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Abstract

Mean-field reinforcement learning has become
a popular theoretical framework for efficiently
approximating large-scale multi-agent reinforce-
ment learning (MARL) problems exhibiting sym-
metry. However, questions remain regarding the
applicability of mean-field approximations: in
particular, their approximation accuracy of real-
world systems and conditions under which they
become computationally tractable. We establish
explicit finite-agent bounds for how well the MFG
solution approximates the true N-player game for
two popular mean-field solution concepts. Fur-
thermore, for the first time, we establish explicit
lower bounds indicating that MFGs are poor or un-
informative at approximating N-player games as-
suming only Lipschitz dynamics and rewards. Fi-
nally, we analyze the computational complexity of
solving MFGs with only Lipschitz properties and
prove that they are in the class of PPAD-complete
problems conjectured to be intractable, similar to
general sum N player games. Our theoretical
results underscore the limitations of MFGs and
complement and justify existing work by proving
difficulty in the absence of common theoretical
assumptions.

1. Introduction

Multi-agent reinforcement learning (MARL) finds numer-
ous impactful applications in the real world (Shavandi &
Khedmati, 2022; Wiering, 2000; Samvelyan et al., 2019;
Rashedi et al., 2016; Matignon et al., 2007; Mao et al., 2022).
Despite the urgent need in practice, MARL remains a funda-
mental challenge, especially in the setting with large num-
bers of agents due to the so-called “curse of many agents”
(Wang et al., 2020).
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Mean-field games (MFG), a theoretical framework first pro-
posed by Lasry & Lions (2007) and Huang et al. (2006),
permits the theoretical study of such large-scale games by
introducing mean-field simplification. Under certain as-
sumptions, the mean-field approximation leads to efficient
algorithms for the analysis of a particular type of N-agent
competitive game where there are symmetries between play-
ers and when N is large. Such games appear widely in
for instance auctions (Iyer et al., 2014), and cloud resource
management (Mao et al., 2022). For the mean-field analysis,
the game dynamics with N-players must be symmetric (i.e.,
each player must be exposed to the same rules) and anony-
mous (i.e., the effect of each player on the others should
be permutation invariant). Under this simplification, works
such as (Perrin et al., 2020; Anahtarci et al., 2022; Guo et al.,
2019; Pérolat et al., 2022; Xie et al., 2021) and many others
have analyzed reinforcement learning (RL) algorithms in
the MFG limit N — oo to obtain a tractable approximation
of many agent games, providing learning guarantees under
various structural assumptions.

Being a simplification, MFG formulations should ideally
satisfy two desiderata: (1) they should be relevant, i.e., they
are good approximations of the original MARL problem
and (2) they should be tractable, i.e., they are at least easier
than solving the original MARL problem. In this work, we
would like to understand the extent to which MFGs satisfy
these two requirements, and we aim to answer two natural
questions that remain understudied:

* When are MFGs good approximations of the finite
player games, when are they not? In particular, are
polynomially many agents always sufficient for mean-
field approximation to be effective?

e Is solving MFGs always computationally tractable,
or more tractable than directly solving the N-player
game? In particular, can MFGs be solved in polyno-
mial or pseudo-polynomial time?

1.1. Related Work

Mean-field RL has been studied in various mathematical set-
tings. In this work, we focus on two popular formulations in
particular: stationary mean-field games (Stat-MFG, see e.g.
(Anahtarci et al., 2022; Guo et al., 2019)) and finite-horizon
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MFG (FH-MFG, see e.g. (Perrin et al., 2020; Pérolat et al.,
2022)). In the Stat-MFG setting the objective is to find
a stationary policy that is optimal with respect to its in-
duced stationary distribution, while in the FH-MFG setting,
a finite-horizon reward is considered with a time-varying
policy and population distribution.

Existing results on MFG relevance/approximation. The
approximation properties of MFGs have been explored by
several works in literature, as summarized in Table 1. Finite-
agent approximation bounds have been widely analyzed in
the case of stochastic mean-field differential games (Car-
mona & Delarue, 2013; Carmona et al., 2018), albeit in
the differential setting and without explicit lower bounds.
Recent works (Anahtarci et al., 2022; Cui & Koeppl, 2021)
have established that Stat-MFG Nash equilibria (Stat-MFG-
NE) asymptotically approximate the NE of N-player sym-
metric dynamic games under continuity assumptions. The
result by Saldi et al. (2018), as the basis of subsequent
proofs, shows asymptotic convergence for a large class of
MEFG variants and only requires continuity of dynamics
and rewards as well as minor technical assumptions such
as compactness and a form of local Lipschitz continuity.
However, such asymptotic convergence guarantees leave
the question unanswered if the MFG models are realistic
in real-world games. Many games such as traffic systems,
financial markets, etc. naturally exhibit large /N, however,
if N must be astronomically large for good approximation,
the real-world impact of the mean-field analysis will be lim-
ited. Recently, (Yardim et al., 2023b) provided finite-agent
approximation bounds of a special class of stateless MFG,
which assumes no state dynamics. We complement existing
work on approximation properties of both Stat-MFG and
FH-MFG by providing explicit upper and lower bounds for
approximation.

Existing results on MFG tractability. The tractability of
solving MFGs as a proxy for MARL has been also heav-
ily studied in the RL community under various classes of
structural assumptions. Since finding approximate Nash
equilibria for normal form games is PPAD-complete, a
class believed to be computationally intractable (Daskalakis
et al., 2009; Chen et al., 2009), solving the mean-field ap-
proximation in many cases can be a tractable alternative. We
summarize recent work for computationally (or statistically)
solving the two types of MFGs below, with an in-depth
comparison also provided in Table 2.

For Stat-MFG, under a contraction assumption RL algo-
rithms such as Q-learning (Zaman et al., 2023; Anahtarci
et al., 2022), policy mirror ascent (Yardim et al., 2023a),
policy gradient methods (Guo et al., 2022a), soft Q-learning
(Cui & Koeppl, 2021) and fictitious play (Xie et al., 2021)
have been shown to solve Stat-MFG with statistical and
computational efficiency. However, all of these guarantees

require the game to be heavily regularized as pointed out in
(Cui & Koeppl, 2021; Yardim et al., 2023a), inducing a non-
vanishing bias on the computed Nash. Moreover, in some
works the population evolution is also implicitly required
to be contractive under all policies (see e.g. (Guo et al.,
2019; Yardim et al., 2023a)), further restricting the analysis
to sufficiently smooth games. While (Guo et al., 2022b) has
proposed a method that guarantees convergence to MFG-NE
under differentiable dynamics, the algorithm converges only
when initialized sufficiently close to the solution. To the best
of our knowledge, there are neither RL algorithms that work
without regularization nor evidence of difficulty in the ab-
sence of such strong assumptions: we complement the line
of work by showing that unless dynamics are sufficiently
smooth, Stat-MFG is both computationally intractable and
a poor approximation.

A separate line of work analyzes the finite horizon problem.
In this case, when the dynamics are population-independent
and the payoffs are monotone the problem is known to be
tractable. Algorithms such as fictitious play (Perrin et al.,
2020) and mirror descent (Pérolat et al., 2022) have been
shown to converge to Nash in corresponding continuous-
time equations. Recent work has also focused on the statisti-
cal complexity of the finite-horizon problem in very general
FH-MFG problems (Huang et al., 2023), however, the algo-
rithm proposed is in general computationally intractable. In
terms of computational tractability and the approximation
properties, our work complements these results by demon-
strating that (1) when dynamics depend on the population as
well an exponential approximation lower bound exists, and
(2) in the absence of monotonicity, the FH-MFG is provably
as difficult as solving an N-player game.

1.2. Our Contribution

In this work, we formalize and provide answers to the two
aforementioned fundamental questions, first focusing on the
approximation properties of MFG in Section 3 and later on
the computational tractability of MFG in Section 4. Our
contributions are summarized as follows.

Firstly, we introduce explicit finite-agent approximation
bounds for finite horizon and stationary MFGs (Table 1)
in terms of exploitability in the finite agent game. In
both cases, we prove explicit upper bounds which quan-
tify how many agents a symmetric game must have to be
well-approximated by the MFG, which has been absent in
the literature to the best of our knowledge. Our approx-
imation results only require a minimal Lipschitz continu-
ity assumption of the transition kernel and rewards. For

FH-MFG o (UL bound for th

- , We prove a (1_L)v~ ) upper bound for the
exploitabilty where L is the Lipschitz modulus of the popu-
lation evolution operator: the upper bound exhibits an expo-

nential dependence on the horizon H. For the Stat-MFG we
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show that a O TN

tablished, but only if the population evolution dynamics are
non-expansive. Next, for the first time, we establish explicit
lower bounds for the approximation proving the shortcom-
ings of the upper bounds are fundamental. For the FH-MFG,
we show that unless N > Q(2%), an exploitability linear in
horizon H is unavoidable when deploying the MFG solution
to the IV player game: hence in general the MFG equilib-
rium becomes irrelevant quickly as the problem horizon
increases. For Stat-MFG we establish an Q(N'°&27) lower
bound when the population dynamics are not restricted to
non-expansive population operators, showing that a large
discount factor ~y also rapidly deteriorates the approximation
efficiency. Our lower bounds indicate that in the worst case,
the number of agents required for the approximation can
grow exponentially in the problem parameters, demonstrat-
ing the limitations of the MFG approximation.

) approximation bound can be es-

Finally, from the computational perspective, we establish
that both finite-horizon and stationary MFGs can be PPAD-
complete problems in general, even when restricted to cer-
tain simple subclasses (Table 2). This shows that both MFG
problems are in general as hard as finding a Nash equilib-
rium of N-player general sum games. Furthermore, our
results imply that unless PPAD=P there are no polynomial
time algorithms for solving FH-MFG and Stat-MFG, a result
indicating computational intractability.

2. Mean-Field Games: Definitions, Solution
Concepts

Notation. Throughout this work, we assume S, A are fi-
nite sets. For a finite set X', Ay denotes the set of prob-
ability distributions on X'. The norm used will not funda-
mentally matter for our results, we choose to equip As, A4
with the norm || - ||;. We define the set of Markov policies
M= {n:8 = A}, Uy = {{m i mp € L VR}
and IIY = {{m} 1, "X : 7} € ILVh}. For policies
m,m" € Il denote |7 — 7’||1 = sup,cg ||7(:]s) — 7' (:]s)]1-
We denote d(z,y) := lyzz,; for x,y in A or S. For
m € IV 7’ € I1, we define (7/,7~%) € IV as the policy
profile where the i-th policy has been replaced by 7. Like-
wise, form € I, w’ € Iy, we denote by (', %) € TI¥
the policy profile where the ¢-th player’s policy has been
replaced by 7’. For any N € N>, [N] :={1,...,N}.

MFGs introduce a dependence on the population distribution
over states of the rewards and dynamics. We will strictly
consider Lipschitz continuous rewards and dynamics, which
is a common assumption in literature (Guo et al., 2019;
Anahtarci et al., 2022; Yardim et al., 2023a; Xie et al., 2021),
formalized below.

Definition 2.1 (Lipschitz dynamics, rewards). For some
L > 0, we define the set of L-Lipschitz reward functions

and state transition dynamics as
Ry i={R:8x Ax As = [0.1] :

[R(s,0,1) = R(s, @, )] < Ll = 1, Y5, 0,1, '
Pr = {P:SXAXASHAS :

1P(s.a,m) = P(s.a,)llx < Ll = 11, ¥s,a, ' }.

Moreover, we define the set of Lipschitz rewards and dy-
namics as R := J; >R, P =y, PrL respectively.

We note that there are interesting MFGs with non-Lipschitz
dynamics and rewards, however, even the existence of Nash
is not guaranteed in this case. Lipschitz continuity is a
minimal assumption under which solutions to MFG always
exist, and as our aim is to prove lower bounds and diffi-
culty we will adopt this assumption. Solving MFG with
non-Lipschitz dynamics is more challenging than Lipschitz
continuous MFG (the latter being a subset of the former),
hence our difficulty results will apply.

Operators. We will define the useful population operators
FP:A‘gXH*)AS,Fg:ASXH*)As,andAg:

A5XHH—>A§I21S

Pp(ur)i= 3. u(s)m(als)P(|s,a,p),

s€S,aceA
T (p,7) :=Tp(...Tp(Tp(p,m),7)...),7),
H times
H H-1
AP(‘LL(),TI') = {FP(...FP(FP(,LL(),’ITQ),’/Tl)...,’/Th_1) h=0
h times

for all n € Nyg,7 € II,m = {wh}hHgol € Iy, P €
7)7/1'0 € AS~

Finally, we will need the following Lipschitz continuity
result for the I' p operator.

Lemma 2.2 (Lemma 3.2 of (Yardim et al., 2023a)). Let
P € Pk, for K, > 0 and

KS = Su? ||P(S7a,,u) - P(S/aa‘):u)”l )
asp
K, :=sup||P(s,a,pu) — P(s,a’, )| -

’
a,a
Sk

Then it holds for all p, 1’ € Ag,m, 7" € 1l that:

ITp(p,7) — FP(/‘IJT/)HI SLPOZWH/‘ - N/Hl

a” /H
2 b

vr,m' €1, p, i € As, and Lyop,, = (K, + 5= + ).
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Work MFG type Key Assumptions Approximation Rate (in Exploitability)
Carmona et al., 2013  Other® Affine drift, Lip. derivatives O(N -1/ (d+4)) (d : dim. of state space)
Saldi et al., 2018 Other® Continuity o(1) (convergence as N — c0)
Anahtarci et al., 2022 Stat-MFG  Lip. P, R + Reg. + Contractive I'p  0o(1) (convergence as N — 00)

Cui & Koeppl, 2021  Stat-MFG  Continuity o(1) (convergence as N — o0)

Yardim et al., 2023b  Other® Lip. P,R O(1/vN)

Theorem 3.2 FH-MFG  Lip. P, R o (%) L Lip. modulus of T'p
Theorem 3.3 FH-MFG  Lip. P,R Q(H) unless N > Q(2)

Theorem 3.5 Stat-MFG  Lip. P, R + Non-expansive I'p O(@-1"%/VN)

Theorem 3.6 Stat-MFG  Lip. P,R Q(N~log277 1Y)

Table 1. Selected approximation results for MFG. Notes: * stochastic differential MFG, ° infinite-horizon discounted setting with
non-stationary policies, ¢ stateless/static MFG setting. Lip.=Lipschitz, Reg.=non-vanishing regularization required.

Work MFG Type Key Assumptions Iteration/Sample Complexity result
Anahtarci et al, 2022 Stat-MFG  Lip. P, R + Reg. + Contractive I'p ~ O(e~44l) samples, O(log 1) iterations
Geist et al., 2022 Other® Concave potential O(e7?) iterations

Perrin et al., 2020 FH-MFG Monotone R, p-independent P O(e™ 1) (continuous time analysis)
Pérolat et al., 2022 FH-MFG Monotone R, p-independent P O(e71) (continuous time analysis)
Zaman et al., 2023 Stat-MFG Lip. P, R + Reg. + Contractive 'p ~ O(e~*) samples

Cui & Koeppl, 2021  Stat-MFG  Lip. P, R + Reg. O(loge~1) iterations

Yardim et al., 2023b  Other® Monotone and Lip. R (’3(6*2) samples (/V-player)

Yardim et al., 2023a  Stat-MFG  Lip. P, R + Reg. + Contractive I'p ~ O(¢~2) samples (N-player)
Theorem 4.9 Stat-MFG Lip. P, R PPAD-complete

Theorem 4.12 FH-MFG Lip. P, R + p-independent P PPAD-complete

Theorem 4.14 FH-MFG Linear P, R + u-independent P PPAD-complete

Table 2. Selected results for computing MFG-NE from literature. In the assumptions column, contractive I'p indicates that for all
m € IL, T'p(+, ) is a contraction, and regularization indicates that a non-vanishing bias is present. Notes: * infinite-horizon, population
dependence through the discounted state distribution. ® stateless/static MFG. Lip.=Lipschitz, Reg.=non-vanishing regularization required.

In particular, in our settings, Lemma 2.2 indicates that I' p
is always Lipschitz continuous if P € P, a property which
will become significant for approximation analysis.

We will be interested in two classes of MFG solution con-
cepts that lead to different analyses: infinite horizon sta-
tionary MFG Nash equilibrium (Stat-MFG-NE) and finite
horizon MFG Nash equilibrium (FH-MFG-NE). The first
problem widely studied in literature is the stationary MFG
equilibrium problem, see for instance (Anahtarci et al., 2022;
Yardim et al., 2023a; Guo et al., 2019; 2022a; Xie et al.,
2021). We formalize this solution concept below.

Definition 2.3 (Stat-MFG). A stationary MFG (Stat-MFG)
is defined by the tuple (S, A, P, R, ~y) for Lipschitz dynam-
ics and rewards P € P, R € R, discount factor v € (0, 1).
For any (u,7) € Ag x II, we define the ~y-discounted

infinite horizon expected reward as

Z ’th(stv ag, /“L)

t=0

VI?’,R(/Jv 7T') =E

so~vp,  ap~m(sy)
seq1~P(sg,ae,p) | °

A policy-population pair (u*,7*) € Ag x Il is called a
Stat-MFG Nash equilibrium if the two conditions hold:

Stability:  p* =Tp(u*,7"),

Optimality: V3 p(p*,7%) = max Ve r(u*,m).
’ (S ’
(Stat-MFG-NE)

The second MFG concept that we will consider has a finite
time horizon, and is also common in literature (Perolat et al.,
2015; Perrin et al., 2020; Lauriere et al., 2022; Huang et al.,
2023). In this case, the population distribution is permitted
to vary over time, and the objective is to find an optimal non-
stationary policy with respect to the population distribution
it induces. We formalize this problem and the corresponding
solution concept below.
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Definition 2.4 (FH-MFG). A finite horizon MFG problem
(FH-MFG) is determined by the tuple (S, A, H, P, R, o)
where H € Z~o, P € P,R € R,up € As. Form =
{mp ) ey, p= {,uh}H ! ¢ A, define the expected
reward and exploitability as

H-—1
H ._ S0~ pos an~Th(Sh)
VP7R (p,m) :=E E R(Sh’ahvuh) Sh+1"’P(3h;ah;Mh)‘| )
h=0

511;{3(‘”) = Wl}é?{g VﬁR(Ag(MO,W)J/)

~ VER(AE (po, ), ).
Then, the FH-MFG Nash equilibrium is defined as:
Policy n* = {m},};'=' € Ty such that
ERRUmMh =o. (FH-MFG-NE)

3. Approximation Properties of MFG

As established in literature, the reason the FH-MFG and
Stat-MFG problems are studied is the fact that they can
approximate the NE of certain symmetric games with N
players, establishing the main relevance of the formulations
in the real world. Such results are summarized in Table 1.

In this section, we study how efficient this convergence is
and also related lower bounds. For these purposes, we first
define the corresponding finite-player game of each mean-
field game problem: to avoid confusion, we call these games
symmetric anonymous dynamic games (SAG). Afterwards,
for each solution concept, we will first establish (1) an upper
bound on the approximation error (i.e. the exploitability)
due to the mean-field, and (2) a lower bound demonstrating
the worst-case rate. We will present the main outlines of
proofs, and postpone computation-intensive derivations to
the supplementary material of the paper.

3.1. Approximation Analysis of FH-MFG

Firstly, we define the finite-player game that is approxi-
mately solved by the FH-MFG-NE.
Definition 3.1 (N-FH-SAG). An N-player finite hori-
zon SAG (N-FH-SAG) is determined by the tuple
(N,S, A,H,P,R, up) such that N € Zso,H € Zo,
P € PR € R,ug € As. For any 1 =
{W}'L}hzow}H,l)ie[N] € 1%, we define the expected mean
reward and exploitability of player ¢ as

. H—-1 ‘ . Vj:sgwuo,a';lwﬂ';;(s';l)
Jg*]g’(l) (1[') =FE [Z R(S;”a;“ﬂh) ] ,

~ 1
Ani=x Ej e
h

h=0

o i ain

spp1~Psya3,Bn)
H,N, (i

LN (m) .= max J]
’ n/ enH

Then, the N-FH-SAG Nash equilibrium is defined as:

HN() JHN(>

(7",77"71.) P,R (m).

N-tuple of policies {W}(Li)’*}hHgol € 11 such that
vi: & P ({mi ) = 0. (N-FH-SAG-NE)

If instead EH N (Z)( ) < ¢ for all ¢, then 7 is called a §-N-
FH-SAG Nash equilibrium.

The above deﬁnition corresponds to a real-world problem
as the function .J P.R () expresses the expected total payoff
of each player: hence a 6-N-MFG-NE is a Nash equilib-
rium of a concrete [N-player game in the traditional game
theoretical sense. Also, note that now in the definition tran-
sition probabilities and rewards depend on ji, which is the
F({s}};) = Fn-measurable random vector of the empirical
state distribution at time A of all agents.

Firstly, we provide a positive result well-known in literature:
the N-FH-SAG is approximately solved by the FH-MFG-
NE policy. Unlike some past works, we establish an explicit
rate of convergence in terms of N and problem parameters.

Theorem 3.2 (Approximation of N-FH-SAG). Let

(S, A,H,P,R, o) be a FH-MFG with P € P,R € R

and with a FH-MFG-NE ©* € Iy, and for any N € Ny

letmy = (m*,..., ") € OY. Let L > 0 be the Lipschitz
N times

constant of Up in p, and let Gy := (N, S, A, H, P, R, i)

be the corresponding N -player game. Then:

L IfL = 1, then for all i € [N), Epp"(ay) <
O(f) that is, T 1sa(9(r) -NE of Gn.
2If L # 1, then for all i € [N), Eppn P (my) <

&
H?>(1-LH) . e H2(1-LH)
O(m), thatls,ﬂ‘NlSClO( — L)\/—)

Ong.

I'p in Theorem 3.2 is always L-Lipschitz in p for some
L by Lemma 2.2. When L > 1, the upper bound
O (1 +L")H?/yN) has an exponential dependence on the
Lipschitz constant of the operator I" p. However, for games
with longer horizons, the upper bound might require an
unrealistic amount of agents N to guarantee a good ap-
proximation due to the exponential dependency. Next, we
establish a worst-case result demonstrating that this is not
avoidable without additional assumptions.

Theorem 3.3 (Approximation lower bound for N-FH-SAG).
There exists S, Aand P € Pg, R € Ra, o € Ag such that
the following hold:

1. For each H > 0, the FH-MFG defined by
(S, A, H,P, R, 1) has a unique solution w5 (up to
modifications on zero-probability sets),

2. For any H h > 0, in the N-FH-SAG it holds that
~ * . H
Eu(llfin — AR (o, w5 )nlh] = @ (min{ 1, 25}).

3. For any H N > 0 either N > (2

player i € [N] it holds that EH V.9 (

1) or for each
T, M) >
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This result shows that without further assumptions, the FH-
MFG solution might suffer from exponential exploitability
in H in the N-player game. In such cases, to avoid the
concrete N-player game from deviating from the mean-
field behavior too fast, either H must be small or P must be
sufficiently smooth in x. We note that the typical assumption
in the finite-horizon setting that P € Py (see e.g. (Perrin
et al., 2020; Geist et al., 2022)) avoids this lower bound since
in this case I' p (-, 7) is simply multiplication by a stochastic
matrix which is always non-expansive (L = 1). We also
note at the expense of simplicity a stronger counter-example
inducing exploitability Q(H) unless N > Q((L — ¢)f) for
all ¢ > 0 can be constructed, where P € Pr..

A remark. The proof of Theorem 3.3 in fact suggests
that for finite N and large horizon H, there exists a time-
homogenous policy 7 € II different than the FH-MFG
solution such that for 7}, = {7 }/_} € Ty, the
time-averaged exploitability of 7}, is small: Vi € [N] :

H'epw D@y, ... @) < O(H ' logy N).

3.2. Approximation Analysis of Stat-MFG

Similarly, we introduce the N-player game corresponding
to the Stat-MFG solution concept.

Definition 3.4 (/N-Stat-SAG). An N-player stationary
SAG (N-Stat-SAG) problem is defined by the tuple
(N, S, A, P, R,~) for Lipschitz dynamics and rewards P €
P,R € R, discount factor v € (0,1). For any (u,m) €
As x IV, the N-player y-discounted infinite horizon ex-
pected reward is defined as:

N oo 2] esj

i t i L~ J Iy o — h

TER O (nm) =B | Yy R(st,af, fir) [of o (Doie=—x" |
t=0 Sé~“73%+1"P(S§,7ﬂ§ﬁt)

A policy profile-population pair (p*,7*) € As x IV is

called an N-Stat-SAG Nash equilibrium if:

D ().
(N-Stat-SAG-NE)

VN (@) (o x ey 7N,
Jpr" (T )—IfeaﬁijP,R

If J;:g’(i)(,u*,ﬂ*) > max,en nggﬁ(i)(’u*? (m,w51)) =6,
then we call p*, 7* a §- N-Stat-SAG Nash equilibrium.

Theorem 3.5 (Approximation of N-Stat-SAG). Let
(S, A, H, P,R,~) be a Stat-MFG and (u*,n*) € Ag x II
be a corresponding Stat-MFG-NE. Furthermore, assume
that Tp(-,m) is non-expansive in the {1 norm for any ,
that is, |Up(pm) — Dp(u',m) < |lu — u'll. Then
(u*,m*) € As x N isa O (\/iﬁ) Nash equilibrium for
, ™), that is, for

the N-player game where iy = (7", ...
all i,

,IN, (4 * * AV, (i * o
Ton 't wiy) zma T (™)

(5

We also establish an approximation lower bound for the N-
Stat-SAG. In this case, the question is if the non-expansive
I'p assumption is necessary for the optimal O(1/v/N) rate.
The below results affirm this: in for Stat-MFG-NE with
expansive I'p, we suffer from an exploitability of w(1/vN)
in the N-agent case.

Theorem 3.6 (Lower bound for NV-Stat-SAG). Forany N €
Nso,v € (1/v2,1) there exists S, A with |S| = 6, |A| = 2
and P € P;, R € R3 such that:

1. The Stat-MFG (S, A, P, R, v) has a unique NE p*, 7*,

2. For any N and ©% = (7*,...,7*) € IOV, it
holds that J;:g’(z)(wj‘v) < max, Jg”g’(l)(w,w}k\;ﬂ) —
QN o2,

The result above shows that unless the relevant I" p operator
is contracting in some potential, in general, the exploitability
of the Stat-MFG-NE in the N-player game might be very
large unless the effective horizon (1 —~)~! is small. Hence,
in these cases, the mean-field Nash equilibrium might be
uninformative regarding the true NE of the IV player game.
In the case of Stat-MFG, our lower bound is even stronger
in the sense that the exploitability no longer decreases with
O(1/vN) for large . For a sufficiently long effective hori-
zon (1 — v)~! and large enough Lipschitz constant L, the
rate in terms of N can be arbitrarily slow. Furthermore, if
we take the ergodic limit v — 1, we will observe a non-
vanishing exploitability (1) for all finite V.

4. Computational Tractability of MFG

The next fundamental question for mean-field reinforcement
learning will be whether it is always computationally easier
than finding an equilibrium of a NV-player general sum nor-
mal form game. We focus on the computational aspect of
solving mean-field games in this section, and not statistical
uncertainty: we assume we have full knowledge of the MFG
dynamics. We will show that unless additional assumptions
are introduced (as typically done in the form of contractivity
or monotonicity), solving MFG can in general be as hard as
finding N-player general sum Nash.

We will prove that the problems are PPAD-complete, where
PPAD is a class of computational problems studied in the
seminal work by Papadimitriou (1994), containing the com-
plete problem of finding N-player Nash equilibrium in gen-
eral sum normal form games and finding the fixed point
of continuous maps (Daskalakis et al., 2009; Chen et al.,
2009). The class PPAD is conjectured to contain difficult
problems with no polynomial time algorithms (Beame et al.,
1995; Goldberg, 2011), hence our results can be seen as
a proof of difficulty. Our results are significant since they
imply that the MFG problems studied in literature are in
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the same complexity class as general-sum N-player normal
form games or N-player Markov games (Daskalakis et al.,
2023). Once again, several computation-intensive aspects of
our proofs will be postponed to the supplementary material.

Due to a technicality, we will prove the complexity results
for a subset of possible reward and transition probability
functions. We formalize this subset of possible rewards
and dynamics as “simple” rewards/dynamics and also linear
rewards, defined below.

Definition 4.1 (Simple/Linear Dynamics and Rewards).
R € R and P € P are said to be simple if for any
s,8' € S,a € A, P(s'|s,a,p) and R(s, a, u) are functions
of p that are expressible as finite combinations of arithmetic
operations +, —, X, - and functions max{-, -}, min{-, -} of
coordinates of ui. They are called linear if P(s'|s, a, 1) and
R(s, a, p) are linear functions of p for all s, a, s’. The set of
simple rewards and dynamics are denoted by RS™ and PSi™
respectively, and the set of linear rewards and transitions are
denoted RU™ PLM respectively.

A note on simple functions. We define simple functions
as above as in general there is no known efficient encoding
of a Lipschitz continuous function as a sequence of bits.
This is significant since a Turing machine accepts a finite
sequence of bits as input. To solve this issue, we prove
a slightly stronger hardness result that even games where
P(s'|s,a, 1), R(s,a, ) are Lipschitz functions with strong
structure are PPAD-complete. Other larger classes of P, R
including P5™ RS™ will have similar intractability. See
also arithmetic circuits with max, min gates (Daskalakis &
Papadimitriou, 2011) for a similar idea.

4.1. The Complexity Class PPAD

The PPAD class is defined by the complete problem END-
OF-THE-LINE (Daskalakis et al., 2009), whose formal defi-
nition we defer to the appendix as it is not used in proofs.

Definition 4.2 (PPAD, PPAD-hard, PPAD-complete). The
class PPAD is defined as all search problems that can be
reduced to END-OF-THE-LINE in polynomial time. If END-
OF-THE-LINE can be reduced to a search problem S in
polynomial time, then S is called PPAD-hard. A search
problem S is called PPAD-complete if it is both a member
of PPAD and it is PPAD-hard.

While END-OF-THE-LINE defines the problem class PPAD,
it is hard to construct direct reductions to it. We will instead
use two problems that are known to be PPAD-complete
(and hence can be equivalently used to define PPAD): solv-
ing generalized circuits and finding a NE for an N-player
general sum game.

Definition 4.3 (Generalized Circuits (Rubinstein, 2015)).

A generalized circuit C = (V, G) is a finite set of nodes V
and gates G. Each gate G € G is characterized by the tuple

G(Olv1, v2v) where G € {G,Gx +,G<},0 € R*isa
parameter (possibly of length 0), v1,v2 € V U { L} are the
input nodes (with _L indicating an empty input) and v € V'
is the output node of the gate. The collection G satisfies
the property that if G1 (0|vy, va|v), Ga(0'|v], v4|v") € G are
distinct, then v # v'.

Such circuits define a set of constraints on values assigned
to each gate, and finding such an assignment will be the
associated computational problem for such a circuit desrip-
tion. We formally define the e-GCIRCUIT problem to this
end. e-GCIRCUIT is a standard complete problem for the
class PPAD, and we will work with it for our reductions.
We will use the shorthand notation z = y = ¢ to indicate
thatz € [y — e,y +¢] forz,y € R.

Definition 4.4 (¢-GCIRCUIT (Rubinstein, 2015)). Given a
generalized circuit C = (V, G), afunctionp : V — [0,1] is
called an e-satisfying assignment if:

* For every gate G € G of the form G ({||v) for ¢ €
0, 1, it holds that p(v) = { + €,

* For every gate G € G of the form G« 4 (v, Blv1, va|v)
for , B € [—1, 1], it holds that

p(v) € [max{min{0, ap(v1) + Bp(v2)}}] £,

* For every gate G € G of the form G (|vy,v1|v) it
holds that

p(v) = {

The e-GCIRCUIT problem is defined as follows:

1i€7 p(vl)
O0+e, p(v1)

(2)_57

p\v
p(v2) +e.

<
2

Given generalized circuit C,

find an e-satisfying assignment of C.

e-GCIRCUIT is one of the prototypical hard instances of
PPAD problems as the result below suggests.

Theorem 4.5. (Rubinstein, 2015) There exists € > 0 such
that e-GCIRCUIT is PPAD-complete.

In other words, e-GCIRCUIT is representative of the most
difficult problem in PPAD which suggests intractability.
The e-GCIRCUIT computational problem will be used in
our proofs by reducing an arbitrary generalized circuit into
solving a particular MFG.

We also use the general sum 2-player Nash computation
problem, which is the standard problem of finding an approx-
imate Nash equilibrium of a general sum bimatrix game.
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Definition 4.6 (2-NASH). Given ¢ > 0, K1, Ky € Ny,
payoff matrices A, B € [0,1]%1:X2_ find an approximate
Nash equilibrium (o1, 02) € Ak, X Ak, such that

max Ux(o,02) —Ua(o1,02) <e,
oEAK,

max Up(o1,0) —Ug(o1,02) <¢,

o€AK,
where Unr(01,01) = Yicixy) 2oje (k) Mijo1(i)o2())
for any matrix M € [0, 1]51.52,

The following is the well-known result that even the 2-Nash
general sum problem is PPAD-complete. In fact, any N-
player general sum normal form game is PPAD-complete.

Theorem 4.7. (Chen et al, 2009) 2-NASH is PPAD-
complete.

4.2. Complexity of Stat-MFG

Next, we provide our hardness results for the Stat-MFG
problem. Notably, for Stat-MFG, the stability subproblem
of finding a stable distribution for a fixed policy = itself
is PPAD-hard. Even without considering the optimality
conditions, finding a stable distribution in general for a
fixed policy is intractable, without additional assumptions
(e.g. I'p is contractive or non-expansive). We define the
computational problem below and state the results.

Definition 4.8 (c-STATDIST). Given finite state-action sets
S, A, simple dynamics P € PS™ and policy m, find pu* €
Ag such that ||Tp(p*, m) — 1*]|oo < HE

The computational problem as described above is to find an
approximate fixed point of I'p (-, 7) which corresponds to
an approximate stable distribution of policy . We show that
e-STATDIST is PPAD-complete for some fixed constant €.

Theorem 4.9 (e-STATDIST is PPAD-complete). For some
€ > 0, the problem £-STATDIST is PPAD-complete.

Consequently, there is no polynomial time algorithm for
e-STATDIST unless PPAD=P, which is conjectured to be
not the case.

Corollary 4.10. There exists a € > 0 such that there exists
no polynomial time algorithm for e-STATDIST, unless P =
PPAD.

Most notably, these results show that the stable distribution
oracle of (Cui & Koeppl, 2021) might be intractable to
compute in general, and the shared assumption that I'p (-, 7)
is contractive in some norm found in many works (Xie et al.,
2021; Anahtarci et al., 2022; Yardim et al., 2023a) might
not be trivial to remove without sacrificing tractability.

4.3. Complexity of FH-MFG

We will show that finding an € solution to the finite horizon
problem is also PPAD-complete, in particular even if we

restrict our attention to the case when H = 2 and the transi-
tion probabilities P do not depend on . We formalize the
structured computational FH-MFG problem.

Definition 4.11 ((¢, H)-FH-NASH). Given simple reward
function R € RS™, transition matrix P(s'|s,a), and ini-
tial distribution py € Ag, find a time dependent policy
{ra} 1) such that £ ({ma } 15 < /s

Our main result for FH-MFG is that even in the case of
H = 2, the problem is PPAD-complete.

Theorem 4.12 ((¢,2)-FH-NASH is PPAD-complete).
There exists an € > 0 such that the problem (g,2)-FH-
NASH is PPAD-complete.

Corollary 4.13. There exists a € > 0 such that there exists
no polynomial time algorithm for (¢,2)-FH-NASH, unless
P= PPAD.

These results for the FH-MFG show that the (weak) mono-
tonicity assumption present in works such as (Perrin et al.,
2020; Pérolat et al., 2022) might also be necessary, as in
the absence of any structural assumptions the problems are
provably hard.

Finally, we also show that even if R(s, a, i) is a linear func-
tion of y for all s, a (that is, R € RY"), the intractability
holds, although not for fixed €. This follows from a reduc-
tion to 2-NASH. We define the linear computational problem
below.

Definition 4.14 (H-FH-LINEAR). Given ¢ > 0, lin-
ear reward function R € RU" transition matrix
P(s'|s,a), find a time dependent policy {7, }5_,' such that
Ehp{m}ng) <e.

Theorem 4.15 (2-FH-LINEAR is PPAD-complete). The
problem 2-FH-LINEAR is PPAD-complete.

We emphasize that for 2-FH-LINEAR the accuracy ¢ is also
an input of the problem: hence the existence of a pseudo-
polynomial time algorithm is not ruled out.

5. Discussion and Conclusion

We provided novel results on when mean-field RL is rel-
evant for real-world applications and when it is tractable
from a computational perspective. Our results differ from
existing work by provably characterizing cases where MFGs
might have practical shortcomings. From the approximation
perspective, we show clear conditions and lower bounds on
when the MFGs efficiently approximate real-world games.
Computationally, we show that even simple MFGs can be
as hard as solving N-player general sum games.

We emphasize that our results do not discard MFGs, but
rather identify potential bottlenecks (and conditions to over-
come these) when using mean-field RL to compute a good
approximate NE.
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A. MFG Approximation Results
A.1. Preliminaries

To establish explicit upper bounds on the approximation rate, we will use standard concentration tools.

Definition A.1 (Sub- Gaussian) Random variable ¢ is called sub-Gaussian with variance proxy o2 if VA € R :
225
E [eM¢~EED] < e7=~ . In this case, we write £ € SG(0?).

It is easy to show that if £ € SG(0?), then af € SG(a?0?) for any constant o € R. Furthermore, if &1, ..., &, are
independent random variables with §; € SG(0?), then Y, & € SG(Y, 0?). Finally, if £ is almost surely bounded in [a, b],
then &; € SG((b - a)?/4). We also state the well-known Hoeffding concentration bound and a corollary, Lemma A.3.

Lemma A.2 (Hoeffding in2equality (McDiarmid et al., 1989)). Let & € SG(o?). Then for any t > 0 it holds that
Pl -E[g]| > t) < 2e 27
Lemma A.3. Let £ € SG(0?). Then

E[l¢ —E[¢][] < V2m0?, E[(¢ -E[¢))?] < 40

Proof.

Mm—EmuzémP@—Eanwﬁ

(1) o
< 2/ e 202 dt = V2mwo?
0

Inequality (I) is true due to Lemma A.2. Likewise,

P(( [€])? > t)dt
0

/OOIP(|5 E(€]| > Vi)t

0
(IT) 00
< 2/ e" 507 dt = 40
0

E[(¢ -

O

Establishing lower bounds for the mean-field approximation of the /N-player game will be more challenging as it will require
different tools. To establish lower bounds, we will need to use the following anti-concentration result for the binomial
distribution.

Lemma A.4 (Anti-concentration for binomial). Let N € Nsq and X ~ Binom(N, p) be drawn from a binomial distribution

for some p € [1/2,1]. Then, P [X > % + @ > %_

k
then the probability in the statement above is bounded below trivially by 1/2 since LN p| lower bounds the median of the
binomial (Kaas & Buhrman, 1980). Otherwise, if kg > [Np], then the function p — p*(1 — p)V ¥ is increasing in P in the

interval [0, p]. As 1/2 € [0, p], it is then sufficient to assume p = 1/2, and to upper bound P [— - L <X<i+ g}

Proof. For kg := i% + @—‘ , we will lower bound Zszko (]Y)pk(l — p)V=F when N is large enough. If ky < [Np],

by 9/10 as the binomial probability mass is symmetric around & 5 whenp =1/

First assuming N is even, we obtain by monotonicity () < ( ,5\/[2) Using the Stirling bound v2rkFt2e % <

k< ekktze—k , we further upper bound (N/2) < %%, resulting in the bound P [% — \/2j <X < % + ‘é—ﬁ] <

2-N/N ( 1\1,\;2) < £ < 9/10, since there are at most v/N binomial coefficients being summed. Finally, assume N = 2m + 1

is odd, then by the binomial formula (2;”:11) = (72;”1) + (Qn’;") < 2(2m) < Z \2/; Hence we have the bound on the sum

11



Tractability and Relevance of MF-RL

P [% — @ <X < % + @} < “{rﬁ \/ﬁ It is easy to verify that for N > 16, ﬂ?z/viq < 9/10, and the case when

N < 16 and N is odd follows by manual computation. O

Finally, we prove slightly more general upper bounds than presented in the main text that approximates the exploitability of
an approximate MFG-NE in a finite population setting. Hence we define the following notions approximate FH-MFG and
Stat-MFG.

Definition A.5 (6-FH-MFG-NE). Let (S, A, H, P, R, 119) be a FH-MFG. Then, a §-FH-MFG Nash equilibrium is defined
as:

Policy w5 = {wgyh}hHgol € IIy such that
ERp({mi i) < 6. (5-FH-MFG-NE)

Definition A.6 (5-Stat-MFG-NE). Let (S, A, P, R, ) be a Stat-MFG. A policy-population pair (u},75) € Ag x ILis
called a §-Stat-MFG Nash equilibrium if the two conditions hold:

Stability:  py = I'p(ps, 75),
Optimality: ~ Vp p(us,75) > max Vp r(ps,m) — 0. (0-Stat-MFG-NE)

A.2. Upper Bound for FH-MFG: Extended Proof of Theorem 3.2

Throughout this section we work with fixed P € Pk, and R € Rp,. For any X valued random variable = denote
L(z)(-) € Ay as the distribution of 2. We start by introducing some notation.

For given R and P define the following constants:

LS = sup ‘R(S, a, M) - R(S/a a, u)' )

s,s’,a, 1

L := sup |R(s,a,p)— R(s,d’,p)|,
s,a,a’,p1

K= sup |P(|s,a,u) = P(|s',a,p)],
s,s’,a, 1

Ko = sup ||P(:|s,a,p) — P(:|s,a’, p)]|.

s,a,a’,p
R and P are bounded due to Definition 2.1, thus all constants K, K, L., Ls are finite and well-defined, and it always
holds that K¢, K, < 2 and L, L, < 1. With the above definition of constants, the more general Lipschitz condition holds:
Vs, s eS8, a,a €A pp €ls
I1P(-[s,a,p) = P(|s",a’, 1) [l1 <Kpllp— p'llx + Kod(s, ")
+ Kgd(a,a'),
|R(s,a,p) — R(s',a’, 1) <Lp|lp— p'lln + Lod(s, ")
+ Lqd(a,ad).
We also introduce the shorthand notation for any s € S,u € A4, u € Ag:

P('|S7uvﬂ) = Z u(a)P(-|s,a,u),

acA
R(s,u,p) := Y u(a)R(s, a, ).
ac€A
By (?)Lemma C.1]yardim2023policy, it holds that
[P(-]s,u, i) = PCL' s f)ln <Kyl — p! [l + Kod(s, ')

K, ,
+ 7”“‘“ ll1,

| B(s,u, 1) — R(s'u/s p)| <Lyl — 'l + Lsd(s, s')

Lg
+7||ufu'||1. €Y

12
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We will define a new operator for tracking the evolution of the population distribution over finite time horizons for a
time-varying policy vV = {wh}hHgol e lly:

I"}D(M,ﬂ-) = Fp( ..Fp(rp(u,ﬂo),ﬂl) e 77Th,1)

h times

= uf, = AP (1o, ™),

$0 T'% (u,m) = pio. By repeated applications of Lemma 2.2, we obtain the Lipschitz condition:

T8 (s {mi}izg) = Do (' i} =)

< Lpopu T3 (1, {mi}7=5) — F" ATk

K
+ 7“”%—1 — 7, alh

n—1
n Kﬂ n %
<Lpop;tHN’_/”L/”1+TZLpoplp, ||7Ti_7r§H17 (2)
=0
where Lpop,, = (K, + KT + %)

The proof will proceed in three steps:

e Step 1. Bounding the expected deviation of the empirical population distribution from the mean-field distribution
E [||fen, — p%||1] for any given policy 7.

H,N,(i)

e Step 2. Bounding difference of N agent value function J P.R and the infinite player value function Vg R

» Step 3. Bounding the exploitability of an agent when each of IV agents are playing the FH-MFG-NE policy.

Step 1: Empirical distribution bound. Due to its relevance for a general connection between the FH-MFG and the
N-player game, we state this result in the form of an explicit bound.

Lemma A.7. Suppose for the N-FH-MFG (N, S, A N, P, R,v), agentsi = 1,..., N follow policies w* = {% },. Let

7 = {7n}tn € O be arbitrary and p™ = {5 17} = A (1o, ). Then forall h € {0,..., H — 1}, it holds that:
L+l h—
= / K
E M5, — /7 popp ™ a Lh 1— lAﬂ-
[”:uh Hh”l] popp,‘S‘ 2N IN g pop, 1 i

where Ay, := % Yol — il

Proof. The proof will proceed inductively over h. First, for time i = 0, we have

E [0 — nolh] = Y _E

seS

JENES

where the last line is due to Lemma A.3 and the fact that 1 (si=s) Are bounded (hence subgaussian) random variables, and

N Z ]1{50—5} MO

that in the finite state space we have E [1{58:5}} = po(s).

Next, denoting the o-algebra induced by the random variables ({s’ }); n'<5 as F», we have that:

E [||ﬁh+1 - M§+1||1 \]'-h}
<E[E [fn+1 [Fn] — Tp(in, 7n)ll1 | Fr]

((m))
E [[lEth41 — E [Bng1 [Fn] 1 [ Fn] +E 1T (Fn, Tr) — phyolln [Fn ] 3)
(D) ()

13
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We upper bound the three terms separately. For (A), it holds that
(A) =E[lEn+1 — Efngn [Fr] 1 [Fn]

—Z]E [itht1(8) = E i1 (s) [Fr] [ 1Fn] < IS]

seS

since each fiy11(s) is an average of independent subgaussian random variables given . Specifically, each indicator
is bounded 1y _sy € [0,1] a.s. and therefore is sub-Gaussian with Igsi, =5} € SG(1/4). Thus we get jin+1(S) €
SG(1/(4N)) and apply bound on expected value discussed in Appendix A.1.

Next, for (0) = [[E [fin41 [Fa] — Tp(in, Tn)

1, we note that

E[iiny1(s) |Fn] = E

N N
1
N Zﬂ{s;+1:s} |}—h1 = Z slsh, T (s5); i),

i=1

therefore

0) = P(lsyymhClsh)s n) = Y fin(s)PCs s ([s"), fin)

s’

1
N

MZ L'MZ

(P(Ish 7 Clsh), in) = PClsh, mn(-|sh). fin))

1 1

INA
=2~
M=

1Pk, wh (1sh)s fin) = PClsh, ma(Clsh), An)lla

1

N
i K

Z||7Th Is3) = 7 (-Is3) h STGAM

=1

3

\ =

(I
S

o
2

where (I) follows from the Lipschitz property (1). Finally, the last term (¢) can be bounded using:

(V) =E [ITp(fin, ®n) = Tp(uf, @)l [Fn ] < Lpop.ullfin — w1
To conclude, merging the bounds on the three terms in Inequality (3) and taking the expectations we obtain:

—~ —~ = m K Ah
E [Iin+1 = 1fell] < LyopE [ = ifll] + 181y /57 + =5

Induction on A yields the statement of the lemma.

O

Step 2: Bounding difference of NV agent value function. Next, we bound the difference between the N-player expected
reward function Jp, N ') and the infinite player expected reward function VP - For ease of reading, expectations,
probabilities, and laws of random variables will be denoted Eo., Py, Lo respectlvely over the infinite player finite horizon
game and Ey, Py, £ respectively over the N-player game. We use the regular notation E[-], P[-], £(-) without subscripts
if the underlying randomness is clearly defined. We state the main result of this step in the following lemma.

Lemma A.8. Suppose N-FH-MFG agents follow the same sequence of policies m = {wh}fgol. Then

Top W, .. 1) — VER (AR (o, m), )

H— 11_Lh+1

pop.1t
( 151 2N21—

POP7

IN

14
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Proof. Due to symmetry in the N agent game, any permutation o : [IN] — [N] of agents does not change their distribution,
thatis Ln(sh,...,sN) = EN(SZ(D, e sZ(N)). We can then conclude that:

N
~ 1 i i~
En [R(S}lwa}w:uh)] = N E En [R(Slwahvuh)]

N | D An(s)R(s, m(s), ﬁh)]

seS

Therefore, we by definition:

H,N,(1
Tog W, . w

ZZM (s, mn(s )ﬁh)}-

h=0 s€S
Next, in the FH-MFG, under the population distribution {5 }5— ' = A% (11, ) we have that forall h € 0,..., H — 1,

]POO(SO = ) = Mo,

Poo(shp1 =) = Y Poo(sn = 5) Poo(sn =[5 = 3)
seS

=Tp(Psc(sn =), mn),

so by induction P, (s, = ) = pp. Then we can conclude that

VFI’,{R(Ag (IU‘Oa ﬂ'), ‘IT) = Eoo

H-1
Z R(Shaﬂh(sh)wh)]

h=0
H—
= Z Z R(s,mh(s), in).-
h=0 s€S$

Merging the two equalities for J, V', we have the bound:

H,N,(1
o (%ﬂw. ) = VER(AR (5o, ), )
H-—
=|Exn Z Z,Uh (s, mn(s ] Z R(s,mn(s), tn)
h=0 seS h=0 s€S8
H-1 -
<En [Z > (fin(s)R(s, 7a(s), fin) _Nh(S)R(SuWh(S)7Nh))H
h=0 |seS
Ho1l o
ﬁm[Ej(;mm—mm+LAM—ahQ
h=0
The statement of the lemma follows by an application of Lemma A.7. O

Step 3: Bounding difference in policy deviation. Finally, to conclude the proof of the main theorem of this section, we

will prove that the improvement in expectation due to single-sided policy changes are at most of order O (ﬁ) .

Lemma A.9. Suppose n = {m,}; - € I7 and ' = {r},};} € ¥ arbitrary policies, and p™ := A (g, ) is the
population distribution induced by w. Then

Jg}év’(l)(ﬂ/,ﬂ, B VgR(Ag(po,r),ﬂ')‘

H—

H

h—1
( m—MIH@ZEMwuNO

h=0 h'=0

15
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Proof. Define the random variables {s, a, }: n, {fin }». as in the definition of N-FH-SAG (Definition 3.1). In addition,
define the random variables {s,, a5 }1, evolving according to the FH-MFG with population p™ := {uT }}, := A¥ (uo,m)
and representative policy 7/, independent from the random variables {s},, a} }; . Hence so ~ po, an ~ 7 (-|sp), Sht1 ~
P(-|sp,an, 1T ). Define also for simplicity

‘JHN(l ’ ,...,ﬂ')—VgR(Ag(Moﬂ),W/)"

With these definitions, we have

H-1 H-1
Ey=|E Z R(Shvahvu1};) - Z R(S}wa}uﬁh)] |
h=0 h=0
H-1
<> |E[R(sn, an, 1) — R(sh, ap, fin)] | - )
h=0

Furthermore, for any h € {0,..., H — 1},

|E [R(sh, an, uf;) — R(sp, ap,, in)] |
<|E [R(sn,an, u3) — R(sp,, ap, 7] |
+ |]E[ (Sh iy 17) — R(S}lmaiaﬁh)”

<|E [R(sn, my(sn), ufy) — R(sp, 77,(s3,), 147 ] |
+ Ly E{lluh, — fnlla]

1 ~
<SIPlsn =] =Plsp = Il + Ly E[[l1; = Bnlla],
where the last line follows since R is bounded in [0, 1]. Replacing this in Equation (4),
1 ~
En < 5D I Plsn =] =Plsp =l + Ly Y E[lluf = finla]. ()
h h

The first sum above we upper bound in the rest of the proof inductively.

Firstly, by definitions of N-FH-SAG and FH-MFG, both s} and s have distribution /19, hence || P[sq = | —P[s} = -]||; = 0.
Assume that h > 1. We note that P takes values in Ag and the random vector fi;, takes values in the discrete set
{Fu:uef0,...,N}5, 3 u(s) = N} C Ag, hence we have the bounds:

IP[she1 =] = Plspyr =l

ZP(S77T;L(S)’M) ]P)[S}L ZP s 7rh :uh)P[Sh = 3]

ZPSﬂ'h T P[s) = 5] — ZPSW;L th) Plsn = s

1

+ Z (P(S77T;L(S)’M) - P(SﬂT;z(s)hu‘g))P[S}lL = s7ﬂh = /”’}
EN) 1
<|[Pls, = ] = Plsn = [, + > Ku e — |l Blsi, = s, in = 1]
S,
<||Plsp =] = Plsn = |, + KuEIAF — w7 1]

where the last two lines follow from the fact that P is K, Lipschitz in ;1 and stochastic matrices are non-expansive in the
total-variation norm over probability distributions. By induction, we conclude that for all & > 0, it holds that:

h
IPlsy =] —Pls), = ]Il < K, Y Ellah — ]
h’=0

16
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Placing this result into Equation (5), we obtain the statement of the lemma.

O

Since E (||t — p7.]|1] above in the theorem is of the order of O (1/vN) by the result in step 1, the result above allows us to
bound exploitability in the N-FH-SAG.

Conclusion and Statement of Result. Finally, we can merge the results up until this stage to upper bound the exploitability.
By definition of the FH-MFG-NE, we have:

0> WI,%%X VPR(AP (o, ms), ') — Vngg(MoJé)’ﬂ)

The upper bounds on the deviation between V}f r and Jg’éwl) from the previous steps directly yields the statement of the
theorem. We state it below for completeness.

Theorem A.10. It holds that
Ch Cy 1
SHNW (e 1 <25++:O<6+>
pi (M ) < VN N VN
where 7 is a §-FH-MFG Nash equilibrium and

H-1 h+1 H—1h—1 i1
™ L 1- Lpop,u, 1 - LPOP;
_|3|,/2<(2L,J+2 ZPL +Kuh 21

pop, it 0 i=0 Lipop.u

_ T"pop,p

Cy = LK, Z 1—1L pozuu + KoK,

H—1h— 117[/2
Pop, i he

0 i= 01 LPOPI‘«

k

1-L
where we use shorthand notation 1— 2> =k — 1 when Ly, , = 1.

1 pop,

A note on constants. Note that constants C, Cs in Theorem A.10 depend on horizon with I

if Lpop., < 1, with

_LPOT‘M"

o
H3if Lyop,, = 1 and with HQM if Lpop, > 1.

A.3. Lower Bound for FH-MFG: Extended Proof of Theorem 3.3

The proof will be by construction: we will explicitly define an FH-MFG where the optimal policy for the /N-agent game
diverges quickly from the FH-MFG-NE policy.

Preliminaries. We first define a few utility functions. Define g : Ay — B2, | := {x € R? : ||x[|oc = 1, #1,22 > 0} and
h: Ay — [0,1]? as follows:

g1 (:1713 IQ) max{wmll,xz}
X1,Tg) = = - ,
g(w1, 72) <g2(x1, :v2)> (max{;l,m}
 (hi(x1,22)\  [max{dxs, 1}
h(ay, @2) := <h2($1a332) © \max{dz, 1} )
Furthermore, for any € > 0 we define w, : [0,1] — [0, 1] as:
1, z>1p+e
we(x) =40, x<l—c¢
b+ wel-elptd

€ (0,1/2) will be specified later.

17
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It is straightforward to verify that g has an inverse in its domain given by

1 €2
)
T1+ T2 X1+ X2

gil(zlazQ) = < > ,V(Il,CCQ) S Bgc,-‘r'

Furthermore, it holds for x = (x1,22) € Bgo7+, y=(y1,y2) € Bgo7+

lg™ (x) —g ()l

x1 Y1 T2 Y2

. + .
r1+x2 Y1+ Y2 r1+2x2 Y1+ Y2
_ r1(y2 — x2) + 22(21 — Y1) zo(y1 — 1) + 21(T2 — Y2)
(z1 +22)(y1 + Y2) (z1 + 22)(y1 + y2)

<2[x —yl,

and likewise for u, v € A, letting v := max{u, us}, v} := max{vy, va},

U2 V2

Uy V4

UV — V1U4 U2V — U4 V2

< 2llu — v||z.

U4V U4V

This follows from considering cases and observation that u; > 1/2, vy > 1/2. Then for all u,v € A,, g, h have the
bi-Lipschitz and Lipschitz properties:

1
Sl = vl < flg(w) — gl = 2[u = v, (6)
[h(u) —h(@)[1 <4fu-v]i. @)
Likewise, w,, being piecewise linear, also satisfies the Lipschitz condition: |we(z) — we(y)| < &|z —y|, Va,y € [0,1].
Defining the FH-MFG. We take a particular FH-MFG with 6 states, 2 actions. Define the state-actions sets:
S= {SLethRighta SLAaSLBaSRAwSRB}a A= {QA,GB}-

Intuitively, the “main” states of the game are spef;, Srign: and the 4 states spa, SLB, Sra, Skp are dummy states that keep
track of which actions were taken by which percentage of players used to introduce a dependency of the rewards on the
distribution of agents over actions as well as states. Define the initial probabilities yo by:

o (SLett) = Ho(sRight) =1/2,
Ho(sLa) = o(sra) = Ho(sra) = Ho(sre) = 0.

When at the states spef, Srighi the transition probabilities are defined for all u € Ag by:

P(SLA‘SLeflvaAa/n =1, P(SLB|3LCfUaB’U) =1,

P(sralsright, aa, i) = 1, P(srB|Srignt; aB, i) = 1.

That is, the agent transitions to one of {spa, Sra, SrB, SLB } to remember its last action and left-right state. When at states
{sLA, SRA, SRB, SLB }, the transition probabilities are:

If s € {sLA, SLB, SRA, SRB} °

P(s'|s,a,1) = {

we(p(sia) + p(sip)), if 8" = spen

. ,VM, a.
we(p(sra) + p(srp)), if 8" = sright

The other non-defined transition probabilities are of course 0.

18
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Finally, let v, 8 > 0 such that o« + § < 1 (to be also defined later). The reward functions are defined for all x € Ag as
follows:
R(SLett, an, 1) =R(SLett, a, p1) = 0,
R Snght7 aa, /1') :R(SRighta as, /1/) =0,

SLA, GA, 1

sLBvaAg ) :(1 - — B)g(N(SLA) + M(SLB)vﬂ(SRA) + M(SRB))

+ ah(u(sia), u(si))

(5
( LA, OB, K > =(1—a— B)g(u(sLa) + u(sis), u(sra) + p1(srs))
(5

SLBaaB M
+ ah(pu(sia), u(sis)) + 61

SRA A, [

R(srB, aa, it ) =(1—a — B)g(u(sra) + p(sre), 1(sLa) + p(sis))
+ ah(u(sra), p(srB))

(R(SRAa as, 1)

o 1) (1~ = B)g(lsw) + (o). o) + ()
+ ah(u(sra), p(sre)) + 51

Note that only at odd steps do the agents get a reward, and at this step, it does not matter which action the agent plays,
only the state among {SLa, SLa, SrA, Srp } and the population distribution. The parameters e, «, 3 of the above FH-MFG are
“free” parameters to be specified later. We visualize the FH-MFG in Figure 1.

A minor remark. The arguments of g above will be with probability one in the set A at odd-numbered time steps, but to
formally satisfy the Lipschitz condition R € R, one can for instance replace g(u(sRA) + p(srp), p(sLa) + u(sLB)) with

g(u(sRA) + p(srB) + 1(SLet), u(sra) + p(sLe) + ,u(sRight)) in the definitions, which will not impact the analysis since at
odd timesteps 4i(Sgight) = f4(SLerr) = O for both the FH-MFG and N-FH-SAG.

Note that with these definitions, P € P1,., R € Ry since only V 5,5 € S,a,a’ € A, u, i’ € As, we have by the
definitions:

1
1P(]s,a, p) = PCIs's a' 1) n < 2d(s, ') + 2d(a, @) + - llp = ], ®)
|R(s,a, ) = R(s',a’, 1) < d(s,s") +d(a,a’) + 2|l — /|1, ©)
forany o, 5 > O witha+ 5 < 1land o < i, using the Lipschitz conditions in (6), (7).

Step 1: Solution of the FH-MFG. Next, we solve the infinite player FH-MFG and show that the policy 7; := {n}, hH;01
given by:

1,if hodd and a = agp
7 (als) := { &,if h even
0,if h odd and a = ap
It is easy to verify in this case that, if p* := {u} }, is induced by 7*:
pin(sta) = pp(sis) = pip, (sra) = g, (sre) = 1/4, if b odd,
i (Stef) = fup (Sright) = 1/2, if h even.

In this case, the induced rewards in odd steps are state-independent (it is the same for all states sga, Srs, SLA, SLB), therefore
the policy 7* is the optimal best response to the population and a FH-MFG.

In fact, 7 is unique up to modifications in zero-probability sets (e.g., modifying 7} (sier) for odd h, for which P[s;, =
SLeft] = 0). To see this, for any policy w € I1g, it holds that

i, (Steft) = pip, (Sright) = 1/2, if h even,
th (sLa) + pih (sLB) = pp, (sRA) + i, (srB) = 1/2, if h odd,
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Figure 1. Visualization of the counterexample. All orange edges have probability we (u(sra) + 11(srs)), green edges have probability
we (p(sLa) + p(sis)) independent of action taken. Edges with probability 0 are not drawn.

as the action of the agent does not affect transition probabilities between Sief;, Sright in €ven rounds. Moreover, as odd
stages, the action rewards terms only depend on the state apart from the positive additional term 51, so the only optimal
action will be ag. Finally, for o > 0, the actions aa, ag must be played with equal probability as otherwise the term
ah(u(sra), p1(srp)) will lead to the action with lower probability assigned by being optimal.

Step 2: Population divergence in N-FH-MFG. We will analyze the empirical population distribution deviation from p*,
namely, we will lower bound E[|| i — 7in||1]. The results in this step will be valid for any policy profile (z!,... @) € IL:
we emphasize that at even h, [ij, is independent of agent policies in the N player game. In this step, we also fix 1/2c = 8.

We will analyze [iy, at all even steps i = 2m where m € Nx(. Define the sequence of random variables for all m € N>
as X, := lom(SLer). Define G := {% : k =0,...,N}. Note that for all even h = 2m, it holds almost surely that
L (SLett), in (Sright) € G. By the definition of the MFG, it holds for any m > 0, k € [N] that

P[NXo, = k] = (J;f)QN,

PIN X = ] = () @) (0= ()

that is, given X,,, N X,,,+1 is binomially distributed with N X,, 1 ~ Binom(N, w.(X,,)) without any dependence on the
actions played by agents. Therefore

1
E[Xmt1|Xm] = we(Xm), Var[Xp41]Xm] < v
We define the following set G, := {0,1} C G. By the definition of the mechanics, if z € G.,m € N>, it holds for all
m’ > m that P[X,,,, = X,,,| X, = z] = 1, that is once the Markovian random process X, hits G, it will remain in G..
Furthermore, for K := |logs v/N |, and for k = 0, ..., K define the level sets:

\Y]

G1:=¢G, Qk:{xegs

1‘ 5" }
T — = .
2 2V N
For all k > K, define G, := G..
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Firstly, we have that

1 1
P[Xo € Go] = [ Zﬂ{so_sm } 5|2 W}
NI_VN|_1
Plzl{éo_éLEf‘ — 22‘| ZTov

where in the last line we applied the anti-concentration result of Lemma A.4 on the sum of independent Bernoulli random
variables 1 _, .y fori € [N].

Next, assume that for some m € 1,...,K — 1 we have p € G,,,. If w.(p) € {0,1}, it holds trivially that P[X,,,11 €
Gm+1|Xm = p] = 1. Otherwise, if w.(p) € (0,1),

]PJ[Xm,—i-l S gm+1|X == ]

1 5m+1
—P|X,, X,,
[ PN ’ -7 }
1 5m+1
>P We - A X’rn Z X’m - .
2P [l = 31 Ponss —a)] = |, =)
Since in this case |we(Xm) — 3| = |we(Xm) — we(3)] > 1/2¢|Xom — we(3)], we have
]P)[Xm—‘ﬂ S gm—&-l‘Xm = p]
r 1 5m+1
>P ||we — ==X — We > —= Xy =
2P [loc(s) = 51~ Xmas = )] 2 2| X =)
r 1 5m+1
=P || X1 — we < |we — = - —X, =
s = )] < [t = 3| - S =]
r 5m 5m+1
>P || X1 — We <8——x= —
- I +1 (p) 2\/N 2\/> p:|
M 5m
=P Xm — We <3 Xm =
I +1 (p) 2\/N p:|

>1 — 2exp {—59025’"“}

where in the last line we invoked the Hoeffding concentration bound (Lemma A.2).

Using the above result inductively for m € 0, ..., K it holds that

P[X, € Gm|Xo € Gol > ] PIXm € Gon [ Xomi—1 € Gonr 1]

m’/=1

> ﬁ (1 — 2exp {—5%257"’})

m’/=1

(el o)

m’=0

> (1-23 {33}

m’=0
2¢=°/2 9
>l — | > —.
(o)
Since for k > K, P[X41 € G| Xk € Gi] = 1 and P[X( € Gy] > 1/10, it also holds that

9
P X, s >0 > —.
[Xm € Gm, ¥im 2 0] 2 155
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Finally, we use the above lower bound on the probability to lower bound the expectation:

]P)[Xm € gm} E [HﬁQm - ﬂQmHl |Xm S gm}
P[X,, € O] E 2] X0 — 12| | Xom € Gon]

>imin ﬂ1
= 100 VN

For odd h = 2m + 1, we also have the inequality

E [HﬁQm - ,U2m||1] >
>

E [||[t2m+1 — pem+1ll1] = E[|[Z2m — paml|1]

which completes the first statement of the theorem (as 5/7/2 = Q(2H)).

Step 3: Hitting time for G.. We will show that the empirical distribution of agent states almost always concentrates on
one of Spefi, Srigne during the even rounds in the N-player game, and bound the expected waiting time for this to happen.
The distributions of agents over states Spef, Sright in the even rounds are policy independent (they are not affected by which
actions are played): hence the results from Step 2 still hold for the population distribution and the expected time computed
in this step will be valid for any policy.

For simplicity, we define the FH-MFG for the non-terminating infinite horizon chain, and we will compute value functions
up to horizon H. Define the (random) hitting time 7 as follows:

T:=1inf{m > 0: lom(SLert) € G} = inf{m >0: X,,, € G, }.

Note that for any p € G, it holds that P[X,,+1 € Gi| X, = p] = fizim (SLett)™ + f2m (Srignt) ¥ = p~ + (1 —p)N > 27N,
Therefore for all m it holds that P[fion, ¢ G, < (1—-27% )™". By the Borel-Cantelli lemma, we can conclude that
7 < oo almost surely, and in particular T, := E[7| Xy = x] < oo for any = € G.

Next, we compute the expected value 7. Define the following two quantities:

T_1:= sup {E[r|Xo = z]}
z€G_1
To := sup {E[r| Xy = z]}.
z€Go

First, we compute an upper bound for 7. Define the event:

Eyi= () {Xm €Gm}.

m'€[K]
Then, T} is upper bounded by:

To = sup E[7| Xy = ]
z€Go
= sup E[r|Ey, Xo = 2] P[Ey|Xo = 2]
x€Go
< sup E[T|E0,X0 = J)] IP)[E0|XO = J}]
z€Go
+ E[7|ES, Xo = z] P[EG| X0 = 2]
9 1 T 4
<K— K+T )—=K+ —
sKp+(E+Ta) 35 0
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where in the last step we used the lower bound on IP[ Ey] from Step 2. Similarly for 71, from the one-sided anti-concentration
bound (Lemma A.4) it holds that:

T_1 < sup E[r|Xy = z]
r€G_1
SE[T|:E € g()7X() - x] IF)[:,U S g0|X0 = x]
+Elrfo ¢ Go, Xo = o] Plo ¢ GolXo = 7]

19
7(T—1 + 1)7

1
<—(T¢ 1
(To + )—1-20

—20
the last line following since T_1 > Ty by definition. Solving the two inequalities, we obtain

200 10K )
TTST,1§T+T§23+§IOg5N.

Step 4: Ergodic optimal response to N-players. Next, we formulate a policy 7 = {7}"}/-' € TI” that is ergodically
optimal for the NV-player game and can exploit a population that deploys the unique FH-MFG-NE. For all h, the optimal
policy will be defined by:

1, if s = Slefts, @ = QA

1, if s = SRights @ = 4B

1, if s & {SLeft, SRight}> @ = aB
0, otherwise

' (als) =

Intuitively, 77" becomes optimal once all the agents are concentrated in the same states during the even rounds, which
happens very quickly as shown in Step 3. Assume that agents i = 2, ... N deploy the unique FH-MFG-NE 7% = 7*, and for
agenti = 1, w' = w. We decompose the three components of the rewards for the first agent, as defined in the construction
of the MFG (Step 1):

Jg}év’(l)(wbr,ﬂ*, A &)
=E| Y (1-a-B)RyE+aR" + Bl oy
h odd
0<h<H
H—-1 H
>(1—a-— Le =
>(1-—a-PBE| > R, +5{2J
odd h=0

as by definition clearly E {]l {al=a B}] = 1 for all odd h and Rlﬁ > 0 almost surely.

We analyze the terms R,ll’g when the first agent follows ™. By the definition of the dynamics and 7", it holds that

1, ~ 1 ~ -1
Ry® = g1(fn-1(sp—1), An—1(5p-1))
where 3} | = sy if 81, = Srign and 3} _; = SRight if S),_; = Stefr- AsP[s)_; =-,...,s) | = ]atevensteph — 1
is permutation invariant, it holds that P[s}, | = |fip—1 = u] = p(*) for any p € G. Therefore,

E[RS = > Pl =l Plsiy = sliin-1 = 4l
nEeG
SE{ SLett, SRight }

E[Ry,®|s},_1 = s,fin-1 = 1]
= Y Plan = pu(s)gi(p(s), u(s) > 1z,

neg
SE{ SLeft; SRight }
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as for any p, if s is such that u(s) > u(3) then g1 (u(s), u(3)) = 1. Furthermore, by the definition of the hitting time 7,
for any odd h > 1, E[R% |27 < h] = E [R5 [fin—1(SLert) € G« ] = 1, as after time 27 the action a, will be optimal with
reward R§ = 1 almost surely, as 7" chooses action a, at even steps.

Finally, using the lower bound of 1/2 for R¥ when h < 27 and that R¥ = 1 when h > 27, we obtain:

g | _ l.g lg

E| > R§|=E > Ry® + ) R},
h odd h odd h odd

0<h<H | 0<h<min{27,H} min{27,H}+1<h<H

s [ 5]+ (| 5] (- [5])]

Merging the inequalities above, we obtain
H T, H
Jgév7(1)(7fbraﬂ*,-~~77r*) >(l-a=p) (LZJ - 2) + 8 {QJ .

Step 5: Bounding exploitability. Finally, we will upper bound also the expected reward of the FH-MFG-NE policy 7* and
hence lower bound the exploitability. Our conclusion will be that 7* suffers from a non-vanishing exploitability for large H,
as " becomes the best response policy after H > log N. In this step, we assume the probability space induced by all N
agents following FH-MFG-NE policy 7®".

‘We have the definition

H-1
JEn D@ e, ) =R ZR<st,ah,ah>]
h=0
H-1 H
<i-a-pE| ¥ | +aen|T]
odd h=0

This time, when % odd and h > 27, it holds that E[R%|h > 27] = 1/2 since 7* takes actions aa, ag with equal probability in
even steps, yielding R¥ = 1 and R§ = 0 respectively almost surely. As before,

E| Y Rf|=E > RE+ 3 RLE

h odd h odd h odd
0<h<H | 0<h<min{27,H} min{27,H}+1<h<H

< i[5} 3 (|5] - [5)]
3] +mdr|

vo|
[EE—
—
| IS
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The statement of the theorem then follows by lower bounding the exploitability as follows:

gg}év’(l)(w*,w*, AN )
= max Jg}év’(l)(mw*? co, ) — Jlg’lfzv’(l)(1r*77r*7 con,mr)
>Jgév(1)(1rbr77r*, , ) —JH’N(l)(ﬂ‘*ﬂr*, , )

-e-n[2]- 53120 )[4

The above inequality implies that if H > log, N, then

Eg’g’(l)(ﬂ*,w*, ce, )
1 H
SA—a-p8) (2o -2 Vg—al _o
4 9log, 5 2
which implies Eg’g’(l)(w*,w*, ..., ") = Q(H) by choosing a, § small constants as ; — gy.-— > 0.

A 4. Upper Bound for Stat-MFG: Extended Proof of Theorem 3.5
Let u*, 7* be a §-Stat-MFG-NE. As before, the proof will proceed in three steps:
e Step 1. Bounding the expected deviation of the empirical population distribution from the mean-field distribution
E [||zztn, — p*||1] for any given policy .
* Step 2. Bounding difference of N agent value function J P’g’(i)
stationary mean-field game setting.

and the infinite player value function V , in the

» Step 3. Bounding the exploitability of an agent when each of IV agents are playing the Stat-MFG-NE policy.

Step 1: Empirical distribution bound. We first analyze the deviation of the empirical population distribution jz; over time
from the stable distribution p*. For this, we state the following lemma and prove it using techniques similar to Corollary
D.4 of (Yardim et al., 2023a).

Lemma A.11. Assume that the conditions of Theorem 3.5 hold, and that (u*,7*) € Asisa Stat-MFG-NE. Furthermore,
assume that the N agents follow policies {w'}}, in the N-Stat-MFG, define Az := + 3. || — 7*||1. Then, or anyt > 0,
we have

tKaDs | 206+ 1) V8]
2 JN

Elllp" = el <

Proof. F; as the o-algebra generated by the states of agents {s:} at time ¢. For jig, we have by definitions that

_ 1 .
Efno] =E N § es;’l =M
1 2 4
-~ %2 — = . — * <
B [l = wllz] =B | 5 Z H(e a ) ’21 =N
where the last line follows by independence. The two above imply E ||z — p*|l1] < 2vIS]

:
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Next, we inductively calculate:

N
1
E [fie1|Fe] = N Zl (sip, =9)ey }"1
s'eS i=1
=S e 3 L Pt it
s'eS i=1

E[||fie+1 — Elfies1 | F) 151 7]

=

=] -

1
=2 ZE leg;,, — Eley;, [ FII31 7] <

We bound the ¢ distance to the stable distribution as

E(|[fer1 — p* (1] F]
SEE [@esa | Fel 1Fe] = w1 + E N E (B | Fe] — e llnFe] -
(=) N

The two terms can be bounded separately using Inequalities (10) and (11).
2) <VISIE (|| E [figs1|Fe] — Rt l|2F]

<VISVEE (il Fil — A 37 <

218

VN
N
(D) - Z (SP% Z N ( ,|51Z£77rl(52)3ﬁt) - )UJ*
s'eS i=1 1
N
= Z ZN |st7 )7ﬁt)_rp0p(7r*ﬂu*)
s'eS i=1 1
N N
< |10 S PClsi (500, e) = D2 5Pl 7 (s0), )
=1 1=1 1
Z :ut |St7 ( 115)7//1\15) - FPOP<7T*>/1'*)
s'eS 1
72N Z |7 — 7TZ||1 + Ipop (7", 1) = Tpop (7™, 1),
KGA‘IT * ~
<2 0t = full
Hence, by the law of total expectation, we can conclude
K., Ar  24/]S]

Ellp® = fega 1] SE[[|p" — fell] + 5 +W

or inductively,

El|p* — 1 <
s = Fll] < =57 + =0

Step 2: Bounding difference in value functions. Next, we bound the differences in the infinite-horizon
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Lemma A.12. Suppose N-Stat-MFG agents follow the same sequence of policy w*. Then for all i,

P 577*) - V];Y,R(M*77T*)|
gl L S|

2
< (L,+2=)22
_1—7<‘+2> N

Proof. For ease of reading, in this proof expectations, probabilities, and laws of random variables will be denoted
Ew, Poo, Loo respectively over the infinite player finite horizon game and Ey, Py, £ x respectively over the N-player game.
Due to symmetry in the N agent game, any permutation o : [N] — [N] of agents does not change their distribution, that is

La(st,. . sV =Ln(s7M, . s7™)). We can then conclude that:

|J’Y7N 5(2) (

En [R(sz}va%vﬂh)} = NZEN [R(Stvathut)}

=En Zut(s)ﬁ(saﬂt(s),ﬂt) ]
seES
Therefore, we by definition:
PO = B[S o s (), ut>]
t=0 scS
Next, in the Stat-MFG, we have that for all ¢ > 0,
Poo(st = -> = ",
Poo (841 = ZIP’ (st = 8)Poo (8t = |8t = 5)

seS
= Dp(Poo (st = ), 1) = 1",

so by induction P, (s; = -) = p*. Then we can conclude that

Z’yRst, )]
*Zv > wr(s) (), 1),

t=0 sES

VP R(N "

by a simple application of the dominated convergence theorem. We next bound the differences in truncated expect reward
until some time 7" > 0:

’EN Z”Y Zﬂt (s), Mt)‘|
t=0 seS
—Z”y Zut (8), it
t=0 seS
T
<Ex Zv > () Rs, (s m)—u*(s)R(s,w*<s>,u*>>H
seS

!

<En

L, N N
> (Gl = Bl + Ll = el
t=0

T
L, .~
<o (L 5 ) En e =l

t=0
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Taking T' — oo and applying once again the dominated convergence theorem the result is obtained. O

Step 3: Bounding difference in policy deviation. Finally, to conclude the proof of the main theorem of this section, we

will prove that the improvement in expectation due to single-sided policy changes are at most of order O ((5 + ﬁ)

Lemma A.13. Suppose we have two policy sequences n*, 7 € Il and p* € Ag such that Tp(p*, 7*) = p* and Tp(-, %)
is non-expansive. Then,

N, (1 * * *
J;R ( )(ﬂ",ﬂ' N V%R(u ')
] t—1
< Yo (B0~ i + K S Bl - 1)
t=0 /=0
< & n 2 |S| Lu/2 + K:M
2N VN ) (1-9)3

Proof. For the truncated game 7', it still holds by the derivation in the FH-MFG that:

|EN [R(Sb(lbﬁt):l - Eoo [R(Stu g, ILI/;I-)] |
I t—1
o I |+ 3 B | — el |

<

We take the limit 7' — oo and apply the dominated convergence theorem to obtain the state bound, also noting that

Conclusion and Statement of the Result. Finally, if x*, 7* is a 4-Stat-MFG-NE, by definition we have that: By definition
of the Stat-MFG-NE, we have:

o> ggR(“é) = E,lgf_[( VI;Y,R(,U*JT/) - V];):R(N*77r*)

Then using the two bounds from Steps 2,3 and the fact that 7* §-optimal with respect to p*:

H,N,(1
max Jpp )
7/ ell o

L, Ly
§25+<Ka+2 |5|> Ky | Lyt /2<2\/|3|)

Lot — Jgg’(l)(w*,w*7...,7r*)

N TUN ) U= T U= VN

A.5. Lower Bound for Stat-MFG: Extended Proof of Theorem 3.6

Similar to the finite horizon case, we define constructively the counter-example: the idea and the nature of the counter-
example remain the same. However, minor details of the construction are modified, as it will not hold immediately that all
agents are on states {Spef, sRight} on even times ¢, and that the Stat-MFG-NE is unique as before.

Defining the Stat-MFG. We use the same definitions for S, A, g, h, w, as in the FH-MFG case. Define the convenience
functions Q,, QR as

B p(sLa) + p1(siB)
Quip) = max{(sLa) + p(si) + p(sra) + p(srs), 40}
Qr(u) := plsea) + ploes) :
max{p(sa) + p(ss) + p(sra) + p(srs), 4/o}
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We define the transition probabilities:

If s € {5LA, 5LB: SRA, SRB}, VI,

we(Qr(p)), if 8" = srighi, s € {5LA,5LB}
P(s'|s, a, 1) = we(Qr(1)), .if s' = SLeft, 5 € {5LA, SLB}

we(Qr(1)), if 8" = sright; 5 € {5RA, SRB}

wWe(Qr()), if 8" = sieft, s € {SrA, SrRB}

and define P(sLef, @, jt), P(Sright, @, f1) as before. With previous Lipschitz continuity results, it follows that P € Po .

Similarly, we modify the reward function R as follows:

R(SLeft; an, pt) =R(Left, a, 1) = 0,
)

R(sright, aa, 1) =R(srign, an, 1) = 0,
(o o) 1 @ = M(Qul1). Qalh)) + abl(sua).oun)
(o em ) —(1 @~ )(Qu0). Qulr)) + hlloua).oun)
+ 81
(Riomnsenst) —(1— a— )g(Qn(), Qu) + ah(u(sea).n(sea)
(o o) 1 @ = D(Qr() Qul0) + abllsw): o)

+ A1,

simple computation shows that R € R3. In this proof, unlike the N-FH-SAG case, « will be chosen as a function of N,
namely o = O(e= ).

Step 1: Solution of the Stat-MFG. We solve the infinite agent game: let ©*, 7* be an Stat-MFG-NE. By simple computation,
one can see that for any stationary distribution p* of the game, probability must be distributed equally between groups of
states {SLeﬂ, SRight} and {SLA7 SLB, SRA SRB}, that is,

W (Stete) + 17 (Sright) = 1/2,
1 (sLa) + " (sup) + 1 (sra) + 1" (sre) = 1/2.

It holds by the stationarity equation I'p(u*, 7*) = 7* that

1 (Srer) =p" (sLa) + 1" (sLB),
,u*(sRigm) :M*(SRA) + u*(SRB)»
5Le’rt Z M (SLeﬂ|3, a, :u‘*)
SES

=P(Sterc|SLA, GA, 117),

i (swign) = S 1” ()7 (als) P )
seS
=P (sRrignt|SLA, @A, 117),
as P(srignt|s,a, ") = P(srignls,a,n*) and similarly P(sie|s,a,p*) = P(Srer|s,a,p*) for any s €

{sLA, SLB; SRA, SRB}, @ € A. If p*(Sper) > 1/4, then by definition P(Sief|Spa,aa,n*) < 1/4, and similarly if
(1 (SLet) < 1/a, then by definition P(Sper|SLa, @a, ™) > /2. So it must be the case that ;1 (sper) = 11" (Sright) = /4. Then
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the unique Stat-MFG-NE must be

1,if a = ag,s € {sLA, SLB; SRA, SRB }
7" (als) := ¢ 3,if 5 € {Stef, SRight }
0,if @ = aa,s € {5, 5LB; SRA, SRB

p(sra) = p*(sLa) = p*(sre) = p*(s1B) = 18,

as otherwise the action arg min, . 4 7*(a|srign) Will be a better response in state sgign and the action arg min, ¢ 4 7*(a|Stef)
will be optimal in state sgigp.

Step 2: Expected population deviation in N-Stat-SAG. We fix 1/2c = 3, define the random variable N := N (Jio(Sright) +
Tio(sLert)). We will analyze the population under the event N := {|N/n — 1/2| < 1/18}, which holds with probability
Q(1 — e=N*) by the Hoeffding inequality. Under the event E, it holds that 7i; (spa) + e (s1a) + fe(s1a) + fie(sLa) > 4o
almost surely at all £.

Fix Ny € N+ such that |[No/N — 1/2| < 1/1s, in this step we will condition on Ey := {N := Ny}. Once again define the
random process X,,, for m € Nxq such that

ﬂzm(SALen)+ﬁ2m(8Rigm) ’
H2m (SRight)
T2m (SLet) +FH2m (SRight

X, =

ﬁzm(SLeﬂ) lf m Odd
ik if m even
with the modification at odd m necessary because of the difference in dynamics P (oscillating between spefi, Srighe) from the

FH-SAG case. It still holds that X, is Markovian, and given X,,, we have NoX,,, 11 ~ Binom(Ny, w.(X,,)). As before,
X, is independent from the policies of agents.

Define K := |logy vV No|, G := {¥/No : k =0,...,No}, G :={0,1} C G and the level sets once again as
2k
2v/ Ny

G1:=0G, Gp:= {a:egz
gK+1 = G..

1
32—2’2 }WhenkSK7

As before, using the Markov property, Hoeffding, and the fact that |we(x) —1/2| > 1/2¢|x —1/2| we obtain Vk € 0, ..., K —1,
Vm that

HD[)(m+1 S gO‘Xm S g—17E0} > 1/20

1
PXont1 € Ger1|Xom € Gr, Eo] > a := 1 —2exp {—84k+1} ;
hence from the analysis before we have the lower bound

2m
E[| X, — 1/2| |[Ep] > C; min {, 1} ,
VNo
for some absolute constant Cy > 0.
Step 3. Exploitability lower bound. As in the case of FH-MFG, the ergodic optimal policy is given by
if s = Spefr, @ = aa
if s = SRright, @ = aa

L
L
1, if s & {SLen, Sright}» @ = ap
0, otherwise

We define the shorthand functions

S* = {5Left; SRignt ), Q1) = (Qr (), Qr(n)),
Qmin(ﬂ) = min{QL(M)a QR(M)}v Qmax = maX{QL(M)> QR(M)}
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We condition on Fg- := {sé € S*}, that is the first agent starts from states {Sef, SRigm}, the analysis will be similar under
event ES.. As in the case of FH-MFG, due to permutation invariance, it holds for any odd ¢t and p € {y/ € Ag- : Nop' €
N2} that

P[s; € {sra,s1}|Eo, Es+, Q(iix) = p] = Qr. (1)
P[s; € {sra, sk} Eo, Es-, Q(fir) = 1] = Qr(w),

therefore expressing the error component due to g as Rt1 '€ and expressing some repeating conditionals as e:
At . Leg A L, =(1) ai~m*(s)),
Gt =E |:Rt ’EOa ES* ) Q(:U’t) = M, ay ~ 7T(St )7 a“t,he:i (;ti :|

=D Pls; = s|Q(fir) = p, o E[Ry E|s} = 5, Qi) = p. o]

sES*
dex( ) Qmin (/‘)
Qmax( ) dex( ) Qmax (M) Qmm( )

Similarly, since 7*(a|s) = 1/2 for any s € S*, it holds that
Gl =B [R}5|Eo, Bs-, Q) =, 70D

:1 Qmin(,u) + lQmax(,U/)
2 Qmax (.u) 2 Qmax(,u) '

Therefore, given the population distribution between sy a, s.g and sgra, Srs, the expected difference in rewards for the two

policies is
Gl -Gl = (Qmax(ﬂ) - ;) + (Qmin(u) a ) g::;((ii

(own-3)+ (1) 25
= (Qmax(u) - ;) <1 - m>

2 <Qmax(u) - ;)2

— ~ 2t
E[G}* — Gi* |Eo] 2 E[2|X 1 — 152 |Ey, Es+] > 2C? min{ SN 1}
0

Therefore from above, we conclude that

Using the lower bound above, the conditional expected difference in discounted total reward is

]E[Z’th(S%?a%?ﬁt”EO»ES*va% ~ ﬁ(s%), (é};::;:i’]

t=0
~E[Y +'R(s}, ab,fie)| Eo, Es-, %~ ()]
=0
22k 2a
>(1-a-p 2202 2k+1mln{ 1}—
P No’ 1—7v
Uog4 NOJ o]
Co Cs 20
> >, WA Y T
0 k=0 O k=|log, No| v
S Gl@yest —1) o ()Nt 20
- Ny ° 1—~2 1—7
10g2 v—1 20

> CgN& 7 + Oy - .
1—’y 1—7
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Taking expectation over Ny (using E[N|E*] = N/2 and Jensen’s):

E[ D R(st,af, )| B, Es-,a} ~7(st), er G)

wheni # 1
t=0
[e%S) | |
— E [Z’th(Sia a%’ ﬁt)‘.Ehk’ ES* , af'/w»;\;i(st)y]
t=0

logy v—2
>CeNIE T 1 oy o i
1—7 1—7v

While the analysis above assumes event Es~, the same analysis lower bound follows with a shift between even and odd
steps when s} ¢ S*, hence

o0
E[D v R(st,af, i) |[E*,ap ~ T (st), %m0
t=0

—E[Y A'R(si,af, i) |[E*, T (0]
t=0
log, v—2
N, =2 2
>CNy ™7 + 07 =2 - =
I—~ 1—~

Finally, we conclude the proof with the observation

max J;,’g’(l)(ﬂ,w*, co, ) — Jg’éwl)(ﬂ*,w*, co,m)
ZJ;:%(U(%,W*, co,T) — Jg}éwl)(ﬂ*,w*, R
. (lJogw% 20 -
>CsN, %" + C - —(1—~)*PE°
—L6iVg + Cr — 5 1_7 ( 7) [ ]7

where P[E°] = O(e=™") and we pick e = O(e~ ).

B. Intractability Results

B.1. Fundamentals of PPAD

We first introduce standard definitions and tools, mostly taken from (Daskalakis et al., 2009; Goldberg, 2011; Papadimitriou,
1994).

Notations. For a finite set >, we denote by 3" the set of tuples n elements from X2, and by ¥* = Un>0 3™ the set of finite
sequences of elements of 3. For any a € %, let o™ € X" denote the n-tuple (a, ..., a). For z € ¥*, by |z| we denote the
——

n times
length of the sequence x. Finally, the following function will be useful, defined for any o > 0:

e ;R = [0, a]

a, ifx > a,
Ug () := max{0, min{o,2}} = ¢z, if 0 < z < q,
0, ifz <0.

We define a search problem S on alphabet X as a relation from a set Zs C 3* to X* such that for all x € Zg, the image of =
under S satisfies S, C 2l#1* for some k € N<, and given y € 2l21* m whether y € S, is decidable in polynomial time.

Intuitively speaking, PPAD is the complexity class of search problems that can be shown to always have a solution using a
“parity argument” on a directed graph. The simplest complete example (the example that defines the problem class) of PPAD

32



Tractability and Relevance of MF-RL

problems is the computational problem END-OF-THE-LINE. The problem, formally defined below, can be summarized as
such: given a directed graph where each node has in-degree and out-degree at most one and given a node that is a source in
this graph (i.e., no incoming edge but one outgoing edge), find another node that is a sink or a source. Such a node can be
always shown to exist using a simple parity argument.

Definition B.1 (END-OF-THE-LINE (Daskalakis et al., 2009)). The computational problem END-OF-THE-LINE is defined
as follows: given two binary circuits .S, P each with n input bits and n output bits such that P(0"™) = 0™ # S(s™), find an
input x € {0, 1}™ such that P(S(z)) # x or S(P(z)) # x # 0™.

The obvious solution to the above is to follow the graph node by node using the given circuits until we reach a sink: however,
this can take exponential time as the graph size can be exponential in the bit descriptions of the circuits. It is believed that
END-OF-THE-LINE is difficult (Goldberg, 2011), that there is no efficient way to use the bit descriptions of the circuits .S, P
to find another node with degree 1.

B.2. Proof of Intractability of Stat-MFG
We reduce any e-GCIRCUIT problem to the problem e-STATDIST for some simple transition function P € PSim,

Let (V, G) be a generalized circuit to be reduced to a stable distribution computation problem. Let V' = |V| > 1. We will
define a game that has at most V' + 1 states and |.4| = 1 actions, that is, agent policy will not have significance, and it will
suffice to determine simple transition probabilities P(s’|s, u) for all 5,8 € S, € As.

The proposed system will have a base state spse € S and 1 additional state s,, associated with the gate whose output is
v € V. Our construction will be sparse: only transition probabilities in between states associated with a gate and spyee Will

take positive values. We define the useful constants 6 := ﬁ, B = i.

Given an (approximately) stable distribution p* of P, for each vertex v we will read the satisfying assignment for the
e-GCIRCUIT problem by the value u; (6~11*(s,)). For each possible gate, we define the following gadgets.

Binary assignment gadget. For a gate of the form G ({||v), we will add one state s,, such that

P dese|sm/~L) - 1

(
If¢=1:q P(sy|sy,p) =0,
P(s0|8base; 1) = m
P(Sbase|5vvﬂ) =1,
IfC:O P(81}|SU7 ) O
(

P Sv |5bds67 /14) 0

Weighted addition gadget. Next, we implement the addition gadget G « (v, Blv, v2|v) for o, 8 € [—1, 1]. In this case,
we also add one state s, to the game, and define the transition probabilities:

P(spase|sv, 1) =1,
P(sy|sy, 1) =0,
ug (g (pu(v1)) + Bug(p(v2)))
max{B, (Spase)}

P(Sv ‘Sbasm M) =

Brittle comparison gadget. For the comparison gate G« (Jv1,v1|v), we also add one state s,, to the game. Define the
function ps : [—1,1] — [0, 1]

)= (5467 -0).
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for any 0 > 0. In particular, if 2 > y + §, then ps(z,y) = 1, and if z < y — 4, then ps(x, y) = 0. We define the probability
transitions to and from s,, as

Opse (971119 (N(Sl))» 07111'9 (/1,(82)))
max{B, (t(Spase)}

P(sv |Sbasea ;U’) =

bl

P(S’U|S’Ua,u) = 07
P(Sbaselsvuu) =1

Finally, after all s,, have been added, we complete the definition of P by setting

P(Sbase‘sbasezﬂ) =1- Z P(sllsbasea U)-
s'eS

We first verify that the above assignment is a valid transition probability matrix for any v € Ag. It is clear from definitions
that for any 1, $ # Spases P(+|$, 1) is a valid probability distribution as long as 8 < 1. Moreover, for any s # Spyse, it holds
that 0 < P(8|Spase, 1) < % < 1, and it also holds that

P(Sbaselsbaseaﬂ) =1- Z P(3/|5base,ﬂ) >1-— N >0
s'eS

SO P(+|Sbase, p) is @ valid probability transition matrix. Finally, the defined transition probability function P is Lipschitz in
the components of /i, and P can be defined as a composition of simple functions, hence P € PS™. Finally, in this defined
MFQG, it holds that V' + 1 = |S|, since for each gate in the generalized circuit we defined one additional state.

Error propagation. We finally analyze the error propagation of the stationary distribution problem in terms of the
generalized circuit. Without loss of generality we assume € < %. First, for any solution of the e-STATDIST problem u*,
whenever € < %, it must hold that:

* * * 1
1 (Shase) = > 1 (8) P(spasels, %) | < Bk
s'eS
hence (using V' < |S]) we have the lower bound on 11*(Spase) given by:
>k(sbase) > /J*<5)P(5base|5a N*) - L
a 8V
sES
* * * 1
ZM*(Sbase)P(sbase|5base7/14 )+ Z 1% (S)P(sbase\s,,u )— W
S;ﬁsbase
Ve . 1
>,u (Sbase)< - B) + Z M (S) - 87
S#‘gb\\e
Vo 1
>n* ase 1— — 1-— * ase ot/
20 onae) (1= ) 4 (1= onae)) = g
. 1- g 1
— K (Sbase)z 1+% ZBZE

We will show that a solution of the e-STATDIST can be converted into a &’-satisfying assignment
*(s
v — U (’u 59 v)) s
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Case 1: Binary assignment error. First, assume G ((||v) € G If { = 1, since p* is a € stable distribution we have

* * * 13
|:u (Sv) — M (sbase)P(sv‘Sbasevﬂ )| < E

o) = o) | <
H Sy H\Sbase maX{B;,u’*(sbase)} B |S‘
. 3
1 (s0) =01 < 1y
1% (s0) 1< £ & g
7 0S| T v~

where we used the fact that T = 1" (Spase)- and it follows by definition that |uy (@) — 1] < &g, since the

0
max{B, 1" (Sbase
map u; is 1-Lipschitz and therefore can only decrease the absolute value on the left. Likewise, if { = 0,

)= S )Pl < |S|

seES
<
()l < 57
w(sy) €
— <
’ 0 _9|S|_86

and once again u (@) < &e.

Case 2: Weighted addition error. Assume that G 4 (o, Blv1, v2|v) € G, and set O := ug(aug(p(vi)) + Bug(p(va))).
Using the fact that ||u* — Tp(p*)|| < IS\’

9
(s0) = > () P(su]s, pn*)| < Gk

sES
ug(aug(p(v1)) + Bug(u(ve))) ’ €
max{ B, u(Spase)} ik
‘M*(Sv) B D‘ < &
0 — |S|6°

() o (52 o () o

Case 3: Brittle comparison gadget. Finally, we analyze the more involved case of the comparison gadget. Assume
G < (|v1,v2|v) € G. The stability conditions for s, yield:

™

1 (8u) — 1" (Sbase)

which implies

114 (5) — 1" (Sbase) P (S| Shaser 7)) sﬁ
‘,U*(S'u) - 9p88(971u9(:u*(vl))’ 971”9(” ( )))| < |S‘

We analyze two cases: w1 (071" (v1)) > ug (07 u*(v2)) + 8¢ and uy (071 p* (v1)) < up (07 p*(ve)) — 8e. In the first
case, we obtain

0~ tug(p (v1)) = 0~ ug (' (v2)) + 8¢,
which implies by the definition of pg.

€
1w (sy) — 0| <—
' (50) = 0] <75
Ly <=
-1, % €
>1— —— .
up (07 " (sy)) >1 |S\9 — 8¢
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In the second case uq (0~ p*(v1)) < up (0~ u*(v2)) — 8¢, it follows by a similar analysis that

-1, % €
<—— < 8e.
ur (07 ¥ (sy)) < 56 S 8¢

Hence, in the above, we reduced the 8c-GCIRCUIT problem to the e-STATDIST problem, completing the proof that
e-STATDIST is PPAD-hard. The fact that e-STATDIST is in PPAD on the other hand easily follows from the fact that
e-STATDIST is the fixed point problem for the (simple) operator I p, reducing it to the END-OF-THE-LINE problem by a
standard construction (Daskalakis et al., 2009).

B.3. Proof of Intractability of FH-MFG

As in the previous section, we reduce any e-GCIRCUIT problem (G, V) to the problem (2, 2)-FH-NASH for some simple
reward R € RS™. Once again let V = [V|.

Associated with each v € V we define s,, 1, 54,0, Sy pase € S. The initial distribution is defined as

1
MO(Sv,base) = V,V’U S V,

and we define two actions for each state: A = {a1, ag}. The state transition probability matrix is given by

1,ifa =ai,s = 5,1,
P(s]sypase;a) = ¢ 1, if a = ag, s = sy 0,

0, otherwise.
P(sypase]s,a) =0,Yv € V,s € S,a € A,

and an ¢ satisfying assignment p : V — [0, 1] will be read by p(v) = 7} (@150 pase) for the optimal policy 7* = {mn };_q.
We will specify population-dependent rewards R € R5™P, since R will not depend on the particular action but only the
state and population distribution, we will concisely denote R(s,a, ) = R(s, pt). It will be the case that

R(Sv,basey,u) =0,Yv e V,u e As.

We assign R(s,.1, 1) = R(sy,0, ) = 0, Vu for any vertex v of the generalized circuit that is not the output of any gate in G.

Binary assignment gadget. For any binary assignment gate G._((||v), we assign

R(sv,lv N’) = Cv
R(Sv,Ovﬂ) =1- gyv,u € As.

Weighted addition gadget. For any gate G« 4 (o, 8|v1, v2|v),

R(Sv,la ,u) = ul(ul(avﬂ(svl,l) + /BV//L(S/U271)) - V“(S’U,l))v
R(s0,0, 1) = u1(Vu(sy,1) — ur(@Vp(se, 1) + BV p(s0,,1))),

forall p € As.

Brittle comparison gadget. For any gate G (Jv1, v2|v), we define the rewards for states s, 1, Sy,0 s

R(sv,lau) = ul(V:u(szJ) - V/’(’(Svlvl))’
R(Sv,mﬂ) = ul(Vﬂ(svhl) - V/J,(sz,l)),v,u € As.

Now assume that 7* = {7} }} _, is a solution to the (2, 2)-FH-NASH problem and p* = A?

Pouo ("), that is, assume that
for all w € 112,

62

Vlg,{R()u’*vﬂ.) - VT{—',IR(M*aW*) < -
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Firstly, if p] is induced by *, it holds that Vv € V),

1
,UT(Sv,base) =0, ,UT(S'U,I) = Vﬂé(sv,ﬂsv,base)v

* 1 — ﬂ-* s s
:“1(51;70) = 0( ‘v/ill ’U,base).

Furthermore, a policy 7 € Il that is the best response to p* := {u, ; } can be always formulated as:

ﬂ—gr(aﬂsvvbase) = {(:;:;fhfr(\j:;: /’[/T) > R(Sv,lau}{)a
7T(b)r(a0|51,7base) =1- Trgr(al‘Sv,base)»
7Tll)r<a1|sv,base) =1,

ﬂ—'ir(adsv,base) =0.

By the optimality conditions, we will have

<%

Vﬁ,IR(u*ﬂrbr) - VI?R(“*’F*) <

Furthermore, for any v € V it holds that
Vila (™) — ViR (" 1)
= Z MO(SU,base)[ max R(s, uY)
s€{5v,1,50,0}
veV
- 7T€)k (al |3v,base)R(3v,17 NT) - 778 (a0|5v,base)R(sv,07 MT)]

1
>—  max R(s,u}
-V s€{sv,1,5v,0} ( Ml)

1 * * 1 * *
- *Wo(a1|5v,base)R(5v7laM1) - VT"O (a0|3v7base)R(3v,0,M1)

Vv

as the summands are all positive. We prove that all gate conditions are satisfied case by base. Without loss of generality, we

assume ¢ < 1 below.

Case 1. It follows that for any v € V such that G, ({||v) € G, we have

11, 1, g2
V - Vﬂ_o(aﬂsv,base)g - Vﬂ-o(a(]‘sv,base)(l - C) § V
1- WS(al‘Sv,base)C —(1- Wg(aﬂsv,base»(l -() < e

C(1 — 275 (a1 Sy base)) + 7o (@1]Svpase) < €2 < €.
The above implies ¢ (a1|Sy pase) > 1 — € if ¢ = 1, and if ¢ = 0, it implies 7 (a1 |y pase) < €.
Case 2. For any v € V such that G 1 (o, B|v1,v2|v) € G, denoting in short
0= w1 (aVpi(se, 1) + BV 1 (50,,1))
= ui(amg(ar]se, 1) + B7G(a1]s0,,1)),
p1 = 75 (@150 base)
Po := T (aolSv base)

we have

%max {ur (Vi (svn) = O),ur (0= Vii(sen))}

1, *
- Vﬂ-o (a1|5v,base)u1 (D - V,Ul (Sv,l))

1, .
- VWO (a0|5v,base)U1(V,LL1 (81,71) — D) < 52,
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or equivalently

max {ul(pl - 0),u (O *pl)} — prur (0 = p1) — pous (p1 — O) < 2.

First, assume it holds that p; < [, then:

u (0= p1) — prug (0 — py) <e?
(1—p1)(@3—p1) <%

The above implies that either p; > 1 — ¢ or u1 (0 — p1) < ¢, both cases implying | — p;| < € since we assume [ > p;.
To conclude case 2, assume that [J < pq, then
€2,

g2,

ui(p1 —0) = (1 = pr)ua(pr — O)
p1(p1 — 0)

IN A

then either p; < ¢ or p; — O < ¢, either case implying once again [0 — p1| < €.
Case 3. Finally, for any v € V such that G (|v1,v2|v) € G,

%max {ul (1(Sv,1) = 1(S01,1)) s 1 (p(S0y,1) — M(sz,l))}

- Vﬂé(alIsv,base)m(u(sm,l) — 1(Spy,1))

- Vﬂ'g (0| Sv,pase )t (14(Svy,1) — p1(S0,,1)) < €

hence once again using the shorthand notation:
A= Vg (su,,1) = Vg (suy,1) = mg(a|se, 1) = m5(aa]sv,,1)
P1 = 778 (a1|sv,base)

Dbo - 776 <a0|5v7ba5e)

we have the inequality:

ur(|A]) = prug (D) — pour (—2) < &2
<

ur(|A]) = prun (D) — (1 — prug (L) < 2.

First assume A\ > ¢, then
u(D)(1—p1) <e® = 1-e<p,
and conversely if A < —eg,
u(—A)py < = p1 <e,

concluding that the comparison gate conditions are ¢ satisfied for the assignment v — 7r8r(a1 |Su,base)-

The three cases above conclude that v — 75" (a; |Su,base) 1S an e-satisfying assignment for the generalized circuit (V, G),
concluding the proof that (g9, 2)-FH-NASH is PPAD-hard for some £y > 0. The fact that (¢, 2)-FH-NASH is in PPAD
follows from the fact that the NE is a fixed point of a simple map on space Il5, see for instance (Huang et al., 2023).

B.4. Proof of Intractability of 2-FH-LINEAR

Our reduction will be similar to the previous section, however, instead of reducing a e-GCIRCUIT to an MFG, we will
reduce a 2 player general sum normal form game, 2-NASH, to a finite horizon mean field game with linear rewards with
horizon H = 2 (2-FH-LINEAR). Let ¢ > 0, K1, K3 € Ny, A, B € R¥1-%2 be given for a 2-NASH problem. We assume
without loss of generality that Ky > 1, as otherwise, the solution of 2-NASH is trivial.
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This time, we define finite horizon game with K + K5 + 2 states, denoted S := { S}, Staser 51>+ - -3 Sk, » 515+ - - » 55, }-
Without loss of generality, we can assume K; < Ks. The action set will be defined by A = [K5] = {1,..., K5}. The
initial state distribution will be given by 1o (stue) = f0(SEye) = /2, with pig(s) = 0 for all other states. We define the

transitions for any s € S, a,a’ € A as:

1, if s = sl anda < Ky,

P(8|8paes@) =4 1, if s = s and a > K7,
0, otherwise.

1, if s = s2,

P55 ) = {O otherwisz
1, if s = s 1, if s = 57
P(slst,a’y=4" @’ P(s|s?,a’) =4 v
( | a’ ) {0,0thCI‘WiS& ( | a’ ) 0, otherwise.

Finally, we will define the linear reward function as for all a € [K3]:

R(Spaser @ 1) = 0,

R(Spases as 1) = 0,

0.ifa > K,

3+3 DareKa] 11(52,) Aa,ar

1 1
R(Si,a,u) “957 5 Z N(Si’)Ba’,a-
a’€[K1]

R(Szlzv a, :u) = {

In words, the states si,.., 52, represent the two players of the 2-NASH, and an agent starting from one of the initial base
States Si ., Siqee Of the FH-MFG at round h = 0 will be placed at h = 1 at a state representing the (pure) strategies of each
player respectively.

Given the game description above, assume 7% = {WZ}}LZO is an ¢ solution of the 2-FH-LINEAR. Then, it holds for the
induced distribution p* := {u} };_, = A¥ that:

1o = Ho,

piGs) = D> po(s)n"(d|s") P(sls’, a)

s',a’€SxA
170 (1] Styse), if s = !, for some i € [K1],
170 (] s2ye), if s = s7, for some i € [K>],

- % Zie[Kl] WO(”S%ase)? if s = S%ase’

1

2

0, otherwise.
By definition of the ¢ finite horizon Nash equilibrium,

Eflp(m’) = max VER (AL (@) 2') — VER (A (x).m) <,

in particular, it holds for any 7 € Il that
Vilp(p',m) = Vilp(p',m*) <e. (12)
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By direct computation, the value functions V2 r, can be written directly in this case for any :

« 1 1 1 y
VlgR(IJ’ ,T0) :i Z 770(0’|5éase) §+§ Z Ml(si’)Aa;a'

a€[K1] a’€[Ka]

1 1 1 "
+§ Z 7To(al|312)ase) §+§ Z ul(S;)BUaU/

a’€[K>] a€[K1]

1
:Z 1+ Z 7T0(a’|s|§ase)
a€[K1]

1 *
+§ Z Z 7T0(a|8t1)ase)770(a/|sgase)Aa’a/

aE[Kl] G/E[Kz]

1 *
+§ Z Z Wo(a/|sgase)7r0(a|s%ase)Ba’a,

a€[K1] a’€[K2]

We analyze two different cases, accounting for a possible imbalance between the strategy spaces of the two players, [K1]
and [K>].

Case 1. Assume K = Kj. Then, VA, (p*, ) simplifies to

VPR(H’ 7l' 7+7 Z Z 7T0 ‘Sbase 71—0 |Sbase)A

a€[K1] a’€[Ks]

1 "
+§ Z Z Wo(a/‘sgase)wo(alséase)Baﬁ/' (13)

a€[K1] o’ €[Ka]

Take an arbitrary mixed strategy o1 € A[g,] and define the policy 74 = {7 Ahth—o € 112 so that

ﬂ—A,O(séase) =01, 7rA,O<SI§ase) = 71—3 (Sgase)v TAL = Wik'

Then, placing 7 4 in equations (13) and (12), it follows that

Z Z oi(a | Sbase)A a’

a€[K1] a’€[K3]

DD woalshee) T (0| Shse) Aasar < B (14)

a€[K1] a’€[Ka2]

Similarly, for any o3 € A[K>], replacing 7 in equations (13) and (12) with a policy w5 such that

7.(.B,O(Séase) = 71-E)k(séase)7 7TB,0(53353> =02, TB]1 = ﬂ.T7

we obtain

Z Z 02 |Sbase)Ba,a'

a€[K1] a’€[K2]

Z Z 7TO |5base o (a|8base)Ba7a' < 8e. (15)

a€[K1] a’€[K2]

Hence, the resulting equations (14), (15) imply that in this case the strategy profile (7§ (Siue)s 7o (Stae)) 1S @ 82-Nash
equilibrium for the normal form game defined by matrices A, B.

Case 2. Next, we analyze the case when 1 < Ky < K. If 3~/ ¢ (¢, 70 (a'|st,.) = 0, then the policy

7T(l)(l|sliase) = 1’ 7T(/)(St2)ase) = 7-‘—E’;(S?)ase)? T =Ty
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yields an exploitability of at least 1/4, so by taking e smaller than 1/4 we can discard this possibility.

Otherwise, we define a policy 7 = {7 » }1._, € I1% such that

* 1
. ) i a € K],
71'C’,O(a|5base) = '€l ,0 base
0, otherwise.
2 k(.2 ok
77070(5base) = Ty (Sbase)7 e = T,

and replace 7 in Equation (12) with ¢ to obtain:

Z Z FS(a‘séase)ﬂs(a’,|sgase)Aa7a/ S €

a€[K1] a’€[K2]

where S := 37 /) 75 (a'|stye) < 1, hence

1-5= Z 7T-(x)((a/|sl£ase) < de.

a’ €[K2]—[K1]

Now for some 01 € A, once again take the policy 7 4 defined in Case 1, and use Inequality (12) to obtain:

Z Z oi(a | Sbase)A a’

a€[K1] a’€[K2]

1
- g Z Z Wg(a‘stlyase)wg(a/|sl2)ase)Aaya/ <e

a€[Ks] a’ €[K2]

Z Z 01 |Sba<e)Aa7a'

a€[K1) a’ €[K2]

DTN o (alshee) T (05t Aaiar < 8o

a€[K1] a’€[K3]

Here, using the definition of ¢, as T 0 (a|Stye) = 6 (a]Stese) Tor a € [K1], we obtain:
Z Z oi(a 7TC ol ‘Sgase)Aaaa’
a€[K1] a’€[K2]

Z Z ﬂ-CyO(a|SI§ase)ﬂ—Cyo(a/|sl§ase)Aa,a’ < 8.

a€[K1) a’ €[K2]

Next take 7 5 as defined above in Case 1 for any arbitrary o2 € A|g,) and use the Inequality 12:

Z Z o2(a 7T0 a|sbase)Ba,a/

a’€[K2] a€[K]

SN o (alshee) T (0|52 Basor < 8¢

a€[K1] a’ €[K2]

Z Z 02 TrCO a|sba§e)Ba7a/

a€[K1] o’ €[K>]

8
Z Z 71—0,0(a|8§ase)7rc,0(a/‘sgase)B% g e’

a€[K1] a’ €[K2]

/\

)

Assuming without loss of generality that e < £, it follows that ¢ (Staee), T,0(SEse) is @ 16 solution to the 2-NASH.
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