2

6 ∥y − xt∥3
}

(9)
≤ min

y∈Rn

{
f(y) + M2+L2

6 ∥y − xt∥3
} y=xt+αt(x

∗−xt)

≤ f((1− αt)xt + αtx
∗) + α3

t
M2+L2

6 ∥x∗ − xt∥3

(17)
≤ (1− αt)f(xt) + αtf(x

∗)− αt(1−αt)µ
2 ∥xt − x∗∥2 + α3

t
M2+L2

6 ∥xt − x∗∥3.

From the second inequality, we get that the method is monotone and f(xt+1) ≤ f(xt). Now, by
subbing f(x∗) from both sides, we get

f(xt+1)−f(x∗) ≤ (1−αt) (f(xt)− f(x∗))− αt

2 ∥xt−x∗∥2
(
(1− αt)µ− α2

t
M2+L2

3 ∥xt − x∗∥
)
,

By choosing αt such that
α2
t
M2+L2

3 ∥xt − x∗∥+ µαt − µ ≤ 0, (22)
we get (19). By solving the quadratic inequality (22), we get that the method (7) converges with the
rate (19) for all (20). Next, we present Lemma 4.4 with the useful properties of α∗

t from (20). The
more general Lemma B.2 with the detailed proof is in Appendix B.
Lemma 4.4 For z > 0, the function

α∗(z) = −1+
√
1+4z

2z (23)
is bounded by the following lower and upper bounds

min
{
1, 1√

z

}
> α∗(z) > min

{
1
2 ;

1
2
√
z

}
, (24)

and it is monotonically decreasing
∀z, y > 0 : z < y ⇒ α∗(z) > α∗(y). (25)

The convergence rate is well-defined as 0 < α∗
t ≤ 1 from (24). As ∥xt − x∗∥ ≤ D from (3) and

αlow ≤ α∗ by (24), we get the linear convergence rate (21). □

Now, we move to the second theorem and prove the global superlinear convergence. The main idea
of the proof is to observe that ∥xt − x∗∥ in (20) decreases for µ-strongly star-convex functions. This
property allows us to show that κt is decreasing, and hence α∗

t is increasing from (25), leading to
superlinear convergence.

Theorem 4.5 For µ-strongly star-convex (17) function f with L2-Lipschitz-continuous Hessian (2),
Cubic Regularized Newton Method from (7) with M2 ≥ L2 converges globally superlinearly as
defined in (15) with ζt = 1− αsl

t

f(xt+1)− f∗ ≤ (1− αsl
t ) (f(xt)− f∗) , (26)

where
αsl
t =

−1+
√

1+4κsl
t

2κsl
t

for κslt = (M2+L2)
√
2

3µ3/2 (1− αlow)t/2 (f(x0)− f(x∗))
1/2

. (27)

The aggregated convergence rate for T ≥ 1 equals to

f(xT )− f(x∗) ≤ (f(x0)− f(x∗))
∏T

t=1(1− αsl
t ). (28)

Proof. From µ-strongly star-convexity (17), we can upper-bound ∥xt − x∗∥ in (20) by

∥xt − x∗∥ ≤
(

2
µ (f(xt)− f(x∗))

)1/2 (21)
≤
(

2
µ

(
(1− αlow)t(f(x0)− f(x∗))

))1/2
.

So, we got that ∥xt−x∗∥ is linearly decreasing to zero. From that, we get a new superlinear αsl
t ≤ α∗

t
from (27). As κslt is getting smaller within each iteration κslt > κslt+1, we get that α(κslt ) < α(κslt+1)

from (25). Finally, for ζt = 1− α(κslt ), we get ζt > ζt+1 in (26). This finishes the proof of global
superlinear convergence. The aggregated convergence rate is equal to (28). □

Similar results hold for Basic Tensor methods from (11) in general for p ≥ 2. Next, we present the
theorem for global superlinear convergence of Basic Tensor methods.
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Theorem 4.6 For µq-uniformly star-convex (17) function f of degree q ≥ 2 with Lp - Lipschitz-
continuous p-th derivative (p ≥ q ≥ 2) (2), Basic Tensor Method from (11) withMp ≥ pLp converges
converges globally superlinearly as defined in (15) with ζt,p = 1− αsl

t,p

f(xt+1)− f∗ ≤ (1− αsl
t,p) (f(xt)− f∗) , (29)

where αsl
t,p is such that

hκsl
t,p
(αsl

t,p) = 0, where hκ(α) = αpκ+ α− 1, αlow
p = min

{
1
2 ;

1
2

(
(p+1)!µ

q(Mp+Lp)Dp−q+1

)1/p}
and κslt,p =

(Mp+Lp)q
(q+1)/q

(p+1)!µ(q+1)/q (1− αlow
p )t/q (f(x0)− f(x∗))

1/q
.

(30)
The aggregated convergence rate for T ≥ 1 equals to

f(xT )− f(x∗) ≤ (f(x0)− f(x∗))
∏T

t=1(1− αsl
t,p). (31)

To sum up, we present a unified table for µ-strongly (star-)convex functions.

Method Per-Iteration Rate αt Glob. Superlinear

Gradient Descent (Nesterov, 2004) µ
L1

✗

Cubic Newton Method (Nesterov, 2008)
(

µ
L2D

)1/2
✗

Basic Tensor Method
(Doikov and Nesterov, 2022)

(
µ

LpDp−1

)1/(p+1)

✗

Cubic Newton Method (NEW) µ3/4

L
1/2
2

(
1−

(
µ

L2D

)1/2)−t/4

∆
−1/4
0 ✓

Basic Tensor Method (NEW) µ3/2p

L
1/p
2

(
1−

(
µ

LpDp−1

)1/p)−t/2p

∆
−1/2p
0 ✓

Table 1: Comparison of per-iteration convergence for different basic methods, where ∆0 = f(x0)−
f(x∗). To enhance clarity and simplicity, we removed universal constants and simplified (27) and
(30) for the case where κt ≥ 1.

We established the global superlinear convergence of Cubic Regularized Newton Method for µ-
strongly star-convex functions, as well as Basic Tensor Method for µq-uniformly star-convex functions.
Comprehensive details and proofs are provided in Appendix B.

5 CONCLUSION
Limitations. This paper primarily focuses on high-order methods which come with certain limitations.
First of all, they have computational and memory limitations in high-dimensional spaces, due to
the need for Hessian calculations. There are, however, approaches to overcome this, such as using
first-order subsolvers or inexact Hessian approximations like Quasi-Newton approximations (BFGS,
L-SR1). In this paper, we focus on the exact Hessian to analyze methods’ peak performance.
Another limitation arises from the specific function classes and the theoretical results considered.
Nonetheless, many of the proposed methods can be practically applied to a broader set of problems.
For instance, the CRN performs competitively from general non-convex to strongly convex functions.

Conclusion and Future work. In the paper, we introduced OPTAMI, an open-source library designed
to make high-order optimization methods more accessible and easier to experiment with. We plan to
expand this library to cover a wider range of settings and optimization methods in the future.
In the first part of the paper, we proposed NATA, a practical acceleration technique. NATA employs a
more aggressive schedule adaptation for At, enabling faster convergence. Our experimental results
show that NATA significantly outperforms both basic and accelerated methods, including near-optimal
and optimal methods. This opens up another interesting question: Could other high-order methods be
optimized by addressing practical issues that arise due to overly conservative theoretical guarantees?
Finally, we demonstrated that the basic high-order methods exhibit global superlinear convergence for
µ-strongly star-convex functions. This result is significant because it shows that high-order methods
accelerate with each iteration, in stark contrast to first-order methods, which typically have a steady
linear convergence rate. This raises intriguing questions: Can global superlinear convergence be
established for accelerated high-order methods as well? What is the best possible global per-iteration
decrease that we can theoretically guarantee?
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damped Newton method achieves global O

(
1
k2

)
and local quadratic convergence rate. In

S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances
in Neural Information Processing Systems, volume 35, pages 25320–25334. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/a1f0c0cd6caaa4863af5f12608edf63e-Paper-Conference.pdf.

B. Jiang, H. Wang, and S. Zhang. An optimal high-order tensor method for convex optimization. In
Conference on Learning Theory, pages 1799–1801. PMLR, 2019.

R. Jiang, Q. Jin, and A. Mokhtari. Online learning guided curvature approximation: A quasi-
newton method with global non-asymptotic superlinear convergence. In The Thirty Sixth Annual
Conference on Learning Theory, pages 1962–1992. PMLR, 2023.

12

https://doi.org/10.1007/s10107-020-01606-x
https://doi.org/10.1007/s10107-020-01606-x
https://doi.org/10.1007/s10107-023-01943-7
https://doi.org/10.1137/22M1519444
https://doi.org/10.1137/22M1519444
https://www.sciencedirect.com/science/article/pii/S2192440622000211
https://www.sciencedirect.com/science/article/pii/S2192440622000211
https://proceedings.mlr.press/v99/gasnikov19a.html
https://proceedings.mlr.press/v99/gasnikov19a.html
https://proceedings.mlr.press/v99/gasnikov19b.html
https://proceedings.mlr.press/v99/gasnikov19b.html
https://proceedings.mlr.press/v80/gupta18a.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/a1f0c0cd6caaa4863af5f12608edf63e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/a1f0c0cd6caaa4863af5f12608edf63e-Paper-Conference.pdf


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

R. Jiang, P. Raman, S. Sabach, A. Mokhtari, M. Hong, and V. Cevher. Krylov cubic regularized
newton: A subspace second-order method with dimension-free convergence rate. In International
Conference on Artificial Intelligence and Statistics, pages 4411–4419. PMLR, 2024.

D. Kamzolov. Near-optimal hyperfast second-order method for convex optimization. In Y. Kochetov,
I. Bykadorov, and T. Gruzdeva, editors, Mathematical Optimization Theory and Operations
Research, pages 167–178. Springer International Publishing, 2020. ISBN 978-3-030-58657-7.

D. Kamzolov, A. Gasnikov, and P. Dvurechensky. Optimal combination of tensor optimization
methods. In International Conference on Optimization and Applications, pages 166–183. Springer,
2020.

D. Kamzolov, A. Gasnikov, P. Dvurechensky, A. Agafonov, and M. Takáč. Exploiting Higher Order
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A RELATED WORKS

The origins of Newton method trace back to the foundational works on root-finding algorithms
Newton (1687), Raphson (1697), Simpson (1740), and Bennett (1916). The next breakthrough in
applying Newton method to optimization and proving its local quadratic convergence rates was done
by Kantorovich (1948b;a; 1949; 1951b;a; 1956; 1957). Over the following decades, Newton’s method
have been studied in depth, modified and improved in works of Moré (1977) Griewank (1981);
Nesterov and Polyak (2006). Today, Newton’s method is widely used in industrial and scientific
computing. For a more detailed history of Newton method, see Boris T. Polyak’s paper (Polyak,
2007).

Recently, second-order methods have taken a new direction in development with the introduction
of globally convergent methods achieving convergence rates of O(T−2) (Nesterov and Polyak,
2006) and O(T 3) (Nesterov, 2008) convergence rate, surpassing the performance of first-order meth-
ods (Nesterov, 2018). These advancements were later extended to higher-order (tensor) methods
by Baes (2009). However, the tensor subproblem in these methods is nonconvex, leading to im-
plementation challenges. This issue was addressed by the introduction of the (Accelerated) Tensor
Method in Nesterov (2021b), which resolved the nonconvexity by increasing the scaling coefficient
of the regularization term, making the subproblem convex. The basic p-th order Tensor Method
achieves a rate of O (T−p) , while the accelerated version improves this to O

(
T−(p+1)

)
. Earlier

work by Monteiro and Svaiter (2013) demonstrated that even faster convergence for second-order
methods is possible with the Accelerated Proximal Extragradient method (A-HPE), achieving a rate
of Õ

(
T−7/2

)
. Lower bounds for second-order and higher-order methods of Ω

(
T−(3p+1)/2

)
were

established in (Arjevani et al., 2019; Nesterov, 2021b), demonstrating that the A-HPE method is
nearly optimal for second-order convex optimization. Subsequently, three independent research
groups (Gasnikov et al., 2019a; Bubeck et al., 2019; Jiang et al., 2019) extended the A-HPE frame-
work to develop tensor methods with a convergence rate of Õ

(
T−(3p+1)/2

)
, achieving near-optimal

complexity for these higher-order methods. Truly optimal methods with a rate of O
(
T−(3p+1)/2

)
were later proposed in (Kovalev and Gasnikov, 2022; Carmon et al., 2022). Moreover, when assuming
higher levels of smoothness, second-order methods (Nesterov, 2021c;a; Kamzolov, 2020; Doikov
et al., 2024) have been shown to exceed the established lower complexity bounds for problems with
Lipschitz-continuous Hessians. For an in-depth exploration of higher-order methods, see the review
in (Kamzolov et al., 2023a).

Since second-order and higher-order methods generally incur greater computational costs due to the
need for calculating higher-order derivatives, it is natural to consider inexact or stochastic algorithms
to reduce these overheads. In convex optimization, several studies have explored globally convergent
second-order methods with inexact Hessians (Ghadimi et al., 2017), higher-order methods with
inexact and stochastic derivatives (Agafonov et al., 2024a; Kamzolov et al., 2020), and adaptive
stochastic methods (Antonakopoulos et al., 2022). In (Agafonov et al., 2024b), a lower bound of
Ω
(

σ1√
T
+ σ2

T 2 + 1
T 7/2

)
was established for stochastic globally convergent second-order methods,

where σ1 and σ2 represent the variances of the stochastic gradients and Hessians, respectively. Addi-
tionally, the Accelerated Stochastic Cubic Newton method was introduced, achieving a convergence
rate ofO

(
σ1√
T
+ σ2

T 2 + 1
T 3

)
, which, to the best of our knowledge, represents the state-of-the-art result.

Inexact second-order derivatives also studied for min-max problems and variational inequalities Lin
et al. (2022); Agafonov et al. (2024c). Inexact second-order methods enable the use of Quasi-Newton
Hessian approximations, which are well-regarded for their strong practical performance. Although
classical Quasi-Newton (QN) methods are known for local superlinear convergence but lack global
convergence, their integration with cubic regularization has led to globally convergent methods that
also feature relatively inexpensive subproblem solutions (Kamzolov et al., 2023b; Scieur, 2023; Jiang
et al., 2023). Second-order methods with inexact or stochastic derivatives also hold promise for
distributed optimization Shamir et al. (2014); Reddi et al. (2016); Zhang and Lin (2015); Daneshmand
et al. (2021); Agafonov et al. (2021); Dvurechensky et al. (2022); Agafonov et al. (2022), offering an
effective way to manage the computational demands typically encountered in distributed settings.
One actively developing direction relies on the constructions of Cubic Newton with explicit step in
order to reduce the complexity of solving methods’ subproblems Polyak (2009; 2017); Mishchenko
(2023); Doikov and Nesterov (2023); Doikov et al. (2024); Hanzely et al. (2022).
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B GLOBAL SUPERLINEAR CONVERGENCE

In this section, we show the theoretical global superlinear convergence of high-order methods (p ≥ 2)
for µ-strongly star-convex functions.

Theorem B.1 For µq-uniformly star-convex (17) function f of degree q ≥ 2 with Lp - Lipschitz-
continuous p-th derivative (p ≥ q ≥ 2) (2), Basic Tensor Method from (11) with Mp ≥ (p− 1)Lp

converges with the rate
f(xt+1)− f∗ ≤ (1− αt,p) (f(xt)− f∗) , (32)

for all α∗
t,p ≥ αt,p ≥ 0 such that

hκt,p(αt,p) ≤ 0 and hκt,p(α
∗
t,p) = 0, where hκ(α) = αpκ+α−1 and κt,p =

q(Mp+Lp)∥xt−x∗∥p−q+1

(p+1)!µ .

(33)
This range includes the classical linear rate

f(xt)− f(x∗) ≤ (1− αlow
p )t (f(x0)− f(x∗)) for αlow

p = min

{
1
2 ;

1
2

(
(p+1)!µ

q(Mp+Lp)Dp−q+1

)1/p}
(34)

Proof. We start the proof from an upper-bound (9)

f(xt+1)
(9)
≤ Φxt,p(xt+1) +

Lp

(p+1)!∥xt+1 − xt∥p+1
(11)
≤ min

y∈Rn

{
Φxt,p(y) +

Mp

(p+1)!∥y − xt∥p+1
}

(9)
≤ min

y∈Rn

{
f(y) +

Mp+Lp

(p+1)! ∥y − xt∥p+1
} y=xt+αt,p(x

∗−xt)

≤ f((1− αt,p)xt + αt,px
∗) + αp+1

t,p
Mp+Lp

(p+1)! ∥x
∗ − xt∥p+1

(17)
≤ (1− αt,p)f(xt) + αt,pf(x

∗)− αt,p(1− αt,p)µ

q
∥xt − x∗∥q + αp+1

t,p
Mp+Lp

(p+1)! ∥x
∗ − xt∥p+1.

From the third inequality, we get that the method is monotone and f(xt+1) ≤ f(xt). Next, we
subtract f(x∗) from the both sides and get

f(xt+1)−f(x∗) ≤ (1−αt,p) (f(xt)− f(x∗))−αt,p

q ∥xt−x∗∥q
(
(1− αt)µ− αp

t,p
q(Mp+Lp)

(p+1)! ∥xt − x∗∥p+1−q
)
,

If we choose αt such that

αp
t,p

q(Mp+Lp)
(p+1)! ∥xt − x∗∥p−q+1 + µαt,p − µ ≤ 0,

or equivalent version

αp
t,p

q(Mp+Lp)
(p+1)!µq

∥xt − x∗∥p−q+1 + αt,p − 1 ≤ 0,

we get (32). To understand the solutions of such inequality, we present Lemma B.2 with the useful
properties. From this Lemma, the convergence rate is well-defined as 0 < α∗

t,p ≤ 1 from (36). As
∥xt − x∗∥ ≤ D from (3) and αlow

p ≤ α∗
t,p by (36), we get the linear convergence rate (34). □

Lemma B.2 For z > 0, the solution α∗(z) of

hz(α
∗(z)) = 0, where hz(α) = αpz + α− 1, (35)

has the next constant lower and upper-bound

min
{
1, 1

z1/p

}
> α∗(z) > min

{
1
2 ;

1
2z1/p

}
. (36)

This bounds show that, for z ≥ 1, the solution α∗(z) is similar to z−1/p up to a constant factor as
z−1/p > α∗(z) > 0.5z−1/p.

For z ≤ 1, we get the next improved upper and lower-bound

1− z
p+1 ≥ α∗(z) ≥ 1− z, (37)

which means that for z → +0 we have α∗(z) → 1.

The solution α∗(z) is monotonically decreasing

∀z, y > 0 : z < y ⇒ α∗(z) > α∗(y). (38)
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Proof. We start the proof from the upper-bound inequality. Note, the function hz(α) = αpz + α− 1
is monotonically increasing for α ≥ 0, as hz(α)′ = pαp−1z + 1 > 0. As hz(0) = −1 and
hz(1) = z > 0, we get that the solution is unique and α∗(z) ∈ [0; 1]. Next, for α = 1

z1/p , we have

hz(
1

z1/p ) =
1
z z +

1
z1/p − 1 = 1

z1/p > 0,

which means that min
{
1, 1

z1/p

}
> α∗(z) and we proved the upper-bound.

Next, we move to the lower-bound inequality. For p ≥ 2, z ≥ 1 and α = 1
2z1/p , we have

hz(
1

2z1/p ) =
1

2pz z +
1

2z1/p − 1 = 1
2p + 1

2z1/p − 1 ≤ 1
2p + 1

2 − 1 < 0,

where the first inequality is coming from z ≥ 1. The second part of lower-bound holds for 0 < z < 1
because

hz(
1
2 ) =

1
2p z +

1
2 − 1 < 1

2p − 1
2 < 0.

We proved (35). Now, to understand the behavior of α∗(z) for 0 < z ≤ 1, we improve the upper and
lower-bound for 0 < z ≤ 1. For 0 < z ≤ 1 and α = 1− z, we get the improved lower-bound

hz(1− z) = (1− z)pz + 1− z − 1 = (1− z)pz − z = ((1− z)p − 1)z < 0.

For p ≥ 2, 0 < z ≤ 1 and α = 1− z
p+1 , we get the improved upper-bound

hz

(
1− z

p+1

)
=
(
1− z

p+1

)p
z + 1− z

p+1 − 1 =
(
1− z

p+1

)p
z − z

p+1

≥
((

1− 1
p+1

)p
− 1

p+1

)
z =

(
pp−(p+1)p−1

(p+1)p

)
z > 0, (39)

where to use the last inequity or p ≥ 2 we need to use some additional analysis. We introduce an
additional function and its derivatives

s(x) = x log(x)− (x− 1) log(x+ 1),

s(x)′ = 2
1+x + log

(
1− 1

1+x

)
,

s(x)′′ = 1−x
x(1+x)2 .

It is clear that s(x)′′ < 0 for x > 1. It means that s(x)′ is monotonically decreasing. s(1)′ =
1 − log(2) > 0 and the limit limx→+∞ s(x)′ = 0, hence s(x)′ ≥ 0 and s(x) is a monotonically
increasing function. s(1) = 0, hence s(x) > 0 for x > 1 and finally xx > (x + 1)x−1 for x > 1,
which proves (39) and finishes the proof of the improved upper-bound (37).

Finally, we show that the solution α∗(z) is monotonically decreasing with z. Let 0 < z < y and
α∗(z) and α∗(y) are such that hz(α∗(z)) = 0 and hy(α∗(y)) = 0, then

α∗(z)py + α∗(z)− 1
(35)
= α∗(z)py + 1− α∗(z)pz − 1 = α∗(z)p(y − z) > 0,

which proves that α∗(z) > α∗(y) and hence the solution α∗(z) is monotonically decreasing. □

Now, we proceed to the second theorem to establish the global superlinear convergence of high-order
methods. The key idea behind the proof is to observe that |xt−x∗| in (33) decreases for µq-uniformly
star-convex functions. This allows us to notice the fact that κt,p is also decreasing, hence αt,p

increases according to (38), ultimately leading to superlinear convergence.

Theorem B.3 (Copy of Theorem 4.6) For µq-uniformly star-convex (17) function f of degree q ≥ 2
with Lp - Lipschitz-continuous p-th derivative (p ≥ q ≥ 2) (2), Basic Tensor Method from (11) with
Mp ≥ (p− 1)Lp converges converges globally superlinearly as defined in (15) with ζt,p = 1− αsl

t,p

f(xt+1)− f∗ ≤ (1− αsl
t,p) (f(xt)− f∗) , (40)

where αsl
t,p is such that

hκsl
t,p
(αsl

t,p) = 0, where hκ(α) = αpκ+ α− 1, αlow
p = min

{
1
2 ;

1
2

(
(p+1)!µ

q(Mp+Lp)Dp−q+1

)1/p}
and κslt,p =

(Mp+Lp)q
(q+1)/q

(p+1)!µ(q+1)/q (1− αlow
p )t/q (f(x0)− f(x∗))

1/q
.

(41)
The aggregated convergence rate for T ≥ 1 equals to

f(xT )− f(x∗) ≤ (f(x0)− f(x∗))
∏T

t=1(1− αsl
t,p). (42)
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Proof. From µ-uniform star-convexity (17), we can upper-bound ∥xt − x∗∥ in (33) by

∥xt − x∗∥ ≤
(

q
µ (f(xt)− f(x∗))

)1/q (34)
≤
(

q
µ

(
(1− αlow)t(f(x0)− f(x∗))

))1/q
.

So, we got that ∥xt − x∗∥ is linearly decreasing to zero. From that, we get a new superlinear
αsl
t,p ≤ α∗

t,p from (41). As κslt is getting smaller within each iteration κslt,p > κslt+1,p, we get that
α(κslt,p) < α(κslt+1,p) from (38). Finally, for ζt,p = 1− α(κslt,p), we get ζt,p > ζt+1,p in (40). This
finishes the proof of global superlinear convergence. The aggregated convergence rate equals to (42).
□

C SUBSOLVERS

C.1 SUBSOLVER FOR BASIC TENSOR METHOD

In this section, we introduce the subsolver, called Bregman Distance Gradient Method (BDGM), for
the Basic Tensor Method of order p = 3 (12):

xt+1 = xt+argmin
h∈E

{
f(xt) +∇f(xt) [h] + 1

2∇
2f(xt) [h]

2
+ 1

6D
3f(xt) [h]

3
+ M3

24 ∥h∥
4
}
. (43)

The first effective subsolver was introduced by Nesterov in (Nesterov, 2021b, Section 5) and later
improved in (Nesterov, 2021c). Next, we describe the BDGM subsolver by following the (Nesterov,
2021c).

Relatively inexact p-th order solution. First, we introduce the relatively inexact p-th order solution
of (11)

N γ
Mp

(x) =
{
y ∈ E : ∥∇Ωx,Mp

(y)∥∗ ≤ γ∥∇f(y)∥∗
}
, (44)

where γ ∈ [0, 1) is an accuracy parameter. Then from (Nesterov, 2021c, Theorem 2.1), for γ and Mp

such that γ +
Lp

Mp
≤ 1

p any point y ∈ N γ
Mp

(x) satisfies

f(x)− f(y) ≥ cγ,Mp
∥∇f(y)∥

p+1
p

∗ , where cγ,Mp
=
[
(1−γ)p!
Lp+Mp

] 1
p
.

Note, that for the exact solution, we get the same improvement guarantee with γ = 0. For p = 3 and
(43), we choose γ = 1/6 and M3 = 6L3, then NL3(x) = N 1/6

L3
(x) and the method

xt+1 ∈ NL3
(xt)

converge with the same rate up to a constant as an exact version (Nesterov, 2021c, Theorem 2.2).
Note, M3 ≥ 3L3 is also required for the convexity of the subproblem (43). In our implementation,
all third-order basic steps are solved with this relative inexactness and M3 = 6L3. This approach
creates practical and parameter-free stopping criteria for the subproblem solvers.

Relative smoothness and relative strong convexity. Now, we move on to the concept of relative
smoothness and relative strong convexity proposed in (Lu et al., 2018). Similarly to classical
smoothness and strong convexity, we say that function ϕ(h) is relatively Lρ-smooth and relatively µρ

strongly convex with respect to scaling function ρ(h) if

µρ∇2ρ(h) ⪯ ∇2ϕ(h) ⪯ Lρ∇2ρ(h).

In classical regime, ρ(h) = 1
2∥h∥

2 and ∇2ρ(h) is an identity matrix. For the scaling function ρ(h),
we introduce its Bregman distance

βρ(h, y) = ρ(y)− ρ(h)− ⟨∇ρ(h), y − h⟩ .
Now the gradient method with respect to this Bregman distance is called Bregman Distance Gradient
Method (BDGM) and has the next form

hk+1 = argmin
y∈E

{⟨∇ϕ(hk), y − hk⟩+ 2Lρβρ(hk, y)} .

The convergence rate of such method is O
(

Lρ

µρ
log
(

ϕ(h0)−ϕ(h∗)
ε

))
.
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Bregman Distance Gradient Method (BDGM) for (43). Let’s apply this approach to the solution
of subproblem (43) with M3 = 6L3. In (Nesterov, 2021c, Section 4), it was shown that the
subproblem function ϕ(h) = ∇f(xt) [h] + 1

2∇
2f(xt) [h]

2
+ 1

6D
3f(xt) [h]

3
+ L3

4 ∥h∥4 is relatively
smooth and relatively strongly convex with respect to

ρ(h) = 1
2∇

2f(xt) [h]
2
+ L3

4 ∥h∥4

with constants Lρ = 1 + 1√
2

and µρ = 1 − 1√
2

. It means that the method has an incredibly fast

convergence rate O
(√

2+1√
2−1

log
(

ϕ(h0)−ϕ(h∗)
ε

))
. The details and more formal convergence results

are presented in (Nesterov, 2021c).

Now, we present the explicit formulation of the BDGM for (43). First, we have the general form

hk+1 = argmin
y∈E

{⟨∇ϕ(hk), y − hk⟩+ 2Lρβρ(hk, y)} . (45)

Let us calculate ∇ϕ(hk) first. It equals to

∇ϕ(hk) = ∇f(xt) +∇2f(xt)hk + 1
2D

3f(xt) [hk]
2
+ L3∥hk∥2hk.

In (Nesterov, 2021c), the universal approximation for D3f(xt) [hk]
2 is presented by using the finite

differences approach. However, in practice, we recommend using autogradient computation of
D3f(xt) [hk]

2 if it is possible. The computation by autogradient is much more precise while having
the same computational complexity. The computation complexity of D3f(xt) [hk]

2 by autogradient
is similar to calculating three gradients asD3f(x) [h]

2
= ∇x(∇2f(x)[h]2) = ∇(∇{∇f(x)[h]} [h]).

Also, autogradient computations are commonly used in modern frameworks such as PyTorch, Jax,
and others. So, essentially we still have access to third-order information but with the complexity of
a gradient computation.

Now, let us calculate explicit βρ(hk, y)

βρ(hk, y) = ρ(y)− ρ(h)− ⟨∇ρ(h), y − h⟩
= 1

2∇
2f(xt) [y]

2
+ L3

4 ∥y∥4 − 1
2∇

2f(xt) [hk]
2 − L3

4 ∥hk∥4

−
〈
∇2f(xt) [hk] + L3∥hk∥2hk, y − hk

〉
.

Note, that the constant terms are useless for finding the argminimum in (45), hence we can remove
them. We also can divide all parts of (45) by 2Lρ = 2 +

√
2 for simplicity and unite the linear parts

together

gk = 1
2+

√
2
∇ϕ(hk)−∇2f(xt) [hk]− L3∥hk∥2hk

= 2−
√
2

2

(
∇f(xt) +∇2f(xt)hk + 1

2D
3f(xt) [hk]

2
+ L3∥hk∥2hk

)
−∇2f(xt) [hk]− L3∥hk∥2hk

= 2−
√
2

2

(
∇f(xt) + 1

2D
3f(xt) [hk]

2
)
−

√
2
2

(
∇2f(xt) [hk] + L3∥hk∥2hk

)
So, we finally get the next explicit BDGM step

hk+1 = argmin
y∈E

{
⟨gk, y⟩+ 1

2∇
2f(xt) [y]

2
+ L3

4 ∥y∥4
}
. (46)

This step doesn’t require the computation of a full third-order derivative and is similar to the Cubic
Regularized Newton step. Hence, we count it as a second-order method. So, the total complexity of
Basic Tensor Method for convex functions is Õ

(
L3D

4

T 3

)
steps of (46), where Õ(·) means number of

iterations up to a logarithmic factor.

Inner subsolver for (46). The last part is to solve (46). We solve it similarly to the Cubic
Regularized Step by ray-search with eigenvalue decomposition (EVD). First, we apply eigenvalue
decomposition to ∇2f(xt)

∇2f(xt) = USU⊤, (47)
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where S ∈ Rd×d is a diagonal matrix with eigenvalues and U ∈ Rd×d is an orthoganal matrix
such that UU⊤ = I . Then, we denote v = U⊤y and ĝ = U⊤gk. Now we can formulate a dual
one-dimensional problem.

min
y∈E

{
⟨gk, y⟩+ 1

2

〈
∇2f(xk)y, y

〉
+ L3

4 ∥y∥4
}

= min
y∈E

{〈
U⊤gk, U

⊤y
〉
+ 1

2

〈
USU⊤y, y

〉
+ L3

4 ∥U⊤y∥4
}

= min
v∈E

{
⟨g̃, v⟩+ 1

2 ⟨Sv, v⟩+
L3

4 ∥v∥4
}

= min
v∈E

max
τ≥0

{
⟨g̃, v⟩+ 1

2 ⟨Sv, v⟩+
√
2L3

2 ∥v∥2τ − 1
2τ

2
}

= max
τ≥0

min
v∈E

{
⟨g̃, v⟩+ 1

2 ⟨Sv, v⟩+
√
2L3

2 ∥v∥2τ − 1
2τ

2
}

= max
τ≥0

{
− 1

2

〈(
S + τ

√
2L3

)−1

g̃, g̃

〉
− 1

2τ
2

}
, (48)

where τ∗ =
√
2L3

2 ∥v∥2 for the third equality and v = −
(
S + τ

√
2L3

)−1
g̃ in the last equality. By

solving (48) with one-dimensional ray-search, we find optimal τ∗ then we can calculate v and y,
which we found the solution for subproblem (46). In our code, we use eigenvalue decomposition for
efficiency of the ray-search, but it is also possible to just inverse the regularized matrix multiple times
in (48) or apply some efficient first-order method for quadratic problems such as conjugate gradient.

To finalize, in this section we presented the subsolver which allows us to efficiently implement
the Basic Tensor Method for p = 3 with the complexity same up to a logarithmic factor as Cubic
Regularized Newton Method.

D METHODS

D.1 NESTEROV ACCELERATED TENSOR METHODS

In this section, we present Nesterov Acceleration for tensor methods proposed in (Nesterov, 2021b;c).
First, let us introduce the main parts of the method. The key part of such acceleration is the estimated
sequences technique. It is based on linear approximations of function f(x) in a sequence of points
xt, which allows to construct the estimating function ψt(x) for a scaling sequence at ∈ R+:

ψt+1(z) = ψt(z) + at+1 (f(x) + ⟨∇f(x), z − x⟩) , where ψ0(z) =
1

p+1∥z − x0∥p+1. (49)

Additionally, we introduce the sequence

At+1 = At + at. (50)

Now, we are ready to present the accelerated method.

Algorithm 3 Nesterov Accelerated Tensor Method

1: Input: x0 is starting point; constant Lp, total number of iterations T , and sequence At, where
A0 = 0.

2: Set objective function
ψ0(z) =

1
p+1∥z − x0∥p+1

3: for t ≥ 0 do
4: Choose yt = At

At+1
xt +

at+1

At+1
vt

5: Compute xt+1 ∈ NLp
(yt)

6: Compute at+1 = At+1 −At

7: Update ψt+1(x) = ψt(z) + at+1[f(xt+1) + ⟨∇f(xt+1), z − xt+1⟩].
8: Compute vt+1 = argminz∈E ψt+1(z)
9: end for

10: return xT+1
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For the convergence results, the sequence At should be defined in the following way

At =
νp

Lp
tp+1, where νp = 2p−1

(p+1)(2p+1) ·
(p−1)!
(2p)p . (51)

Then, at+1 =
νp

Lp

(
(t+ 1)p+1 − tp+1

)
. With such parameters, we can present the convergence

theorem from (Nesterov, 2021c, Theorem 2.3)

Theorem D.1 Let sequence {xt}t≥0 be generated by method 3. Then, for any T ≥ 1, we have

f(xT )− f(x∗) ≤ O
(

LpR
p+1

Tp+1

)
.

D.2 NESTEROV ACCELERATED TENSOR METHOD WITH At-ADAPTATION (NATA)

In this subsection, we present the proof of Theorem 3.1

Algorithm 4 Nesterov Accelerated Tensor Method with At-Adaptation (NATA)

1: Input: x0 = v0 is starting point, constant Mp, total number of iterations T , Ã0 = 0, νmin = νp,
νmax ≥ νp is a maximal value of ν, θ > 1 is a scaling parameter for ν, and ν0 = νmaxθ is a
starting value of ν.

2: Set objective function
ψ0(z) =

1
p+1∥z − x0∥p+1

3: for t ≥ 0 do
4: repeat
5: νt = max

{
νt

θ , νmin

}
6: ãt+1 = νt

Lp
((t+ 1)p+1 − tp+1) and Ãt+1 = Ãt + ãt+1

7: yt =
Ãt

Ãt+1
xt +

ãt+1

Ãt+1
vt

8: xt+1 = NLp
(yt)

9: ψt+1(z) = ψt(z) + ãt+1[f(xt+1) + ⟨∇f(xt+1), z − xt+1⟩]
10: vt+1 = argminz∈E ψt+1(z)

11: until ψt+1(vt+1) ≥ Ãt+1f(xt+1)
12: νt+1 = min

{
νtθ2, νmax

}
13: end for
14: return xT+1

Theorem D.2 (Copy of Theorem 3.1) For convex function f with Lp-Lipschitz-continuous p-th
derivative, to find xT such that f(xT ) − f(x∗) ≤ ε, it suffices to perform no more than T ≥ 1
iterations of the Nesterov Accelerated Tensor Method with At-Adaptation (NATA) with Mp ≥ pLp

(Algorithm 2), where

T = O

((
LpR

p+1

ε

) 1
p+1

+ logθ
(
νmax

νmin

))
. (52)

Proof.

Let us present the convergence analysis of Algorithm 2. The proof is based on the proof from
(Nesterov, 2021c).

First of all, by convexity and definition of ψt(x), it is easy to show that

ψt(x
∗) ≤ Ãtf(x

∗) + 1
p+1∥x

∗ − x0∥p+1. (53)

Now, let us assume that the condition on Line 10 is satisfied for every step. Then, we get

Ãtf(xt) ≤ ψt(vt) ≤ ψt(x
∗) ≤ Ãtf(x

∗) + 1
p+1∥x

∗ − x0∥p+1, (54)
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where in the second inequality we use the definition of vt. Next, by simple calculations, we get the
convergence result

f(xt)− f(x∗) ≤ ∥x∗−x0∥p+1

(p+1)Ãt
. (55)

From that inequality, one can see that the larger Ãt means the faster convergence. That is the reason,
we want to have a more aggressive ãt and start the search of ν from the maximal value. Now, we
need to show that the condition in Line 10 is always can be satisfied.

Let us prove it by induction of the following relation:

ψ∗
t = ψt(vt) ≥ Ãtf(xt), t ≥ 0. (56)

For t = 0, we have ψ∗
0 = 0 and A0 = 0. Hence, (56) is valid.

Assume it is valid for some t ≥ 0. Then,

ψ∗
t+1 = ψt(vt+1) + ãt+1 (f(xt+1) + ⟨∇f(xt+1), vt+1 − xt+1⟩)

≥ ψ∗
t + 1

(p+1)2p−1 ∥vt+1 − vt∥p+1 + ãt+1 (f(xt+1) + ⟨∇f(xt+1), vt+1 − xt+1⟩) ,

where the last inequality is coming from uniform convexity of ∥ · ∥p+1. Now, we can use the structure
of the method in previous inequality and get

ψ∗
t+1 − 1

(p+1)2p−1 ∥vt+1 − vt∥p+1
(56)
≥ Ãtf(xt) + ãt+1 (f(xt+1) + ⟨∇f(xt+1), vt+1 − xt+1⟩)

≥ Ãt+1f(xt+1) + ⟨∇f(xt+1), ãt+1(vt+1 − xt+1) + Ãt(xt − xt+1)⟩
= Ãt+1f(xt+1) + ⟨∇f(xt+1), ãt+1(vt+1 − vt) + Ãt+1(yt − xt+1)⟩,

where, for the second inequality, we use convexity and, for the last equality, we use the definition of
yt from Line 6 of the Algorithm 2.

Further, we use inequality α
p+1τ

p+1 − βτ ≥ − p
p+1α

−1/pβ(p+1)/p, τ ≥ 0, for all x ∈ E and we
have

1
(p+1)2p−1 ∥vt+1 − vt∥p+1 + ãt+1 ⟨∇f(xt+1), vt+1 − vt⟩ ≥ − p

p+12
p−1
p (ãt+1∥∇f(xt+1)∥∗)

p+1
p .

(57)
Next, for xt+1 ∈ NLp(yk), from (Nesterov, 2021c, Theorem 2.1), we get

⟨∇f(xt+1), yt − xt+1⟩ ≥ cp∥∇f(xt+1)∥
p+1
p

∗ ,

where cp =
[

2p−1
2p(2p+1)

p!
Lp

]1/p
for relative inexact p-th order solution.

Putting all these inequalities together, we obtain

ψ∗
t+1 ≥ Ãt+1f(xt+1)− p

p+12
p−1
p (ãt+1∥∇f(xt+1)∥∗)

p+1
p + Ãt+1cp∥∇f(xt+1)∥

p+1
p

∗

= Ãt+1f(xt+1) + ∥∇f(xt+1)∥
p+1
p

∗

(
Ãt+1cp − p

p+12
p−1
p ã

p+1
p

t+1

)
.

Finally, by the choice of νt in Algorithm 2, νt ≥ νp and ãt+1 ≥ at+1, where at+1 =
νp

Lp
((t +

1)p+1− tp+1) is the theoretical value of at+1. Hence, Ãt+1 ≥ At+1, where At+1 =
νp

Lp
(t+1)p+1 is

the theoretical value of At+1. So, in the final inequality, we prove that there exists νt = νp such that

Ãt+1cp ≥ At+1cp ≥ p
p+12

p−1
p a

p+1
p

t+1 ,

where the last inequality holds from (Nesterov, 2021c, Equation 25). Thus, we have proved the
induction step.
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The search of νt takes maximal total of logθ

(
νmax
t

νmin
t

)
+ T additional steps, where νmax

t =

maxt∈[0;T ] ν
t ≤ νmax and νmin

t = mint∈[0;T ] ν
t ≥ νmin = νp. The T term in the sum is coming

from Line 11 in Algorithm 2. If we want to make the Algorithm less aggressive, we can remove this
Line then νt will only decrease.

The total number of iterations hence is equal to T = O

((
LpR

p+1

ε

) 1
p+1

+ logθ

(
νmax
t

νmin
t

))
, which

finishes the proof. □

D.3 NEAR-OPTIMAL TENSOR METHODS AND HYPERFAST SECOND-ORDER METHOD

Near-optimal Tensor methods. Monteiro and Svaiter (2013) demonstrated that the global conver-
gence rate of second-order methods can be further improved from O

(
ε−1/3

)
to O

(
ε−2/7 log (1/ε)

)
. This improvement was achieved through the development of the Accelerated Hybrid Proximal
Extragradient (A-HPE) framework, which, when combined with a trust-region Newton-type method,
resulted in the Accelerated Newton Proximal Extragradient (A-NPE) method that achieves the im-
proved rate. A lower bound of O

(
ε−2/7

)
was established by Arjevani et al. (2019), rendering that

the A-NPE method is nearly optimal.

Near-optimal tensor methods Gasnikov et al. (2019a); Bubeck et al. (2019); Jiang et al. (2019), with
a convergence rate of O

(
ε−2/(3p+1) log (1/ε)

)
, are based on the A-HPE framework. Similar to

A-HPE, these tensor methods require an additional binary search procedure at each iteration. The
cost of these procedures introduces an extra O(log(1/ε)) factor in the overall convergence rate.

Algorithm 5 Inexact p-th order Near-optimal Accelerated Tensor Method (Kamzolov, 2020, Algo-
rithm 1)

1: Input: x0 = v0 is starting point, constants Mp, γ ∈ [0, 1), total number of iterations T , A0 = 0.

2: Set A0 = 0, x0 = v0
3: for t ≥ 0 do
4: Compute a pair λt+1 > 0 and xt+1 ∈ Rn such that

1

2
≤ λt+1

Mp · ∥xt+1 − yt∥p−1

(p− 1)!
≤ p

p+ 1
(58)

where
xt+1 ∈ N γ

p,Mp
(yt) (59)

and

at+1 =
λt+1 +

√
λ2t+1 + 4λt+1At

2
, At+1 = At + at+1 , and yt =

At

At+1
xt +

at+1

At+1
vt .

(60)

5: Update vt+1 = vt − at+1∇f(xt+1)
6: end for
7: return yK

One version of the near-optimal tensor methods is presented in Algorithm 5. This version was initially
proposed by Bubeck et al. (2019) and later improved by Kamzolov (2020), who introduced the
handling of inexact solution to subproblem (59). Note that line (4) of Algorithm 5 requires finding
the pair (xt+1, λt+1), which cannot be done explicitly. Specifically, λt+1 depends on xt+1 via (58),
which in turn depends on yt through (59). Furthermore, yt depends on at+1, which itself depends on
λt+1 as per (60). This recursive dependence implies that λt+1 relies on itself, making it impossible
to solve in closed form.
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To find the pair (xt+1, λt+1), a binary search procedure is employed. Below, we provide the approach
used by Bubeck et al. (2019). Let us denote θ = At

At+1
∈ [0, 1]. Thus, both yt and xt+1 depend on θ,

yt(θ) := yt
(60)
= θxt + (1− θ)vt, xt+1(θ) := xt+1

(59)
= N γ

p,Mp
(yt(θ)).

Since λt+1 =
a2
t+1

At+1
, we have that λt+1 = (1−θ)2

θ At. Thus, in terms of θ, (58) can be rewritten as

1

2
≤ ζ(θ) ≤ p

p+ 1
, where ζ(θ) =

(1− θ)2

θ

AtMp · ∥xt+1(θ)− yt(θ)∥p−1

(p− 1)!
. (61)

Note that ζ(0) → +∞ and ζ(1) = 0. Hence, one can use binary search to find θ such that (61)
holds true. The complexity of this procedure is O (log(1/ε)), and a theoretical analysis of binary
search procedure can be found in Bubeck et al. (2019). Below we present the total complexity of
Algorithm 5.

Theorem D.3 ((Kamzolov, 2020, Theorem 1)) For convex function f withLp-Lipschitz-continuous
p-th derivative, to find xT such that f(xT ) − f∗ ≤ ϵ, it suffices to perform no more than T ≥ 1
iterations of Algorithm 5 with Hp = ξLp, where ξ and γ satisfy 1 ≥ 2γ + 1

ξ(p+1) , and

T = Õ

(
HpR

p+1

ε

)
.

Hyperfast Second-order method. Interestingly, the lower bound for second-order convex op-
timization, O

(
ϵ−2/7

)
, can be surpassed under higher smoothness assumptions on the objective.

Nesterov (2021c) showed that, under the assumption of an L3-Lipschitz third derivative, Algorithm 1
can be implemented using only a second-order oracle, with the third-order derivative approximated
via finite gradient differences. This results in a second-order method with O

(
ϵ−1/4

)
calls to the

second-order oracle. The same idea can be applied to Algorithm 1, improving the convergence rate
of the second-order method to Õ

(
ϵ−1/5

)
Kamzolov (2020).

Theorem D.4 ((Kamzolov, 2020, Theorem 2)) For a convex function f with an L3-Lipschitz-
continuous third derivative, to find xT such that f(xT )− f∗ ≤ ϵ, it suffices to perform no more than
N1 ≥ 1 gradient calculations and N2 ≥ 1 Hessian calculations in Algorithm 5 with BGDM as the
subsolver for the subproblem (59), Hp = 3Lp/2, γ = 1/6, and

N1 = Õ

((
L3R

4

ϵ

) 1
5

log

(
G+H

ϵ

))
,

N2 = Õ

((
L3R

4

ϵ

) 1
5

)
,

where G and H are the uniform upper bounds for the norms of the gradients and Hessians computed
at the points generated by the main algorithm.

D.4 PROXIMAL POINT METHOD WITH SEGMENT SEARCH

Another approach for constructing near-optimal tensor methods involves high-order proximal-point
type methods Nesterov (2023; 2021a), which are based on the p-th-order proximal-point operator:

proxp,H(y) = argmin
x∈E

{
fy,p,H(x) := f(x) + H

p+1∥x− y∥p+1
}
. (62)

Nesterov (2023) demonstrated that using a single step of a p-th-order tensor method to solve (62)
results in a convergence rate of O(ϵ−1/p), and moreover, this approach can be accelerated to achieve
a rate of O(ϵ−1/(p+1)). Another significant contribution of Nesterov (2023) is the introduction of a
proximal-point operator with segment search:

Sproxp,H(y, u) = argmin
x∈E, τ∈[0,1]

{
f(x) + H

p+1∥x− y − τu∥p+1
}
. (63)
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Assuming that (63) can be solved exactly, Nesterov (2023) showed that convergence rate of
O(ε−2/(3p+1)) can be achieved via different acceleration scheme.

A more practical algorithm was introduced in Nesterov (2021a). Following Nesterov (2023), the
authors assumed that the problem (62) can be solved under the following approximate condition:

Aγ
p,H(y) = {x ∈ E : ∥∇fy,p,H(x)∥∗ ≤ β∥∇f(x)∥∗} ,

where γ ∈ [0, 1) is a tolerance parameter. Furthermore, a specific approach for approximating the
solution to subproblem (63) was proposed. The resulting method, called the Inexact p-th-order
Proximal Point Method with Segment Search, is presented in Algorithm 6. Lines 5-14 of Algorithm 6
detail the steps for the approximate solution of (63).

Algorithm 6 Inexact p-th-order Proximal Point Method with Segment Search (Nesterov, 2021a,
Method (3.6))

1: Input: x0 = v0 is starting point, constants H > 0, γ ∈ [0, 1), total number of iterations T ,
A0 = 0.

2: for t ≥ 0 do
3: Set ut = vt − xt.
4: Compute x0t ∈ Aγ

p,H(xt).
5: if

〈
∇f(x0t ), ut

〉
≥ 0, then

6: Define ϕt(z) = f(x0t ) +
〈
∇f(x0t ), z − x0t

〉
, xt+1 = x0t , gt = ∥∇f(x0t )∥∗.

7: else
8: Compute x1t ∈ Aγ

p,H(vt).
9: if

〈
∇f(x1t ), ut

〉
≤ 0, then

10: Define ϕt(z) = f(x1t ) +
〈
∇f(x1t ), z − x1t

〉
, xt+1 = x1t , gt = ∥∇f(x1t )∥∗.

11: else
12: Find values 0 ≤ τ1t ≤ τ2t ≤ 1 with points w1

t ∈ Aγ
p,H(xt + τ1t ut) and

w2
t ∈ Aγ

p,H(xt + τ2t ut) satisfying

β1
t ≤ 0 ≤ β2

t , and αt(τ
1
t − τ2t )β

1
t ≤ 1

2

[
1−γ
H

]1/p
g

p+1
p

t ,

where β1
t =

〈
∇f(w1

t ), ut
〉
, β2

t =
〈
∇f(w2

t ), ut
〉
, αt =

β2
t

β2
t−β1

t
∈ [0, 1], and

gt =

[
αt∥∇f(w1

t )∥
p+1
p

∗ + (1− αt)∥∇f(w2
t )∥

p+1
p

∗

] p
p+1

.

Set

ϕt(z) = αt

(
f(w1

t ) +
〈
∇f(w1

t ), z − w1
t

〉)
+ (1− αt)

(
f(w2

t ) +
〈
∇f(w2

t ), z − w2
t

〉)
,

xt+1 = αtw
1
t + (1− αt)w

2
t .

13: end if
14: end if
15: Compute at+1 > 0 from equation a2

t+1

At+at+1
= 1

2

[
1−γ
H

]1/p
g

1−p
p

t

16: Set At+1 = At + at+1 and update ψt+1(z) = ψt(z) + at+1ϕt(z)
17: Set vt+1 = argmin

z∈E
ψt+1(z)

18: end for
19: return xT

Theorem D.5 ((Nesterov, 2021a, Theorem 2)) For smooth convex function f to find xT such that
f(xT )− f∗ ≤ ϵ, it suffices to perform no more than T ≥ 1 iterations of Algorithm 6, where

T = O

[HRp+1

ε

] 2
3p+1

 .
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Line 12 requires additional bisection search with complexity of O
(

HDp+1

ε

)
(Nesterov, 2021a,

Theorem 4). This results in the following upper bound for the number of evaluations of w ∈ Aγ
p,H(x)

during the execution of Algorithm 6 O
([

HDp+1

ε

] 2
3p+1

log HDp+1

ε

)
.

Under the additional assumption of an Lp-Lipschitz continuous p-th derivative of f , the inclusion
w ∈ Aγ

p,H(x) can be achieved by performing one inexact tensor step with specific choice of
parameters β and Mp: w ∈ N β

p,Mp
(x) (Nesterov, 2023, Section 3) (Nesterov, 2021a, Section 5.1).

This makes Algorithm 6 a near-optimal tensor method, comparable to Gasnikov et al. (2019b);
Bubeck et al. (2019); Jiang et al. (2019). However, it differs in nature: while the latter methods are
based on A-NPE-type approaches, Algorithm 6 follows an interior-point-type framework.

For the case when p = 3, the tensor step can be efficiently performed using BDGM in O (log 1/ε)
iterations. As demonstrated in Nesterov (2021c); Kamzolov (2020), a second-order implementation
of a third-order tensor method can be achieved by approximating the third-order derivative using
finite gradient differences. However, in practice, this approximation may suffer from numerical
instability. For Algorithm 6 another approach is available: the interior-point subproblem (62) can be
solved using a second-order method Nesterov (2021a), which provides a more reliable alternative to
finite gradient differences. Under the assumption of an L3-Lipschitz continuous third derivative of f ,
Algorithm 6 achieves convergence Õ

(
ε−1/5

)
.

D.5 OPTIMAL TENSOR METHOD

An Optimal Tensor Method was recently proposed by Kovalev and Gasnikov (2022); Carmon
et al. (2022), improving upon the convergence of near-optimal tensor methods Gasnikov et al.
(2019a); Bubeck et al. (2019); Jiang et al. (2019). The convergence rate was enhanced from
O
(
ε−2/(3p+1) log (1/ε)

)
to O

(
ε−2/(3p+1)

)
, matching the lower bound Ω

(
ε−2/(3p+1)

)
Arjevani

et al. (2019). Similar to near-optimal methods, the Optimal Tensor Method is based on the A-HPE
framework proposed by Monteiro and Svaiter (2013).

Before describing the Optimal Tensor Method, we introduce some necessary notations. Let Φg
p denote

the p-th order Taylor approximation of the function g:

Φg
p(x, y) = g(y) +

p∑
k=1

1
k!D

kg(y)[x− y]k. (64)

Additionally, note that Φf
p(x, y) = Φp(x, y) as defined in (8). We also define the function gλ(x, y) =

f(x) + 1
2λ∥x− y∥2.

The main distinction from near-optimal methods lies in the procedure used to find the pair
(xt+1, λt+1). Instead of first computing xt+1 and then using a binary search to determine λt+1,
as done in previous approaches, Kovalev and Gasnikov (2022) first select the parameter λt+1 and then
compute xt+1. This procedure, known as the Tensor Extragradient Method, is shown in lines 6- 10
of Algorithm 7. This method converges in a constant number of iterations, leading to the optimal
convergence rate of O

(
ε−2/(3p+1)

)
for Algorithm 7.

Theorem D.6 ((Kovalev and Gasnikov, 2022, Theorem 5)) Let Mp = Lp and σ = 1/2. Let

ν =

(
(3p+ 1)pCp(Mp, σ)R

p−1

2p
√
p

·
(
1 + σ

1− σ

) p−1
2

)−1

,

where Cp(Mp, σ) =
ppMp

p (1 + σ−1)

p!(pMp − Lp)p/2(pMp + Lp)p/2−1
.

Then, for convex function f with Lp-Lipschitz-continuous p-th derivative, to find xT such that
f(xT )− f∗ ≤ ϵ, it suffices to perform no more than T ≥ 1 iterations of Algorithm 7, where

T = 5Dp ·
(
LpR

p+1/ϵ
) 2

3p+1 + 7,
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Algorithm 7 Optimal Tensor Method (Kovalev and Gasnikov, 2022, Algorithm 4)

1: Input: x0 = v0 is starting point, constants Mp, σ ∈ (0, 1), total number of iterations T , A0 = 0,
sequence at = νt(3p−1)/2 for some ν > 0.

2: for t ≥ 0 do
3: At+1 = At + at+1, λt+1 =

a2
t+1

At+1

4: yt =
At

At+1
xt +

at+1

At+1
vt

5: y0t = yt, k = 0
6: repeat
7: xkt = argmin

y∈E

{
Φ

gλt (·,yt)
p (y, ykt ) +

pMp

(p+1)!∥y − ykt ∥p+1
}

8: yk+1
t = ykt −

(
Mp∥xk

t −yk
t ∥

p−1

(p−1)!

)−1

∇gλt+1(x
k
t , yt)

9: k = k + 1
10: until ∥∇gλt+1

(xkt , yt)∥ ≤ σλ−1
t ∥xkt − yt∥

11: xt+1 = xk−1
t

12: Update vt+1 = vt − at+1∇f(xt+1)
13: end for
14: return xT

with Dp is defined as follows:

Dp =

(
3

p+1
2 (3p+ 1)p+1pp(p+ 1)

2p+2√pp!(p2 − 1)
p
2

) 2
3p+1

.

E EXPERIMENTAL DETAILS

Setup. All methods and experiments were performed using Python 3.11, PyTorch 2.2.2, on a 13-
inch MacBook Pro 2019 with 1,4 GHz Quad-Core Intel Core i5 and 8GB memory. All computations
are done in torch.double. All methods are implemented as PyTorch 2 optimizers.

Logistic Regression. The logistic regression problem can be formulated as

f(x) = 1
n

∑n
i=1 log

(
1 + e−bi⟨ai,x⟩

)
+ µ

2 ∥x∥
2
2, (65)

where ai ∈ Rd are data features and bi ∈ {−1; 1} are data labels for i = 1, . . . , n.

We present results on the a9a dataset (d = 123, n = 32561) and w8a (d = 300, n = 49749) from
LibSVM by Chang and Lin (2011). We choose the starting point x0 = 3e, where e is a vector of
all ones. This choice of x0 allows us to show the convergence of the methods from a far point. For
Figures 6, 5 and 7a, we choose the regularizer µ = 10−4 to get strongly-convex function f . For
Figures 2,4, and 8, we choose the regularizer µ = 0 to get a convex function f . For the better
conditioning, we normalize data features ∥ai∥ = 1. For the normalized case, we choose theoretical
L2 = 0.1. We set L3 = L2 = 0.1 to demonstrate the convergence rates for the same constants L.
Note, that actual L3 is smaller than 0.1.
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w8a, Logistic Regression
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Figure 8: Comparison of different cubic and tensor acceleration methods on Logistic Regression for
w8a dataset from the starting point x0 = 3e, where e is a vector of all ones.

Third-order Nesterov’s lower-bound function. The l2-regularized third order Nesterov’s lower-
bound function from Nesterov (2021b) has the next form

f(x) = 1
4

∑d−1
i=1 (xi − xi+1)

4 − x1 +
µ
2 ∥x∥

2
2. (66)

For Figures 1 and 7b, we set d = 20, µ = 10−3, we’ve tuned L3 = L2 = 10..

Poisson regression. Poisson regression is a type of generalized linear model used for analyzing
count data and contingency tables. It assumes that the response variable bi follows a Poisson
distribution, and the logarithm of its expected value can be expressed as a linear combination of
unknown parameters. The Poisson regression function has the next form

f(x) =
∑n

i=1e
⟨ai,x⟩ − bi ⟨ai, x⟩ , (67)

where ai ∈ Rd are data features and bi ∈ {0, 1, . . . , k, . . .} are countable targets.

We present results for synthetic data: d = 21, n = 6000. We set L1 = L2 = L3 = 1 and x0 = e is
all ones.
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Optimal Tensor, L3 = 1.0

Figure 9: Comparison of different cubic and tensor accelerated methods on Poisson Regression.

The Cubic Regularized Newton (CRN) method and NATA with a tuned parameter ν demonstrate the
best performance in Figure 9 (Left). Notably, CRN exhibits rapid superlinear convergence, likely
due to the strong convexity properties of the loss function. Interestingly, NATA with the tuned ν
manages to match CRN’s convergence rate. While Optimal Acceleration is slower than both CRN
and NATA, it also achieves global superlinear convergence. In Figure 9 (Right) for p = 3, the Tensor
Nata method is the fastest, followed by the Basic Tensor Method, with the Optimal Tensor method
ranking third. All three methods exhibit global superlinear convergence. The classical Nesterov
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Tensor Acceleration method is the slowest, likely due to its small default ν. Notably, the tensor-based
methods outperform their cubic counterparts.
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Figure 10: Comparison of the methods by the relative value 1− f(xt+1)−f∗

f(xt)−f∗ .

The global superlinear performance of these accelerated second-order methods in Figure 10 raises the
hope of establishing theoretical results on global superlinear convergence for accelerated second-order
methods.
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