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Abstract
Anomaly detection in continuous-time event se-
quences is a crucial task in safety-critical appli-
cations. While existing methods primarily focus
on developing a superior test statistic, they fail
to provide guarantees regarding the false posi-
tive rate (FPR), which undermines their reliability
in practical deployments. In this paper, we pro-
pose CADES (Conformal Anomaly Detection in
Event Sequences), a novel test procedure based
on conformal inference for the studied task with
finite-sample FPR control. Specifically, by us-
ing the time-rescaling theorem, we design two
powerful non-conformity scores tailored to event
sequences, which exhibit complementary sensi-
tivities to different abnormal patterns. CADES
combines these scores with Bonferroni correc-
tion to leverage their respective strengths and
addresses non-identifiability issues of existing
methods. Theoretically, we prove the validity of
CADES and further provide strong guarantees on
calibration-conditional FPR control. Experimen-
tal results on synthetic and real-world datasets,
covering various types of anomalies, demonstrate
that CADES outperforms state-of-the-art methods
while maintaining FPR control.

1. Introduction
Event sequences consist of the timestamps and marks of
discrete events occurring in continuous time. They are abun-
dant and ubiquitous in our daily life. Examples include
news dissemination on social networks (Trivedi et al., 2019),
trading actions in stock markets (Zuo et al., 2020), and elec-
tronic health records in medical systems (Shi et al., 2023).
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Detecting anomalies in event data plays a vital role in safety-
critical applications, including information security, finance,
and healthcare. For example, rapid information spreading
may signal rumors (Naumzik & Feuerriegel, 2022), abnor-
mal transaction activities may reveal fraud (Zhu et al., 2020),
and irregular patient health records may suggest rare medi-
cal conditions (Liu & Hauskrecht, 2021).

Continuous-time event sequences are commonly modeled
using temporal point processes (TPPs), a class of stochas-
tic processes that characterize the random occurrence of
events (Zhang et al., 2020). Given access to normal training
data, i.e., in-distribution (ID) data, previous works (Shchur
et al., 2021; Zhang et al., 2023) frame the task of detecting
anomalous event sequences as an out-of-distribution (OOD)
detection problem for TPPs. They perform hypothesis test-
ing to determine whether an event sequence is drawn from
the unknown data-generating TPP. While these studies pri-
marily focus on developing a superior test statistic, they lack
rigorous theoretical guarantees for controlling the false pos-
itive rate (FPR, i.e., the probability of misclassifying an ID
sample as OOD). Such guarantees, however, are crucial for
the deployment of OOD detection methods in safety-critical
applications (Kaur et al., 2022; Magesh et al., 2023).

Conformal inference (a.k.a. conformal prediction, Vovk
et al. (2005)) provides a flexible framework for establishing
the desired FPR guarantees. Its application in OOD detec-
tion is often referred to as conformal OOD detection (Kaur
et al., 2022) or conformal anomaly detection (Smith et al.,
2015). The detection performance largely depends on the
choice of the non-conformity score1 (Kaur et al., 2022; An-
gelopoulos et al., 2024), which quantifies how different an
input is from the ID samples. Recent advances in this field
have received significant attention (Bates et al., 2023; Ma
et al., 2024; Marandon et al., 2024), but these approaches
have mainly focused on image data, leaving continuous-time
event sequence data unexplored.

In this paper, we aim to extend conformal inference to
anomaly detection in event sequences. Common test statis-
tics for event sequences, such as the Kolmogorov-Smirnov
(KS) statistic (Barnard, 1953) and the sum-of-squared-
spacings statistic (Shchur et al., 2021), suffer from severe

1In this paper, we use the terms non-conformity score and test
statistic interchangeably.
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non-identifiability issues (Zhang et al., 2024b), producing
similar values for two markedly distinct sequences. This
significantly reduces their detection power, motivating us
to design a more expressive non-conformity score. Due
to the variable length of event sequences and the intricate
dependencies between events, the design of this score is
both essential and non-trivial.

To this end, we introduce CADES (Conformal Anomaly De-
tection in Event Sequences), a novel method based on con-
formal inference for detecting anomalous event sequences.
Specifically, we design two powerful non-conformity scores
tailored to event sequences using the time-rescaling theo-
rem (Brown et al., 2002). These scores are complementary
in their sensitivity to different abnormal patterns and address
the limitations mentioned above of existing test statistics.
Unlike standard conformal inference methods, which rely
on one-sided p-values and a single non-conformity score,
CADES utilizes two-sided p-values and applies the Bonfer-
roni correction (Shaffer, 1995) to combine both scores. This
is because two-sided p-values are crucial, as we show that
both small and large values of the proposed scores can indi-
cate OOD sequences. Moreover, by combining both scores,
CADES fully exploits the strengths of each, enabling more
accurate anomaly detection. Theoretically, we prove the
validity of CADES and provide guarantees on calibration-
conditional FPR, which are stronger than marginal FPR
guarantees averaged over all possible calibration sets.

We summarize our contributions as follows:

• We establish the connection between conformal inference
and anomaly detection in event sequences. Building upon
this, we propose CADES, a novel test procedure that com-
bines two proposed scores with Bonferroni correction to
perform hypothesis testing, offering a statistically sound
anomaly detection method.

• We design two new powerful non-conformity scores tai-
lored to continuous-time event sequences. We demon-
strate that these scores complement each other in terms
of sensitivity to different anomalies and address non-
identifiability issues of existing test statistics.

• We prove the validity of the p-values used in CADES.
This guarantees controlling the marginal FPR at a pre-
specified level. We further provide theoretical guarantees
on calibration-conditional FPR, which are stronger than
marginal FPR guarantees.

• We conduct extensive experiments on synthetic and real-
world datasets, covering various types of anomalies, to
validate the effectiveness of CADES2. The results show
that CADES outperforms state-of-the-art methods with
respect to both detection performance and FPR control.

2The code is publicly available at https://github.com/
Zh-Shuai/CADES.

2. Preliminaries
Temporal Point Processes. A temporal point process (TPP,
Daley et al. (2003)) is a stochastic process whose real-
ization is an event sequence X = {(ti,mi)}Ni=1, where
ti ∈ [0, T ] are the event timestamps with ti < ti+1, and
mi ∈ M = {1, . . . ,M} are the event types (marks). It
can be equivalently represented as M counting processes
{Nm(t)}Mm=1, where Nm(t) denotes the number of type-m
events occurring up to time t. The most common way to
characterize a TPP is through conditional intensity functions
(CIFs), defined for each event type m ∈ M as follows:

λ∗m(t) dt = E
[
dNm(t) | HM

t

]
, (1)

where HM
t = {(ti,mi) | ti < t,mi ∈ M} represents the

historical events of all types before time t, and the symbol ∗
indicates that the intensity is conditioned on HM

t . This CIF
describes the expected instantaneous rate of happening next
type-m event given historical events.

Traditional TPP models include Poisson processes (King-
man, 1992), Hawkes processes (Hawkes, 1971), and self-
correcting processes (Isham & Westcott, 1979). Recently,
neural TPPs, which parameterize the CIFs using neural
networks such as RNNs or Transformers, have gained sig-
nificant attention (Mei & Eisner, 2017; Zuo et al., 2020).

Conformal Anomaly Detection. We focus on the com-
putationally efficient inductive (split) conformal anomaly
detection method (Laxhammar & Falkman, 2015), which
divides the clean training dataset D into two disjoint subsets:
a proper training set Dtrain and a calibration set Dcal. First, a
model is trained on Dtrain to define a non-conformity score
s : X → R. The calibration scores {s(Xcal) : Xcal ∈ Dcal}
and the test score s(Xtest) are then calculated. Next, the
classical conformal p-value (Vovk et al., 2005) for the test
sample Xtest is given by:

p(Xtest) =
|{Xcal ∈ Dcal : s(Xtest) ≤ s(Xcal)}|+ 1

|Dcal|+ 1
. (2)

If the elements of Dcal ∪{Xtest} are exchangeable, i.e., their
joint distribution is invariant under any permutation, then
the conformal p-value is valid, ensuring that the FPR is con-
trolled (Papadopoulos et al., 2002). In this case, if p(Xtest)
is smaller than a pre-specified significance level α ∈ (0, 1),
Xtest is classified as an anomaly.

Problem Statement. Assuming that normal training data
is available, detecting anomalous event sequences can be
viewed as an OOD detection problem. Concretely, given a
set of event sequences D = {Xi}ni=1 that are i.i.d. samples
from an unknown distribution PX , the objective is to iden-
tify whether a new independent observation Xtest is OOD,
in the sense that it was not drawn from PX . This problem
can be framed as a hypothesis testing for TPPs:

H0 : Xtest ∼ PX vs. H1 : Xtest ≁ PX . (3)
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Here we consider PX to be some unknown data-generating
TPP. If the null hypothesis H0 is rejected, we declare that
Xtest is OOD or abnormal; otherwise, it is considered ID or
normal. In this paper, our goal is to develop a test procedure
that can identify true anomalies as accurately as possible,
while controlling the FPR at a pre-specified level.

3. Proposed Method: CADES
In this section, we present CADES, a novel test procedure
based on conformal inference for detecting anomalous event
sequences. We begin by introducing the concept of the valid
p-value (Casella & Berger, 2024), which ensures control
over the FPR as specified by Eq.(4).
Definition 3.1. A p-value p(X) is a statistic satisfying 0 ≤
p(X) ≤ 1 for every sample X . Small values of p(X) give
evidence against the null hypothesis H0. A p-value is valid
if, for any α ∈ (0, 1),

PH0(p(X) ≤ α) ≤ α. (4)

Typically, the p-value is the probability under the null hy-
pothesis of obtaining a real-valued test statistic at least as
extreme as the one observed (Haroush et al., 2022). How-
ever, in the OOD detection problem (3), the null distribution
PX is unknown, making it infeasible to compute the exact p-
values. Inspired by conformal inference (Vovk et al., 2005),
we estimate p-values using conformal p-values. Before this,
it is necessary to design a non-conformity score (i.e. test
statistic) to quantify how different an observed sequence is
from the training (ID) sequences. The design of this score
is a key factor for detection performance (Angelopoulos
et al., 2024): different designs can lead to very different
results, and a poorly designed score can lead to completely
ineffective detection, e.g., with extremely low detection
power. Although many expressive non-conformity scores
have been developed for image data (Bates et al., 2023; Ma
et al., 2024; Marandon et al., 2024), their exploration for
event sequences remains limited.

In what follows, we discuss the limitations of existing test
statistics for event sequences and elaborate on the definition
of our two non-conformity scores in Section 3.1. Section 3.2
details our test procedure, CADES, which combines the two
proposed scores for OOD detection. We prove the valid-
ity of the p-value used in CADES and provide theoretical
guarantees on calibration-conditional FPR in Section 3.3.

3.1. Non-Conformity Scores for Event Sequences

A natural way to score an event sequence is to compute
its negative log-likelihood (NLL) under a trained neural
TPP model. However, Shchur et al. (2021) demonstrated
that the NLL statistic is less effective than their proposed
sum-of-squared-spacings (3S) statistic for detecting anoma-
lous event sequences. Other widely used statistics include

Kolmogorov-Smirnov (KS) statistics, which are popular in
the goodness-of-fit (GOF) test for TPPs (Barnard, 1953;
Gerhard & Gerstner, 2010; Li et al., 2018). Nevertheless,
KS statistics lack sensitivity to the event count and suffer
from severe non-identifiability issues, producing similar val-
ues for two markedly distinct event sequences (Shchur et al.,
2021; Zhang et al., 2024b). Similarly, the 3S statistic, along
with the Q+ and Q− statistics (Zhang et al., 2023), are
insensitive to relatively uniform spacings (i.e. inter-event
times), which significantly reduces their detection power.

The above limitations highlight the urgent need for a more
expressive non-conformity score that can accurately quan-
tify the discrepancy between an input sequence and ID se-
quences. Different from traditional settings, where each sub-
ject is characterized by a fixed number of features, an event
sequence X = {(ti,mi)}Ni=1 on [0, T ] varies in length.
Moreover, events are associated with diverse marks and
intricate dependencies exist among them. Therefore, design-
ing a reasonable and expressive score s(X) that accounts for
these factors is a crucial yet non-trivial task. We draw inspi-
ration from the following time-rescaling theorem (adapted
from Daley et al. (2003)) to transform the event sequence
and lay the foundation for a novel scoring mechanism.

Theorem 3.2. Let X = {(ti,mi)}Ni=1 be a sequence of
random event points on the interval [0, T ] corresponding to
a TPP {Nm(t)}Mm=1 with CIFs {λ∗m(t)}Mm=1. For each
m ∈ M, denote the events of type-m from Nm(t) as
X(m) =

(
t
(m)
1 , . . . , t

(m)
Nm(T )

)
, where the number of events

satisfies
∑M

m=1Nm(T ) = N . If each λ∗m(t) is positive on
[0, T ] and Λ∗

m(T ) =
∫ T

0
λ∗m(s) ds <∞ almost surely, then

for each m ∈ M, the transformed sequence

Z(m) =
(
Λ∗
m

(
t
(m)
1

)
, . . . ,Λ∗

m

(
t
(m)
Nm(T )

))
(5)

forms a Poisson process with unit rate on [0,Λ∗
m(T )]. More-

over, the sequences
{
Z(m)

}M

m=1
are independent.

This theorem states that by using the integrated CIFs, an
event sequence X can be transformed into M independent
realizations {Z(m)}Mm=1 of the unit-rate Poisson process
(a.k.a. the standard Poisson process, SPP). Following prior
work (Shchur et al., 2021), we concatenate the rescaled
sequences {Z(m)}Mm=1 for each mark into a single SPP re-
alization Z on the interval

[
0,
∑M

m=1 Λ
∗
m(T )

]
. Specifically,

Z is expressed as:

Z =
(
Z̃(1) ∥ · · · ∥ Z̃(m) ∥ · · · ∥ Z̃(M)

)
, (6)

where the symbol ∥ denotes vector concatenation, Z̃(m) :=

Vm+Z(m) =
(
Vm+Λ∗

m

(
t
(m)
1

)
, . . . , Vm+Λ∗

m

(
t
(m)
Nm(T )

))
,

and Vm =
∑m−1

i=1 Λ∗
i (T ), for each m ∈ M.
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For simplicity, we rewrite Z = (τ1, . . . , τN ) and denote its
observation length as V =

∑M
m=1 Λ

∗
m(T ). We adopt the

inductive conformal inference method (Vovk et al., 2005),
where the dataset D of size n is randomly divided into two
disjoint subsets: a proper training set Dtrain of size ntrain < n
and a calibration set Dcal of size ncal = n−ntrain. To design
a non-conformity score for an event sequence X , we first
rescale X to obtain Z using a neural TPP model trained
on Dtrain, and then quantify how different the transformed
sequence Z is from the SPP on the interval [0, V ]. Due to
the powerful capability of neural networks, the neural TPP
model provides a more accurate approximation of the true
CIFs of training sequences.

One property of the SPP is that, conditionally on the event
count in [0, V ] being equal to N , the normalized arrival
times τ1/V, . . . , τN/V are independently and uniformly
distributed on [0, 1] (Lewis, 1965; Cox & Lewis, 1966).
Building on this property, we propose a non-conformity
score using the Kullback-Leibler (KL) divergence to quan-
tify the discrepancy between the underlying distribution of
the normalized arrival times and the Uniform([0, 1]) distri-
bution. In the literature, KL divergence is a natural measure
of the difference between two probability distributions, mak-
ing it an appropriate choice for our non-conformity score.
Since the continuous version of KL divergence is defined
on probability density functions (PDFs), we apply kernel
density estimation (KDE, Scott (2015)) with the Gaussian
kernel to estimate the underlying PDF of the normalized
arrival times. Consequently, the proposed score for an event
sequence X is formally defined as follows:

sarr(X) := DKL(farr∥f̂arr) =

∫ ∞

−∞
farr(x) log

(
farr(x)

f̂arr(x)

)
dx,

(7)
where farr(x) = 1[0,1](x) is the uniform PDF, and f̂arr(x) =

1
h1N

∑N
i=1 ϕ(

x−τi/V
h1

) is the KDE of the normalized arrival
times τi/V of Z, obtained by applying time-rescaling and
concatenation to X . h1 > 0 is a parameter called the
bandwidth, and ϕ(·) denotes the standard normal PDF. We
compute the integral using numerical techniques, such as
the trapezoidal rule (Stoer et al., 1980).

It can be observed that sarr exhibits sensitivity to reductions
in event count, effectively overcoming a major limitation of
KS statistics. For example, if all events of Z in the subin-
terval [V2 , V ] are removed, then the remaining normalized
arrival times τi/V will be confined to [0, 12 ], resulting in
a pronounced deviation between the KDE f̂arr and the uni-
form PDF. Nevertheless, by definition, sarr is less sensitive
to relatively uniform arrival times, a limitation also shared
by the 3S statistic as well as the Q+ and Q− statistics.

To address this issue and further utilize the information of
the SPP, we introduce another non-conformity score, sint,

based on the fact that the inter-event times wi = τi − τi−1

in the SPP follow an Exponential(1) distribution (Cox &
Lewis, 1966). Specifically, sint is defined as:

sint(X) := DKL(fint∥f̂int) =

∫ ∞

−∞
fint(x) log

(
fint(x)

f̂int(x)

)
dx,

(8)
where fint(x) = e−x

1[0,∞)(x) is the exponential PDF, and
f̂int(x) =

1
h2(N+1)

∑N+1
i=1 ϕ(x−wi

h2
) is the KDE of the inter-

event times wi = τi − τi−1, with τ0 = 0 and τN+1 = V .
h2 > 0 is another bandwidth parameter.

We find that sint is more sensitive to relatively uniform ar-
rival times compared to sarr. For example, when all arrival
times τi and the observed length V lie near integer grid
points, the inter-event times wi are close to 1. This causes
the KDE f̂int to concentrate around 1, making it clearly dis-
tinguishable from the exponential PDF. In contrast, sint is
less sensitive than sarr to reductions in event count. As a
result, sarr and sint offer complementary sensitivities to dif-
ferent types of anomalies. To fully exploit their respective
strengths, we propose combining these two scores for OOD
detection, as explained in the next subsection.

3.2. Test Procedure with Bonferroni Correction

With the proposed score sarr, the classical conformal p-value
for the test sequence Xtest is calculated as follows:

prarr(Xtest) =
|{Xcal ∈ Dcal : sarr(Xtest) ≤ sarr(Xcal)}|+ 1

ncal + 1
.

(9)
This p-value is right-sided because a larger score sarr typ-
ically suggests that a sequence is OOD, as a large KL di-
vergence provides evidence of the difference between two
distributions. However, in certain alternative scenarios, such
as arrival times being near integer grid points or the self-
correcting process generating more evenly-spaced events
than the SPP, the KDE f̂arr becomes closer to the uniform
PDF. In these cases, small values of sarr may also indicate
OOD sequences. Thus, we utilize the two-sided p-value:

parr(Xtest) = 2min{plarr(Xtest), p
r
arr(Xtest)}, (10)

where the left-sided p-value plarr(Xtest) is defined similarly to
the above prarr(Xtest), except that the inequality in Eq.(9) is
reversed. Throughout this paper, p-values such as parr(Xtest)
are truncated at 1 whenever they exceed it.

For another score sint, the two-sided p-value, denoted as
pint(Xtest), can be calculated in the same way. To leverage
the complementary sensitivities of sarr and sint to different
abnormal patterns, we combine them for OOD detection
using the Bonferroni corrected p-value (Shaffer, 1995):

pcor(Xtest) = min{2(1 + ε)parr(Xtest), 2(1 + ε)pint(Xtest)},
(11)
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where ε ≥ 0 is a parameter. Following Magesh et al. (2023),
we introduce the factor (1 + ε) in Eq.(11) to provide strong
false positive guarantees conditioned on the calibration set,
as detailed in Theorem 3.4. The value of ε depends on
the calibration set size ncal: a smaller ε improves detection
power but requires a larger ncal to maintain these guarantees.
Conversely, when ncal is small, a larger ε is needed to ensure
the guarantees, making the detection more conservative.

For a given significance level α ∈ (0, 1), we declare the
test sequence Xtest as OOD if pcor(Xtest) ≤ α. This ensures
a more accurate detection of anomalies by identifying dis-
crepancies in the normalized arrival times τi/V relative to
the uniform distribution and in the inter-event times wi rela-
tive to the exponential distribution. We summarize our test
procedure in Algorithm 1 and provide rigorous theoretical
guarantees subsequently.

3.3. Theoretical Guarantees

We first prove the validity of the p-value used in our CADES
method, which ensures control of the marginal FPR. Build-
ing upon this, we then demonstrate that, under certain con-
ditions, our method also controls the calibration-conditional
FPR with high probability.

It can be verified that the p-value pcor(Xtest) in Eq.(11) re-
mains super-uniform and, therefore, a valid p-value. We
state this result formally in the following proposition:
Proposition 3.3. Suppose the test sequence Xtest and the
dataset D are i.i.d., then the p-value pcor(Xtest) is valid,
i.e., for every α ∈ (0, 1), PH0(pcor(Xtest) ≤ α) ≤ α.

The proof can be found in Appendix B.1. In deed, pcor(Xtest)
is marginally valid because it depends on the calibration set
Dcal. Since PH0

(declare OOD) = PH0
(pcor(Xtest) ≤ α) ≤

α, we obtain:

PH0
(declare OOD) = E [PH0

(declare OOD | Dcal)] ≤ α,
(12)

where the expectation is over Dcal. This indicates that the
marginal FPR

(
i.e. the probability PH0

(declare OOD)
)

con-
trol is averaged over all possible calibration sets. However,
it does not guarantee that the target level α is maintained for
the particular calibration set used.

Inspired by (Magesh et al., 2023; Bates et al., 2023), we
further provide stronger guarantees that Algorithm 1 can
control the calibration-conditional FPR

(
i.e. the conditional

probability PH0(declare OOD | Dcal)
)

with high probability,
under certain conditions on the size of the calibration set.
Theorem 3.4. Let α, δ ∈ (0, 1) and ε ≥ 0. Let Dcal be a
calibration set of size ncal, a = ⌊(ncal + 1) α

4(1+ε)⌋, b =

ncal + 1− a, and µ = a
a+b . For a given δ > 0, let ncal be

such that
I(1+ε)µ(a, b) ≥ 1− δ

4
, (13)

Algorithm 1 CADES: Conformal Anomaly Detection in
Event Sequences
Input: Clean dataset D = Dtrain ∪ Dcal, test sequence Xtest,
target significance level α ∈ (0, 1).
1: Train a neural TPP with CIFs {λ∗m(t)}Mm=1 on Dtrain;
2:Apply time-rescaling and concatenation for Dcal andXtest;
3: Calculate the scores sarr (7) and sint (8) for Dcal and Xtest;
4: Compute the Bonferroni corrected p-value pcor(Xtest)(11).
Output: Declare Xtest as OOD or abnormal if pcor(Xtest) ≤
α; otherwise, conclude it is ID or normal.
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(a) = 0.2 (b) = 0.5

Figure 1. Calibration set size ncal that guarantees the calibration-
conditional FPR is bounded by α with probability 1− δ.

where Ix(a, b) denotes the CDF of the Beta(a, b) distribu-
tion. If sarr(X) and sint(X) are continuously distributed,
then for a new sequence Xtest, the probability of incorrectly
identifying Xtest as OOD conditioned on Dcal while using
Algorithm 1 is bounded by α with probability 1− δ, i.e.,

P
[
PH0

(declare OOD | Dcal) ≤ α
]
≥ 1− δ. (14)

We present a detailed proof in Appendix B.2. This theorem
builds upon a result from (Vovk, 2012; Bates et al., 2023),
which states that the CDF of the conformal p-value con-
ditioned on the calibration set follows a Beta distribution.
Additionally, due to symmetry, this property holds for both
the left-sided and right-sided conformal p-values. Consider-
ing the form of the Beta distribution’s CDF, it is difficult to
express the dependence of ncal on α, δ and ε in closed form.
We show the calibration set size ncal given by (13) when
ε = 0.2 and ε = 0.5 for different values of δ in Figure 1.

Remark. The p-values in this paper, such as prarr(Xtest) in
Eq.(9), are evaluated on the sequences from the calibration
set Dcal, rather than the entire dataset D, as used in previous
works (Shchur et al., 2021; Zhang et al., 2023). Using the en-
tire dataset D may lead to invalid p-values because sarr(Xtest)
is not exchangeable with {sarr(X) : X ∈ D}. The problem
is that sarr has already depended on Dtrain (since it was de-
fined based on a neural TPP model trained on Dtrain), but it
has not yet seen the test sample Xtest (Tibshirani, 2023). In
contrast, using the hold-out calibration set Dcal preserves the
exchangeability of sarr(Xtest) and {sarr(Xcal) : Xcal ∈ Dcal},
ensuring the validity of p-values (Papadopoulos et al., 2002).
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Figure 2. Performance of GOF test for the standard Poisson process measured by AUROC (higher is better).

4. Experiments
In this section, we conduct extensive experiments to evalu-
ate our CADES method, including GOF test for SPP (Sec-
tion 4.1), anomaly detection in synthetic data (Section 4.2)
and real-world data (Section 4.3), and FPR control (Sec-
tion 4.4). In addition, we perform ablation studies to verify
the effectiveness of combining two proposed scores and us-
ing two-sided p-values in Section 4.5. Appendix D contains
runtime comparisons and additional experimental results.

4.1. GOF Tests for SPP under Nine Alternatives

Existing goodness-of-fit (GOF) statistics for the standard
Poisson process (SPP) are either insensitive to the event
count or to relatively uniform spacings. As described in
Section 3.1, the two proposed non-conformity scores can
overcome these limitations. Hence, in this subsection, we
empirically evaluate the performance of the GOF test for
the SPP using the combination of these two scores.

Datasets. ID sequences and OOD sequences are generated
from the SPP and the alternative distribution on the interval
[0, 100], respectively. We consider nine choices for the alter-
native distribution: (1) DecreasingRate, (2) IncreasingRate,
(3) InhomogeneousPoisson, (4) Stopping, (5) RenewalA, (6)
RenewalB, (7) Hawkes, (8) SelfCorrecting, and (9) Uniform.
For each alternative distribution, a detectability parameter
η ∈ [0, 1] is defined. The first eight scenarios follow previ-
ous work (Shchur et al., 2021), where a higher value of η
indicates a greater dissimilarity of the alternative distribu-
tion from the SPP. In the Uniform scenario, we generate the
OOD sequence with equal inter-event times. For all scenar-
ios, D consists of 1000 ID sequences, while DID

test and DOOD
test

consist of 1000 ID sequences and 1000 OOD sequences,
respectively. Detailed descriptions of these alternative dis-
tributions are provided in Appendix C.1.1.

Baselines. We consider six test statistics: (1) KS statistic on
arrival times, (2) KS statistic on inter-event times, (3) Chi-
squared statistic on arrival times (Cox, 1955), (4) 3S statistic
(Shchur et al., 2021), (5) Q+ statistic (Zhang et al., 2023),
and (6) Q− statistic (Zhang et al., 2023). See Appendix C.2
for the definitions of these statistics. For each statistic, the
two-sided p-value for the test sequence is calculated with its
empirical distribution function (EDF) on the ID dataset D.

Experimental Setup. For this GOF test, training a neu-
ral TPP model is unnecessary, since the distribution of the
null hypothesis (i.e. the SPP) is known. Hence, we treat
the entire dataset D as the calibration set. Moreover, time-
rescaling and concatenation operations are also not required.
We perform the GOF test following steps 3 and 4 in Algo-
rithm 1. Due to the limited sample size in the benchmark
dataset, ensuring calibration-conditional FPR control would
require a large ε in Eq.(11), which could make the detection
overly conservative. Therefore, in the experiments, we use
the marginally valid p-value pcor(Xtest) and set ε = 0 to
improve detection power. The bandwidth values for sarr(X)
and sint(X) are determined by a grid search. More details
of the implementation can be found in Appendix C.4.

Evaluation Metric. In line with previous works (Shchur
et al., 2021; Zhang et al., 2023), we evaluate the perfor-
mance of distinguishing ID and OOD sequences by the area
under the receiver operating characteristic curve (AUROC).

Results. The AUROC scores across six scenarios with vary-
ing detectability parameters are shown in Figure 2, while
the results for the remaining three scenarios are detailed in
Appendix D.2 due to space constraints. The results indicate
that KS arrival, KS inter-event, and Chi-squared statistics
lose their detection capability when the number of events
changes substantially, as observed in the DecreasingRate
and Stopping scenarios. The 3S statistic and the Q+ and
Q− statistics perform poorly in scenarios with relatively
uniform spacings, such as the SelfCorrecting and Uniform
cases. Specifically, we explain below why the 3S statistic
does not perform well under the Uniform scenario. Accord-
ing to Proposition 1 in (Shchur et al., 2021), the value of the
3S statistic for an SPP realization (i.e. an ID sequence) is
around 2. In the Uniform scenario, the spacings of the OOD
sequences are identical. For example, when the detectability
parameter η = 0.5, the spacings are all 2. In this case, the
3S statistic for an OOD sequence is equal to 2, making it
unable to distinguish between ID and OOD sequences.

In contrast, our CADES method consistently achieves the
best or nearly the best performance across all 9 scenarios.
Notably, in the Stopping case, CADES significantly outper-
forms baselines due to the sensitivity of the proposed score
sarr to reductions in event count. Additional experimental
analyses are provided in the ablation study in Section 4.5.
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Figure 3. Performance of OOD detection on synthetic datasets measured by AUROC (higher is better).

Table 1. AUROC (%) for OOD detection on real-world datasets. Best results are in bold and second best are underlined.
Dataset KS arrival KS inter-event Chi-squared Log-likelihood 3S statistic MultiAD-Q+ MultiAD-Q− CADES (ours)

LOGS - Packet corruption (1%) 47.24 71.80 67.27 90.92 95.03 92.44 96.61 96.48
LOGS - Packet corruption (10%) 64.96 98.72 49.35 98.98 99.30 99.31 99.53 99.48
LOGS - Packet duplication (1%) 61.88 79.59 21.26 81.97 91.46 91.24 78.15 92.88
LOGS - Packet delay (frontend) 90.31 47.46 95.70 99.55 96.10 97.97 95.27 98.15
LOGS - Packet delay (all services) 95.13 96.60 94.35 96.30 99.16 99.59 99.31 99.33

STEAD - Anchorage, AK 62.31 78.44 70.75 88.16 91.73 84.00 99.16 99.31
STEAD - Aleutian Islands, AK 53.37 86.48 64.17 97.08 99.80 99.86 99.84 99.95
STEAD - Helmet, CA 61.94 98.83 73.62 96.96 93.82 70.71 99.13 99.30

Average Rank 7.50 5.63 7.00 4.25 3.63 3.50 3.00 1.50

4.2. Detecting Anomalies in Synthetic Data

In this subsection, we evaluate the performance of CADES
in detecting anomalous event sequences on synthetic data,
which corresponds to performing OOD detection. Different
from the GOF test for SPP in the previous subsection, OOD
detection requires training a neural TPP model because the
distribution under the null hypothesis is unknown.

Datasets. We consider four synthetic datasets introduced
in (Shchur et al., 2021). The ServerStop, ServerOverload,
and Latency datasets simulate anomaly detection in server
logs, while the SpikeTrains dataset evaluates the detection
of anomalies caused by event mark swaps. For each sce-
nario, a detectability parameter η is defined as before. See
Appendix C.1.2 for dataset details.

Baselines. We compare our CADES method with the fol-
lowing baselines:

• KS arrival, KS inter-event, Chi-squared, Log-likelihood,
and 3S statistic: Shchur et al. (2021) train a neural TPP on
D and compute test statistics on the transformed sequence
Z, including KS statistics, the Chi-squared statistic, the
log-likelihood of the learned model, and their proposed
3S statistic. The two-sided p-values are calculated using
the EDF of each statistic on D. We refer to each detection
method by the corresponding test statistic.

• MultiAD-Q+ and MultiAD-Q−: Zhang et al. (2023) train
a neural TPP on D and conduct multiple testing on the
rescaled sequence Z(m) for m ∈ M. Two-sided p-values
are calculated using the kernel cumulative distribution
function of their proposed Q+ or Q− statistic on D.

Experimental Setup. We randomly split D into two disjoint
subsets of equal size: a training set Dtrain and a calibration
set Dcal. Unlike the baselines that train a neural TPP on the
entire dataset D, we train it on the subset Dtrain. We conduct
OOD detection as described in Algorithm 1. To ensure a
fair comparison, we employ the same neural TPP (LogNor-
mMix, Shchur et al. (2020)) as the baselines, utilizing the
identical model architecture and training procedure. Model
and training details can be found in Appendix C.3.

Results. As shown in Figure 3, our method achieves the best
or comparable performance across four synthetic datasets.
In particular, CADES significantly outperforms baselines on
the ServerStop and ServerOverload datasets, even when the
detectability η = 0.05, where OOD sequences are obtained
by changing only 5% of the time interval in ID sequences.

4.3. Detecting Anomalies in Real-World Data

We further evaluate CADES on two benchmark real-world
datasets, LOGS and STEAD, both introduced in (Shchur
et al., 2021). See Appendix C.1.3 for detailed descriptions
of these datasets. The experimental setup remains identical
to that in Section 4.2.

Results. Table 1 summarizes the experimental results. It can
be observed that CADES consistently achieves the best or
near-best AUROC across all scenarios, with an average rank
significantly outperforming baselines. Notably, CADES
demonstrates strong performance even in challenging sce-
narios such as “STEAD - Helmet, CA” and “LOGS - Packet
duplication (1%)”, where competing methods like MultiAD-
Q+ and MultiAD-Q− exhibit limitations, respectively.
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4.4. FPR Control

We treat OOD sequences as positives and ID sequences as
negatives. The false positive rate (FPR) control guarantees
are crucial for safety-critical applications, such as fraud de-
tection and medical diagnosis. For example, in electronic
health records (EHRs), maintaining low FPR is vital. High
false positives could lead to incorrect diagnoses or unnec-
essary treatments, potentially compromising patient safety.
Our method ensures that detected anomalies are more likely
to be genuine, helping healthcare professionals make more
reliable decisions.

We empirically investigate whether CADES and the base-
lines can control the FPR. The target significance level α is
taken from 0.05 to 0.5, with a step size of 0.05. For each
α, we conduct five repeated experiments on the real-world
datasets LOGS and STEAD and present the FPR boxplots in
Figure 4. As shown, the FPR of CADES is upper bounded
by α on average. However, the baseline methods, the 3S
statistic and MultiAD-Q+, exhibit a much higher FPR than
the pre-specified level α on the LOGS dataset. Since the
baselines also control FPR on the STEAD dataset, we fur-
ther provide their true positive rate (TPR), i.e., detection
power, at the commonly used level α = 0.05 in Table 2.
We can observe that CADES significantly outperforms the
baselines in identifying true anomalous sequences. These
results highlight the effectiveness of CADES in controlling
FPR while achieving superior detection power.
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Figure 4. Boxplots of FPR for OOD detection on two real-world
datasets under different target levels α.

Table 2. TPR (%) for OOD detection on the STEAD dataset under
the target level α = 0.05.

Dataset 3S statistic MultiAD-Q+ CADES

STEAD - Anchorage, AK 74.30 67.14 95.46
STEAD - Aleutian Islands, AK 100 100 100
STEAD - Helmet, CA 69.20 6.50 98.38

4.5. Ablation Study

In this subsection, we conduct ablation studies to validate
the effectiveness of combining two non-conformity scores
and using two-sided p-values. Specifically, we consider
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Figure 5. Performance of CADES-arr and CADES-int for the GOF
test in the Stopping and RenewalA scenarios.
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Figure 6. Performance of CADES-arr-r for the GOF test in the
RenewalA and SelfCorrecting scenarios.

three model variants: (1) a single score sarr with the two-
sided p-value, (2) a single score sint with the two-sided p-
value, and (3) a single score sarr with the right-sided p-value.
We denote these three variants as CADES-arr, CADES-int,
and CADES-arr-r, respectively.

We evaluate CADES-arr and CADES-int in the Stopping
and RenewalA scenarios. As shown in Figure 5, CADES-
arr achieves strong performance in the Stopping scenario,
where the number of events in the OOD sequence decreases,
while CADES-int excels in the RenewalA scenario, where
the spacings in the OOD sequence are relatively uniform.
These successes can be attributed to the sensitivity of sarr
to reductions in event count and the sensitivity of sint to
relatively uniform spacings. By contrast, CADES, which
integrates these two scores, demonstrates superior overall
performance across both scenarios. We also conduct similar
experiments on real-world data, with the results provided
in Appendix D.3. These findings further validate the advan-
tages of using sarr and sint simultaneously.

For CADES-arr-r, we focus on the RenewalA and SelfCor-
recting scenarios, where the spacings of the OOD sequence
are more uniform than those of the ID sequence generated
from the SPP. As shown in Figure 6, CADES-arr-r performs
poorly in these two scenarios, with significant classification
errors. We explain this as follows. The distributions of sarr in
these two scenarios are presented in Figure 7. In both cases,
smaller values of sarr tend to indicate OOD sequences. Con-
sequently, the right-sided p-value in CADES-arr-r assigns
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Figure 7. Distribution of the score sarr(X) in the RenewalA and
SelfCorrecting scenarios at the detectability η = 0.5.

larger p-values to OOD sequences than to ID sequences,
resulting in incorrect classification. A similar analysis can
be conducted in the Uniform scenario. Additionally, from
Figure 6, we observe that CADES-arr, which uses the two-
sided p-value, significantly outperforms CADES-int in the
SelfCorrecting scenario. This also highlights the necessity
of using the two-sided p-value.

5. Conclusion
We introduced CADES, a novel conformal anomaly detec-
tion method for continuous-time event sequences. CADES
combines two newly designed non-conformity scores with
provably valid p-values for hypothesis testing and provides
theoretical guarantees on the calibration-conditional FPR.
Extensive experiments demonstrate that CADES outper-
forms state-of-the-art methods in both GOF test for SPP
and anomaly detection on synthetic and real-world datasets,
while controlling the FPR at a pre-specified level.
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A. Related Work
Conformal Anomaly Detection. Conformal anomaly detection (Smith et al., 2015; Laxhammar & Falkman, 2015;
Ishimtsev et al., 2017), also referred to as conformal out-of-distribution (OOD) detection (Kaur et al., 2022; Lin et al.,
2025), is an application of conformal inference/prediction (Vovk et al., 2005) in the context of anomaly detection or OOD
detection. It employs a non-conformity score to quantify how different an input is from the training (in-distribution) data,
and then computes the conformal p-value to assess the abnormality. Recent advances in this field have gained considerable
attention (Kaur et al., 2022; Bates et al., 2023; Ma et al., 2024; Marandon et al., 2024; Liang et al., 2024; Lee et al., 2025).
However, these works mainly focus on image data, and none have yet considered continuous-time event sequences. To fill
this gap, we design powerful non-conformity scores tailored to event sequences and develop a valid test procedure based on
the inductive conformal inference. Moreover, we provide calibration-conditional FPR guarantees (Magesh et al., 2023),
which are stronger than marginal FPR guarantees (Kaur et al., 2022; Haroush et al., 2022; Lin et al., 2025).

Anomaly Detection in Event Sequences. Temporal point processes (TPPs) are probabilistic models for continuous-time
event sequences (Zuo et al., 2020; Lin et al., 2021; Lüdke et al., 2023). With the development of neural networks, neural
TPPs have become a promising method for modeling complex event dynamics (Li et al., 2024; Zhang et al., 2024a; Zeng
et al., 2024; Yang et al., 2024). Naumzik & Feuerriegel (2022) developed a mixture marked Hawkes model to detect false
rumors on social media. Liu & Hauskrecht (2021); Nath et al. (2024) focused on detecting specific anomalous events in a
sequence using neural TPPs, whereas our work addresses the detection of entire anomalous sequences. The most relevant
studies to ours are (Shchur et al., 2021; Zhang et al., 2023), which perform hypothesis testing to identify anomalous event
sequences. Compared to these works, we address the non-identifiability issues of their test statistics and provide theoretical
guarantees for both marginal FPR and calibration-conditional FPR.

Goodness-of-Fit Test for TPPs. Many popular goodness-of-fit (GOF) tests for TPPs rely on the time-rescaling theorem
(Ogata, 1988; Brown et al., 2002; Gerhard et al., 2011; Tao et al., 2018), reducing the problem of GOF testing for an arbitrary
TPP to determining whether the rescaled sequence follows the standard Poisson process (SPP). In practice, GOF tests for
the SPP typically use the Kolmogorov-Smirnov (KS) statistic to check if the arrival times are distributed uniformly (Barnard,
1953) or if the inter-event times follow an exponential distribution (Cox & Lewis, 1966). However, the KS statistic performs
poorly in scenarios involving changes in the event count (Shchur et al., 2021; Zhang et al., 2024b). More failure modes of
KS statistics can be found in (Pillow, 2009). While the sum-of-squared-spacings (3S) statistic (Shchur et al., 2021) and
the Q+ and Q− statistics (Zhang et al., 2023) address some shortcomings of KS statistics, they are insensitive to relatively
uniform spacings, which significantly reduces their statistical power. In this paper, we show that our two non-conformity
scores capture complementary sensitivities to the event count and relatively uniform spacings. To make full use of their
respective strengths, we apply the Bonferroni correction to combine these two scores for hypothesis testing.

Conformal Prediction for Time Series. Conformal prediction (CP) has gained traction in the field of time series forecasting
(Stankeviciute et al., 2021; Angelopoulos et al., 2023; Auer et al., 2023), providing a powerful tool for uncertainty
quantification. Traditionally, CP methods require exchangeability of data, a condition often violated by time series data due
to inherent temporal dependencies. To address this challenge, various approaches have been developed to adapt CP for time
series (Xu & Xie, 2021; Gibbs & Candes, 2021; Zaffran et al., 2022; Xu & Xie, 2023a;b). While both time series and event
sequences are types of sequential data, they differ significantly (Xiao et al., 2017; Zhang et al., 2024a), with event sequences
commonly modeled using TPPs. Recently, Dheur et al. (2024) employed CP and neural TPPs to predict event times and
marks, offering valid coverage guarantees. In contrast, our work focuses on the application of CP for anomaly detection in
event sequences.

B. Proofs
B.1. Proof of Proposition 3.3

Proof. We aim to show that the p-value pcor(Xtest) in Eq.(11) is stochastically larger than or equal to the uniform distribution
under the null hypothesis H0, i.e., Xtest ∼ PX . Since the conformal p-values, such as plarr(Xtest) and prarr(Xtest), are valid
under H0 (Papadopoulos et al., 2002; Vovk et al., 2005), it follows that for every α ∈ (0, 1),

PH0

(
plarr(Xtest) ≤ α

)
≤ α and PH0

(prarr(Xtest) ≤ α) ≤ α. (15)

These inequalities follow from the exchangeability of the non-conformity scores sarr (Xtest) and {sarr (Xcal) : Xcal ∈ Dcal}.
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Using the Union Bound, we obtain the following for every α ∈ (0, 1),

PH0
(parr(Xtest) ≤ α) = PH0

(
min

{
2plarr(Xtest), 2p

r
arr(Xtest)

}
≤ α

)
(16)

= PH0

({
2plarr(Xtest) ≤ α

}
∪
{
2prarr(Xtest) ≤ α

})
(17)

≤ PH0

(
2plarr(Xtest) ≤ α

)
+ PH0

(
2prarr(Xtest) ≤ α

)
(18)

≤ α

2
+
α

2
(19)

= α. (20)

Similarly, we also have PH0
(pint(Xtest) ≤ α) ≤ α. Then, for every α ∈ (0, 1) and ε ≥ 0, we obtain:

PH0
(pcor(Xtest) ≤ α) = PH0

(
min

{
2(1 + ε)parr(Xtest), 2(1 + ε)pint(Xtest)} ≤ α

)
(21)

≤ PH0

(
parr(Xtest) ≤

α

2(1 + ε)

)
+ PH0

(
pint(Xtest) ≤

α

2(1 + ε)

)
(22)

≤ α

2(1 + ε)
+

α

2(1 + ε)
(23)

≤ α. (24)

This completes the proof.

B.2. Proof of Theorem 3.4

Proof. According to Algorithm 1, the probability of declaring that Xtest is OOD, conditioned on the calibration set Dcal, is
given by:

PH0
(declare OOD | Dcal) = PH0

(
pcor(Xtest) ≤ α | Dcal

)
. (25)

From the Union Bound, we derive

PH0

(
pcor(Xtest) ≤ α | Dcal

)
= PH0

(
min

{
2(1 + ε)parr(Xtest), 2(1 + ε)pint(Xtest)

}
≤ α | Dcal

)
(26)

= PH0

( 2⋃
i=1

{
pi(Xtest) ≤

α

2(1 + ε)

} ∣∣Dcal

)
(27)

≤
2∑

i=1

PH0

(
pi(Xtest) ≤

α

2(1 + ε)

∣∣Dcal

)
(28)

≤
2∑

i=1

2∑
j=1

PH0

(
pji (Xtest) ≤

α

4(1 + ε)

∣∣Dcal

)
(29)

=

2∑
i=1

2∑
j=1

rji . (30)

Here, we use the notation i ∈ {1, 2} to represent “arr” and “int”, and j ∈ {1, 2} to represent “l” and “r” for convenience.
We denote rji = PH0

(
pji (Xtest) ≤ α

4(1+ε) | Dcal
)

for i, j ∈ {1, 2}.

When the non-conformity score follows a continuous distribution, the cumulative distribution function (CDF) of the
conformal p-value conditioned on the calibration set follows a Beta distribution (Vovk, 2012; Bates et al., 2023). Due to
symmetry, this property holds for both the left-sided and right-sided conformal p-values. Specifically, for each rji , we have
rji ∼ Beta(a, b), where a =

⌊
(ncal + 1) α

4(1+ε)

⌋
and b = ncal + 1− a. The mean of this distribution is µ = a

a+b .

Let E represent the event

E =

2⋂
i=1

2⋂
j=1

{
rji ≤ α

4

}
. (31)

Then,

1− P(E) = 1− P
( 2⋂

i=1

2⋂
j=1

{
rji ≤ α

4

})
≤

2∑
i=1

2∑
j=1

P
(
rji ≥ α

4

)
=

2∑
i=1

2∑
j=1

1− Iα
4
(a, b), (32)

13



Conformal Anomaly Detection in Event Sequences

where Ix(a, b) denotes the CDF of the Beta(a, b) distribution. Since ncal satisfies the condition in (13) and µ is upper
bounded by α

4(1+ε) , we obtain

1− Iα
4
(a, b) ≤ 1− I(1+ε)µ(a, b) ≤

δ

4
. (33)

Thus, it follows that

1− P(E) ≤
2∑

i=1

2∑
j=1

δ

4
= δ. (34)

Then, under event E, i.e., with probability at least 1− δ, we have

PH0
(declare OOD | Dcal) ≤

2∑
i=1

2∑
j=1

rji ≤
2∑

i=1

2∑
j=1

α

4
= α. (35)

This completes the proof.

C. Experimental Details
C.1. Dataset Descriptions

C.1.1. ALTERNATIVE DISTRIBUTIONS

In Section 4.1, we consider the following nine alternative distributions, where η ∈ [0, 1] is the detectability parameter.

• DecreasingRate: Homogeneous Poisson process with intensity λ = 1− 0.5η.

• IncreasingRate: Homogeneous Poisson process with intensity λ = 1 + 0.5η.

• InhomogeneousPoisson: Inhomogeneous Poisson process with intensity λ(t) = 1 + β sin(ωt), where ω = 2π
50 and

β = 2η.

• Stopping: Events occurring in [tstop, T ] are removed from the SPP sequence, where tstop = T (1− 0.3η) and T = 100.

• RenewalA: A renewal process, where inter-event times τi are sampled i.i.d. from a Gamma distribution with shape
k = 1

1−η and scale θ = 1− η. In this case, E[τi] = kθ = 1 and Var[τi] = kθ2 = 1− η. Thus, the expected inter-event
time remains constant at 1, but the variance of inter-event times decreases for higher η.

• RenewalB: A renewal process, where inter-event times τi are sampled i.i.d. from a Gamma distribution with shape
k = 1− η and scale θ = 1

1−η . The expected inter-event time remains constant, but the variance increases for higher η.

• Hawkes: Hawkes process with intensity λ∗(t) = µ+ α
∑

ti<t exp(−(t− ti)), where µ = 1− η and α = η.

• SelfCorrecting: Self-correcting process with intensity λ∗(t) = exp(µt−
∑

ti<t α), where µ = η + 10−5 and α = η.

• Uniform: The inter-event times τi in a sequence are all 1 + 2η, i.e., τi = 1 + 2η.

C.1.2. SYNTHETIC DATASETS

We provide an overview of four synthetic datasets and two real-world datasets below. More detailed descriptions can be
found in the original paper (Shchur et al., 2021). Table 3 summarizes statistics of these datasets.

• ServerStop and ServerOverload: ID sequences for both scenarios are generated by a multivariate Hawkes process
with M = 3 marks on the interval [0, 100], modeling network traffic among 3 hosts. In OOD sequences, the influence
matrix is changed to simulate two scenarios: (1) a host goes offline (ServerStop), and (2) a host goes down and the
traffic is routed to another host (ServerOverload). A higher detectability η indicates that the change in the influence
matrix occurs earlier.
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Table 3. Statistics of synthetic and real-world datasets.

Dataset # Marks |D| |DID
test| |DOOD

test |
ServerStop 3 1000 1000 1000

ServerOverload 3 1000 1000 1000
Latency 2 1000 1000 1000

SpikeTrains 50 500 96 96
LOGS 8 1668 502 110

STEAD 1 4000 1000 3000

• Latency: Each sequence contains two marks on the interval [0, 100]. In ID sequences, the first mark, the “trigger”, is
generated by a homogeneous Poisson process with intensity λ = 3. The second mark, the “response”, is obtained by
shifting the arrival times of the first mark by offsets, which are independently sampled from Normal(µ = 1, σ = 0.1).
In OOD sequences, the offsets are instead sampled from Normal(µ = 1 + 0.5η, σ = 0.1), introducing an increased
latency between the “trigger” and “response” events.

• SpikeTrains: ID sequences consist of the firing times of 50 neurons observed over a 20-second period, with each
neuron represented by a distinct mark. OOD sequences are obtained by switching event marks (e.g., switching marks 1
and 2). A higher detectability η corresponds to a greater number of switches.

C.1.3. REAL-WORLD DATASETS

• LOGS: Event sequences represent the timestamps of 8 types of log entries. Each type of log entry is treated as a mark,
and each sequence is observed in 30 seconds. ID sequences correspond to normal operations, while OOD sequences are
generated by injecting failures using a chaos testing tool Pumba. OOD sequences contain 5 types of injected anomalies
(e.g., packet corruption, increased latency). See Table 1 for the list of anomalies. D, DID

test, and DOOD
test consist of 1668

ID sequences, 502 ID sequences, and 22 OOD sequences per each failure injection scenario, respectively.

• STEAD (Stanford Earthquake Dataset): Event sequences contain the occurrence times of earthquakes within a 350km
radius of 4 geographical locations: San Mateo, CA; Anchorage, AK; Aleutian Islands, AK; and Helmet, CA. Each
sequence is unmarked and observed over 72 hours. The sequences corresponding to San Mateo, CA, are used as ID
data, and the remaining 3 locations as OOD data. D, DID

test, and DOOD
test consist of 4000 ID sequences, 1000 ID sequences,

and 1000 OOD sequences per each remaining location, respectively.

To ensure a fair evaluation of the anomaly detection performance, we excluded three normal (ID) sequences with the shortest
lengths (0, 120, and 196) from the test set of the LOGS dataset. These sequences are significantly shorter than the average
length of approximately 5000 for normal sequences and are therefore not representative of typical normal data patterns.

C.2. Test Statistics

Let Z = (τ1, . . . , τN ) be an unmarked event sequence on the interval [0, V ], with τ0 = 0 and τN+1 = V . Let wi = τi−τi−1

for i = 1, . . . , N + 1. The test statistics, used as baseline methods in this paper, are provided below.

• KS arrival:
κarr(Z) =

√
N sup

τ∈[0,V ]

∣∣F̂arr(τ)− Farr(τ)
∣∣,

where F̂arr(τ) =
1
N

N∑
i=1

1[τi,∞) (τ) and Farr(τ) = τ/V .

• KS inter-event:
κint(Z) =

√
N sup

w∈[0,∞)

∣∣F̂int(w)− Fint(w)
∣∣,

where F̂int(w) =
1

N+1

N+1∑
i=1

1[wi,∞) (w) and Fint(w) = 1− exp(−w).
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• Chi-squared: Following Shchur et al. (2021), the interval [0, V ] is partitioned into B = 10 disjoint buckets of equal
length, and then the observed event count Nb in each bucket is compared with the expected amount L = V/B. Thus,
the Chi-squared statistic is defined as

χ2(Z) =

B∑
b=1

(Nb − L)
2

L
.

• Sum-of-squared-spacings (3S) statistic:

ψ(Z) =
1

V

N+1∑
i=1

w2
i .

• Q+ statistic:

Q+(Z) =
1

V

(N+1∑
i=1

w2
i +

N∑
i=1

wiwi+1

)
.

• Q− statistic:

Q−(Z) =
1

V

(N+1∑
i=1

w2
i −

N∑
i=1

wiwi+1

)
.

• Log-likelihood: Different from the above statistics, the log-likelihood statistic (used in Sections 4.2 and 4.3) is
computed directly on the marked event sequence using the condition intensity function of the learned neural TPP
model. Specifically, the log-likelihood function of a marked event sequence X = {(ti,mi)}Ni=1 on the interval [0, T ] is
defined as follows:

L(X) =

N∑
i=1

log λ∗mi
(ti)−

M∑
m=1

( ∫ T

0

λ∗m(s) ds
)
.

C.3. Training Details

In the case of the GOF test for SPP (Section 4.1), there is no need to train a neural TPP model, as the distribution under
the null hypothesis is known. In contrast, for OOD detection (Sections 4.2 and 4.3), where the distribution under the null
hypothesis is unknown, we train a neural TPP (LogNormMix, Shchur et al. (2020)) using the same model architecture as the
baselines (Shchur et al., 2021; Zhang et al., 2023). For completeness, we reiterate the details here. The inter-event time
distribution is parameterized with a mixture of 8 Weibull distributions, the mark embedding size is set to 32, and the RNN
hidden size is set to 64 for all experiments.

We randomly split the dataset D into two disjoint subsets of equal size: a training set Dtrain and a calibration set Dcal. Unlike
the baselines that optimize the model parameters by maximizing the log-likelihood of the sequences in the entire dataset D,
we train the model using the sequences in Dtrain. The following training procedure is the same for both our method and the
baselines. The batch size is set to 64, the optimizer is Adam with a learning rate of 10−3, and the L2 norm of the gradient is
clipped to 5. We set the maximum number of epochs to 500 and perform early stopping if the training loss does not improve
for 5 epochs.

C.4. Implementation Details

All experiments in this paper are conducted on an NVIDIA RTX 3090 Ti GPU using PyTorch. For kernel density estimation
(KDE) in our test procedure, we use “scipy.stats.gaussian kde” with the parameter “bw method” set to h1 for sarr(X) and
h2 for sint(X). The values of h1 and h2 are selected from the grid {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0}. Following the
baselines, the results reported in Section 4.1 and Section 4.2 are averaged over 10 random seeds. In Section 4.3, we train the
neural TPP model with 5 different random initializations to compute the average results.

D. Extra Experimental Results
D.1. Runtime Comparison

We compare the inference runtime of CADES with the baselines on two real-world datasets. The experimental results,
averaged over five runs, are presented in Table 4. CADES requires slightly longer inference times compared to the baselines.
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The additional time taken by CADES can be attributed to its use of two non-conformity scores simultaneously and the
need for numerical integration. Despite this slight increase in runtime, the results indicate that the computational overhead
introduced by CADES is acceptable and does not diverge significantly from the baselines.

Table 4. Inference runtime averaged over 5 runs (in seconds).
Dataset 3S statistic MultiAD-Q+ CADES
LOGS 24.49 30.36 38.32

STEAD 19.14 22.27 25.98

D.2. Additional GOF Test for SPP

The AUROC scores for the IncreasingRate, InhomogeneousPoisson, and RenewalB scenarios are shown in Figure 8. These
results are consistent with the conclusions presented in Section 4.1. In these cases, CADES achieves superior or comparable
performance, validating its effectiveness across patterns distinct from the SPP.

0.0 0.2 0.4 0.6 0.8 1.0
Detectability

0.5

0.6

0.7

0.8

0.9

1.0

AU
RO

C

IncreasingRate

0.0 0.2 0.4 0.6 0.8 1.0
Detectability

0.5

0.6

0.7

0.8

0.9

1.0
InhomogeneousPoisson

0.0 0.2 0.4 0.6 0.8 1.0
Detectability

0.5

0.6

0.7

0.8

0.9

1.0
RenewalB

KS arrival KS inter-event Chi-squared 3S statistic Q+ statistic Q  statistic CADES

Figure 8. Performance of GOF test for the SPP under other three scenarios.

D.3. Ablation Study on Real-World Data

The results of CADES-arr and CADES-int on two real-world datasets are presented in Table 5. CADES-arr and CADES-int
refer to the variants that use a single non-conformity score sarr(X) and sint(X), respectively. We can observe that CADES
achieves superior overall performance. Notably, in certain scenarios, both CADES-arr and CADES-int perform worse than
CADES, or one of them performs poorly such as CADES-arr in the “LOGS - Packet duplication (1%)” scenario. These
observations highlight the benefits of using sarr(X) and sint(X) simultaneously.

Table 5. AUROC (%) results of the CADES variants for OOD detection on real-world datasets.

Dataset CADES-arr CADES-int CADES

LOGS - Packet corruption (1%) 94.14 90.59 96.48
LOGS - Packet corruption (10%) 99.60 97.84 99.48
LOGS - Packet duplication (1%) 58.43 92.98 92.88
LOGS - Packet delay (frontend) 98.24 96.99 98.15
LOGS - Packet delay (all services) 98.22 99.24 99.33

STEAD - Anchorage, AK 84.60 98.92 99.31
STEAD - Aleutian Islands, AK 99.85 99.82 99.95
STEAD - Helmet, CA 82.67 99.67 99.30

Average Rank 2.25 2.25 1.50

17


