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Abstract

Human activities are particularly complex and variable,
and this makes challenging for deep learning models to rea-
son about them. However, we note that such variability does
have an underlying structure, composed of a hierarchy of
patterns of related actions. We argue that such structure
can emerge naturally from unscripted videos of human ac-
tivities, and can be leveraged to better reason about their
content. We present HiERO, a weakly-supervised method to
enrich video segments features with the corresponding hi-
erarchical activity threads. We prove the potential of our
enriched features with multiple video-text alignment bench-
marks (EgoMCQ, EgoNLQ) with minimal additional train-
ing, and in zero-shot for procedure learning tasks (Ego4D
Goal-Step). Our results prove the relevance of using knowl-
edge of the hierarchy of human activities for multiple rea-
soning tasks in egocentric vision.
Project page: github.com/sapeirone/HiERO.

1. Introduction
Think about a typical home routine. You enter the kitchen,
grab onions and carrots, chop them, and put them in a pan
on the stove with oil. At the same time, you fill a pot with
water and put it on the stove. While you wait the water
to boil to cook the pasta, you pour some tomatoes in the
pan. Zooming out, these actions fall into interleaved threads
like preparing vegetables and cooking pasta, both part of a
broader routine like preparing a meal, which may overlap
with others like washing dishes. Egocentric video under-
standing has traditionally focused on isolated actions [1, 2],
often neglecting the hierarchical structure of human activ-
ity [11]. Procedure Learning (PL) addresses this to some
extent, but typically only models a single level of aggrega-
tion with supervised training on scripted examples. Con-
versely, we claim that there is significant value in learning
from the hierarchy of human behavior at multiple levels of
abstraction. Indeed, the richness of human activities lies not
only in single actions execution, but more prominently in
how these are interconnected at different levels of abstrac-

Figure 1. Zero-Shot procedure step localization with HiERO.
Given a long egocentric video, HiERO computes segment-level
features that encode the functional dependencies between the ac-
tions in the video at different scales.

tions. These structures can emerge without supervision, but
their quality depends on the feature extractor. Video models
may cluster actions by visual similarity [7], semantic simi-
larity (e.g., dicing carrots or slicing an onion) [5], or func-
tional similarity—grouping steps that contribute to a shared
goal, like meal preparation. We introduce HiERO, a hier-
archical architecture with a Temporal Encoder that aggre-
gates local temporal context and a Function-Aware Decoder
that discovers functionally coherent clusters using spectral
graph clustering. In this context, activity patterns emerge as
strongly connected regions capturing actions that are func-
tionally and temporally related, allowing the model to rea-
son on higher-level activities (Fig. 1). HiERO can perform
a wide set of reasoning tasks, including natural language
queries, step grounding, and others, mostly in zero-shot.

2. Related works

Long-form understanding. Long-form video understand-
ing in egocentric vision requires diverse reasoning abilities
to grasp the broader context of human activities [4, 6], inter-
pret interactions between objects, people, and locations [7],
and model the procedural nature of human activities [10].

https://github.com/sapeirone/HiERO


Figure 2. Step clusters in the features similarity matrix of a
video from Ego4D [3]. Colored rectangles are the GT steps.

Several approaches learn transferable representations for
downstream video understanding tasks by aligning short
video clips and their corresponding textual narrations [9].
HierVL [1] extends this approach by incorporating video-
level alignment through summaries. Conversely, HiERO
captures long-range functional dependencies between hu-
man actions without requiring explicit supervision or in-
structional video datasets.

3. Method
We design HiERO based on the intuition that, given a suffi-
ciently large collection of videos capturing human activities
in-the-wild, functional dependencies between actions nat-
urally emerge as frequently co-occurring patterns directly
from observations [10]. With HiERO, we learn a feature
space that captures these functional dependencies between
actions, i.e., those that frequently co-occur together are
close to each other and distant from the others. As a result,
such space allows related actions to be easily grouped into
high-level patterns with a simple clustering operation. Our
approach represents the video as a graph, in which nodes
correspond to short temporal segments, ideally represent-
ing one or a few actions, and detects functional threads as
regions of this graph whose nodes encode similar actions
based on their feature similarity.

Functional threads discovery. In our setting, we define
a strongly connected region as a group of graph nodes
with high functional similarity. The concept of similar-
ity strongly depends on the backbone used for node em-
beddings. If the backbone maps semantically similar ac-
tions—like cutting an onion and peeling a carrot—close
in feature space, these regions reflect high-level functional
threads (e.g., preparing vegetables). Figure 2 illustrates
how different backbones affect feature similarity. Omni-
vore, trained for supervised visual classification, empha-
sizes appearance-based similarity. In contrast, EgoVLP,
trained with narration supervision, reveals more coherent
functional regions, even without explicit step-level labels.
These regions often align with procedural steps or sub-
steps. Our method leverages this structure to cluster nodes
into high-level functional threads, ultimately partitioning a

graph G into n subgraphs G1, . . . ,Gn, each representing a
distinct step in the video.

3.1. The HiERO architecture
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Figure 3. Architecture of HiERO.

Inspired by previous works in video understanding [8],
we encode an input video V as a video graph with N nodes
G = (X, E ,p), where X ∈ RN×D is the node embed-
dings matrix, edge eij ∈ E connects nodes i and j if their
temporal distance is smaller than a threshold τ and the at-
tribute p ∈ RN encodes the temporal position of each node.
Each node represents a fixed-length segment of the video
and the node embeddings are computed using a video fea-
tures extractor from the segment frames. At training time,
each video is also associated with a set of narrations, de-
noted as TV = {(ni, ti)}i, where ni and ti are the textual
narration and its corresponding timestamp. HiERO is built
as an encoder-decoder architecture (Fig. 3).
Temporal encoder. The Temporal Encoder E is imple-
mented as a stack of Nl GNN-based blocks with temporal
subsampling operations to map the input video graph G(0)

to a set of temporally coarsened representations. Each stage
is composed of multiple TDGC [8] layers that implement
temporal reasoning on the graph by combining the embed-
ding of node i with a learnable projection of its temporal
neighbors N (i), i.e. nodes within a certain temporal dis-
tance d. Then, the nodes are subsampled to halve the tem-
poral resolution of the graph and obtain G(l+1), which is
fed to the next layer of the encoder. Therefore, the encoder
progressively extends the temporal context of the nodes, re-
gardless of whether the actions performed are related or not.
Function-Aware decoder. The Function-Aware decoder D
shares the same architecture of the encoder with one signif-
icant difference: instead of implementing message passing
on the local temporal neighborhood of the nodes, each de-
coder stage first groups the graph nodes based on their func-



tional similarity, i.e., whether they represent functionally
similar actions, and then implements temporal reasoning on
each group separately. This procedure connects nodes that
may be temporally distant but encode similar actions (func-
tional threads), allowing the model to reason about long-
term patterns not necessarily connected in time. At each
stage l the decoder takes the sum of the graph Gl

e from the
corresponding temporal encoder stage and the interpolated
output of the previous layer of the decoder and feed it to the
Cut & Match module, which partitions via spectral cluster-
ing [12] the graph into a set of K smaller graphs each cor-
responding to a group of functionally similar nodes. After
this process, nodes that correspond to far apart segments of
the video may be clustered together. We then use TDGC to
perform temporal reasoning into each partition separately
and map the nodes back to the original graph.

3.1.1. Training HiERO
We train HiERO to map video segments representing co-
occurring actions close in the feature space Lvna and to
detect functional threads not necessarily close in time Lft.
HiERO is trained with a combination of the two losses.
Video-narrations alignment. The video-narrations align-
ment loss Lvna encourages temporally co-occurring actions
to be closer in the embedding space. Inspired by prior
video-language models [5, 9], it uses a contrastive loss that
brings node embeddings closer to narrations within a tem-
poral window (positives) and pushes away others (nega-
tives). Unlike prior work [5], which aligns each node to
a single narration, our method accounts for multiple co-
occurring narrations, producing more context-aware em-
beddings that better capture high-level action patterns.
Functional threads loss. Aligning the visual embeddings
from larger temporal windows to their corresponding tex-
tual descriptions is more difficult. Using narrations is im-
practical as they are too fine-grained and the number of pos-
itive and negatives samples would grow rapidly with the
depth of the network and the size of the alignment win-
dow. Other forms of high-level supervision, e.g., video
summaries, require huge annotation efforts. Instead, we ap-
ply video-narrations alignment only on the output of the de-
coder and introduce a contrastive regularization objective to
make features at deeper layers belonging to the same func-
tional thread more similar to each other. The functional
threads loss Lft leverages the graph partition assignments
from the Cut & Match modules in the decoder.

4. Experiments
We train HiERO on EgoClip [5], a curated set of 3.8M
clip-text pairs obtained from Ego4D textual narrations, us-
ing pre-extracted features from several backbones, i.e., Om-
nivore [2], EgoVLP [5] and LAVILA [14], showing that
HiERO can be easily applied to different backbones.

Method EgoMCQ EgoNLQ

Accuracy (%) mIOU@0.3 mIOU@0.5
Inter Intra R@1 R@5 R@1 R@5

Omnivore [2]†(CVPR’22) − − 6.56 12.55 3.59 7.90
EgoVLP [5] (NIPS’22) 90.6 57.2 10.84 18.84 6.81 13.45
HierVL-Avg [1] (CVPR’23) 90.3 53.1 − − − −
LAVILA [14] (CVPR’23) 94.5 63.1 12.05 22.38 7.43 15.44
EgoVLPv2 [9] (ICCV’23) 91.0 60.9 12.95 23.80 7.91 16.11

Ours (Omnivore) 90.1 53.4 10.27 18.20 6.01 12.52
Ours (EgoVLP) 91.6 59.6 11.41 19.67 7.05 13.91
Ours (LAVILA) 94.6 64.4 13.35 21.12 8.08 15.31

Table 1. Results on EgoMCQ and EgoNLQ’s validation set,
using VSLNet [13] as grounding head for the latter. †Reproduced.

Evaluation benchmarks. We evaluate our approach on
several egocentric vision benchmarks to validate its ef-
fectiveness in different scenarios. We validate the video-
text alignment components of HiERO on EgoMCQ [5], a
set of 39K text-to-video multiple-choice questions derived
from Ego4D narrations, and EgoNLQ, a natural language
queries benchmark that aims to localize the segment of a
video (start and end timestamps) answering a given tex-
tual query. For Procedure Learning, we evaluate HiERO on
the Step Grounding and Step Localization tasks from Goal-
Step [11]. The design of HiERO allows to address these
tasks in a completely zero-shot setting.

4.1. Quantitative Results
4.1.1. Video-Text Alignment on EgoMCQ
We evaluate HiERO on EgoMCQ [5] and EgoNLQ [3] to
validate its video-text alignment capabilities and to show
that reasoning on functional threads at different scales can
support various video understanding tasks (Table 1). Our
window-based alignment loss encourages HiERO to learn
functional dependencies between actions, while clustering
groups together similar actions at different scales and over
a long temporal horizon. Together, these objectives are ef-
fective to discriminate between similar short-term actions,
which is critical for EgoMCQ, as well as to capture long-
range causal and temporal dependencies in the video, which
is essential for EgoNLQ. Unlike other backbones that ex-
tract features from a short temporal window and rely en-
tirely on the grounding head for high-level reasoning, our
features inherently capture a broader semantic understand-
ing of the video. In both benchmarks, HiERO significantly
improves the SOTA, regardless of the features extraction
backbone (+1.3% on intra accuracy on EgoMCQ and Top-
1 Recall at IoU = 0.3 on EgoNLQ). Remarkably, HiERO
achieves good results even with Omnivore features, despite
not being trained end-to-end on Ego4D.

4.1.2. Step Grounding
This task aims to localize a procedure step given its descrip-
tion in natural language. Performance is measured with Re-
call at different IoU thresholds. The supervised baseline
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Figure 4. Zero-Shot Localization qualitative results on [11].

Method Approach mIoU@0.3 mIoU@0.5

R@1 R@5 R@1 R@5
Omnivore [11] Supervised 12.02 19.99 7.71 14.17

EgoVLP Zero-Shot 10.73 24.70 7.38 16.53
Ours (Omnivore) Zero-Shot 9.29 22.89 6.24 15.05
Ours (EgoVLP) Zero-Shot 11.57 27.41 7.87 18.70

Table 2. Step-Grounding on Ego4D Goal-Step [11].

proposed in [11] leverages VSLNet [13] as grounding head
on top of the Omnivore pre-extracted features. Instead, we
adapt HiERO to this task by clustering the video segments
and selecting as prediction candidates the segment whose
average visual features are most similar to the textual fea-
tures of the query step. This allows to address the grounding
task in zero-shot without any additional training. Table 2
shows that HiERO consistently outperforms the Omnivore
and EgoVLP baselines in the supervised setting. In zero-
shot, HiERO beats the supervised counterpart on Top-5 Re-
call and achieves results close to SOTA on the other metrics.

4.2. Qualitative results on Step Localization
We show in Fig. 4 some success and failure cases in the
zero-shot Step Localization task on Goal-Step. This task
aims to predict triplets (start time, end time,
label) for all the procedure steps and substeps in the
video. We adapt HiERO to this task in zero shot by clus-
tering the output features to localize the steps and use the
similarity between the visual and the textual features of the
steps taxonomy to predict their labels. We observe that
many failure cases of our approach are related to the am-
biguous granularity of the step labels in the ground truth,
which leads to confusion between steps that could be either
steps or sub-steps, e.g., Cook or prepare the vegetables and
Cut the pepper in Fig. 4a.

5. Limitations
The actions hierarchy learned by our approach does not ad-
here to a predefined taxonomy, which makes our approach
flexible but also prone to ambiguities when evaluated on
benchmarks that assume a fixed set of possible steps. Also,
the imbalanced scenarios distribution in Ego4d may impact

the learned actions hierarchy, leading to low quality of the
learned representation on the least represented scenarios.

6. Conclusions
In this paper, we discuss the relevance of learning about the
hierarchical structure of human behavior collected in ego-
centric videos. We propose HiERO, a weakly-supervised
method able to fully exploit functional threads to enhance
reasoning capabilities. HiERO features proved their suit-
ability for video-text alignment tasks, and in zero-shot for
procedural learning tasks, proving the effectiveness and im-
portance of using functional reasoning at multiple levels.
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