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Abstract
The success of deep face recognition (FR) systems has raised seri-
ous privacy concerns due to their ability to enable unauthorized
tracking of users in the digital world. Previous studies proposed
introducing imperceptible adversarial noises into face images to
deceive those face recognition models, thus achieving the goal of
enhancing facial privacy protection. Nevertheless, they heavily rely
on user-chosen references to guide the generation of adversarial
noises, and cannot simultaneously construct natural and highly
transferable adversarial face images in black-box scenarios. In light
of this, we present a novel face privacy protection scheme with
improved transferability while maintain high visual quality. We
propose shaping the entire face space directly instead of exploiting
one kind of facial characteristic like makeup information to inte-
grate adversarial noises. To achieve this goal, we first exploit global
adversarial latent search to traverse the latent space of the genera-
tive model, thereby creating natural adversarial face images with
high transferability. We then introduce a key landmark regulariza-
tion module to preserve the visual identity information. Finally, we
investigate the impacts of various kinds of latent spaces and find
that F latent space benefits the trade-off between visual natural-
ness and adversarial transferability. Extensive experiments over
two datasets demonstrate that our approach significantly enhances
attack transferability while maintaining high visual quality, outper-
forming state-of-the-art methods by an average 25% improvement
in deep FR models and 10% improvement on commercial FR APIs,
including Face++, Aliyun, and Tencent.

CCS Concepts
• Security and privacy→ Software and application security;
Privacy protections.
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1 Introduction
Deep face recognition (FR) systems [30, 40] have triumphed in
both verification and identification scenarios and been widely ap-
plied across various domains, such as security [44], biometrics [28],
and criminal-investigation [31]. Despite its promising prospect, FR
systems pose a profound risk to individual privacy due to their
capacity for large-scale surveillance [2, 46], e.g., tracking user rela-
tionship and activities by analyzing face images from social media
platforms [13, 36]. Given the opacity of these FR systems, there is
an urgent need for an effective black-box approach to protect facial
privacy.

Recent works have attempted to protect facial privacy using
noise-based adversarial examples (AEs) [32, 38, 49] by adding care-
fully crafted adversarial perturbations to the source face images to
deceive malicious FR systems. However, the adversarial perturba-
tions are typically constrained to the 𝑙𝑝 norm within the pixel space,
which makes adversarial face images have conspicuous discernible
artifacts with poor visual quality [49].

Another solution is exploiting unrestricted adversarial exam-
ples [15, 35, 50, 61] to mislead malicious FR systems. Unlike noise-
based methods, they are not confined by perturbation budgets,
thereby maintaining superior image quality [4, 37, 48]. Recently
proposed makeup-based approaches (e.g., AMT-GAN [15], CLIP-
2Protect [35]) have achieved state-of-the-art performance, as they
can effectively embed adversarial noises in the makeup style by us-
ing generative adversarial networks (GANs) [10, 16] or GAN inver-
sion. However, they rely on extra user-chosen guidance, such as ref-
erence images in AMT-GAN and textual prompts in CLIP2Protect,
to make adversarial noises harmoniously integrated with face char-
acteristics. Besides, these methods excessively focus on the modifi-
cation of local attributes, leading to minor effects on facial identity
characteristics, resulting in limited transferability.

https://doi.org/10.1145/3664647.3681344
https://doi.org/10.1145/3664647.3681344
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Figure 1: Illustration of facial privacy protection

To address the above issues, we propose theGuidance-Independent
Adversarial Facial Images with Transferability (GIFT) for privacy
protection, which takes a big step towards bridging the gap be-
tween visual naturalness and adversarial transferability. Firstly, we
map face images to a low-dimensional manifold represented by a
generative model. We then conduct adversarial latent optimization
that moves along the adversarial direction. In contrast to [35], we
perform adversarial latent optimization over the global latent space
called Global Adversarial Latent Search (GALS), which can control
more semantic information with improved transferability. However,
in the absence of extra guidance information, GALS may change
the visual identity of resulting images. Therefore, we introduce
a key landmark regularization (KLR) method to rectify this issue.
Furthermore, we investigate the effect of diverse latent spaces on
our scheme. We find that the latent spaceW+, which is commonly
used in existing face privacy protection tasks, exhibits weaker trans-
ferability and lower perceptual image quality than the other two
prevalent latent spacesW and F . Consequently, we opt for the
optimal latent space F to further enhance our design. In summary,
our main contributions include:
• We propose a novel facial privacy protection approach using
Global Adversarial Latent Search to construct natural and
highly transferable adversarial face images without extra
guidance information.
• We reveal the limitations ofW+ latent space and the intrigu-
ing properties of the other two prevalent latent spacesW
and F under the facial privacy protection scenario.
• Extensive experiments on both face verification and identi-
fication tasks demonstrate the superiority of our approach
against various deep FR models and commercial APIs. No-
tably, we achieved a significant improvement of 25% than
existing schemes in terms of transferability.

2 Related Work and Background
2.1 Facial Privacy Protection
Recently, many works have been proposed to protect facial privacy
against unauthorized FR systems [29, 42, 43]. The typical strategy
involves the utilization of noise-based adversarial examples [29,
49, 57–60], where carefully crafted perturbations are added to face
images to deceive malicious FR models. Oh et al. [29] proposed
crafting protected face images from a game theory perspective in
the white-box setting, which is impractical in real-world scenarios.
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Figure 2: Evaluation of GALS and LALS on different FR mod-
els. We conduct training on a single model and subsequently
test it on the remaining three. Results are presented for three
different false acceptance rates (i.e., 0.1, 0.01, 0.001).

Thus TIP-IM [49] introduced the idea of generating adversarial
identity masks in the black-box setting. However, the perturbations
are usually perceptible to humans and affect the user experience.

Another strategy is to leverage unrestricted adversarial exam-
ples [4, 18, 37, 48, 52, 56], which are not constrained by the per-
turbation norm in the pixel space and enjoy a better image qual-
ity [4, 37, 48]. Among these, makeup-based unrestricted adversarial
examples are presented against unknown FR systems by concealing
adversarial perturbations within natural makeup characteristics.
Zhu et al. [61] made the first effort to utilize makeup to generate
protected face images in the white-box setting. Afterwards, Adv-
Makeup [50] synthesized imperceptible eye shadow over the orbital
region on the face, which has limited transferability. AMT-GAN [15]
generated adversarial face images with makeup transferred from
reference images in a black-box manner, which has a higher attack
success rate but suffers from obvious artifacts due to the conflict
between the makeup transfer module and the adversarial noises.
Recently, CLIP2Protect [35] traversed over the local latent space
that controls the makeup style of a pre-trained generative model by
using text prompts. However, all the above methods rely on guid-
ance (e.g., text or image references) to make the adversarial noises
distributed in a natural way. This is a disappointing constraint in
real-world applications as the users usually have no desired target
references. More importantly, the visual quality of output face im-
ages is largely affected by the references, as detailedly discussed
in Section 3.2. DiffProtect [26] and Adv-Diffusion [24] employ the
diffusion models [53] as the generative models and iteratively re-
fine the latent representations of facial images, although yielding
higher-quality adversarial facial images, exhibit limited attack trans-
ferability, rendering it impractical for real-world applications.

2.2 GAN Inversion
GAN inversion [1, 19, 39, 41, 47] intends to invert a given face im-
age back to a low-dimensional manifold which is expressed as a
latent space of a pre-trained GANmodel, such that the image can be
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Figure 3: Protection success rates of different latent spaces
on four FR models in the black-box setting. Specifically, we
perform training on a single model and subsequently test it
on the remaining three. We set the false match rate of 0.01
for each model.

faithfully reconstructed. As the StyleGAN [22] models trained on a
high-resolution face image dataset [21] exhibit exceptional image
synthesis capabilities, various GAN inversion methods have been
developed using different latent spaces based on StyleGANs. Gener-
ally, there are three typical latent spaces (i.e.,W [1],W+ [39], and
F [19]). They are the trade-off design between the reconstruction
quality and editability [25].W uses a mapping network to disen-
tangle different features with a high degree of editability. However,
it has limited expressiveness which restricts the range of images
that can be faithfully reconstructed. Meanwhile,W+ feeds differ-
ent intermediate latent vectors into each layer of the generator
via AdaIN [17], alleviating the image distortion at the expense of
editability. The latent space F consists of specific features which
enjoy the highest reconstruction quality but suffer from the worst
editability.

3 Methodology
3.1 Problem definition
In general, FR systems can operate with two modes: face verifica-
tion and face identification. For verification, the FR systems identify
whether two face images correspond to the same identity. For iden-
tification, the FR systems query the face database to identify whose
representation is closest to the input image. In this paper, we con-
sider both scenarios to sufficiently demonstrate the effectiveness of
our approach. As seen in Fig. 1, if the user’s source face image 𝒙𝑠
is directly posted to social media platforms, malicious FR systems
could potentially trace the relationships and activities of the user
by analysing the publicly available images.

With the help of facial privacy protection algorithms, users can
obtain the protected face image 𝒙𝑝 that appears indistinguishable to
human (i.e., naturalness) but can deceive the FR systems (i.e., trans-
ferablility). For the malicious FR systems, 𝒙𝑝 has the same identity
as the target impersonated image 𝒙𝑡 in both face verification and
face identification. Generally, the problem can be formulated as:
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Figure 4: FID comparison in three latent spaces

min
𝒙𝑝
L𝑎𝑑𝑣 = D

(
𝑓𝑛

(
𝒙𝑝

)
, 𝑓𝑛 (𝒙𝑡 )

)
s.t.H

(
𝒙𝑝 , 𝒙𝑠

)
≤ 𝜖

(1)

where D (·) represents a distance metric and 𝑓𝑛 (·) stands for a
FR model that outputs a feature vector by extracting the feature
representation of a face image. Contrary to noise-based adversar-
ial examples where H

(
𝒙𝑝 , 𝒙𝑠

)
=
𝒙𝑠 − 𝒙𝑝𝑝 and ∥ · ∥𝑝 is the 𝐿𝑝

norm,H
(
𝒙𝑝 , 𝒙𝑠

)
≤ 𝜖 quantifies the extent of unnaturalness of 𝒙𝑝

compared to 𝒙𝑠 .

3.2 Challenges and limitations
Existing works [15, 35] have experimentally demonstrated that the
guidance of the reference image or text prompts plays an important
role in maintaining the visual quality of adversarial face images
during the process of generation. Without using guidance, the
adversarial perturbations will be randomly generated and spread
all over the face without any constraints, leading to obvious arti-
facts in the result images. If we simply fix the adversarial area, the
noises may make the modified area extremely strange and distorted.
Therefore, existing works have to use extra information to guide
the distribution of adversarial noises such that they can harmonize
with facial characteristics.

Moreover, even with makeup information guidance, due to the
incomplete disentanglement of facial attributes, the adversarial
modifications concentrating on one kind of local semantics struggle
to integrate seamlessly with other facial semantic information. As
shown in Fig. 7, the visual quality can still be damaged in guidance-
based schemes, especially when the reference is not appropriately
chosen. Note that although CLIP2Protect [35] maintains the face
quality well in some cases, the background behind the face has been
significantly damaged. It should be emphasized that the image’s
visual quality should contain not only the facial information but
also the background.

Besides, these methods excessively focus on local attributes, lead-
ing to minor effects on facial identity characteristics. This limitation
results in limited transferability and renders them less practical for
real-world applications.

3.3 Our key insights
To address the aforementioned issues, we propose directly manipu-
lating the entire facial space to harmoniously integrate adversarial
noises, rather than solely using one kind of facial characteristic to
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Figure 6: Differences between Global Adversarial Latent
Search and Local Adversarial Latent Search. Global Adversar-
ial Latent Search seamlessly modifies the latent code along
the adversarial direction. In contrast, LALS merely adjust the
local attributes, which has many limitations.

guide the distribution of noises. In this way, all of the facial informa-
tion will be adaptively assembled, including makeup characteristics,
expressions, and face shape, as well as adversarial noises. In ad-
dition, by comprehensively optimizing every feature rather than
excessively optimizing a particular attribute, the transferability of
generated adversarial facial images is significantly improved. To
this end, we first have the following observations.

Observation I: Global adversarial latent search exhibits
enhanced transferability. In order to maintain the naturalness
of the face images 𝒙𝑝 , CLIP2Protect [35] only optimizes the latent
codes corresponding to the deep layers of StyleGAN that is asso-
ciated with the makeup style. This method is essentially a kind
of Local Adversarial Latent Search (LALS). Meanwhile, numerous
studies [3, 23] have affirmed that the initial layers of StyleGAN

control more face image attributes, such as pose, hairstyle, and
face shape. Therefore, we speculate that optimizing both the deep
layers and initial layers of latent codes, a.k.a, Global Adversarial
Latent Search (GALS), is more beneficial to enhance the adversarial
transferability, as they can control more semantic information.

Fig. 6 provides a visualization example to illustrate this obser-
vation. Specifically, LALS only focuses on optimizing local single
attributes, such as makeup-related features, potentially disturbing
adjacent attribute distributions or those that are not incompletely
decoupled, which might impact the visual effect. Moreover, the
modification of one single attribute is limited, resulting in relatively
smaller repercussions on the overall facial identity features com-
pared to GALS. Conversely, GALS harmoniously refines the entire
facial characteristics to sophisticatedly guide the distribution of
noises along the adversarial direction in the low-dimensional mani-
fold [6] represented as the latent space. We perform experiments to
validate this observation, as shown in Fig. 2, and find that GALS has
a higher protection success rate compared to LALS in the black-box
setting, indicating far better transferability than GALS.

Observation II: Key landmark regularization helps ensure
visual identity. Due to the absence of guidance information, our
approach may result in changes of visual identity during the pro-
cess of global optimization. Therefore, there is a need for a new
regularization method to maintain visual identity. Intuitively, lever-
aging the traditional MSE is promising for aligning the protected
image 𝒙𝑝 with the source image 𝒙𝑠 . Nevertheless, pixel-level regu-
larization may lead to the emergence of artifacts in the face image
and a reduction of adversarial effectiveness. Inspired by [26], we
introduce a method called key landmark regularization (KLR) due
to their capability to achieve region-level regularization, which
aligns two semantic segmentation maps of the protected image 𝒙𝑝
and the source image 𝒙𝑠 in the optimization process. This method
ensures consistency in the distribution of facial characteristics and
the overall face shape between 𝒙𝑠 and 𝒙𝑝 .
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Algorithm 1: Transferable Adversarial Facial Images
Input: Source image 𝒙𝑠 , target image 𝒙𝑡 , generator 𝐺 ,

encoder 𝐸𝑏 , semantic encoder 𝐸𝑠 , optimizer 𝐴𝑑𝑎𝑚.
Parameter: Iterations 𝑇1, iterations 𝑇2, transformation

probability 𝑝 , hyper-parameters 𝜆𝑝𝑒𝑟 , 𝜆𝑠𝑒𝑚 .
Output: Protected image 𝒙𝑝 .

1 Generate initial latent code𝒘𝑖𝑛𝑖 = 𝐸𝑏 (𝒙𝑠 ) ;
2 for 𝑖 = 0 to 𝑇1 − 1 do
3 Calculate L𝑟𝑒𝑐 with Eq. (2);
4 𝒘𝑖𝑛𝑖 ← 𝐴𝑑𝑎𝑚(𝒘𝑖𝑛𝑖 ,L𝑟𝑒𝑐 );
5 end
6 Obtain the initialized latent code𝒘𝑓 = 𝒘𝑖𝑛𝑖 ;
7 for 𝑖 = 0 to 𝑇2 − 1 do
8 Obtain intermediate image 𝒙𝑝𝑖 = 𝐺

(
𝒘 𝑓

)
;

9 Calculate semantic maps 𝑠𝑒𝑚𝑠 = 𝐸𝑠 (𝒙𝑠 ) and
𝑠𝑒𝑚𝑝 = 𝐸𝑠 (𝒙𝑝𝑖 );

10 Calculate L𝑡𝑜𝑡𝑎𝑙 with Eq. (5);
11 𝒘 𝑓 ← 𝐴𝑑𝑎𝑚(𝒘 𝑓 ,L𝑡𝑜𝑡𝑎𝑙 );
12 end

13 Obtain final latent code𝒘 𝑓
𝑜 ;

14 Return the protected image 𝒙𝑝 = 𝐺

(
𝒘
𝑓
𝑜

)
.

Observation III: F latent space benefits the trade-off be-
tween visual naturalness and adversarial transferability. It
is critical for a GAN inversion method to choose a good latent
space that can reconstruct the face images faithfully and facilitate
downstream tasks. Unfortunately, the latent spaceW+ widely used
in the existing facial privacy protection schemes has poor recon-
struction quality [25]. In light of this, we explore the performance
of the other two typical latent spaces,W and F . As shown in Fig.
3 and Fig. 4, the latent space F not only exhibits the best image
quality but also demonstrates strong black-box attack success rate
in the black-box setting, achieving the optimal trade-off between
naturalness and high adversarial transferability.

3.4 Transferable Adversarial Facial Images
Drawing inspiration from the above analysis, we propose a brand-
new generative framework (GIFT) to generate guidance-independent
adversarial facial images with transferability for facial privacy pro-
tection. The pipeline of our approach is depicted in Fig. 5. We first
employ GAN inversion to initialize the latent code that can faith-
fully reconstruct the source face image in F rather thanW+ [35]
latent space. Then, we conduct the global adversarial latent search,
which takes the protected image and the target image as inputs
to adversarially optimize the latent code of the protected face im-
age. Furthermore, we introduce a key landmark regularization to
preserve the visual identity of the protected image.

Latent Code Initialization: The latent code is initialized based
on GAN inversion. Given a source image 𝒙𝑠 and pre-trained encoder
𝐸𝑏 from [19], we first calculate the initial latent code𝒘𝑖𝑛𝑖 = 𝐸𝑏 (𝒙𝑠 )
in the F latent space. Then we optimize the latent code𝒘𝑖𝑛𝑖 by a
reconstruction loss, which is defined as:

L𝑟𝑒𝑐
(
𝒘𝑖𝑛𝑖

)
=L𝑚𝑠𝑒

(
𝒘𝑖𝑛𝑖

)
+ 𝛼L𝑝𝑒𝑟

(
𝒘𝑖𝑛𝑖

)
=

𝒙𝑠 −𝐺 (
𝒘𝑖𝑛𝑖

)2
+𝛼

𝐹 (𝒙𝑠 ) − 𝐹 (
𝐺

(
𝒘𝑖𝑛𝑖

))2
(2)

where𝐺 refers to the pre-trained generative model,L𝑚𝑠𝑒 andLper
denote mean-squared-error (MSE) and perceptual loss, respectively.
𝛼 is the weight assigned to L𝑝𝑒𝑟 . 𝐹 (·) represents an LPIPS [55]
network used to compute the perceptual distance. As a result, we ob-
tain the initialized latent code𝒘𝑓 , which can faithfully reconstruct
𝒙𝑠 by 𝐺 .

Global Adversarial Latent Search: We utilize an ensemble
training strategy with input diversity to search for a good adversar-
ial optimization direction similar to [15]. We select 𝑁 pre-trained
FR models {𝑓𝑛 (·)}𝑁𝑛=1 which exhibit high accuracy in the public
facial datasets, serving as white-box models to imitate the deci-
sion boundaries of potential target models in the black-box setting
during performing global optimization. The adversarial loss is:

L𝑎𝑑𝑣 =
1
𝑁

𝑁∑︁
𝑛=1
D

(
𝑓𝑛

(
𝑇

(
𝐺

(
𝒘 𝑓

)
, 𝑝

))
, 𝑓𝑛 (𝒙𝑡 )

)
(3)

where D (𝒙1, 𝒙2) = 1 − cos (𝒙1, 𝒙2) is the cosine distance, 𝑓𝑛 (·)
represents the 𝑛-th local pre-trained white-box model which maps
an input face image to a feature representation. 𝑇 (·) represents
the transformation function including image resizing and Gaussian
noising, and 𝑝 is a predefined probability that determines whether
the transformation will be applied to 𝐺

(
𝒘 𝑓

)
.

Key Landmark Regularization:We first leverage a pre-trained
semantic encoder from [51] to obtain the face semantic segmen-
tation maps 𝑠𝑒𝑚𝑠 and 𝑠𝑒𝑚𝑝 for the source and protected image.
We then take advantage of the semantic segmentation maps to
regularize the optimization process, ensuring that the protected
image preserves visual identity for humans. The regularization loss
is defined as:

L𝑠𝑒𝑚 = L𝐶𝐸
(
M

(
𝐺

(
𝒘 𝑓

))
,M (𝒙𝑠 )

)
(4)

where L𝐶𝐸 (·) is the cross-entropy loss,M (·) represents the pre-
trained semantic encoder. The total loss is:

Ltotal = 𝜆adv Ladv + 𝜆sem Lsem (5)

where 𝜆adv and 𝜆sem represent the hyper-parameters. The whole
optimization process is outlined in Algorithm. 1.

4 Experiments
4.1 Experiments Setup
Implementation Details: We employ StyleGAN2 pre-trained on
FFHQ [21] as our generative model and use the Adam optimizer
in all experiments. For Latent Code Initialization, we iteratively
optimize the latent code for 1200 steps with a learning rate of 0.01.
During the adversarial optimization process, we traverse over the
global latent space for 50 iterations with a learning rate of 0.002
to generate protected face images. We set the hyper-parameters 𝛼 ,
𝜆adv and 𝜆sem to 10, 1, 0.01, respectively.
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Figure 7: Comparion of visual quality between SOTA noise-based TIP-IM, unrestricted AMT-GAN, CLIP2Protect and our method

Table 1: Protection success rate (%) of impersonation attack under the face verification task

Method CelebA-HQ LADN-Dataset Average
IRSE50 IR152 FaceNet MobileFace IRSE50 IR152 FaceNet MobileFace

Clean 7.29 3.80 1.08 12.68 2.71 3.61 0.60 5.11 4.61
PGD [27] 36.87 20.68 1.85 43.99 40.09 19.59 3.82 41.09 25.60
MI-FGSM [8] 45.79 25.03 2.58 45.85 48.90 25.57 6.31 45.01 30.63
TI-DIM [9] 63.63 36.17 15.30 57.12 56.36 34.18 22.11 48.30 41.64
Adv-Makeup(IJCAI’21) [50] 21.95 9.48 1.37 22.00 29.64 10.03 0.97 22.38 14.72
TIP-IM(ICCV’21) [49] 54.40 37.23 40.74 48.72 65.89 43.57 63.50 46.48 50.06
AMT-GAN(CVPR’22) [15] 76.96 35.13 16.62 50.71 89.64 49.12 32.13 72.43 52.84
CLIP2Protect(CVPR’23) [35] 81.10 48.42 41.72 75.26 91.57 53.31 47.91 79.94 64.90

GIFT (Ours) 95.70 92.50 63.50 91.90 94.61 98.20 85.03 96.41 89.73

Table 2: Protection success rate (%) of impersonation attacks under the face identification task

Method IRSE50 IR152 FaceNet MobileFace Average
R1-T R5-T R1-T R5-T R1-T R5-T R1-T R5-T R1-T R5-T

TIP-IM [49] 16.2 51.4 21.2 56.0 8.1 35.8 9.6 24.0 13.8 41.8
CLIP2Protect [35] 24.5 64.7 24.2 65.2 12.5 38.7 11.8 28.2 18.2 49.2

GIFT (Ours) 69.8 93.6 72.0 87.6 44.8 70.2 41.6 80.2 57.1 82.9

Table 3: Comparison of FID and PSR Gain. PSR Gain is abso-
lute gain in PSR relative to Adv-Makeup.

Method FID ↓ PSR Gain ↑

Adv-Makeup [50] 4.23 0
TIP-IM [49] 38.73 35.34

AMT-GAN [15] 34.44 38.12
CLIP2Protect [35] 46.34 50.18

GIFT (Ours) 31.19 75.01

Datasets:We perform experiments for both face verification and
identification tasks. Face Verification: We utilize CelebA-HQ [20]
and LADN [11] as our test set. Specifically, for CelebA-HQ, we
select a subset which contains 1000 images with different identities.
For LADN, we divide the 332 images into 4 groups, with each
group of images impersonating a target identity provided by [15].
Face Identification: we randomly select 500 images of 500 different
identities in CelebA-HQ as the probe set, and the corresponding
500 images of the same identities along with the target image 𝒙𝑝 to
form the gallery set.
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Figure 8: Confidence scores returned from commercial APIs

Target Models: Following [15], we choose various deep FR
models and commercial FR APIs to evaluate the transferability of
the adversarial facial images generated by GIFT in the black-box
settings. Specifically, the deep FR models include MobileFace [5],
IR152 [7], IRSE50 [14], and FaceNet [33] and commercial FR APIs
include Face++, Aliyun, and Tencent.

Competitors:We compare GIFT with recent noise-based and
makeup-based facial privacy protection approaches. Noised-based
methods include PGD [27], MI-FGSM [8], TI-DIM [9], and TIP-
IM [49]. Makeup-based approaches include Adv-Makeup [50], AMT-
GAN [15] and CLIP2Protect [35]. Among these methods, TIP-IM
and CLIP2Protect are regarded as the state-of-the-art (SOTA) ap-
proaches against black-box FR systems in noise-based and unre-
stricted settings, respectively. Notably, TIP-IM employs a multi-
target objective within its optimization to discover the best image
from multiple targets. To maintain fairness in the comparison, we
employ a single-target variant.

Evaluation Metrics: We employ different evaluation strategies
to calculate the protection success rate (PSR) for the verification
and identification scenarios. For verification, we identify that two
face images belong to the same identity if D

(
𝒙𝑝 , 𝒙𝑠

)
≥ 𝜏 and then

calculate the proportion of successfully protected images in relation
to all images. For identification, we report the Rank-N targeted
identity success rate, which means that at least one of the top N
images belongs to the target identity after ranking the distance for
all images in the gallery to the given probe image. For commercial
FR APIs, we directly record the confidence scores returned by FR
servers. We also leverage FID [12], PSNR (dB) and SSIM [45] to
evaluate the image quality. The FID quantifies the dissimilarity
between two data distributions [54], commonly employed to assess
the extent towhich a generated dataset resembles one obtained from
the real world. PSNR and SSIM are commonly utilized techniques
for assessing the difference between two images.

4.2 Comparison Study
Evaluation on Black-box FR Models. We present experimen-

tal results of GIFT in the black-box settings on four different pre-
trained FRmodels on two public datasets under face verification and
identification tasks. For face verification, we set the system thresh-
old value at 0.01 false match rate for each FR model i.e., IRSE50

A
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O
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Figure 9: Visualization of gradient response using Grad-CAM
on FR model (IRSE50). The numbers under each image rep-
resent their cosine similarity with the target image, along
with the confidence scores from the commercial APIs (Face++,
Aliyun).
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Figure 10: PSR comparison of GALS and LALS

(0.241), IR152 (0.167), FaceNet (0.409), and MobileFace (0.302). The
quantitative results in terms of PSR under the face verification sce-
nario are displayed in Tab. 1. The results show that GIFT has the
capability to achieve an average absolute gain of about 25% and 39%
over SOTA unrestricted and noise-based facial privacy protection
methods, respectively. We also provide PSR under the face identi-
fication scenario in Tab. 2. Consistently, GIFT outperforms recent
methods in both Rank-1 and Rank-5 settings. Given that AMT-GAN
and Adv-Makeup were initially trained for impersonating the target
identity in the verification task, they have not been incorporated
into Tab. 2.

Evaluation on Image Quality. Tab. 3 shows the quantitative
evaluations on image quality. Notably, we report the results that
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Figure 12: PSR comparison of different latent spaces

Table 4: FID comparison of different latent spaces

Latent space MobileFace IR152 IRSE50 FaceNet Average

W 42.80 41.78 42.51 41.49 42.14
W+ 40.05 39.92 39.99 39.91 39.97
F 31.15 31.12 31.13 31.42 31.26

are averaged over 10 text prompts for CLIP2Protect. Although Adv-
Makeup [50] achieves the lowest FID score, its transferability is
limited due to perturbing only the eye region. Beyond Adv-Makeup,
GIFT yields better FID results with the highest transferability, indi-
cating that the adversarial face images generated by GIFT are more
natural.

In addition, we give a qualitative comparison of visual image
quality in Fig. 7 with noise-based method TIP-IM and makeup-
based unrestricted methods AMT-GAN and CLIP2Protect. TIP-IM’s
adversarial face images contain noticeable noise that can be easily
perceived by humans. The makeup generated by AMT-GAN some-
times does not align well with the facial characteristics, resulting in
artifacts on the face images. The adversarial face images generated
by CLIP2Protect have an obvious “painted-on” appearance, espe-
cially when viewed at high resolution. In contrast, GIFT produces
adversarial face images that look natural and effectively preserve
the background content, making it applicable in practical scenarios.

Evaluation on Commercial APIs. We further demonstrate
the effectiveness of GIFT on commercial APIs (i.e., Face++, Aliyun,
and Tencent) in face verification mode. The output of these APIs
is a confidence score on a scale of 0 to 100, serving as a metric

for the similarity between two images. A higher score signifies a
greater degree of similarity. The training data andmodel parameters
of these commercial APIs are undisclosed, effectively simulating
scenarios in real-world face privacy protection. We present the
average confidence scores for 1000 images from the CelebA-HQ
dataset in Fig. 8, demonstrating the superiority of GIFT over other
competitors.

4.3 Visualization and Analysis
In this section, we employ Grad-CAM [34] to explore why the
adversarial face images generated by GIFT exhibit better transfer-
ability.We present gradient visualizations of adversarial face images
generated by AMT-GAN, CLIP2Protect, and GIFT in the black-box
setting compared to the target images in Fig. 9. We can observe
that the gradient responses of AMT-GAN and CLIP2Protect either
concentrate on specific facial regions or focus on the background
of the face image. In contrast, the gradient responses of GIFT are
concentrated on the facial region, without being limited to local
features, but rather covering the entire face. Therefore, the adver-
sarial face images generated by GIFT exhibit superior performance,
both on deep FR models and commercial FR APIs.

4.4 Ablation Study
The Effect of KLR:We investigate the effect of key landmark

regularization on GIFT. As shown in Fig. 11, with the absence of
KLR, the visual identity of the protected face image will change.

The Effect of GALS: We analyze the effect of GALS on GIFT.
As depicted in Fig. 10, compared to LALS, which only adversari-
ally modifies the makeup style, GALS exhibits significantly better
transferability.

The Effect of Latent Space: We study the effect of different
latent spaces on GIFT. Both Fig. 12 and Tab. 4 indicate that, al-
thoughW latent space results in better adversarial transferability,
the generated adversarial face images exhibit poor image quality.
In contrast, F latent space maintains high transferability while
achieving the best image quality.

5 Conclusion
In this paper, focusing on protecting facial privacy against malicious
FR systems, we propose GIFT, a guidance-independent generative
framework to construct highly transferable adversarial facial im-
ages while maintain good visual effect. Specifically, we leverage
Global Adversarial Latent Search to construct natural and highly
transferable adversarial face images without extra guidance in-
formation. We further reveal the limitations ofW+ latent space
and the intriguing properties of the other two prevalent latent
spacesW and F under the facial privacy protection scenario. Ex-
tensive experiments on both face verification and identification
tasks demonstrate the superiority of GIFT against various deep FR
models and commercial FR APIs.
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