
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

OPTAMI: GLOBAL SUPERLINEAR CONVERGENCE OF
HIGH-ORDER METHODS

Anonymous authors
Paper under double-blind review

ABSTRACT

Second-order methods for convex optimization outperform first-order methods
in terms of theoretical iteration convergence, achieving rates up to O(k−5) for
highly-smooth functions. However, their practical performance and applications
are limited due to their multi-level structure and implementation complexity. In
this paper, we present new results on high-order optimization methods, supported
by their practical performance. First, we show that the basic high-order methods,
such as the Cubic Regularized Newton Method, exhibit global superlinear conver-
gence for µ-strongly star-convex functions, a class that includes µ-strongly convex
functions and some non-convex functions. Theoretical convergence results are
both inspired and supported by the practical performance of these methods. Sec-
ondly, we propose a practical version of the Nesterov Accelerated Tensor method,
called NATA. It significantly outperforms the classical variant and other high-order
acceleration techniques in practice. The convergence of NATA is also supported
by theoretical results. Finally, we introduce an open-source computational library
for high-order methods, called OPTAMI. This library includes various methods,
acceleration techniques, and subproblem solvers, all implemented as PyTorch op-
timizers, thereby facilitating the practical application of high-order methods to a
wide range of optimization problems. We hope this library will simplify research
and practical comparison of methods beyond first-order.

1 INTRODUCTION

In this paper, we consider the following unconstrained optimization problem:
min
x∈E

f(x), (1)

where E is a d-dimensional real value space and f(x) is a highly-smooth function

Definition 1.1 Function f has Lp - Lipschitz-continuous p-th derivative, if

∥Dpf(x)−Dpf(y)∥op ≤ Lp∥x− y∥ ∀x, y ∈ E, (2)

where Dpf(x) is a p-th order derivative, and ∥ · ∥op is an operator norm.
In the paper, we primarily focus on three main cases: p = {1; 2; 3}. We assume that the function f is
convex, although for some results, we relax this assumption to star-convexity. By x∗ we denote the
minimum of f .
Second-order methods are widely used in optimization, finding applications in diverse fields such as
machine learning, statistics, control, and economics (Polyak, 1987; Boyd and Vandenberghe, 2004;
Nocedal and Wright, 1999; Nesterov, 2018). Historically, much of the research on second-order
methods has focused on their local quadratic convergence. A well-known method achieving this
rapid local rate is the classical Newton method (Newton, 1687; Raphson, 1697; Kantorovich, 1948b).
However, it can diverge if the starting point is far from the solution (Nesterov, 1983, Example
1.2.3). To address this divergence issue, the Damped Newton method introduces a step-size (damping
coefficient) to ensure global convergence. However, the best-known global rate for the Damped
Newton method is O(T−1/3) (Berahas et al., 2022), which is slower than the gradient method’s
convergence O(T−1). The Cubic Regularized Newton (CRN) method, introduced by Nesterov and
Polyak (2006), was the first second-order method with a proper global convergence rate O(T−2),
outperforming the gradient method. Additionally, for strongly convex functions, it retains a quadratic
local convergence rate, similar to the Newton method (Doikov and Nesterov, 2022). The introduction
of CRN represented a significant milestone in the advancement of second-order optimization methods.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Hessian approximations. In large-scale optimization problems, computing the (inverse) Hessian or
solving a linear system can be computationally expensive. Thus, it is natural to consider inexact or
stochastic algorithms to reduce these overheads. In convex optimization, several studies have explored
globally convergent second-order methods with inexact Hessians (Ghadimi et al., 2017), higher-order
methods with inexact and stochastic derivatives (Agafonov et al., 2024a;b), and adaptive stochastic
methods (Antonakopoulos et al., 2022). Recently, Quasi-Newton (QN) Hessian approximations have
been integrated into global second-order methods, resulting in algorithms that outperform first-order
methods — even when relying solely on first-order information (Kamzolov et al., 2023b; Jiang
et al., 2023; Scieur, 2023; Jiang et al., 2024). Furthermore, numerous second-order approximation
techniques have been developed for training neural networks, often surpassing state-of-the-art first-
order methods. Notable examples include Shampoo (Gupta et al., 2018), SOAP (Vyas et al., 2024),
and SOPHIA (Liu et al., 2024), which showcase the effectiveness of second-order approaches in
practical applications and benchmarks1 (Dahl et al., 2023). Such potential motivates us to study
second-order methods.

Accelerations. The Cubic Regularized Newton is the basic method in the line-up of second-order
methods. There are two main directions for its improvement: accelerated second-order methods,
including Nesterov-type acceleration (Nesterov, 2008; 2021b), near-optimal acceleration Monteiro
and Svaiter (2013); Gasnikov et al. (2019b), and optimal acceleration Kovalev and Gasnikov (2022);
Carmon et al. (2022); and third-order methods with superfast subsolver, which allows making a
third-order step without computation of third-order derivative (Nesterov, 2021b;c;a; Kamzolov, 2020).

1.1 OPTAMI: PRACTICAL PERFORMANCE OF HIGH-ORDER METHODS

0 100 200 300 400 500
Iterations, t

10 12

10 10

10 8

10 6

10 4

10 2

100

f(x
t)

f(x
*)

Nesterov 3-rd order Lower-bound Function, = 0.001

Gradient Descent, L1 = 10.0
Cubic Newton, L2 = 10.0
Basic Tensor Method, L3 = 10.0

Figure 1: Third-order Nesterov’s lower-
bound function. Cubic Newton and Ba-
sic Tensor method converge superlin-
early. In contrast, GD demonstrates lin-
ear rate.

The theoretical results mentioned above highlight the sig-
nificant potential of second-order methods in optimization.
However, their practical adoption remains limited due to
the computational cost of calculating second derivatives,
the variety of acceleration techniques, and the use of dif-
ferent Hessian approximation methods to reduce iteration
costs. To address these challenges, we introduce OPTAMI,
a unified library implemented in PyTorch for second-order
and higher-order optimization methods.

One particular goal of this library is a direct comparison
of a wide variety of acceleration techniques, which in-
clude Nesterov acceleration (Nesterov, 2021b) with a rate
O(T−(p+1)); Near-Optimal Monteiro-Svaiter Accelera-
tion (Monteiro and Svaiter, 2013; Bubeck et al., 2019;
Gasnikov et al., 2019b; Kamzolov, 2020) with a rate
Õ(T−(3p+1)/2); Near-Optimal Proximal-Point Acceler-
ation (Nesterov, 2021a) with the rate Õ(T−(3p+1)/2); Optimal Acceleration (Kovalev and Gasnikov,
2022; Carmon et al., 2022) with a rate O(T−(3p+1)/2) and more Nesterov (2023). Despite the
theoretical advancements in these methods, the literature lacks a comprehensive practical comparison,
especially for higher-order methods with p = 3.

In the process of developing the library, we encountered several open challenges.

Methods exceed linear convergence in practice. We observed in experiments that second-order
and third-order methods often achieve superlinear convergence rates for µ-strongly convex
functions (Figure 1). From a theoretical standpoint, this is surprising. The lower bound is

Ω

((
L2D
µ

)2/7
+ log log

(
µ3

L2
2ε

))
for ε ≤ c1

µ3

L2
2
= c1r as established by Arjevani et al. (2019),

where r is the radius of quadratic convergence
{
x ∈ E : f(x)− f∗ ≤ c2r = c2

µ3

L2
2

}
and c1, c2 are

universal constants. The power 2/7 corresponds to the optimal accelerated method. However, this
lower bound applies only when ε ≤ c1r, which corresponds to small values of ε. In the case when
ε > c1r, meaning the desired accuracy exceeds the radius of the quadratic convergence region, it
may be possible to achieve faster global rates of Cubic Regularized Newton method than linear

1https://mlcommons.org/benchmarks/algorithms/

2

https://mlcommons.org/benchmarks/algorithms/

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

convergence.

0 50 100 150 200 250
Iterations, t

10 3

10 2

10 1

100

101

f(x
t)

f(x
*)

a9a, Logistic Regression
Cubic Newton, L2 = 0.1
Nesterov Accelerated Cubic, L2 = 0.1
Basic Tensor Method,L3 = 0.1
Nesterov Accelerated Tensor, L3 = 0.1

Figure 2: Comparison of Basic Methods
vs Nesterov Accelerated Methods

Practical performance of accelerated methods. We also
observed that the Nesterov Accelerated Tensor Method
(Nesterov, 2021b) performs worse or on par with its non-
accelerated counterpart in practice. This contrasts with
first-order methods, where acceleration is typically ben-
eficial. These practical limitations lead to the method
being underutilized (Scieur, 2023; Carmon et al., 2022;
Antonakopoulos et al., 2022).

In our work, alongside introducing the OPTAMI library,
we aim to address these open challenges from both theo-
retical and practical perspectives.

Contributions. We summarize our key contributions as follows:

1. Global Superlinear Convergence of Second and High-order methods. Our main contri-
bution is providing theoretical guarantees for global superlinear convergence of the Cubic
Regularized Newton Method and the Basic Tensor Methods for µ-strongly star-convex
functions. These theoretical results are validated by practical performance. These results are
a significant improvement over the current state-of-the-art in second-order methods.

2. Nesterov Accelerated Tensor Method with At-Adaptation (NATA). We propose a new
practical variant of the Nesterov Accelerated Tensor Method, called NATA. This method
addresses the practical limitations of the classical version of acceleration for high-order
methods. We demonstrate the superior performance of NATA compared to both the classical
Nesterov Accelerated Tensor Method and Basic Tensor Method for p = 2 and p = 3. We
also prove a convergence theorem for NATA that matches the classical convergence rates.

3. Comparative Analysis of High-Order Acceleration Methods. We provide a practical
comparison of state-of-the-art (SOTA) acceleration techniques for high-order methods, with
a focus on the cases p = 2 and p = 3. Our experiments show that the proposed NATA
method consistently outperforms all SOTA acceleration techniques, including both optimal
and near-optimal methods.

4. Open-Source Computational Library for Optimization Methods (OPTAMI). We intro-
duce OPTAMI, an open-source library for high-order optimization methods. It facilitates
both practical research and applications in this field. Its modular architecture supports
various combinations of acceleration techniques with basic methods and their subsolvers.
All methods are implemented as PyTorch optimizers. This allows for seamless application
of high-order methods to a wide range of optimization problems, including neural networks.

2 METHODS AND NOTATION

Notation. In the paper, we consider a d-dimensional real value space E. E∗ is a dual space,
composed of all linear functionals on E. For a functional g ∈ E∗, we denote by ⟨g, x⟩ its value
at x ∈ E. For p ≥ 1, we define Dpf(x)[h1, . . . , hp] as a directional p-th order derivative of f
along hi ∈ E, i = 1, . . . , p. If all hi = h we simplify Dpf(x)[h1, . . . , hp] as Dpf(x)[h]p. So,
for example, D1f(x)[h] = ⟨∇f(x), h⟩ and D2f(x)[h]2 =

〈
∇2f(x)h, h

〉
. Note, that ∇f(x) ∈ E∗,

∇2f(x)h ∈ E∗. Now, we introduce different norms for spaces E and E∗. For a self-adjoint
positive-definite operator B : E → E∗, we can endow these spaces with conjugate Euclidian norms:

∥x∥ = ⟨Bx, x⟩1/2 , x ∈ E, ∥g∥∗ =
〈
g,B−1g

〉1/2
, g ∈ E∗.

So, for an identity matrix B = I , we get the classical 2-norm ∥x∥2 = ∥x∥I = ⟨x, x⟩1/2. We denote
e ∈ Rd as a vector of all ones and 0 ∈ Rd as a vector of all zeroes.
We introduce two types of distance measures between the starting point and the solution: for non-
accelerated methods, we consider the diameter of the level set L = {x ∈ E : f(x) ≤ f(x0)}

D = max
x∈L

∥x− x∗∥; (3)

and for accelerated methods, we use the Euclidean distance given by

R = ∥x0 − x∗∥. (4)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

2.1 METHODS IN OPTAMI LIBRARY

In this subsection, we present a detailed overview of the core methods implemented in the OPTAMI
library. Second-order methods have a more complicated structure. The library’s design is structured
into three hierarchical levels: basic methods, subsolvers, and accelerations. This modular architecture
ensures flexibility, extensibility, and adaptability to a variety of optimization tasks. It allows users
to combine multiple basic methods with various accelerations and subsolvers without the need to
implement entire methods from scratch. We leave technical details of the subsolvers to Appendix C.

BASIC METHODS. The Basic methods are the foundational building blocks of the library. These
monotone, non-accelerated methods form the backbone for constructing more sophisticated acceler-
ated algorithms. Below, we outline the primary basic methods available in the library.
Newton method. The classical (Damped) Newton method is defined as follows:

xt+1 = xt − γt
[
∇2f(xt)

]−1 ∇f(xt), (5)

where γt ∈ R+ is a step-size or damping coefficient. The Newton step originates from the second-
order Taylor expansion Φ2(x, xt):

xt+1 = argmin
x∈E

{
Φ2(x, xt) = f(xt) + ⟨∇f(xt), x− xt⟩+

〈
∇2f(xt)(x− xt), x− xt

〉}
. (6)

The solution of this problem corresponds to (5) with γt = 1. The Newton method lacks global
convergence, while the Damped Newton method exhibits a slow global convergence rate ofO(T−1/3).
This is because the approximation Φ2(x, xt) is not s not guaranteed to be an upper bound for f ,
meaning it is possible that f(x) > Φ2(x, xt).
Cubic Regularized Newton method. To address this issue, the Cubic Regularized Newton (CRN)
method was proposed

xt+1 = argminy∈E
{
ΩM2(x, xt) = Φ2(x, xt) +

M2

6 ∥x− xt∥3
}
. (7)

For the function f(x) with L2-Lipschitz Hessian, the model ΩM2(y, xt) is an upper bound of the
function f(x) forM2 ≥ L2; hence ΩM2(x, xt) ≥ f(x). This method is the first second-order method
with a global convergence rate of O

(
M2D

3

T 2

)
, which is faster than the Gradient Method (GM).

Basic Tensor method. High-order Taylor approximation of a function f can be written as follows:

Φx,p(y) = f(x) +
∑p

k=1
1
k!D

kf(x) [y − x]
k
, x, y ∈ E, (8)

where, for p = 1, we simplify notation to Φx(y). From (2), we can get the next upper-bound of the
function f(x) (Nesterov, 2018; 2021b)

|f(y)− Φx,p(y)| ≤ Lp

(p+1)!∥y − x∥p+1, (9)

which leads us to the high-order model

Ωx,Mp
(y) = Φx,p(y) +

Mp

(p+1)!∥y − x∥p+1. (10)

Now, we can formulate the Basic Tensor method

xt+1 = argminy∈E
{
Ωxt,Mp(y)

}
, (11)

where Mp ≥ pLp. For p = 1 and M1 ≥ L1, it is the gradient descent step xt+1 = xt − 1
M1

∇f(xt)
with the convergence rate O

(
M1R

2

T

)
for convex functions. For p = 2 and M2 ≥ L2, it is a CRN

Method from (7). For p = 3 and M3 ≥ 3L3, it is a Basic Third-order Method (Nesterov, 2021b):

xt+1 = xt+argmin
h∈E

{
f(xt) +∇f(xt) [h] + 1

2∇
2f(xt) [h]

2
+ 1

6D
3f(xt) [h]

3
+ M3

24 ∥h∥
4
}
, (12)

with the convergence rate O
(

M3D
4

T 3

)
. The step (12) can be performed with almost the same

computational complexity (up to a logarithmic factor) by using the Bregman Distance Gradient
Method as a subsolver (Nesterov, 2021b;c). The details are written in the Appendix C.1.

ACCELERATIONS. Compared to first-order methods, second-order and higher-order methods achieve
three types of acceleration rates: Nestrov-type acceleration with the rate O

(
T−(p+1)

)
, nearly-

optimal acceleration Õ
(
T−(3p+1)/2

)
, and optimal one O

(
T−(3p+1)/2

)
, where Õ(·) means up to a

logarithmic factor. OPTAMI library includes four key variants of acceleration techniques:
• Nesterov Accelerated Tensor Method (Algorithm 1) with a rate O(T−(p+1)) (Nesterov, 2021b);

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

• Near-Optimal Tensor Acceleration (Algorithm 5) with a rate Õ(T−(3p+1)/2) (Bubeck et al., 2019;
Gasnikov et al., 2019b; Kamzolov, 2020);

• Near-Optimal Proximal-Point Acceleration Method with Segment Search (Algorithm 6) with the
rate Õ(T−(3p+1)/2) (Nesterov, 2021a);

• Optimal Acceleration (Algorithm 7) with a rate O(T−(3p+1)/2) (Kovalev and Gasnikov, 2022).

These methods are presented in detail in Section 3.1 for Nesterov acceleration, and in Appendix D
for the remaining algorithms.
3 IMPROVING PRACTICAL PERFORMANCE OF ACCELERATED METHODS
While accelerated second-order and higher-order methods provide provable theoretical advancements
over their non-accelerated counterparts, a detailed comparison of their practical performance seems
to be underexplored in the literature. Notably, techniques like Nesterov acceleration, which are highly
effective for first-order methods, can slow down second-order and higher-order methods, particularly
in the initial stages (Scieur, 2023; Carmon et al., 2022; Antonakopoulos et al., 2022). To illustrate
this, we present a practical example using the logistic regression problem (Figure 2). The accelerated
versions appear slower, which contradicts the theoretical expectations.
In this section, we first introduce a novel algorithm, NATA, that enhances the practical performance
of the Nesterov Accelerated Tensor Method while maintaining the same theoretical guarantees. We
then provide a comprehensive computational comparison of five different acceleration techniques for
second-order and higher-order optimization.
3.1 NESTEROV ACCELERATED TENSOR METHOD WITH At-ADAPTATION (NATA)
Algorithm 1 Nesterov Accelerated Tensor Method

1: Input: x0 = v0 is starting point, constant Mp, ψ0(z) = 1
p+1∥z − x0∥p+1, total number of

iterations T , and sequence At.
2: for t ≥ 0 do
3: at+1 = At+1 −At

4: yt =
At

At+1
xt +

at+1

At+1
vt

5: xt+1 = argminy∈E
{
Ωyt,Mp

(y)
}

6: ψt+1(z) = ψt(z) + at+1[f(xt+1) + ⟨∇f(xt+1), z − xt+1⟩]
7: vt+1 = argminx∈E ψt+1(z)
8: end for
9: return xT+1

0 50 100 150 200 250
Hessian computations

10 6

10 5

10 4

10 3

10 2

10 1

100

101

f(x
t)

f(x
*)

a9a, Logistic Regression, L2 = L3 = 0.1
Cubic Newton
Nesterov Accelerated Cubic
Cubic NATA with adaptive
Cubic NATA with tuned = 10.
Basic Tensor Method
Nesterov Accelerated Tensor
Tensor NATA with adaptive
Tensor NATA with tuned = 0.5

Figure 3: Basic and Nesterov Acceler-
ated Methods vs new NATA Methods.

In this subsection, we investigate the causes of the under-
performance of Nesterov Accelerated Tensor method and
propose a solution. We begin by revisiting Algorithm 1,
with further details provided in Appendix D.1. According
to the theoretical convergence result f(xt) − f(x∗) ≤
∥x∗−x0∥p+1

(p+1)At
from (Nesterov, 2021c, Theorem 2.3), the

sequence At is directly connected with the method’s per-
formance - the larger the At, the faster the convergence.
Therefore, our goal is to maximize At. Theoretically, At

should be defined as At =
νp

Lp
tp+1, where ν2 = 1

24 for
M2 = L2 and ν3 = 5

3024 for M3 = 6L3. However, the
values of νp appear to be quite small, which limits the
speed of convergence. Can these values be increased? The
answer is yes. We propose the Nesterov Accelerated Tensor Method with At-Adaptation, which
selects these parameters more aggressively, leading to faster convergence.
Theorem 3.1 For convex function f with Lp-Lipschitz-continuous p-th derivative, to find xT such
that f(xT) − f(x∗) ≤ ε, it suffices to perform no more than T ≥ 1 iterations of the Nesterov
Accelerated Tensor Method with At-Adaptation (NATA) with Mp ≥ pLp (Algorithm 2), where

T = O

((
MpR

p+1

ε

) 1
p+1

+ logθ
(
νmax

νmin

))
. (13)

The proof is presented in the Appendix D.2. The established convergence rate of NATA matches
the original method, with an additional factor of logθ

(
νmax

νmin

)
accounting for the adaptation of νt.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Algorithm 2 Nesterov Accelerated Tensor Method with At-Adaptation (NATA)

1: Input: x0 = v0 is starting point, ψ0(z) = 1
p+1∥z − x0∥p+1, constant Mp, total number of

iterations T , Ã0 = 0, νmin = νp, νmax ≥ νp is a maximal value of ν, θ > 1 is a scaling
parameter for ν, and ν0 ≤ νmax is a starting value of ν.

2: for t ≥ 0 do
3: νt = νtθ
4: repeat
5: νt = max

{
νt

θ , ν
min
}

6: ãt+1 = νt

Mp
((t+ 1)p+1 − tp+1) and Ãt+1 = Ãt + ãt+1

7: yt =
Ãt

Ãt+1
xt +

ãt+1

Ãt+1
vt

8: xt+1 = argminy∈E
{
Ωyt,Mp

(y)
}

9: ψt+1(z) = ψt(z) + ãt+1[f(xt+1) + ⟨∇f(xt+1), z − xt+1⟩]
10: vt+1 = argminz∈E ψt+1(z)

11: until ψt+1(vt+1) < Ãt+1f(xt+1)
12: νt+1 = min {νtθ, νmax}
13: end for
14: return xT+1

Next, we demonstrate the practical improvements of NATA compared to the classical methods. As
shown in Figure 3, one can see that the Cubic and Tensor variants of NATA significantly outperform
the classical Basic and Nesterov Accelerated Methods. We also included versions of Cubic and
Tensor NATA with fixed νt = 10 and νt = 0.5, respectively, where νt is an additional tunable
hyperparameter. This more aggressive variant of NATA can exhibit even faster practical performance,
though it may diverge if νt is not chosen carefully.
3.2 COMPUTATIONAL COMPARISION OF ACCELERATION METHODS

We now present a practical comparison of various acceleration techniques for tensor methods in
convex optimization, including Nesterov acceleration, near-optimal and optimal accelerations, as well
as the newly proposed algorithm, NATA. Specifically, our experiments focus on logistic regression,
defined as:

f(x) = 1
n

∑n
i=1 log

(
1 + e−bi⟨ai,x⟩

)
+ µ

2 ∥x∥
2
2, (14)

where ai ∈ Rd are data features and bi ∈ {−1; 1} are data labels for i = 1, . . . , n. We evaluate
performance on the a9a dataset in Figure 4 with regularizer µ = 0 and µ = 10−4 in Figure 5.

0 50 100 150 200 250 300
Hessian computations

10 7

10 5

10 3

10 1

101

f(x
t)

f(x
*)

a9a, Logistic Regression, = 0.0, L2 = 0.1
Cubic Newton
Nesterov Accelerated Cubic
Cubic NATA with adaptive t

Cubic NATA with tuned t = 10.0
Near-Optimal Cubic
Cubic Prox. Point Segment Search
Optimal Cubic

0 50 100 150 200 250
Hessian computations

10 6

10 5

10 4

10 3

10 2

10 1

100

101

f(x
t)

f(x
*)

a9a, Logistic Regression, = 0.0, L3 = 0.1
Tensor Method
Nesterov Accelerated Tensor
Tensor NATA with adaptive
Tensor NATA with tuned = 0.5
Near-Optimal Tensor
Tensor Prox. Point Segment Search
Optimal Tensor

Figure 4: Comparison of different cubic and tensor acceleration methods on Logistic Regression for
a9a dataset from the starting point x0 = 3e, where e is a vector of all ones.

Let us now discuss the performance of the methods. The new NATA acceleration outperforms all
other methods. We attribute this to NATA’s strategy of maximizing ãt and Ãt, which enables even
faster convergence in the later stages. The second-best performer is the Near-Optimal Acceleration
method. Although it struggles initially due to a large number of line-search iterations per step, it
gradually requires fewer line-search iterations — less than two per step on average — as parameters
from previous line-search steps become well-suited for the current iteration. With fewer line-search

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

iterations, the method accelerates and outpaces the remaining competitors. A promising direction for
improving this method would be to refine the line-search process through an advanced line-search
strategy. Next, the Nesterov Accelerated method starts off slower than the basic method without
acceleration. Eventually, the method accelerates and overtakes the basic version but only for the
Cubic version, as ν3 is too small for tensor methods. Near-Optimal Proximal-Point Acceleration
Method with Segment Search performs very similarly to Basic Methods with only improvement in
strongly convex case. It has much fewer iterations, but it does a safe segment search with an average
of 3 Basic steps per search. Lastly, the Optimal Acceleration method performs the worst in practice.
We believe the main issue lies in the internal parameters, which need tuning and adaptation, as we
used the theoretical parameters in our implementation. This leads to many inner iterations without
significant global progress. Improving these parameters presents an open question for future research.
More details can be found in the Appendix E.
In Figure 5, both basic optimization methods and certain accelerated variants appear to exhibit global
superlinear convergence, accelerating with each iteration even when far from the solution. This
observation naturally raises an important question: Can we theoretically prove that second-order
methods achieve global superlinear convergence? We address this question in the following section.

0 50 100 150 200 250 300
Hessian computations

10 7

10 5

10 3

10 1

101

f(x
t)

f(x
*)

a9a, Logistic Regression, = 0.0001, L2 = 0.1
Cubic Newton
Accelerated Cubic Newton
Cubic NATA with adaptive
Cubic NATA with tuned = 8.0
Near-Optimal Cubic
Cubic Prox. Point Segment Search
Optimal Cubic

0 50 100 150 200 250 300
Hessian computations

10 7

10 5

10 3

10 1

101

f(x
t)

f(x
*)

a9a, Logistic Regression, = 0.0001, L3 = 0.1
Tensor Method
Nesterov Accelerated Tensor
Tensor NATA with adaptive
Tensor NATA with tuned = 1.
Near-Optimal Tensor
Tensor Prox. Point Segment Search
Optimal Tensor

Figure 5: Comparison of different cubic and tensor acceleration methods on regularized Logistic
Regression for a9a dataset and µ = 10−4 from the starting point x0 = 3e.

4 GLOBAL SUPERLINEAR CONVERGENCE OF HIGH-ORDER METHODS FOR
STRONGLY STAR-CONVEX FUNCTIONS

In this section, we establish the global superlinear convergence of high-order methods for strongly
star-convex functions. We begin by defining global superlinear convergence.

Definition 4.1 A method is said to exhibit a global superlinear convergence rate with respect to the
functional gap if there exists a sequence ζt for all t ∈ {0, . . . , T} such that

f(xt+1)−f∗

f(xt)−f∗ ≤ ζt, 1 > ζt > ζt+1 ∀t ∈ {0, . . . , T} , and ζt → 0 for t→ +∞. (15)

0 100 200 300 400 500
Iterations, t

10 9

10 7

10 5

10 3

10 1

101

f(x
t)

f(x
*)

a9a, Logistic Regression, = 0.0001

Gradient Descent, L1 = 0.25
Cubic Newton, L2 = 0.25
Basic Tensor Method, L3 = 0.25

Figure 6: Cubic Newton and Basic Ten-
sor method have areas of superlinear
convergence. In contrast, GD demon-
strates linear rate.

The essence of this definition lies in the fact that the scaling
coefficient ζt decreases with each iteration. If ζt remains
constant, the method achieves linear convergence. Con-
versely, if ζt increases over time (i.e., ζt < ζt+1), the con-
vergence becomes sublinear. Additionally, we introduce
the values αt = 1− f(xt+1)−f∗

f(xt)−f∗ ≤ 1, which typically rep-
resent the per-iteration convergence rate from f(xt+1)−
f∗ ≤ (1− αt) (f(xt)− f∗). The larger αt means faster
convergence. As for constant α ≤ αt, the method takes a
total number of T = O

(
α−1 log

(
f(x0)−f∗

ε

))
iterations

to reach ε-solution, where f(xT+1)− f∗ ≤ ε. For exam-
ple, gradient descent exhibits global linear convergence for
strongly convex functions with ζt = 1− α = 1− µ

L1+µ .

Now, to get some intuition on the performance of the methods, we begin with two simple and
classical examples: the l2-regularized logistic regression problem and the l2-regularized Nesterov’s
lower-bound function. The l2-regularized third order Nesterov’s lower-bound function from Nesterov

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

(2021b) has the next form
f(x) = 1

4

∑d−1
i=1 (xi − xi+1)

4 − x1 +
µ
2 ∥x∥

2
2. (16)

Figures 1, 6 illustrate that both the Cubic Newton method and Basic Tensor method have areas
of superlinear convergence where the graphics are going down faster with each iteration (concave
downward). In contrast, gradient descent demonstrates linear convergence. To verify the behavior of
these methods, we plot the values αt = 1− f(xt+1)−f∗

f(xt)−f∗ ≤ 1.

0 100 200 300 400 500
Iterations, t

10 2

10 1

1
(f(

x t
+

1)
f(x

*)
)/(

f(x
t)

f(x
*)

)

a9a, Logistic Regression, = 0.0001
Gradient Descent, L1 = 0.25
Cubic Newton, L2 = 0.25
Basic Tensor Method, L3 = 0.25

(a) Logistic Regression for a9a dataset starting from
the point x0 = 3e with µ = 10−4 regularizer.

0 100 200 300 400 500
Iterations, t

10 3

10 2

10 1

100

1
(f(

x t
+

1)
f(x

*)
)/(

f(x
t)

f(x
*)

)

Nesterov 3-rd order Lower-bound Function, = 0.001
Gradient Descent, L1 = 10.0
Cubic Newton, L2 = 10.0
Basic Tensor Method, L3 = 10.0

(b) Third-order Nesterov’s lower-bound function start-
ing from the point x0 = 0 with µ = 10−3 regularizer.

Figure 7: Comparison of the basic methods by the relative value 1− f(xt+1)−f∗

f(xt)−f∗ .

In Figure 7, we observe that at the beginning all methods slow down for both cases. This phase
corresponds to the region where the function’s decrease guarantee for (star-)convex functions out-
performs the function’s decrease guarantee for strongly (star-)convex functions. For example, in the
case of gradient descent, this occurs when the guarantee f(xt+1) ≤ f(xt) − 1

2L1
∥∇f(xt+1)∥2 is

better than f(xt+1) − f∗ ≤
(
1− µ

µ+L1

)
(f(xt)− f∗). Despite this region, gradient descent still

has global linear convergence for strongly (star-)convex function. As iterations proceed, gradient
descent stabilizes around αt = 10−3, which corresponds to the theoretical convergence rate κ. The
Cubic Newton method and the Basic Tensor method, however, start to accelerate and switch to a
superlinear convergence rate. This practical performance gives the intuition for the global superlinear
convergence of high-order methods.
Now, we present the theoretical results demonstrating that basic high-order methods indeed have a
global superlinear convergence for µ-strongly star-convex functions.

Definition 4.2 Let x∗ be a minimizer of the function f . For q ≥ 2 and µq ≥ 0, the function f is
µq-uniformly star-convex of degree q with respect to x∗ if for all x ∈ Rd and ∀α ∈ [0, 1]

f (αx+ (1− α)x∗) ≤ αf(x) + (1− α)f(x∗)− α(1−α)µq

q ∥x− x∗∥q. (17)

If q = 2 then the function f is µ-strongly star-convex with respect to x∗. If µq = 0 then the function
f is star-convex with respect to x∗. From this definition, we can additionally get the next useful
inequality sometimes called q-order growth condition

µq

q ∥x− x∗∥q ≤ f(x)− f(x∗). (18)

We start with a simplified version of the theorem which includes the linear convergence and then we
present the full version.

Theorem 4.3 For µ-strongly star-convex (17) function f with L2-Lipschitz-continuous Hessian (2),
Cubic Regularized Newton Method from (7) with M2 ≥ L2 converges with the rate

f(xt+1)− f∗ ≤ (1− αt) (f(xt)− f∗) , (19)

for all αt ∈ [0;α∗
t] , where α∗

t = −1+
√
1+4κt

2κt
and κt =

(M2+L2)∥xt−x∗∥
3µ . (20)

This range includes the classical linear rate

f(xt)− f(x∗) ≤ (1− αlow)t (f(x0)− f(x∗)) for αlow = min
{

1
2 ;
√

3µ
4(M2+L2)D

}
(21)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Proof. We start the proof by using an upper-bound (9)

f(xt+1)
(9)
≤ Φxt,2(xt+1) +

L2

6 ∥xt+1 − xt∥3
(7)
≤ min

y∈Rn

{
Φxt,2(y) +

M2

6 ∥y − xt∥3
}

(9)
≤ min

y∈Rn

{
f(y) + M2+L2

6 ∥y − xt∥3
} y=xt+αt(x

∗−xt)

≤ f((1− αt)xt + αtx
∗) + α3

t
M2+L2

6 ∥x∗ − xt∥3

(17)
≤ (1− αt)f(xt) + αtf(x

∗)− αt(1−αt)µ
2 ∥xt − x∗∥2 + α3

t
M2+L2

6 ∥xt − x∗∥3.

From the second inequality, we get that the method is monotone and f(xt+1) ≤ f(xt). Now, by
subbing f(x∗) from both sides, we get

f(xt+1)−f(x∗) ≤ (1−αt) (f(xt)− f(x∗))− αt

2 ∥xt−x∗∥2
(
(1− αt)µ− α2

t
M2+L2

3 ∥xt − x∗∥
)
,

By choosing αt such that
α2
t
M2+L2

3 ∥xt − x∗∥+ µαt − µ ≤ 0, (22)
we get (19). By solving the quadratic inequality (22), we get that the method (7) converges with the
rate (19) for all (20). Next, we present Lemma 4.4 with the useful properties of α∗

t from (20). The
more general Lemma B.2 with the detailed proof is in Appendix B.
Lemma 4.4 For z > 0, the function

α∗(z) = −1+
√
1+4z

2z (23)
is bounded by the following lower and upper bounds

min
{
1, 1√

z

}
> α∗(z) > min

{
1
2 ;

1
2
√
z

}
, (24)

and it is monotonically decreasing
∀z, y > 0 : z < y ⇒ α∗(z) > α∗(y). (25)

The convergence rate is well-defined as 0 < α∗
t ≤ 1 from (24). As ∥xt − x∗∥ ≤ D from (3) and

αlow ≤ α∗ by (24), we get the linear convergence rate (21). □

Now, we move to the second theorem and prove the global superlinear convergence. The main idea
of the proof is to observe that ∥xt − x∗∥ in (20) decreases for µ-strongly star-convex functions. This
property allows us to show that κt is decreasing, and hence α∗

t is increasing from (25), leading to
superlinear convergence.

Theorem 4.5 For µ-strongly star-convex (17) function f with L2-Lipschitz-continuous Hessian (2),
Cubic Regularized Newton Method from (7) with M2 ≥ L2 converges globally superlinearly as
defined in (15) with ζt = 1− αsl

t

f(xt+1)− f∗ ≤ (1− αsl
t) (f(xt)− f∗) , (26)

where
αsl
t =

−1+
√

1+4κsl
t

2κsl
t

for κslt = (M2+L2)
√
2

3µ3/2 (1− αlow)t/2 (f(x0)− f(x∗))
1/2

. (27)

The aggregated convergence rate for T ≥ 1 equals to

f(xT)− f(x∗) ≤ (f(x0)− f(x∗))
∏T

t=1(1− αsl
t). (28)

Proof. From µ-strongly star-convexity (17), we can upper-bound ∥xt − x∗∥ in (20) by

∥xt − x∗∥ ≤
(

2
µ (f(xt)− f(x∗))

)1/2 (21)
≤
(

2
µ

(
(1− αlow)t(f(x0)− f(x∗))

))1/2
.

So, we got that ∥xt−x∗∥ is linearly decreasing to zero. From that, we get a new superlinear αsl
t ≤ α∗

t
from (27). As κslt is getting smaller within each iteration κslt > κslt+1, we get that α(κslt) < α(κslt+1)

from (25). Finally, for ζt = 1− α(κslt), we get ζt > ζt+1 in (26). This finishes the proof of global
superlinear convergence. The aggregated convergence rate is equal to (28). □

Similar results hold for Basic Tensor methods from (11) in general for p ≥ 2. Next, we present the
theorem for global superlinear convergence of Basic Tensor methods.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Theorem 4.6 For µq-uniformly star-convex (17) function f of degree q ≥ 2 with Lp - Lipschitz-
continuous p-th derivative (p ≥ q ≥ 2) (2), Basic Tensor Method from (11) withMp ≥ pLp converges
converges globally superlinearly as defined in (15) with ζt,p = 1− αsl

t,p

f(xt+1)− f∗ ≤ (1− αsl
t,p) (f(xt)− f∗) , (29)

where αsl
t,p is such that

hκsl
t,p
(αsl

t,p) = 0, where hκ(α) = αpκ+ α− 1, αlow
p = min

{
1
2 ;

1
2

(
(p+1)!µ

q(Mp+Lp)Dp−q+1

)1/p}
and κslt,p =

(Mp+Lp)q
(q+1)/q

(p+1)!µ(q+1)/q (1− αlow
p)t/q (f(x0)− f(x∗))

1/q
.

(30)
The aggregated convergence rate for T ≥ 1 equals to

f(xT)− f(x∗) ≤ (f(x0)− f(x∗))
∏T

t=1(1− αsl
t,p). (31)

To sum up, we present a unified table for µ-strongly (star-)convex functions.

Method Per-Iteration Rate αt Glob. Superlinear

Gradient Descent (Nesterov, 2004) µ
L1

✗

Cubic Newton Method (Nesterov, 2008)
(

µ
L2D

)1/2
✗

Basic Tensor Method
(Doikov and Nesterov, 2022)

(
µ

LpDp−1

)1/(p+1)

✗

Cubic Newton Method (NEW) µ3/4

L
1/2
2

(
1−

(
µ

L2D

)1/2)−t/4

∆
−1/4
0 ✓

Basic Tensor Method (NEW) µ3/2p

L
1/p
2

(
1−

(
µ

LpDp−1

)1/p)−t/2p

∆
−1/2p
0 ✓

Table 1: Comparison of per-iteration convergence for different basic methods, where ∆0 = f(x0)−
f(x∗). To enhance clarity and simplicity, we removed universal constants and simplified (27) and
(30) for the case where κt ≥ 1.

We established the global superlinear convergence of Cubic Regularized Newton Method for µ-
strongly star-convex functions, as well as Basic Tensor Method for µq-uniformly star-convex functions.
Comprehensive details and proofs are provided in Appendix B.

5 CONCLUSION
Limitations. This paper primarily focuses on high-order methods which come with certain limitations.
First of all, they have computational and memory limitations in high-dimensional spaces, due to
the need for Hessian calculations. There are, however, approaches to overcome this, such as using
first-order subsolvers or inexact Hessian approximations like Quasi-Newton approximations (BFGS,
L-SR1). In this paper, we focus on the exact Hessian to analyze methods’ peak performance.
Another limitation arises from the specific function classes and the theoretical results considered.
Nonetheless, many of the proposed methods can be practically applied to a broader set of problems.
For instance, the CRN performs competitively from general non-convex to strongly convex functions.

Conclusion and Future work. In the paper, we introduced OPTAMI, an open-source library designed
to make high-order optimization methods more accessible and easier to experiment with. We plan to
expand this library to cover a wider range of settings and optimization methods in the future.
In the first part of the paper, we proposed NATA, a practical acceleration technique. NATA employs a
more aggressive schedule adaptation for At, enabling faster convergence. Our experimental results
show that NATA significantly outperforms both basic and accelerated methods, including near-optimal
and optimal methods. This opens up another interesting question: Could other high-order methods be
optimized by addressing practical issues that arise due to overly conservative theoretical guarantees?
Finally, we demonstrated that the basic high-order methods exhibit global superlinear convergence for
µ-strongly star-convex functions. This result is significant because it shows that high-order methods
accelerate with each iteration, in stark contrast to first-order methods, which typically have a steady
linear convergence rate. This raises intriguing questions: Can global superlinear convergence be
established for accelerated high-order methods as well? What is the best possible global per-iteration
decrease that we can theoretically guarantee?

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

A. Agafonov, P. Dvurechensky, G. Scutari, A. Gasnikov, D. Kamzolov, A. Lukashevich, and
A. Daneshmand. An accelerated second-order method for distributed stochastic optimization. In
2021 60th IEEE Conference on Decision and Control (CDC), pages 2407–2413, 2021. ISBN
2576-2370. doi: 10.1109/CDC45484.2021.9683400. URL https://doi.org/10.1109/
CDC45484.2021.9683400.

A. Agafonov, D. Kamzolov, R. Tappenden, A. Gasnikov, and M. Takáč. FLECS: A federated learning
second-order framework via compression and sketching. arXiv preprint arXiv:2206.02009, 2022.

A. Agafonov, D. Kamzolov, P. Dvurechensky, A. Gasnikov, and M. Takáč. Inexact tensor methods
and their application to stochastic convex optimization. Optimization Methods and Software, 39(1):
42–83, 2024a. doi: 10.1080/10556788.2023.2261604. URL https://doi.org/10.1080/
10556788.2023.2261604.

A. Agafonov, D. Kamzolov, A. Gasnikov, A. Kavis, K. Antonakopoulos, V. Cevher, and M. Takáč.
Advancing the lower bounds: an accelerated, stochastic, second-order method with optimal
adaptation to inexactness. In The Twelfth International Conference on Learning Representations,
2024b. URL https://openreview.net/forum?id=otU31x3fus.

A. Agafonov, P. Ostroukhov, R. Mozhaev, K. Yakovlev, E. Gorbunov, M. Takáč, A. Gasnikov,
and D. Kamzolov. Exploring jacobian inexactness in second-order methods for variational in-
equalities: Lower bounds, optimal algorithms and quasi-newton approximations. arXiv preprint
arXiv:2405.15990, 2024c.

K. Antonakopoulos, A. Kavis, and V. Cevher. Extra-newton: A first approach
to noise-adaptive accelerated second-order methods. In S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Infor-
mation Processing Systems, volume 35, pages 29859–29872. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/c10804702be5a0cca89331315413f1a2-Paper-Conference.pdf.

Y. Arjevani, O. Shamir, and R. Shiff. Oracle complexity of second-order methods for smooth convex
optimization. Mathematical Programming, 178:327–360, 2019. ISSN 1436-4646. doi: 10.1007/
s10107-018-1293-1. URL https://doi.org/10.1007/s10107-018-1293-1.

M. Baes. Estimate sequence methods: extensions and approximations. Institute for Operations
Research, ETH, Zürich, Switzerland, 2(1), 2009.

A. A. Bennett. Newton’s method in general analysis. Proceedings of the National Academy of
Sciences, 2(10):592–598, 1916.

A. S. Berahas, M. Jahani, P. Richtárik, and M. Takáč. Quasi-newton methods for machine learning:
forget the past, just sample. Optimization Methods and Software, 37:1668–1704, 2022. doi:
10.1080/10556788.2021.1977806. URL https://doi.org/10.1080/10556788.2021.
1977806.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

S. Bubeck, Q. Jiang, Y. T. Lee, Y. Li, and A. Sidford. Near-optimal method for highly smooth
convex optimization. In A. Beygelzimer and D. Hsu, editors, Proceedings of the Thirty-Second
Conference on Learning Theory, volume 99, pages 492–507. PMLR, 5 2019. URL https:
//proceedings.mlr.press/v99/bubeck19a.html.

Y. Carmon, D. Hausler, A. Jambulapati, Y. Jin, and A. Sidford. Optimal and adaptive monteiro-svaiter
acceleration. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors,
Advances in Neural Information Processing Systems, volume 35, pages 20338–20350. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/7ff97417474268e6b5a38bcbfae04944-Paper-Conference.pdf.

C.-C. Chang and C.-J. Lin. Libsvm: A library for support vector machines. ACM transactions on
intelligent systems and technology (TIST), 2(3):1–27, 2011.

11

https://doi.org/10.1109/CDC45484.2021.9683400
https://doi.org/10.1109/CDC45484.2021.9683400
https://doi.org/10.1080/10556788.2023.2261604
https://doi.org/10.1080/10556788.2023.2261604
https://openreview.net/forum?id=otU31x3fus
https://proceedings.neurips.cc/paper_files/paper/2022/file/c10804702be5a0cca89331315413f1a2-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c10804702be5a0cca89331315413f1a2-Paper-Conference.pdf
https://doi.org/10.1007/s10107-018-1293-1
https://doi.org/10.1080/10556788.2021.1977806
https://doi.org/10.1080/10556788.2021.1977806
https://proceedings.mlr.press/v99/bubeck19a.html
https://proceedings.mlr.press/v99/bubeck19a.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/7ff97417474268e6b5a38bcbfae04944-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/7ff97417474268e6b5a38bcbfae04944-Paper-Conference.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

G. E. Dahl, F. Schneider, Z. Nado, N. Agarwal, C. S. Sastry, P. Hennig, S. Medapati, R. Eschenhagen,
P. Kasimbeg, D. Suo, et al. Benchmarking neural network training algorithms. arXiv preprint
arXiv:2306.07179, 2023.

A. Daneshmand, G. Scutari, P. Dvurechensky, and A. Gasnikov. Newton method over networks
is fast up to the statistical precision. In International Conference on Machine Learning, pages
2398–2409. PMLR, 2021.

N. Doikov and Y. Nesterov. Local convergence of tensor methods. Mathematical Programming, 193:
315–336, 2022. ISSN 1436-4646. doi: 10.1007/s10107-020-01606-x. URL https://doi.
org/10.1007/s10107-020-01606-x.

N. Doikov and Y. Nesterov. Gradient regularization of Newton method with Bregman distances.
Mathematical Programming, 2023. ISSN 1436-4646. doi: 10.1007/s10107-023-01943-7. URL
https://doi.org/10.1007/s10107-023-01943-7.

N. Doikov, K. Mishchenko, and Y. Nesterov. Super-universal regularized newton method. SIAM
Journal on Optimization, 34:27–56, 2024. doi: 10.1137/22M1519444. URL https://doi.
org/10.1137/22M1519444.

P. Dvurechensky, D. Kamzolov, A. Lukashevich, S. Lee, E. Ordentlich, C. A. Uribe, and A. Gasnikov.
Hyperfast second-order local solvers for efficient statistically preconditioned distributed optimiza-
tion. EURO Journal on Computational Optimization, 10:100045, 2022. ISSN 2192-4406. doi:
https://doi.org/10.1016/j.ejco.2022.100045. URL https://www.sciencedirect.com/
science/article/pii/S2192440622000211.

A. Gasnikov, P. Dvurechensky, E. Gorbunov, E. Vorontsova, D. Selikhanovych, and C. A. Uribe.
Optimal tensor methods in smooth convex and uniformly convex optimization. In A. Beygelz-
imer and D. Hsu, editors, Proceedings of the Thirty-Second Conference on Learning Theory,
volume 99, pages 1374–1391. PMLR, 5 2019a. URL https://proceedings.mlr.press/
v99/gasnikov19a.html.

A. Gasnikov, P. Dvurechensky, E. Gorbunov, E. Vorontsova, D. Selikhanovych, C. A. Uribe, B. Jiang,
H. Wang, S. Zhang, S. Bubeck, Q. Jiang, Y. T. Lee, Y. Li, and A. Sidford. Near optimal methods
for minimizing convex functions with Lipschitz p-th derivatives. In A. Beygelzimer and D. Hsu,
editors, Proceedings of the Thirty-Second Conference on Learning Theory, volume 99, pages 1392–
1393. PMLR, 5 2019b. URL https://proceedings.mlr.press/v99/gasnikov19b.
html.

S. Ghadimi, H. Liu, and T. Zhang. Second-order methods with cubic regularization under inexact
information. arXiv preprint arXiv:1710.05782, 2017.

A. Griewank. The modification of Newton’s method for unconstrained optimization by bounding
cubic terms. Technical report, Technical report NA/12, 1981.

V. Gupta, T. Koren, and Y. Singer. Shampoo: Preconditioned stochastic tensor optimization. In J. Dy
and A. Krause, editors, Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pages 1842–1850. PMLR, 10–15 Jul
2018. URL https://proceedings.mlr.press/v80/gupta18a.html.

S. Hanzely, D. Kamzolov, D. Pasechnyuk, A. Gasnikov, P. Richtárik, and M. Takáč. A
damped Newton method achieves global O

(
1
k2

)
and local quadratic convergence rate. In

S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances
in Neural Information Processing Systems, volume 35, pages 25320–25334. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/a1f0c0cd6caaa4863af5f12608edf63e-Paper-Conference.pdf.

B. Jiang, H. Wang, and S. Zhang. An optimal high-order tensor method for convex optimization. In
Conference on Learning Theory, pages 1799–1801. PMLR, 2019.

R. Jiang, Q. Jin, and A. Mokhtari. Online learning guided curvature approximation: A quasi-
newton method with global non-asymptotic superlinear convergence. In The Thirty Sixth Annual
Conference on Learning Theory, pages 1962–1992. PMLR, 2023.

12

https://doi.org/10.1007/s10107-020-01606-x
https://doi.org/10.1007/s10107-020-01606-x
https://doi.org/10.1007/s10107-023-01943-7
https://doi.org/10.1137/22M1519444
https://doi.org/10.1137/22M1519444
https://www.sciencedirect.com/science/article/pii/S2192440622000211
https://www.sciencedirect.com/science/article/pii/S2192440622000211
https://proceedings.mlr.press/v99/gasnikov19a.html
https://proceedings.mlr.press/v99/gasnikov19a.html
https://proceedings.mlr.press/v99/gasnikov19b.html
https://proceedings.mlr.press/v99/gasnikov19b.html
https://proceedings.mlr.press/v80/gupta18a.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/a1f0c0cd6caaa4863af5f12608edf63e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/a1f0c0cd6caaa4863af5f12608edf63e-Paper-Conference.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

R. Jiang, P. Raman, S. Sabach, A. Mokhtari, M. Hong, and V. Cevher. Krylov cubic regularized
newton: A subspace second-order method with dimension-free convergence rate. In International
Conference on Artificial Intelligence and Statistics, pages 4411–4419. PMLR, 2024.

D. Kamzolov. Near-optimal hyperfast second-order method for convex optimization. In Y. Kochetov,
I. Bykadorov, and T. Gruzdeva, editors, Mathematical Optimization Theory and Operations
Research, pages 167–178. Springer International Publishing, 2020. ISBN 978-3-030-58657-7.

D. Kamzolov, A. Gasnikov, and P. Dvurechensky. Optimal combination of tensor optimization
methods. In International Conference on Optimization and Applications, pages 166–183. Springer,
2020.

D. Kamzolov, A. Gasnikov, P. Dvurechensky, A. Agafonov, and M. Takáč. Exploiting Higher Order
Derivatives in Convex Optimization Methods, pages 1–13. Springer International Publishing,
2023a. ISBN 978-3-030-54621-2. doi: 10.1007/978-3-030-54621-2_858-1. URL https:
//doi.org/10.1007/978-3-030-54621-2_858-1.

D. Kamzolov, K. Ziu, A. Agafonov, and M. Takáč. Accelerated adaptive cubic regularized Quasi-
Newton methods. arXiv preprint arXiv:2302.04987, 2023b.

L. V. Kantorovich. Functional analysis and applied mathematics. Uspekhi Matematicheskikh Nauk, 3
(6):89–185, 1948a. (In Russian). Translated as N.B.S Report 1509, Washington D.C. (1952).

L. V. Kantorovich. On Newton’s method for functional equations. Doklady Akademii Nauk SSSR, 59
(7):1237–1240, 1948b. (In Russian).

L. V. Kantorovich. On Newton’s method. Trudy Matematicheskogo Instituta imeni VA Steklova, 28:
104–144, 1949. (In Russian).

L. V. Kantorovich. Some further applications of principle of majorants. Doklady Akademii Nauk
SSSR, 80(6):849–852, 1951a. (In Russian).

L. V. Kantorovich. Principle of majorants and Newton’s method. Doklady Akademii Nauk SSSR, 76
(1):17–20, 1951b. (In Russian).

L. V. Kantorovich. On approximate solution of functional equations. Uspekhi Matematicheskikh
Nauk, 11(6):99–116, 1956. (In Russian).

L. V. Kantorovich. Some further applications of Newton’s method. Vestnik LGU, Seriya Matemetika
Mekhanika, 0(7):68–103, 1957. (In Russian).

D. Kovalev and A. Gasnikov. The first optimal acceleration of high-order methods in smooth convex
optimization. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors,
Advances in Neural Information Processing Systems, volume 35, pages 35339–35351. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/e56f394bbd4f0ec81393d767caa5a31b-Paper-Conference.pdf.

T. Lin, P. Mertikopoulos, and M. I. Jordan. Explicit second-order min-max optimization methods
with optimal convergence guarantee. arXiv preprint arXiv:2210.12860, 2022.

H. Liu, Z. Li, D. L. W. Hall, P. Liang, and T. Ma. Sophia: A scalable stochastic second-order
optimizer for language model pre-training. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=3xHDeA8Noi.

H. Lu, R. M. Freund, and Y. Nesterov. Relatively smooth convex optimization by first-order methods,
and applications. SIAM Journal on Optimization, 28:333–354, 2018. doi: 10.1137/16M1099546.
URL https://doi.org/10.1137/16M1099546.

K. Mishchenko. Regularized Newton method with global O
(

1
k2

)
convergence. SIAM Journal on

Optimization, 33:1440–1462, 2023. doi: 10.1137/22M1488752. URL https://doi.org/10.
1137/22M1488752.

R. D. C. Monteiro and B. F. Svaiter. An accelerated hybrid proximal extragradient method for convex
optimization and its implications to second-order methods. SIAM Journal on Optimization, 23:1092–
1125, 2013. doi: 10.1137/110833786. URL https://doi.org/10.1137/110833786.

13

https://doi.org/10.1007/978-3-030-54621-2_858-1
https://doi.org/10.1007/978-3-030-54621-2_858-1
https://proceedings.neurips.cc/paper_files/paper/2022/file/e56f394bbd4f0ec81393d767caa5a31b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/e56f394bbd4f0ec81393d767caa5a31b-Paper-Conference.pdf
https://openreview.net/forum?id=3xHDeA8Noi
https://doi.org/10.1137/16M1099546
https://doi.org/10.1137/22M1488752
https://doi.org/10.1137/22M1488752
https://doi.org/10.1137/110833786

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

J. J. Moré. The levenberg–marquardt algorithm: implementation and theory. In Conference on
Numerical Analysis, University of Dundee, Scotland, 7 1977. URL https://www.osti.
gov/biblio/7256021.

Y. Nesterov. A method for solving the convex programming problem with convergence rate O
(

1
k2

)
.

Doklady Akademii Nauk SSSR, 269(3):543–547, 1983. (In Russian).

Y. Nesterov. Introductory Lectures on Convex Optimization. Science & Business Media, 1 edition,
2004. ISBN 978-1-4613-4691-3. doi: 10.1007/978-1-4419-8853-9.

Y. Nesterov. Accelerating the cubic regularization of Newton’s method on convex problems. Mathe-
matical Programming, 112:159–181, 2008. ISSN 1436-4646. doi: 10.1007/s10107-006-0089-x.
URL https://doi.org/10.1007/s10107-006-0089-x.

Y. Nesterov. Lectures on Convex Optimization. Springer Cham, 2 edition, 2018. ISBN 978-3-319-
91577-7. doi: 10.1007/978-3-319-91578-4.

Y. Nesterov. Inexact high-order proximal-point methods with auxiliary search procedure. SIAM
Journal on Optimization, 31:2807–2828, 2021a. doi: 10.1137/20M134705X. URL https:
//doi.org/10.1137/20M134705X.

Y. Nesterov. Implementable tensor methods in unconstrained convex optimization. Mathematical
Programming, 186:157–183, 2021b. ISSN 1436-4646. doi: 10.1007/s10107-019-01449-1. URL
https://doi.org/10.1007/s10107-019-01449-1.

Y. Nesterov. Superfast second-order methods for unconstrained convex optimization. Journal
of Optimization Theory and Applications, 191:1–30, 2021c. ISSN 1573-2878. doi: 10.1007/
s10957-021-01930-y. URL https://doi.org/10.1007/s10957-021-01930-y.

Y. Nesterov. Inexact accelerated high-order proximal-point methods. Mathematical Programming,
pages 1–26, 2023.

Y. Nesterov and B. T. Polyak. Cubic regularization of Newton method and its global performance.
Mathematical Programming, 108:177–205, 2006. doi: 10.1007/s10107-006-0706-8. URL https:
//doi.org/10.1007/s10107-006-0706-8.

I. Newton. Philosophiae naturalis principia mathematica. Edmond Halley, 1687.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer New York, NY, 1 edition, 1999. doi:
10.1007/b98874.

B. T. Polyak. Introduction to optimization. Optimization Software, Inc., Publications Division, 1987.

B. T. Polyak. Newton’s method and its use in optimization. European Journal of Opera-
tional Research, 181:1086–1096, 2007. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.
2005.06.076. URL https://www.sciencedirect.com/science/article/pii/
S0377221706001469.

R. Polyak. Complexity of the regularized Newton method. arXiv preprint arXiv:1706.08483, 2017.

R. A. Polyak. Regularized Newton method for unconstrained convex optimization. Mathematical
Programming, 120:125–145, 2009. ISSN 1436-4646. doi: 10.1007/s10107-007-0143-3. URL
https://doi.org/10.1007/s10107-007-0143-3.

J. Raphson. Analysis Aequationum Universalis Seu Ad Aequationes Algebraicas Resolvendas
Methodus Generalis & Expedita, Ex Nova Infinitarum Serierum Methodo, Deducta Ac Demonstrata.
Th. Braddyll, 1697.

S. J. Reddi, J. Konečnỳ, P. Richtárik, B. Póczós, and A. Smola. Aide: Fast and communication
efficient distributed optimization. arXiv preprint arXiv:1608.06879, 2016.

D. Scieur. Adaptive Quasi-Newton and anderson acceleration framework with explicit global
(accelerated) convergence rates. arXiv preprint arXiv:2305.19179, 2023.

14

https://www.osti.gov/biblio/7256021
https://www.osti.gov/biblio/7256021
https://doi.org/10.1007/s10107-006-0089-x
https://doi.org/10.1137/20M134705X
https://doi.org/10.1137/20M134705X
https://doi.org/10.1007/s10107-019-01449-1
https://doi.org/10.1007/s10957-021-01930-y
https://doi.org/10.1007/s10107-006-0706-8
https://doi.org/10.1007/s10107-006-0706-8
https://www.sciencedirect.com/science/article/pii/S0377221706001469
https://www.sciencedirect.com/science/article/pii/S0377221706001469
https://doi.org/10.1007/s10107-007-0143-3

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

O. Shamir, N. Srebro, and T. Zhang. Communication-efficient distributed optimization using an
approximate newton-type method. In International conference on machine learning, pages 1000–
1008. PMLR, 2014.

T. Simpson. Essays on several curious and useful subjects, in speculative and mix’d mathematicks.
Illustrated by a variety of examples. H. Woodfall, 1740.

N. Vyas, D. Morwani, R. Zhao, I. Shapira, D. Brandfonbrener, L. Janson, and S. Kakade. Soap:
Improving and stabilizing shampoo using adam. arXiv preprint arXiv:2409.11321, 2024.

Y. Zhang and X. Lin. Disco: Distributed optimization for self-concordant empirical loss. In F. Bach
and D. Blei, editors, Proceedings of the 32nd International Conference on Machine Learning,
volume 37 of Proceedings of Machine Learning Research, pages 362–370, Lille, France, 07–09
Jul 2015. PMLR. URL https://proceedings.mlr.press/v37/zhangb15.html.

15

https://proceedings.mlr.press/v37/zhangb15.html

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

A RELATED WORKS

The origins of Newton method trace back to the foundational works on root-finding algorithms
Newton (1687), Raphson (1697), Simpson (1740), and Bennett (1916). The next breakthrough in
applying Newton method to optimization and proving its local quadratic convergence rates was done
by Kantorovich (1948b;a; 1949; 1951b;a; 1956; 1957). Over the following decades, Newton’s method
have been studied in depth, modified and improved in works of Moré (1977) Griewank (1981);
Nesterov and Polyak (2006). Today, Newton’s method is widely used in industrial and scientific
computing. For a more detailed history of Newton method, see Boris T. Polyak’s paper (Polyak,
2007).

Recently, second-order methods have taken a new direction in development with the introduction
of globally convergent methods achieving convergence rates of O(T−2) (Nesterov and Polyak,
2006) and O(T 3) (Nesterov, 2008) convergence rate, surpassing the performance of first-order meth-
ods (Nesterov, 2018). These advancements were later extended to higher-order (tensor) methods
by Baes (2009). However, the tensor subproblem in these methods is nonconvex, leading to im-
plementation challenges. This issue was addressed by the introduction of the (Accelerated) Tensor
Method in Nesterov (2021b), which resolved the nonconvexity by increasing the scaling coefficient
of the regularization term, making the subproblem convex. The basic p-th order Tensor Method
achieves a rate of O (T−p) , while the accelerated version improves this to O

(
T−(p+1)

)
. Earlier

work by Monteiro and Svaiter (2013) demonstrated that even faster convergence for second-order
methods is possible with the Accelerated Proximal Extragradient method (A-HPE), achieving a rate
of Õ

(
T−7/2

)
. Lower bounds for second-order and higher-order methods of Ω

(
T−(3p+1)/2

)
were

established in (Arjevani et al., 2019; Nesterov, 2021b), demonstrating that the A-HPE method is
nearly optimal for second-order convex optimization. Subsequently, three independent research
groups (Gasnikov et al., 2019a; Bubeck et al., 2019; Jiang et al., 2019) extended the A-HPE frame-
work to develop tensor methods with a convergence rate of Õ

(
T−(3p+1)/2

)
, achieving near-optimal

complexity for these higher-order methods. Truly optimal methods with a rate of O
(
T−(3p+1)/2

)
were later proposed in (Kovalev and Gasnikov, 2022; Carmon et al., 2022). Moreover, when assuming
higher levels of smoothness, second-order methods (Nesterov, 2021c;a; Kamzolov, 2020; Doikov
et al., 2024) have been shown to exceed the established lower complexity bounds for problems with
Lipschitz-continuous Hessians. For an in-depth exploration of higher-order methods, see the review
in (Kamzolov et al., 2023a).

Since second-order and higher-order methods generally incur greater computational costs due to the
need for calculating higher-order derivatives, it is natural to consider inexact or stochastic algorithms
to reduce these overheads. In convex optimization, several studies have explored globally convergent
second-order methods with inexact Hessians (Ghadimi et al., 2017), higher-order methods with
inexact and stochastic derivatives (Agafonov et al., 2024a; Kamzolov et al., 2020), and adaptive
stochastic methods (Antonakopoulos et al., 2022). In (Agafonov et al., 2024b), a lower bound of
Ω
(

σ1√
T
+ σ2

T 2 + 1
T 7/2

)
was established for stochastic globally convergent second-order methods,

where σ1 and σ2 represent the variances of the stochastic gradients and Hessians, respectively. Addi-
tionally, the Accelerated Stochastic Cubic Newton method was introduced, achieving a convergence
rate ofO

(
σ1√
T
+ σ2

T 2 + 1
T 3

)
, which, to the best of our knowledge, represents the state-of-the-art result.

Inexact second-order derivatives also studied for min-max problems and variational inequalities Lin
et al. (2022); Agafonov et al. (2024c). Inexact second-order methods enable the use of Quasi-Newton
Hessian approximations, which are well-regarded for their strong practical performance. Although
classical Quasi-Newton (QN) methods are known for local superlinear convergence but lack global
convergence, their integration with cubic regularization has led to globally convergent methods that
also feature relatively inexpensive subproblem solutions (Kamzolov et al., 2023b; Scieur, 2023; Jiang
et al., 2023). Second-order methods with inexact or stochastic derivatives also hold promise for
distributed optimization Shamir et al. (2014); Reddi et al. (2016); Zhang and Lin (2015); Daneshmand
et al. (2021); Agafonov et al. (2021); Dvurechensky et al. (2022); Agafonov et al. (2022), offering an
effective way to manage the computational demands typically encountered in distributed settings.
One actively developing direction relies on the constructions of Cubic Newton with explicit step in
order to reduce the complexity of solving methods’ subproblems Polyak (2009; 2017); Mishchenko
(2023); Doikov and Nesterov (2023); Doikov et al. (2024); Hanzely et al. (2022).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

B GLOBAL SUPERLINEAR CONVERGENCE

In this section, we show the theoretical global superlinear convergence of high-order methods (p ≥ 2)
for µ-strongly star-convex functions.

Theorem B.1 For µq-uniformly star-convex (17) function f of degree q ≥ 2 with Lp - Lipschitz-
continuous p-th derivative (p ≥ q ≥ 2) (2), Basic Tensor Method from (11) with Mp ≥ (p− 1)Lp

converges with the rate
f(xt+1)− f∗ ≤ (1− αt,p) (f(xt)− f∗) , (32)

for all α∗
t,p ≥ αt,p ≥ 0 such that

hκt,p(αt,p) ≤ 0 and hκt,p(α
∗
t,p) = 0, where hκ(α) = αpκ+α−1 and κt,p =

q(Mp+Lp)∥xt−x∗∥p−q+1

(p+1)!µ .

(33)
This range includes the classical linear rate

f(xt)− f(x∗) ≤ (1− αlow
p)t (f(x0)− f(x∗)) for αlow

p = min

{
1
2 ;

1
2

(
(p+1)!µ

q(Mp+Lp)Dp−q+1

)1/p}
(34)

Proof. We start the proof from an upper-bound (9)

f(xt+1)
(9)
≤ Φxt,p(xt+1) +

Lp

(p+1)!∥xt+1 − xt∥p+1
(11)
≤ min

y∈Rn

{
Φxt,p(y) +

Mp

(p+1)!∥y − xt∥p+1
}

(9)
≤ min

y∈Rn

{
f(y) +

Mp+Lp

(p+1)! ∥y − xt∥p+1
} y=xt+αt,p(x

∗−xt)

≤ f((1− αt,p)xt + αt,px
∗) + αp+1

t,p
Mp+Lp

(p+1)! ∥x
∗ − xt∥p+1

(17)
≤ (1− αt,p)f(xt) + αt,pf(x

∗)− αt,p(1− αt,p)µ

q
∥xt − x∗∥q + αp+1

t,p
Mp+Lp

(p+1)! ∥x
∗ − xt∥p+1.

From the third inequality, we get that the method is monotone and f(xt+1) ≤ f(xt). Next, we
subtract f(x∗) from the both sides and get

f(xt+1)−f(x∗) ≤ (1−αt,p) (f(xt)− f(x∗))−αt,p

q ∥xt−x∗∥q
(
(1− αt)µ− αp

t,p
q(Mp+Lp)

(p+1)! ∥xt − x∗∥p+1−q
)
,

If we choose αt such that

αp
t,p

q(Mp+Lp)
(p+1)! ∥xt − x∗∥p−q+1 + µαt,p − µ ≤ 0,

or equivalent version

αp
t,p

q(Mp+Lp)
(p+1)!µq

∥xt − x∗∥p−q+1 + αt,p − 1 ≤ 0,

we get (32). To understand the solutions of such inequality, we present Lemma B.2 with the useful
properties. From this Lemma, the convergence rate is well-defined as 0 < α∗

t,p ≤ 1 from (36). As
∥xt − x∗∥ ≤ D from (3) and αlow

p ≤ α∗
t,p by (36), we get the linear convergence rate (34). □

Lemma B.2 For z > 0, the solution α∗(z) of

hz(α
∗(z)) = 0, where hz(α) = αpz + α− 1, (35)

has the next constant lower and upper-bound

min
{
1, 1

z1/p

}
> α∗(z) > min

{
1
2 ;

1
2z1/p

}
. (36)

This bounds show that, for z ≥ 1, the solution α∗(z) is similar to z−1/p up to a constant factor as
z−1/p > α∗(z) > 0.5z−1/p.

For z ≤ 1, we get the next improved upper and lower-bound

1− z
p+1 ≥ α∗(z) ≥ 1− z, (37)

which means that for z → +0 we have α∗(z) → 1.

The solution α∗(z) is monotonically decreasing

∀z, y > 0 : z < y ⇒ α∗(z) > α∗(y). (38)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Proof. We start the proof from the upper-bound inequality. Note, the function hz(α) = αpz + α− 1
is monotonically increasing for α ≥ 0, as hz(α)′ = pαp−1z + 1 > 0. As hz(0) = −1 and
hz(1) = z > 0, we get that the solution is unique and α∗(z) ∈ [0; 1]. Next, for α = 1

z1/p , we have

hz(
1

z1/p) =
1
z z +

1
z1/p − 1 = 1

z1/p > 0,

which means that min
{
1, 1

z1/p

}
> α∗(z) and we proved the upper-bound.

Next, we move to the lower-bound inequality. For p ≥ 2, z ≥ 1 and α = 1
2z1/p , we have

hz(
1

2z1/p) =
1

2pz z +
1

2z1/p − 1 = 1
2p + 1

2z1/p − 1 ≤ 1
2p + 1

2 − 1 < 0,

where the first inequality is coming from z ≥ 1. The second part of lower-bound holds for 0 < z < 1
because

hz(
1
2) =

1
2p z +

1
2 − 1 < 1

2p − 1
2 < 0.

We proved (35). Now, to understand the behavior of α∗(z) for 0 < z ≤ 1, we improve the upper and
lower-bound for 0 < z ≤ 1. For 0 < z ≤ 1 and α = 1− z, we get the improved lower-bound

hz(1− z) = (1− z)pz + 1− z − 1 = (1− z)pz − z = ((1− z)p − 1)z < 0.

For p ≥ 2, 0 < z ≤ 1 and α = 1− z
p+1 , we get the improved upper-bound

hz

(
1− z

p+1

)
=
(
1− z

p+1

)p
z + 1− z

p+1 − 1 =
(
1− z

p+1

)p
z − z

p+1

≥
((

1− 1
p+1

)p
− 1

p+1

)
z =

(
pp−(p+1)p−1

(p+1)p

)
z > 0, (39)

where to use the last inequity or p ≥ 2 we need to use some additional analysis. We introduce an
additional function and its derivatives

s(x) = x log(x)− (x− 1) log(x+ 1),

s(x)′ = 2
1+x + log

(
1− 1

1+x

)
,

s(x)′′ = 1−x
x(1+x)2 .

It is clear that s(x)′′ < 0 for x > 1. It means that s(x)′ is monotonically decreasing. s(1)′ =
1 − log(2) > 0 and the limit limx→+∞ s(x)′ = 0, hence s(x)′ ≥ 0 and s(x) is a monotonically
increasing function. s(1) = 0, hence s(x) > 0 for x > 1 and finally xx > (x + 1)x−1 for x > 1,
which proves (39) and finishes the proof of the improved upper-bound (37).

Finally, we show that the solution α∗(z) is monotonically decreasing with z. Let 0 < z < y and
α∗(z) and α∗(y) are such that hz(α∗(z)) = 0 and hy(α∗(y)) = 0, then

α∗(z)py + α∗(z)− 1
(35)
= α∗(z)py + 1− α∗(z)pz − 1 = α∗(z)p(y − z) > 0,

which proves that α∗(z) > α∗(y) and hence the solution α∗(z) is monotonically decreasing. □

Now, we proceed to the second theorem to establish the global superlinear convergence of high-order
methods. The key idea behind the proof is to observe that |xt−x∗| in (33) decreases for µq-uniformly
star-convex functions. This allows us to notice the fact that κt,p is also decreasing, hence αt,p

increases according to (38), ultimately leading to superlinear convergence.

Theorem B.3 (Copy of Theorem 4.6) For µq-uniformly star-convex (17) function f of degree q ≥ 2
with Lp - Lipschitz-continuous p-th derivative (p ≥ q ≥ 2) (2), Basic Tensor Method from (11) with
Mp ≥ (p− 1)Lp converges converges globally superlinearly as defined in (15) with ζt,p = 1− αsl

t,p

f(xt+1)− f∗ ≤ (1− αsl
t,p) (f(xt)− f∗) , (40)

where αsl
t,p is such that

hκsl
t,p
(αsl

t,p) = 0, where hκ(α) = αpκ+ α− 1, αlow
p = min

{
1
2 ;

1
2

(
(p+1)!µ

q(Mp+Lp)Dp−q+1

)1/p}
and κslt,p =

(Mp+Lp)q
(q+1)/q

(p+1)!µ(q+1)/q (1− αlow
p)t/q (f(x0)− f(x∗))

1/q
.

(41)
The aggregated convergence rate for T ≥ 1 equals to

f(xT)− f(x∗) ≤ (f(x0)− f(x∗))
∏T

t=1(1− αsl
t,p). (42)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Proof. From µ-uniform star-convexity (17), we can upper-bound ∥xt − x∗∥ in (33) by

∥xt − x∗∥ ≤
(

q
µ (f(xt)− f(x∗))

)1/q (34)
≤
(

q
µ

(
(1− αlow)t(f(x0)− f(x∗))

))1/q
.

So, we got that ∥xt − x∗∥ is linearly decreasing to zero. From that, we get a new superlinear
αsl
t,p ≤ α∗

t,p from (41). As κslt is getting smaller within each iteration κslt,p > κslt+1,p, we get that
α(κslt,p) < α(κslt+1,p) from (38). Finally, for ζt,p = 1− α(κslt,p), we get ζt,p > ζt+1,p in (40). This
finishes the proof of global superlinear convergence. The aggregated convergence rate equals to (42).
□

C SUBSOLVERS

C.1 SUBSOLVER FOR BASIC TENSOR METHOD

In this section, we introduce the subsolver, called Bregman Distance Gradient Method (BDGM), for
the Basic Tensor Method of order p = 3 (12):

xt+1 = xt+argmin
h∈E

{
f(xt) +∇f(xt) [h] + 1

2∇
2f(xt) [h]

2
+ 1

6D
3f(xt) [h]

3
+ M3

24 ∥h∥
4
}
. (43)

The first effective subsolver was introduced by Nesterov in (Nesterov, 2021b, Section 5) and later
improved in (Nesterov, 2021c). Next, we describe the BDGM subsolver by following the (Nesterov,
2021c).

Relatively inexact p-th order solution. First, we introduce the relatively inexact p-th order solution
of (11)

N γ
Mp

(x) =
{
y ∈ E : ∥∇Ωx,Mp

(y)∥∗ ≤ γ∥∇f(y)∥∗
}
, (44)

where γ ∈ [0, 1) is an accuracy parameter. Then from (Nesterov, 2021c, Theorem 2.1), for γ and Mp

such that γ +
Lp

Mp
≤ 1

p any point y ∈ N γ
Mp

(x) satisfies

f(x)− f(y) ≥ cγ,Mp
∥∇f(y)∥

p+1
p

∗ , where cγ,Mp
=
[
(1−γ)p!
Lp+Mp

] 1
p
.

Note, that for the exact solution, we get the same improvement guarantee with γ = 0. For p = 3 and
(43), we choose γ = 1/6 and M3 = 6L3, then NL3(x) = N 1/6

L3
(x) and the method

xt+1 ∈ NL3
(xt)

converge with the same rate up to a constant as an exact version (Nesterov, 2021c, Theorem 2.2).
Note, M3 ≥ 3L3 is also required for the convexity of the subproblem (43). In our implementation,
all third-order basic steps are solved with this relative inexactness and M3 = 6L3. This approach
creates practical and parameter-free stopping criteria for the subproblem solvers.

Relative smoothness and relative strong convexity. Now, we move on to the concept of relative
smoothness and relative strong convexity proposed in (Lu et al., 2018). Similarly to classical
smoothness and strong convexity, we say that function ϕ(h) is relatively Lρ-smooth and relatively µρ

strongly convex with respect to scaling function ρ(h) if

µρ∇2ρ(h) ⪯ ∇2ϕ(h) ⪯ Lρ∇2ρ(h).

In classical regime, ρ(h) = 1
2∥h∥

2 and ∇2ρ(h) is an identity matrix. For the scaling function ρ(h),
we introduce its Bregman distance

βρ(h, y) = ρ(y)− ρ(h)− ⟨∇ρ(h), y − h⟩ .
Now the gradient method with respect to this Bregman distance is called Bregman Distance Gradient
Method (BDGM) and has the next form

hk+1 = argmin
y∈E

{⟨∇ϕ(hk), y − hk⟩+ 2Lρβρ(hk, y)} .

The convergence rate of such method is O
(

Lρ

µρ
log
(

ϕ(h0)−ϕ(h∗)
ε

))
.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Bregman Distance Gradient Method (BDGM) for (43). Let’s apply this approach to the solution
of subproblem (43) with M3 = 6L3. In (Nesterov, 2021c, Section 4), it was shown that the
subproblem function ϕ(h) = ∇f(xt) [h] + 1

2∇
2f(xt) [h]

2
+ 1

6D
3f(xt) [h]

3
+ L3

4 ∥h∥4 is relatively
smooth and relatively strongly convex with respect to

ρ(h) = 1
2∇

2f(xt) [h]
2
+ L3

4 ∥h∥4

with constants Lρ = 1 + 1√
2

and µρ = 1 − 1√
2

. It means that the method has an incredibly fast

convergence rate O
(√

2+1√
2−1

log
(

ϕ(h0)−ϕ(h∗)
ε

))
. The details and more formal convergence results

are presented in (Nesterov, 2021c).

Now, we present the explicit formulation of the BDGM for (43). First, we have the general form

hk+1 = argmin
y∈E

{⟨∇ϕ(hk), y − hk⟩+ 2Lρβρ(hk, y)} . (45)

Let us calculate ∇ϕ(hk) first. It equals to

∇ϕ(hk) = ∇f(xt) +∇2f(xt)hk + 1
2D

3f(xt) [hk]
2
+ L3∥hk∥2hk.

In (Nesterov, 2021c), the universal approximation for D3f(xt) [hk]
2 is presented by using the finite

differences approach. However, in practice, we recommend using autogradient computation of
D3f(xt) [hk]

2 if it is possible. The computation by autogradient is much more precise while having
the same computational complexity. The computation complexity of D3f(xt) [hk]

2 by autogradient
is similar to calculating three gradients asD3f(x) [h]

2
= ∇x(∇2f(x)[h]2) = ∇(∇{∇f(x)[h]} [h]).

Also, autogradient computations are commonly used in modern frameworks such as PyTorch, Jax,
and others. So, essentially we still have access to third-order information but with the complexity of
a gradient computation.

Now, let us calculate explicit βρ(hk, y)

βρ(hk, y) = ρ(y)− ρ(h)− ⟨∇ρ(h), y − h⟩
= 1

2∇
2f(xt) [y]

2
+ L3

4 ∥y∥4 − 1
2∇

2f(xt) [hk]
2 − L3

4 ∥hk∥4

−
〈
∇2f(xt) [hk] + L3∥hk∥2hk, y − hk

〉
.

Note, that the constant terms are useless for finding the argminimum in (45), hence we can remove
them. We also can divide all parts of (45) by 2Lρ = 2 +

√
2 for simplicity and unite the linear parts

together

gk = 1
2+

√
2
∇ϕ(hk)−∇2f(xt) [hk]− L3∥hk∥2hk

= 2−
√
2

2

(
∇f(xt) +∇2f(xt)hk + 1

2D
3f(xt) [hk]

2
+ L3∥hk∥2hk

)
−∇2f(xt) [hk]− L3∥hk∥2hk

= 2−
√
2

2

(
∇f(xt) + 1

2D
3f(xt) [hk]

2
)
−

√
2
2

(
∇2f(xt) [hk] + L3∥hk∥2hk

)
So, we finally get the next explicit BDGM step

hk+1 = argmin
y∈E

{
⟨gk, y⟩+ 1

2∇
2f(xt) [y]

2
+ L3

4 ∥y∥4
}
. (46)

This step doesn’t require the computation of a full third-order derivative and is similar to the Cubic
Regularized Newton step. Hence, we count it as a second-order method. So, the total complexity of
Basic Tensor Method for convex functions is Õ

(
L3D

4

T 3

)
steps of (46), where Õ(·) means number of

iterations up to a logarithmic factor.

Inner subsolver for (46). The last part is to solve (46). We solve it similarly to the Cubic
Regularized Step by ray-search with eigenvalue decomposition (EVD). First, we apply eigenvalue
decomposition to ∇2f(xt)

∇2f(xt) = USU⊤, (47)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

where S ∈ Rd×d is a diagonal matrix with eigenvalues and U ∈ Rd×d is an orthoganal matrix
such that UU⊤ = I . Then, we denote v = U⊤y and ĝ = U⊤gk. Now we can formulate a dual
one-dimensional problem.

min
y∈E

{
⟨gk, y⟩+ 1

2

〈
∇2f(xk)y, y

〉
+ L3

4 ∥y∥4
}

= min
y∈E

{〈
U⊤gk, U

⊤y
〉
+ 1

2

〈
USU⊤y, y

〉
+ L3

4 ∥U⊤y∥4
}

= min
v∈E

{
⟨g̃, v⟩+ 1

2 ⟨Sv, v⟩+
L3

4 ∥v∥4
}

= min
v∈E

max
τ≥0

{
⟨g̃, v⟩+ 1

2 ⟨Sv, v⟩+
√
2L3

2 ∥v∥2τ − 1
2τ

2
}

= max
τ≥0

min
v∈E

{
⟨g̃, v⟩+ 1

2 ⟨Sv, v⟩+
√
2L3

2 ∥v∥2τ − 1
2τ

2
}

= max
τ≥0

{
− 1

2

〈(
S + τ

√
2L3

)−1

g̃, g̃

〉
− 1

2τ
2

}
, (48)

where τ∗ =
√
2L3

2 ∥v∥2 for the third equality and v = −
(
S + τ

√
2L3

)−1
g̃ in the last equality. By

solving (48) with one-dimensional ray-search, we find optimal τ∗ then we can calculate v and y,
which we found the solution for subproblem (46). In our code, we use eigenvalue decomposition for
efficiency of the ray-search, but it is also possible to just inverse the regularized matrix multiple times
in (48) or apply some efficient first-order method for quadratic problems such as conjugate gradient.

To finalize, in this section we presented the subsolver which allows us to efficiently implement
the Basic Tensor Method for p = 3 with the complexity same up to a logarithmic factor as Cubic
Regularized Newton Method.

D METHODS

D.1 NESTEROV ACCELERATED TENSOR METHODS

In this section, we present Nesterov Acceleration for tensor methods proposed in (Nesterov, 2021b;c).
First, let us introduce the main parts of the method. The key part of such acceleration is the estimated
sequences technique. It is based on linear approximations of function f(x) in a sequence of points
xt, which allows to construct the estimating function ψt(x) for a scaling sequence at ∈ R+:

ψt+1(z) = ψt(z) + at+1 (f(x) + ⟨∇f(x), z − x⟩) , where ψ0(z) =
1

p+1∥z − x0∥p+1. (49)

Additionally, we introduce the sequence

At+1 = At + at. (50)

Now, we are ready to present the accelerated method.

Algorithm 3 Nesterov Accelerated Tensor Method

1: Input: x0 is starting point; constant Lp, total number of iterations T , and sequence At, where
A0 = 0.

2: Set objective function
ψ0(z) =

1
p+1∥z − x0∥p+1

3: for t ≥ 0 do
4: Choose yt = At

At+1
xt +

at+1

At+1
vt

5: Compute xt+1 ∈ NLp
(yt)

6: Compute at+1 = At+1 −At

7: Update ψt+1(x) = ψt(z) + at+1[f(xt+1) + ⟨∇f(xt+1), z − xt+1⟩].
8: Compute vt+1 = argminz∈E ψt+1(z)
9: end for

10: return xT+1

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

For the convergence results, the sequence At should be defined in the following way

At =
νp

Lp
tp+1, where νp = 2p−1

(p+1)(2p+1) ·
(p−1)!
(2p)p . (51)

Then, at+1 =
νp

Lp

(
(t+ 1)p+1 − tp+1

)
. With such parameters, we can present the convergence

theorem from (Nesterov, 2021c, Theorem 2.3)

Theorem D.1 Let sequence {xt}t≥0 be generated by method 3. Then, for any T ≥ 1, we have

f(xT)− f(x∗) ≤ O
(

LpR
p+1

Tp+1

)
.

D.2 NESTEROV ACCELERATED TENSOR METHOD WITH At-ADAPTATION (NATA)

In this subsection, we present the proof of Theorem 3.1

Algorithm 4 Nesterov Accelerated Tensor Method with At-Adaptation (NATA)

1: Input: x0 = v0 is starting point, constant Mp, total number of iterations T , Ã0 = 0, νmin = νp,
νmax ≥ νp is a maximal value of ν, θ > 1 is a scaling parameter for ν, and ν0 = νmaxθ is a
starting value of ν.

2: Set objective function
ψ0(z) =

1
p+1∥z − x0∥p+1

3: for t ≥ 0 do
4: repeat
5: νt = max

{
νt

θ , νmin

}
6: ãt+1 = νt

Lp
((t+ 1)p+1 − tp+1) and Ãt+1 = Ãt + ãt+1

7: yt =
Ãt

Ãt+1
xt +

ãt+1

Ãt+1
vt

8: xt+1 = NLp
(yt)

9: ψt+1(z) = ψt(z) + ãt+1[f(xt+1) + ⟨∇f(xt+1), z − xt+1⟩]
10: vt+1 = argminz∈E ψt+1(z)

11: until ψt+1(vt+1) ≥ Ãt+1f(xt+1)
12: νt+1 = min

{
νtθ2, νmax

}
13: end for
14: return xT+1

Theorem D.2 (Copy of Theorem 3.1) For convex function f with Lp-Lipschitz-continuous p-th
derivative, to find xT such that f(xT) − f(x∗) ≤ ε, it suffices to perform no more than T ≥ 1
iterations of the Nesterov Accelerated Tensor Method with At-Adaptation (NATA) with Mp ≥ pLp

(Algorithm 2), where

T = O

((
LpR

p+1

ε

) 1
p+1

+ logθ
(
νmax

νmin

))
. (52)

Proof.

Let us present the convergence analysis of Algorithm 2. The proof is based on the proof from
(Nesterov, 2021c).

First of all, by convexity and definition of ψt(x), it is easy to show that

ψt(x
∗) ≤ Ãtf(x

∗) + 1
p+1∥x

∗ − x0∥p+1. (53)

Now, let us assume that the condition on Line 10 is satisfied for every step. Then, we get

Ãtf(xt) ≤ ψt(vt) ≤ ψt(x
∗) ≤ Ãtf(x

∗) + 1
p+1∥x

∗ − x0∥p+1, (54)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

where in the second inequality we use the definition of vt. Next, by simple calculations, we get the
convergence result

f(xt)− f(x∗) ≤ ∥x∗−x0∥p+1

(p+1)Ãt
. (55)

From that inequality, one can see that the larger Ãt means the faster convergence. That is the reason,
we want to have a more aggressive ãt and start the search of ν from the maximal value. Now, we
need to show that the condition in Line 10 is always can be satisfied.

Let us prove it by induction of the following relation:

ψ∗
t = ψt(vt) ≥ Ãtf(xt), t ≥ 0. (56)

For t = 0, we have ψ∗
0 = 0 and A0 = 0. Hence, (56) is valid.

Assume it is valid for some t ≥ 0. Then,

ψ∗
t+1 = ψt(vt+1) + ãt+1 (f(xt+1) + ⟨∇f(xt+1), vt+1 − xt+1⟩)

≥ ψ∗
t + 1

(p+1)2p−1 ∥vt+1 − vt∥p+1 + ãt+1 (f(xt+1) + ⟨∇f(xt+1), vt+1 − xt+1⟩) ,

where the last inequality is coming from uniform convexity of ∥ · ∥p+1. Now, we can use the structure
of the method in previous inequality and get

ψ∗
t+1 − 1

(p+1)2p−1 ∥vt+1 − vt∥p+1
(56)
≥ Ãtf(xt) + ãt+1 (f(xt+1) + ⟨∇f(xt+1), vt+1 − xt+1⟩)

≥ Ãt+1f(xt+1) + ⟨∇f(xt+1), ãt+1(vt+1 − xt+1) + Ãt(xt − xt+1)⟩
= Ãt+1f(xt+1) + ⟨∇f(xt+1), ãt+1(vt+1 − vt) + Ãt+1(yt − xt+1)⟩,

where, for the second inequality, we use convexity and, for the last equality, we use the definition of
yt from Line 6 of the Algorithm 2.

Further, we use inequality α
p+1τ

p+1 − βτ ≥ − p
p+1α

−1/pβ(p+1)/p, τ ≥ 0, for all x ∈ E and we
have

1
(p+1)2p−1 ∥vt+1 − vt∥p+1 + ãt+1 ⟨∇f(xt+1), vt+1 − vt⟩ ≥ − p

p+12
p−1
p (ãt+1∥∇f(xt+1)∥∗)

p+1
p .

(57)
Next, for xt+1 ∈ NLp(yk), from (Nesterov, 2021c, Theorem 2.1), we get

⟨∇f(xt+1), yt − xt+1⟩ ≥ cp∥∇f(xt+1)∥
p+1
p

∗ ,

where cp =
[

2p−1
2p(2p+1)

p!
Lp

]1/p
for relative inexact p-th order solution.

Putting all these inequalities together, we obtain

ψ∗
t+1 ≥ Ãt+1f(xt+1)− p

p+12
p−1
p (ãt+1∥∇f(xt+1)∥∗)

p+1
p + Ãt+1cp∥∇f(xt+1)∥

p+1
p

∗

= Ãt+1f(xt+1) + ∥∇f(xt+1)∥
p+1
p

∗

(
Ãt+1cp − p

p+12
p−1
p ã

p+1
p

t+1

)
.

Finally, by the choice of νt in Algorithm 2, νt ≥ νp and ãt+1 ≥ at+1, where at+1 =
νp

Lp
((t +

1)p+1− tp+1) is the theoretical value of at+1. Hence, Ãt+1 ≥ At+1, where At+1 =
νp

Lp
(t+1)p+1 is

the theoretical value of At+1. So, in the final inequality, we prove that there exists νt = νp such that

Ãt+1cp ≥ At+1cp ≥ p
p+12

p−1
p a

p+1
p

t+1 ,

where the last inequality holds from (Nesterov, 2021c, Equation 25). Thus, we have proved the
induction step.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

The search of νt takes maximal total of logθ

(
νmax
t

νmin
t

)
+ T additional steps, where νmax

t =

maxt∈[0;T] ν
t ≤ νmax and νmin

t = mint∈[0;T] ν
t ≥ νmin = νp. The T term in the sum is coming

from Line 11 in Algorithm 2. If we want to make the Algorithm less aggressive, we can remove this
Line then νt will only decrease.

The total number of iterations hence is equal to T = O

((
LpR

p+1

ε

) 1
p+1

+ logθ

(
νmax
t

νmin
t

))
, which

finishes the proof. □

D.3 NEAR-OPTIMAL TENSOR METHODS AND HYPERFAST SECOND-ORDER METHOD

Near-optimal Tensor methods. Monteiro and Svaiter (2013) demonstrated that the global conver-
gence rate of second-order methods can be further improved from O

(
ε−1/3

)
to O

(
ε−2/7 log (1/ε)

)
. This improvement was achieved through the development of the Accelerated Hybrid Proximal
Extragradient (A-HPE) framework, which, when combined with a trust-region Newton-type method,
resulted in the Accelerated Newton Proximal Extragradient (A-NPE) method that achieves the im-
proved rate. A lower bound of O

(
ε−2/7

)
was established by Arjevani et al. (2019), rendering that

the A-NPE method is nearly optimal.

Near-optimal tensor methods Gasnikov et al. (2019a); Bubeck et al. (2019); Jiang et al. (2019), with
a convergence rate of O

(
ε−2/(3p+1) log (1/ε)

)
, are based on the A-HPE framework. Similar to

A-HPE, these tensor methods require an additional binary search procedure at each iteration. The
cost of these procedures introduces an extra O(log(1/ε)) factor in the overall convergence rate.

Algorithm 5 Inexact p-th order Near-optimal Accelerated Tensor Method (Kamzolov, 2020, Algo-
rithm 1)

1: Input: x0 = v0 is starting point, constants Mp, γ ∈ [0, 1), total number of iterations T , A0 = 0.

2: Set A0 = 0, x0 = v0
3: for t ≥ 0 do
4: Compute a pair λt+1 > 0 and xt+1 ∈ Rn such that

1

2
≤ λt+1

Mp · ∥xt+1 − yt∥p−1

(p− 1)!
≤ p

p+ 1
(58)

where
xt+1 ∈ N γ

p,Mp
(yt) (59)

and

at+1 =
λt+1 +

√
λ2t+1 + 4λt+1At

2
, At+1 = At + at+1 , and yt =

At

At+1
xt +

at+1

At+1
vt .

(60)

5: Update vt+1 = vt − at+1∇f(xt+1)
6: end for
7: return yK

One version of the near-optimal tensor methods is presented in Algorithm 5. This version was initially
proposed by Bubeck et al. (2019) and later improved by Kamzolov (2020), who introduced the
handling of inexact solution to subproblem (59). Note that line (4) of Algorithm 5 requires finding
the pair (xt+1, λt+1), which cannot be done explicitly. Specifically, λt+1 depends on xt+1 via (58),
which in turn depends on yt through (59). Furthermore, yt depends on at+1, which itself depends on
λt+1 as per (60). This recursive dependence implies that λt+1 relies on itself, making it impossible
to solve in closed form.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

To find the pair (xt+1, λt+1), a binary search procedure is employed. Below, we provide the approach
used by Bubeck et al. (2019). Let us denote θ = At

At+1
∈ [0, 1]. Thus, both yt and xt+1 depend on θ,

yt(θ) := yt
(60)
= θxt + (1− θ)vt, xt+1(θ) := xt+1

(59)
= N γ

p,Mp
(yt(θ)).

Since λt+1 =
a2
t+1

At+1
, we have that λt+1 = (1−θ)2

θ At. Thus, in terms of θ, (58) can be rewritten as

1

2
≤ ζ(θ) ≤ p

p+ 1
, where ζ(θ) =

(1− θ)2

θ

AtMp · ∥xt+1(θ)− yt(θ)∥p−1

(p− 1)!
. (61)

Note that ζ(0) → +∞ and ζ(1) = 0. Hence, one can use binary search to find θ such that (61)
holds true. The complexity of this procedure is O (log(1/ε)), and a theoretical analysis of binary
search procedure can be found in Bubeck et al. (2019). Below we present the total complexity of
Algorithm 5.

Theorem D.3 ((Kamzolov, 2020, Theorem 1)) For convex function f withLp-Lipschitz-continuous
p-th derivative, to find xT such that f(xT) − f∗ ≤ ϵ, it suffices to perform no more than T ≥ 1
iterations of Algorithm 5 with Hp = ξLp, where ξ and γ satisfy 1 ≥ 2γ + 1

ξ(p+1) , and

T = Õ

(
HpR

p+1

ε

)
.

Hyperfast Second-order method. Interestingly, the lower bound for second-order convex op-
timization, O

(
ϵ−2/7

)
, can be surpassed under higher smoothness assumptions on the objective.

Nesterov (2021c) showed that, under the assumption of an L3-Lipschitz third derivative, Algorithm 1
can be implemented using only a second-order oracle, with the third-order derivative approximated
via finite gradient differences. This results in a second-order method with O

(
ϵ−1/4

)
calls to the

second-order oracle. The same idea can be applied to Algorithm 1, improving the convergence rate
of the second-order method to Õ

(
ϵ−1/5

)
Kamzolov (2020).

Theorem D.4 ((Kamzolov, 2020, Theorem 2)) For a convex function f with an L3-Lipschitz-
continuous third derivative, to find xT such that f(xT)− f∗ ≤ ϵ, it suffices to perform no more than
N1 ≥ 1 gradient calculations and N2 ≥ 1 Hessian calculations in Algorithm 5 with BGDM as the
subsolver for the subproblem (59), Hp = 3Lp/2, γ = 1/6, and

N1 = Õ

((
L3R

4

ϵ

) 1
5

log

(
G+H

ϵ

))
,

N2 = Õ

((
L3R

4

ϵ

) 1
5

)
,

where G and H are the uniform upper bounds for the norms of the gradients and Hessians computed
at the points generated by the main algorithm.

D.4 PROXIMAL POINT METHOD WITH SEGMENT SEARCH

Another approach for constructing near-optimal tensor methods involves high-order proximal-point
type methods Nesterov (2023; 2021a), which are based on the p-th-order proximal-point operator:

proxp,H(y) = argmin
x∈E

{
fy,p,H(x) := f(x) + H

p+1∥x− y∥p+1
}
. (62)

Nesterov (2023) demonstrated that using a single step of a p-th-order tensor method to solve (62)
results in a convergence rate of O(ϵ−1/p), and moreover, this approach can be accelerated to achieve
a rate of O(ϵ−1/(p+1)). Another significant contribution of Nesterov (2023) is the introduction of a
proximal-point operator with segment search:

Sproxp,H(y, u) = argmin
x∈E, τ∈[0,1]

{
f(x) + H

p+1∥x− y − τu∥p+1
}
. (63)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Assuming that (63) can be solved exactly, Nesterov (2023) showed that convergence rate of
O(ε−2/(3p+1)) can be achieved via different acceleration scheme.

A more practical algorithm was introduced in Nesterov (2021a). Following Nesterov (2023), the
authors assumed that the problem (62) can be solved under the following approximate condition:

Aγ
p,H(y) = {x ∈ E : ∥∇fy,p,H(x)∥∗ ≤ β∥∇f(x)∥∗} ,

where γ ∈ [0, 1) is a tolerance parameter. Furthermore, a specific approach for approximating the
solution to subproblem (63) was proposed. The resulting method, called the Inexact p-th-order
Proximal Point Method with Segment Search, is presented in Algorithm 6. Lines 5-14 of Algorithm 6
detail the steps for the approximate solution of (63).

Algorithm 6 Inexact p-th-order Proximal Point Method with Segment Search (Nesterov, 2021a,
Method (3.6))

1: Input: x0 = v0 is starting point, constants H > 0, γ ∈ [0, 1), total number of iterations T ,
A0 = 0.

2: for t ≥ 0 do
3: Set ut = vt − xt.
4: Compute x0t ∈ Aγ

p,H(xt).
5: if

〈
∇f(x0t), ut

〉
≥ 0, then

6: Define ϕt(z) = f(x0t) +
〈
∇f(x0t), z − x0t

〉
, xt+1 = x0t , gt = ∥∇f(x0t)∥∗.

7: else
8: Compute x1t ∈ Aγ

p,H(vt).
9: if

〈
∇f(x1t), ut

〉
≤ 0, then

10: Define ϕt(z) = f(x1t) +
〈
∇f(x1t), z − x1t

〉
, xt+1 = x1t , gt = ∥∇f(x1t)∥∗.

11: else
12: Find values 0 ≤ τ1t ≤ τ2t ≤ 1 with points w1

t ∈ Aγ
p,H(xt + τ1t ut) and

w2
t ∈ Aγ

p,H(xt + τ2t ut) satisfying

β1
t ≤ 0 ≤ β2

t , and αt(τ
1
t − τ2t)β

1
t ≤ 1

2

[
1−γ
H

]1/p
g

p+1
p

t ,

where β1
t =

〈
∇f(w1

t), ut
〉
, β2

t =
〈
∇f(w2

t), ut
〉
, αt =

β2
t

β2
t−β1

t
∈ [0, 1], and

gt =

[
αt∥∇f(w1

t)∥
p+1
p

∗ + (1− αt)∥∇f(w2
t)∥

p+1
p

∗

] p
p+1

.

Set

ϕt(z) = αt

(
f(w1

t) +
〈
∇f(w1

t), z − w1
t

〉)
+ (1− αt)

(
f(w2

t) +
〈
∇f(w2

t), z − w2
t

〉)
,

xt+1 = αtw
1
t + (1− αt)w

2
t .

13: end if
14: end if
15: Compute at+1 > 0 from equation a2

t+1

At+at+1
= 1

2

[
1−γ
H

]1/p
g

1−p
p

t

16: Set At+1 = At + at+1 and update ψt+1(z) = ψt(z) + at+1ϕt(z)
17: Set vt+1 = argmin

z∈E
ψt+1(z)

18: end for
19: return xT

Theorem D.5 ((Nesterov, 2021a, Theorem 2)) For smooth convex function f to find xT such that
f(xT)− f∗ ≤ ϵ, it suffices to perform no more than T ≥ 1 iterations of Algorithm 6, where

T = O

[HRp+1

ε

] 2
3p+1

 .

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Line 12 requires additional bisection search with complexity of O
(

HDp+1

ε

)
(Nesterov, 2021a,

Theorem 4). This results in the following upper bound for the number of evaluations of w ∈ Aγ
p,H(x)

during the execution of Algorithm 6 O
([

HDp+1

ε

] 2
3p+1

log HDp+1

ε

)
.

Under the additional assumption of an Lp-Lipschitz continuous p-th derivative of f , the inclusion
w ∈ Aγ

p,H(x) can be achieved by performing one inexact tensor step with specific choice of
parameters β and Mp: w ∈ N β

p,Mp
(x) (Nesterov, 2023, Section 3) (Nesterov, 2021a, Section 5.1).

This makes Algorithm 6 a near-optimal tensor method, comparable to Gasnikov et al. (2019b);
Bubeck et al. (2019); Jiang et al. (2019). However, it differs in nature: while the latter methods are
based on A-NPE-type approaches, Algorithm 6 follows an interior-point-type framework.

For the case when p = 3, the tensor step can be efficiently performed using BDGM in O (log 1/ε)
iterations. As demonstrated in Nesterov (2021c); Kamzolov (2020), a second-order implementation
of a third-order tensor method can be achieved by approximating the third-order derivative using
finite gradient differences. However, in practice, this approximation may suffer from numerical
instability. For Algorithm 6 another approach is available: the interior-point subproblem (62) can be
solved using a second-order method Nesterov (2021a), which provides a more reliable alternative to
finite gradient differences. Under the assumption of an L3-Lipschitz continuous third derivative of f ,
Algorithm 6 achieves convergence Õ

(
ε−1/5

)
.

D.5 OPTIMAL TENSOR METHOD

An Optimal Tensor Method was recently proposed by Kovalev and Gasnikov (2022); Carmon
et al. (2022), improving upon the convergence of near-optimal tensor methods Gasnikov et al.
(2019a); Bubeck et al. (2019); Jiang et al. (2019). The convergence rate was enhanced from
O
(
ε−2/(3p+1) log (1/ε)

)
to O

(
ε−2/(3p+1)

)
, matching the lower bound Ω

(
ε−2/(3p+1)

)
Arjevani

et al. (2019). Similar to near-optimal methods, the Optimal Tensor Method is based on the A-HPE
framework proposed by Monteiro and Svaiter (2013).

Before describing the Optimal Tensor Method, we introduce some necessary notations. Let Φg
p denote

the p-th order Taylor approximation of the function g:

Φg
p(x, y) = g(y) +

p∑
k=1

1
k!D

kg(y)[x− y]k. (64)

Additionally, note that Φf
p(x, y) = Φp(x, y) as defined in (8). We also define the function gλ(x, y) =

f(x) + 1
2λ∥x− y∥2.

The main distinction from near-optimal methods lies in the procedure used to find the pair
(xt+1, λt+1). Instead of first computing xt+1 and then using a binary search to determine λt+1,
as done in previous approaches, Kovalev and Gasnikov (2022) first select the parameter λt+1 and then
compute xt+1. This procedure, known as the Tensor Extragradient Method, is shown in lines 6- 10
of Algorithm 7. This method converges in a constant number of iterations, leading to the optimal
convergence rate of O

(
ε−2/(3p+1)

)
for Algorithm 7.

Theorem D.6 ((Kovalev and Gasnikov, 2022, Theorem 5)) Let Mp = Lp and σ = 1/2. Let

ν =

(
(3p+ 1)pCp(Mp, σ)R

p−1

2p
√
p

·
(
1 + σ

1− σ

) p−1
2

)−1

,

where Cp(Mp, σ) =
ppMp

p (1 + σ−1)

p!(pMp − Lp)p/2(pMp + Lp)p/2−1
.

Then, for convex function f with Lp-Lipschitz-continuous p-th derivative, to find xT such that
f(xT)− f∗ ≤ ϵ, it suffices to perform no more than T ≥ 1 iterations of Algorithm 7, where

T = 5Dp ·
(
LpR

p+1/ϵ
) 2

3p+1 + 7,

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Algorithm 7 Optimal Tensor Method (Kovalev and Gasnikov, 2022, Algorithm 4)

1: Input: x0 = v0 is starting point, constants Mp, σ ∈ (0, 1), total number of iterations T , A0 = 0,
sequence at = νt(3p−1)/2 for some ν > 0.

2: for t ≥ 0 do
3: At+1 = At + at+1, λt+1 =

a2
t+1

At+1

4: yt =
At

At+1
xt +

at+1

At+1
vt

5: y0t = yt, k = 0
6: repeat
7: xkt = argmin

y∈E

{
Φ

gλt (·,yt)
p (y, ykt) +

pMp

(p+1)!∥y − ykt ∥p+1
}

8: yk+1
t = ykt −

(
Mp∥xk

t −yk
t ∥

p−1

(p−1)!

)−1

∇gλt+1(x
k
t , yt)

9: k = k + 1
10: until ∥∇gλt+1

(xkt , yt)∥ ≤ σλ−1
t ∥xkt − yt∥

11: xt+1 = xk−1
t

12: Update vt+1 = vt − at+1∇f(xt+1)
13: end for
14: return xT

with Dp is defined as follows:

Dp =

(
3

p+1
2 (3p+ 1)p+1pp(p+ 1)

2p+2√pp!(p2 − 1)
p
2

) 2
3p+1

.

E EXPERIMENTAL DETAILS

Setup. All methods and experiments were performed using Python 3.11, PyTorch 2.2.2, on a 13-
inch MacBook Pro 2019 with 1,4 GHz Quad-Core Intel Core i5 and 8GB memory. All computations
are done in torch.double. All methods are implemented as PyTorch 2 optimizers.

Logistic Regression. The logistic regression problem can be formulated as

f(x) = 1
n

∑n
i=1 log

(
1 + e−bi⟨ai,x⟩

)
+ µ

2 ∥x∥
2
2, (65)

where ai ∈ Rd are data features and bi ∈ {−1; 1} are data labels for i = 1, . . . , n.

We present results on the a9a dataset (d = 123, n = 32561) and w8a (d = 300, n = 49749) from
LibSVM by Chang and Lin (2011). We choose the starting point x0 = 3e, where e is a vector of
all ones. This choice of x0 allows us to show the convergence of the methods from a far point. For
Figures 6, 5 and 7a, we choose the regularizer µ = 10−4 to get strongly-convex function f . For
Figures 2,4, and 8, we choose the regularizer µ = 0 to get a convex function f . For the better
conditioning, we normalize data features ∥ai∥ = 1. For the normalized case, we choose theoretical
L2 = 0.1. We set L3 = L2 = 0.1 to demonstrate the convergence rates for the same constants L.
Note, that actual L3 is smaller than 0.1.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

0 20 40 60 80 100
Hessian computations

10 3

10 2

10 1

100

101

f(x
t)

f(x
*)

w8a, Logistic Regression

Cubic Newton, L2 = 0.1
Accelerated Cubic Newton, L2 = 0.1
Cubic NATA, L2 = 0.1
Near-Optimal Cubic, L2 = 0.1
Cubic Prox. Point Segment Search, L2 = 0.1
Optimal Cubic, L2 = 0.1

0 20 40 60 80 100
Hessian computations

10 3

10 2

10 1

100

101

f(x
t)

f(x
*)

w8a, Logistic Regression

Tensor Method, L3 = 0.1
Accelerated Tensor Method, L3 = 0.1
Tensor NATA, L3 = 0.1
Near-Optimal Tensor, L3 = 0.1
Tensor Prox. Point Segment Search, L3 = 0.1
Optimal Tensor, L3 = 0.1

Figure 8: Comparison of different cubic and tensor acceleration methods on Logistic Regression for
w8a dataset from the starting point x0 = 3e, where e is a vector of all ones.

Third-order Nesterov’s lower-bound function. The l2-regularized third order Nesterov’s lower-
bound function from Nesterov (2021b) has the next form

f(x) = 1
4

∑d−1
i=1 (xi − xi+1)

4 − x1 +
µ
2 ∥x∥

2
2. (66)

For Figures 1 and 7b, we set d = 20, µ = 10−3, we’ve tuned L3 = L2 = 10..

Poisson regression. Poisson regression is a type of generalized linear model used for analyzing
count data and contingency tables. It assumes that the response variable bi follows a Poisson
distribution, and the logarithm of its expected value can be expressed as a linear combination of
unknown parameters. The Poisson regression function has the next form

f(x) =
∑n

i=1e
⟨ai,x⟩ − bi ⟨ai, x⟩ , (67)

where ai ∈ Rd are data features and bi ∈ {0, 1, . . . , k, . . .} are countable targets.

We present results for synthetic data: d = 21, n = 6000. We set L1 = L2 = L3 = 1 and x0 = e is
all ones.

0 20 40 60 80 100
Iterations, t

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t)

f(x
*)

Poisson Regression
Cubic Newton, L2 = 1.0
Gradient Descent, L1 = 1.0
Accelerated Cubic Newton, L2 = 1.0
Cubic NATA, L2 = 1.0, t = 0.4
Optimal Cubic, L2 = 1.0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations, t

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t)

f(x
*)

Poisson Regression, p=3

Tensor Method, L3 = 1.0
Gradient Descent, L1 = 1.0
Accelerated Tensor Method, L3 = 1.0
Tensor NATA, L3 = 1.0, t = 1.0
Optimal Tensor, L3 = 1.0

Figure 9: Comparison of different cubic and tensor accelerated methods on Poisson Regression.

The Cubic Regularized Newton (CRN) method and NATA with a tuned parameter ν demonstrate the
best performance in Figure 9 (Left). Notably, CRN exhibits rapid superlinear convergence, likely
due to the strong convexity properties of the loss function. Interestingly, NATA with the tuned ν
manages to match CRN’s convergence rate. While Optimal Acceleration is slower than both CRN
and NATA, it also achieves global superlinear convergence. In Figure 9 (Right) for p = 3, the Tensor
Nata method is the fastest, followed by the Basic Tensor Method, with the Optimal Tensor method
ranking third. All three methods exhibit global superlinear convergence. The classical Nesterov

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Tensor Acceleration method is the slowest, likely due to its small default ν. Notably, the tensor-based
methods outperform their cubic counterparts.

0 2 4 6 8 10 12 14
Iterations, t

10 1

100

1
(f(

x t
+

1)
f(x

*)
)/(

f(x
t)

f(x
*)

)

Poisson regression

Gradient Descent, L1 = 1.0
Cubic Newton, L2 = 1.0
Cubic NATA, L2 = 1.0, t = 0.4
Optimal Cubic, L2 = 1.0

Figure 10: Comparison of the methods by the relative value 1− f(xt+1)−f∗

f(xt)−f∗ .

The global superlinear performance of these accelerated second-order methods in Figure 10 raises the
hope of establishing theoretical results on global superlinear convergence for accelerated second-order
methods.

30

	Introduction
	OPTAMI: practical performance of high-order methods

	Methods and Notation
	Methods in OPTAMI library

	Improving Practical Performance of Accelerated Methods
	Nesterov Accelerated Tensor Method with At-Adaptation (NATA)
	Computational Comparision of Acceleration Methods

	Global Superlinear Convergence of High-order Methods for Strongly Star-Convex Functions
	Conclusion
	Related Works
	Global Superlinear convergence
	Subsolvers
	blueSubsolver for Basic Tensor Method

	Methods
	Nesterov Accelerated Tensor Methods
	Nesterov Accelerated Tensor Method with At-Adaptation (NATA)
	Near-optimal Tensor methods and Hyperfast Second-Order Method
	Proximal Point Method with Segment Search
	blueOptimal Tensor Method

	Experimental Details

