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Figure 1. Overview of the Being-0 framework. The humanoid agent framework, Being-0, comprises three key components: (1) the
Foundation Model (FM) for high-level task planning and reasoning, (2) the Connector, a vision-language model (VLM) that bridges the
FM and low-level skills, and (3) the Modular Skill Library for robust locomotion and dexterous manipulation. Together, these components
enable Being-0 to effectively control a full-sized humanoid robot equipped with multi-fingered hands and active vision, solving complex,
long-horizon embodied tasks in real-world environments.

Abstract

Building autonomous robotic agents capable of
achieving human-level performance in real-world
embodied tasks is an ultimate goal in humanoid
robot research. Recent advances have made signif-
icant progress in high-level cognition with Foun-
dation Models (FMs) and low-level skill devel-
opment for humanoid robots. However, directly
combining these components often results in poor
robustness and efficiency due to compounding er-
rors in long-horizon tasks and the varied latency
of different modules. We introduce Being-0, a
hierarchical agent framework that integrates an
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FM with a modular skill library. The FM han-
dles high-level cognitive tasks such as instruc-
tion understanding, task planning, and reasoning,
while the skill library provides stable locomotion
and dexterous manipulation for low-level control.
To bridge the gap between these levels, we pro-
pose a novel Connector module, powered by a
lightweight vision-language model (VLM). The
Connector enhances the FM’s embodied capabili-
ties by translating language-based plans into ac-
tionable skill commands and dynamically coordi-
nating locomotion and manipulation to improve
task success. With all components, except the FM,
deployable on low-cost onboard computation de-
vices, Being-0 achieves efficient, real-time perfor-
mance on a full-sized humanoid robot equipped
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with dexterous hands and active vision. Extensive
experiments in large indoor environments demon-
strate Being-0’s effectiveness in solving complex,
long-horizon tasks that require challenging nav-
igation and manipulation subtasks. For further
details and videos, visit our project page.

1. Introduction
In the evolving field of embodied AI, humanoid robots rep-
resent an ideal platform for achieving human-level intelli-
gence, enabling physical interactions with the real world in
ways akin to humans. To realize the ultimate goal of allow-
ing humanoid robots to autonomously perform tasks like
humans, current research primarily focuses on improving
individual skills, including locomotion (Radosavovic et al.,
2024; Zhuang et al., 2024), bimanual manipulation (Ze et al.,
2024a; Li et al., 2024a; Zhou et al., 2024), and whole-body
control (He et al., 2024a; Fu et al., 2024a). However, build-
ing fully autonomous agents for humanoid robots remains a
significant and largely unexplored challenge.

An autonomous robotic agent must solve diverse embodied
tasks in the real world by grounding language instructions
into feasible plans and reliably stitching skills to accomplish
long-horizon tasks. Recent studies (Firoozi et al., 2023; Hu
et al., 2023) in robotic agents have integrated Foundation
Models (FMs) with learning-based robotic skills, leveraging
FMs’ capabilities in general-purpose vision-language under-
standing for skill planning (Ahn et al., 2022; Chen et al.,
2024), success detection (Huang et al., 2022), and reason-
ing. While these methods have achieved some success in
building agents for robot arms (Liang et al., 2023), wheeled
robots (Ahn et al., 2022), and quadruped robots (Chen et al.,
2024), can the same success be replicated for humanoid
robots? In this paper, we introduce Being-0, a hierarchical
agent framework designed for humanoid robots.

We begin by equipping a universal FM-based agent frame-
work (Tan et al., 2024) with a modular robotic skill library.
This skill library includes a robust locomotion skill based
on joystick commands and a set of manipulation skills with
language descriptions, acquired through state-of-the-art tele-
operation (Cheng et al., 2024b) and imitation learning (Zhao
et al., 2023) methods. These skills enable the robot to walk
and manipulate objects in response to language commands.
In principle, the FM agent could call these skills based
on image observations in a closed-loop manner to solve
long-horizon tasks. However, we find that humanoid robots
introduce unique challenges for such a system.

Unlike wheeled robots, which can precisely follow planned
navigation trajectories and stop at specific positions for
object manipulation, humanoid robots face inherent insta-
bility in bipedal locomotion. This instability necessitates

frequent adjustments to locomotion commands for error
correction. However, existing FMs, such as GPT-4o, suf-
fer from limitations in inference efficiency and embodied
scene understanding, making humanoid agents less reactive
and robust during the alternating phases of navigation and
manipulation in long-horizon tasks.

To address these challenges, we propose a novel Connector
module, which serves as an intermediate layer between the
FM and skill library in Being-0. The Connector generates
real-time commands for both locomotion and manipulation
skills based on the FM’s language plan and visual observa-
tions. We model the Connector as a vision-language model
(VLM) and train it using first-person images of indoor navi-
gation annotated with language instructions, object labels,
and bounding boxes. This training scheme distills embod-
ied knowledge from vision-language navigation data into
the lightweight VLM-based Connector, enabling accurate
skill planning and efficient navigation at a higher control
frequency. Furthermore, to seamlessly stitch navigation
and manipulation skills, the Connector can send locomotion
commands to adjust the humanoid’s pose, improving the
initialization state for subsequent manipulation tasks.

We conduct extensive experiments on navigation, manipu-
lation, and long-horizon tasks using a full-sized humanoid
robot equipped with dexterous hands and an active camera.
The results demonstrate that Being-0 achieves an average
completion rate of 84.4% on challenging long-horizon tasks,
highlighting the significant contribution of the Connector
module and the use of active vision in the system. By de-
ploying all modules – except for the FM on the cloud –
on onboard computation devices, Being-0 achieves 4.2×
efficiency in navigation compared to fully FM-based agents.

Our contributions can be summarized as follows:

• We propose a hierarchical agent framework for hu-
manoid robots, where each layer is optimally deployed
on either the cloud or onboard devices, enabling effi-
cient execution of long-horizon embodied tasks.

• We introduce a VLM-based Connector module to
bridge the gap between the FM’s language-based task
plans and the execution of low-level skills. This mod-
ule enhances embodied decision-making and effec-
tively coordinates locomotion and manipulation skills
for humanoid robots.

• Our agent is capable of controlling humanoid robots
with multi-fingered dexterous hands and active cam-
eras, enhancing their dexterity in both navigation and
manipulation tasks.

2. Humanoid Robot and Agent
As illustrated in Figure 1, we consider a humanoid robot
with 41 degrees of freedom (DoFs), including a 13-DoF
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Figure 2. Workflow of Being-0 for the task “make a cup of coffee”. The figure illustrates the step-by-step execution of the task, with
images arranged in two rows. The execution order proceeds left to right in the first row, then continues left to right in the second row.
Images with yellow borders indicate decision-making points for the Foundation Model (FM). The yellow dialog boxes display the FM’s
plans, the green boxes show decisions made by the Connector, and the blue boxes represent the skills called from the modular skill library.

lower body (two legs and a torso), two 7-DoF arms, two 6-
DoF dexterous hands, and a 2-DoF neck. The multi-fingered
dexterous hands enable complex, human-like manipulation,
while the actuated neck, equipped with a binocular RGB
camera, provides active vision. This hardware configuration
grants the robot human-level dexterity in visual perception,
navigation, and object interaction.

An autonomous agent aims to complete real-world tasks
described in natural language by controlling the robot’s
whole-body joints. Formally, at any time, the agent has
access to a task description l (e.g. “make a cup of cof-
fee”) and can query the robot’s observations, including: (1)
Proprioception:

(
ql, qu, qh; q̇;ω

)
, where ql, qu, qh denote

joint positions of the lower body, upper body, and neck,
respectively; q̇ represents joint velocity; and ω is the root
velocity and angular velocity acquired from the IMU. (2)
Visual input: binocular RGB images ol, or from the left
and right cameras. The agent can take actions (al, au, ah),
which specify target joint positions for the PD controller of
the lower body, upper body, and neck, respectively.

Instead of directly mapping task descriptions and observa-
tions into muscle actuation, humans rely on a hierarchical
system to solve real-world tasks. For example, the task
“make coffee” is first decomposed into detailed plans such
as “find a cup, grasp a cup, find a coffee machine...” based
on prior experience. Then, practiced motor skills, such as
walking and grasping, are reused to sequentially execute
the task. Recent advances in robotic agents (Ahn et al.,
2022; Huang et al., 2022) adopt this approach by integrating
a high-level planner with a low-level skill library. In this
paper, we aim to build such an agent for humanoid robots,
addressing the unique and largely unexplored challenges in

this domain.

3. The Hierarchical Agent Framework
3.1. Modular Skill Library

The first challenge we address is: how can we acquire di-
verse, robust low-level skills for a humanoid robot to support
solving real-world, long-horizon tasks? In the literature on
whole-body control (Fu et al., 2024a; He et al., 2024a),
policies for individual skills typically map observations to
whole-body target joint positions, simultaneously control-
ling leg motion and arm manipulation. However, these meth-
ods have not yet developed a wide range of manipulation
skills due to the complexity of achieving precise manipu-
lation, stable locomotion, and sim-to-real deployment with
one policy.

For most tasks, we observe that the lower body and upper
body serve distinct functionalities: the lower body is pri-
marily used for navigation, while the upper body is used
for manipulation (Cheng et al., 2024a). This observation
motivates us to develop separate skills for stable lower-body
locomotion and upper-body manipulation, building on re-
cent advances (Kim et al., 2024; Cheng et al., 2024b) that
have demonstrated the feasibility of acquiring abundant
upper-body manipulation skills while keeping the lower
body fixed.

Stable Locomotion with Joystick Commands. The loco-
motion skill, which controls the lower-body joints, must
enable navigation in various directions and maintain stable
standing during manipulation tasks. We adopt reinforcement
learning (RL) approaches (Ha et al., 2024) to train a goal-
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conditioned proprioceptive policy πL(al|ql, qu, q̇, ω; vg)
in simulation (Makoviychuk et al., 2021), followed by
sim-to-real deployment at a control frequency of 50 Hz.
Here, vg represents the joystick velocity command. By
incorporating domain randomization and external forces
during simulation, this skill enables the robot to walk
according to joystick commands while maintaining bal-
ance. To integrate this into the skill library, we define
a set of locomotion skills based on different joystick
commands, along with skills for adjusting the head for
active vision: {no action, go straight, walk backwards,
turn left, turn right, sidestep left, sidestep right, tilt head,
turn head}.

Acquiring Manipulation Skills. Teleoperation and im-
itation learning have emerged as promising approaches
for acquiring diverse robotic manipulation skills at low
cost. To collect high-quality, human-like manipulation
data for the humanoid equipped with two dexterous hands
and active vision, we use Apple VisionPro for teleopera-
tion, following recent work (Cheng et al., 2024b). Binoc-
ular image observations ol, or are projected to the Vision-
Pro, and the captured human motions of the head, wrists,
and fingers are retargeted to robot actions at a control fre-
quency of 10 Hz. For each skill, teleoperation trajecto-
ries τ = {(olt, ort , qut , qht , aut , aht )}Tt=1 are recorded, includ-
ing robot observations and actions (excluding the lower
body). We use ACT (Zhao et al., 2023), a behavior-cloning
method with a Transformer architecture, to train the pol-
icy πMi

(
[auj , a

h
j ]

t+K
j=t |olt, ort , qut , qht

)
for each manipulation

skill Mi, associated with a language description such as
“grasp bottle”. The length of the predicted action sequence,
K, is set to 30 during training and 10 during deployment.
This approach ensures scalability of the skill library, as a
new skill can be acquired with 50 ∼ 150 trajectories, requir-
ing less than 1 hour of teleoperation.

3.2. Foundation Model

The high-level planner of the agent makes skill-level deci-
sions across diverse tasks and environments, necessitating
strong capabilities in general-purpose vision-language un-
derstanding and reasoning. Foundation Models (FMs) excel
in these areas and have been widely adopted in recent re-
search on AI agents (Wang et al., 2024; Tan et al., 2024). For
example, Cradle (Tan et al., 2024), an agent framework built
on GPT-4o, has been successfully applied to open-world
games and software usage, operating keyboard and mouse
skills based on image observations. Inspired by this work,
we adapt the Cradle framework to build a generalist agent
for humanoid robots, enabling the robot to operate skills
from the skill library and solve real-world tasks.

Given an instruction l and an image observation ol, the FM
(GPT-4o) performs three key functionalities for decision-

making: (1) Reasoning: The FM generates a description
of the observed image and instruction, aiding in task un-
derstanding and identifying the current stage of execution.
(2) Detection: The FM evaluates the success of recently
executed skills, identifying failures and exceptions to inform
task planning. (3) Planning: Based on the reasoning and
detection results, the FM selects the next skill to execute
from the skill library. Detailed prompt designs for the FM
can be found in Appendix B.3.

However, when directly integrating the FM with the skill
library, we encounter several challenges that severely hinder
system performance. The inherent instability of bipedal lo-
comotion makes the humanoid’s position unpredictable after
short periods of walking, necessitating frequent adjustments
to joystick commands rather than executing open-loop com-
mand sequences. Additionally, existing FMs, including
GPT-4o, struggle with accurate 3D scene understanding,
often failing to estimate the direction and depth of naviga-
tion targets correctly, which can lead to incorrect skill plans
(see experimental results in Figure 3). Even when the agent
successfully navigates to a target location (e.g., a table), its
final standing position may not provide a suitable initial
state for subsequent manipulation skills (e.g., “grasp cup”),
resulting in task failure (see Figure 5). Furthermore, the low
inference speed of large FMs significantly reduces system
efficiency, causing the robot to move slowly and react less
promptly to dynamic environments.

To address these challenges, we propose a novel Connector
module in Being-0, which bridges the gap between the
FM and the skill library, enhancing real-time, embodied
decision-making.

4. Embodied Connector
The primary goal of the Connector is to translate high-level
language-based plans generated by the FM into executable
skill commands reliably and efficiently. At the core of the
Connector is a lightweight vision-language model (VLM)
trained on annotated navigation data, which enhances the
agent’s embodied capabilities. This VLM enables several
downstream functionalities, including grounded skill plan-
ning, closed-loop navigation, and improved transitions be-
tween navigation and manipulation during long-horizon task
execution.

4.1. Training the Vision-Language Model

To equip the VLM with spatial and object understanding,
as well as the ability to anticipate future skills based on
context, we train it on a dataset of first-person navigation
images. These images are annotated with language descrip-
tions, skills, object labels, and bounding boxes. We adopt
VideoLLaMA2 (Cheng et al., 2024c) as the backbone archi-
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tecture, using image observations and text instructions as
inputs. The model is optimized through multi-task learning,
encompassing image description, skill prediction, and object
detection. The trained VLM achieves an average inference
time of approximately 1 second on onboard devices across
all tasks, significantly outperforming the latency of GPT-4o
on cloud services. Further details on the dataset and training
process are provided in Appendix B.2.

4.2. Grounded Skill Planning

The main usage of the VLM is to convert the FM’s language-
based plans and real-time image observations into actionable
skill plans, such as navigation targets or manipulation skills.
By leveraging its enhanced understanding of relative 3D
object locations, the VLM not only grounds the FM’s plans
into executable skills but also corrects or refines them when
necessary. For example: If the FM generates a plan to “grasp
a cup” but the robot is still far from the table, the VLM
interprets “grasp a cup” as a long-term goal and outputs the
feasible skill (e.g., “move towards(table).”). Conversely, if
the FM plans to “find a table” but the robot is already at
the table, the VLM’s navigation functionality (Section 4.3)
signals success to the FM, prompting it to proceed to the
next skill through reasoning. This capability ensures that the
planned skills remain grounded in the physical environment,
reducing errors and improving task success rates.

4.3. Visual Navigation with Locomotion Skills

To enable the robot to reach visual navigation goals (e.g.,
a table), the Connector leverages the VLM’s visual under-
standing and object detection capabilities. When the goal
object is within the robot’s field of view, the Connector esti-
mates its relative position using the detected bounding box
and synthetic depth from binocular images. Based on this es-
timation, the VLM selects the most appropriate locomotion
skill to move towards the object’s direction. If the object is
not visible, the VLM triggers an exploration routine, com-
bining locomotion skills with active camera movements to
search for the goal. This approach significantly enhances
the robot’s ability to locate objects compared to systems
with fixed cameras. Implementation details are provided in
Appendix B.2. By integrating the VLM’s efficient inference
capabilities with modular locomotion skills, this method
accelerates humanoid robot navigation while maintaining
robustness in dynamic environments.

4.4. Coordinating Navigation and Manipulation

To address the challenge that navigation processes may ter-
minate in suboptimal poses for subsequent manipulation
skills, we propose a pose adjustment method using the VLM.
During navigation, the VLM predicts not only the object’s
bounding box but also the optimal alignment direction for

the robot relative to the object. If the robot’s current facing
direction deviates from this alignment, the VLM triggers a
composite skill combining head rotation and forward move-
ment to adjust the robot’s pose. This allows the robot to
approach the target object along an arc-shaped path, ensur-
ing it reaches an optimal position for manipulation. Further
details are provided in Appendix B.2.

4.5. Summary

Figure 2 illustrates the workflow of Being-0, highlighting
the role of the Connector module. In summary, the em-
bodied Connector provides several critical advantages for
executing long-horizon tasks. By leveraging the lightweight
VLM, the Connector ensures real-time responsiveness, en-
abling the robot to adapt dynamically to changes in its envi-
ronment. This real-time capability is essential for efficient
task execution, as the Connector dynamically selects and
sequences modular skills, significantly reducing operational
latency. Unlike the FM, the VLM’s enhanced spatial under-
standing allows the robot to accurately perceive and respond
to its surroundings, grounding abstract language-based plans
in real-time visual input. This spatial reasoning capability
is particularly valuable in complex tasks, where the Connec-
tor’s robustness ensures adaptability to unexpected obstacles
or environmental variations. Additionally, the Connector
facilitates improved transitions between navigation and ma-
nipulation by adjusting the robot’s pose, ensuring that the
robot reaches the proper positions for subsequent skills.
Together, these features make the embodied Connector a
cornerstone of Being-0, enabling it to tackle challenging,
long-horizon tasks that require both navigation and manipu-
lation in complex environments.

5. Experiments
5.1. Real-World Setup

We conduct experiments on a Unitree H1-2 humanoid robot
equipped with two Inspire hands for manipulation, two Dy-
namixel motors for neck movement, and a ZED-mini camera
mounted on the neck for active vision. The NVIDIA Jetson
AGX onboard device is used to deploy the Connector and
all modular skills.

Our experimental environment is a large office scene span-
ning a 20×20 (m) area, featuring multiple office cubicles,
a wooden table, a coffee machine, and corridors connect-
ing reception and meeting rooms. This complex and richly
populated environment provides a challenging benchmark
for evaluating navigation and long-horizon task execution
capabilities.

To build the manipulation skill library, we collect data for a
variety of daily manipulation tasks, including single-hand
and bimanual tasks such as grasping and placing objects,
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Table 1. Task completion rates for Being-0 with and without the
Connector across various long-horizon tasks. The results demon-
strate significant performance improvements when the Connector
is used.

Task w/o Connector Being-0

Fetch-bottle 0.00 0.90
Deliver-basket 0.00 0.80
Prepare-coffee 0.00 0.75
Make-coffee 0.90 0.90
Deliver-coffee 0.33 0.87

operating a basket with items, using a coffee machine, and
playing with toy bricks and chess games. The data collection
and training details are presented in Appendix B.1.

We evaluate the agent on a diverse set of long-horizon tasks
designed to test the system’s robustness in task planning and
skill execution. These tasks include:

• Fetch-bottle and Deliver-basket: These tasks require
the robot to navigate to a distant wooden table and
perform manipulation tasks.

• Prepare-coffee, Make-coffee, and Deliver-coffee:
These are particularly challenging tasks composed
of multiple subtasks, including precise manipulation
skills such as pressing buttons on the coffee machine
and placing a cup in the correct position.

Further details on the task setups are provided in Appendix
A.3.

5.2. Solving Long-Horizon Embodied Tasks

We evaluate the performance of Being-0 on long-horizon
embodied tasks, with the main results presented in Table 1.
These tasks are designed to test the robot’s ability to execute
complex sequences of skills in real-world environments,
requiring precise coordination between high-level cognition
and low-level skills.

The results demonstrate a significant performance improve-
ment when the Connector module is utilized, particularly
for tasks requiring multiple steps and integration of different
skills. For example, in the Fetch-bottle task, the baseline
system (w/o Connector) achieves a score of 0.00, whereas
the system with the Connector attains a remarkable score of
0.90. Similarly, tasks such as Deliver-basket and Prepare-
coffee show substantial improvements, with performance
increasing from 0.00 to 0.80 and 0.00 to 0.75, respectively.

These findings highlight the critical role of the Connector
in enabling the robot to effectively complete long-horizon
tasks. By bridging the gap between the FM and the skill
library, the Connector enhances task success rates, partic-
ularly for scenarios requiring complex, sequential skills.

Table 2. Ablation study on the proposed adjustment method in the
Connector module. The results indicate the number of successful
manipulations out of 5 navigation trials. (t) denotes “on the table”
and (m) denotes “on the coffee machine”.

Task w/o Adjust. Being-0

Grasp-bottle 2 / 5 4 / 5
Place-basket 4 / 5 3 / 5
Grasp-coffee 1 / 5 4 / 5
Place-coffee (t) 4 / 5 5 / 5
Place-coffee (m) 0 / 5 3 / 5

Overall, the results confirm that Being-0 is highly capable
of executing long-horizon tasks with robust and reliable
performance.

5.3. Ablation Study

Adjustment in Navigation. We evaluate the proposed
adjustment method in the Connector by testing the agent on
two-stage tasks that involve navigation followed by manip-
ulation. In this setup, the success rate of the manipulation
task directly reflects the quality of the robot’s termination
state after navigation. Table 2 presents the results comparing
Being-0 with and without adjustment.

For grasping tasks, such as Grasp-bottle and Grasp-coffee,
Being-0 with adjustment significantly outperforms the abla-
tion baseline, achieving success rate gains of over 0.4. This
improvement can be attributed to the robot’s ability to termi-
nate navigation in positions that are favorable for grasping.
Without adjustment, the robot may stop too far from the ob-
ject or position the object behind the grasping hand, causing
the subsequent grasping skill to fail (see Figure 5).

Placing tasks on the table, including Place-basket and Place-
coffee (t), are less sensitive to adjustment. This is because,
as long as the robot reaches the table, it can successfully
place the object, regardless of its standing pose relative to
the table. However, for Place-coffee (m), which requires
placing the cup on a coffee machine with a very small avail-
able area, Being-0 with adjustment performs significantly
better.

These results demonstrate that the proposed adjustment
method enhances performance in sequential navigation
and manipulation tasks, particularly for manipulation tasks
where the success depends heavily on the robot’s initial state
relative to the object.

Active Vision. The active camera is a core hardware com-
ponent of our system, significantly enhancing the robot’s
dexterity across various skills. We conduct an ablation study
to evaluate the performance of Being-0 when using a fixed
camera with different pitch angles, compared with the active
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Table 3. Success rates of navigation and manipulation tasks with different active camera configurations. The number following Fixed
Cam. denotes the pitch angle set for the camera in the absence of active neck movement.

Method Navigation Manipulation

table coffee machine grasp coffee place coffee

Fixed Cam. (0.3) 5 / 5 5 / 5 0 / 5 0 / 5
Fixed Cam. (0.6) 0 / 5 0 / 5 2 / 5 1 / 5
Fixed Cam. (0.9) 0 / 5 0 / 5 4 / 5 5 / 5
Being-0 (Active Cam.) 5 / 5 5 / 5 5 / 5 5 / 5

camera configuration. Given that the camera’s pitch angle
impacts both navigation and manipulation performance, we
test the agent with fixed camera setups at various angles.
Table 3 presents the results across different tasks.

For navigation tasks, we observe that a small pitch angle
(Fixed Cam. (0.3)) yields good performance, while larger
pitch angles result in failure. This is because a camera with
a large pitch primarily views the ground, causing the agent
to lose sight of navigation targets. In contrast, for tabletop
manipulation tasks, higher pitch angles improve success
rates, as the robot needs to look downward to locate objects
on the table.

However, no fixed camera configuration achieves high suc-
cess rates for both navigation and manipulation tasks. In
comparison, Being-0 with an active camera consistently
achieves perfect success rates across all tasks. These results
underscore the significant advantage of an active camera,
enabling the robot to dynamically adapt its field of view to
meet the requirements of diverse tasks.

Efficiency. Being-0 demonstrates notable advantages in
efficiency, primarily due to the inclusion of the proposed
Connector module. To evaluate this, we conduct an ablation
study on the task “navigate to the wooden table,” with the
results presented in Table 4.

The results indicate that Being-0 with the Connector
achieves a 4.2× increase in moving speed compared to the
configuration without the Connector, along with a perfect
success rate of 5/5. In contrast, the agent without the Con-
nector consistently fails to reach the distant target. This is
because GPT-4o alone frequently makes errors in planning
locomotion directions, leading to inefficient or incorrect
navigation paths. These findings highlight the critical role
of the Connector module in enhancing the efficiency of the
Being-0 framework.

5.4. Robustness and Scalability

Navigation. To assess the robustness of Being-0 in naviga-
tion, we test it across various scene configurations and tasks.
The results, shown in Table 5, demonstrate that Being-0

Table 4. Ablation study on the efficiency of Being-0 in navigation.
The table reports the average moving speed (cm/s) and success
rates for various agent configurations.

Method Avg. Speed Success

w/o Connector 2.3 0 / 5
Fixed Cam. (0.3) 8.5 5 / 5
Being-0 9.6 5 / 5

Table 5. Navigation performance across various scene configura-
tions and target locations.

Task Success

In-room 1.00
In-room with obstacles 0.80
Cross-room 0.83

consistently achieves high success rates across all settings.

For navigation to targets within the same room, Being-0
achieves a perfect success rate of 1.0. When adapting to
unseen layouts with obstacles, it maintains strong perfor-
mance with a slight drop of 0.2 in success rate. Additionally,
Being-0 successfully handles cross-room navigation tasks,
achieving a high success rate of 0.83. These tasks require
multi-step reasoning and planning by the FM. For example,
to locate the reception table, the robot must first identify
and navigate to the room’s exit before proceeding further.

Manipulation Skills. Table 6 presents the performance
of manipulation skills across various settings. The success
rate shows a slight decline when handling unseen objects
or encountering visual perturbations, demonstrating the ro-
bustness and generalizability of the learned manipulation
policies.

Furthermore, the same framework used for acquiring manip-
ulation skills can be extended to dexterous hands equipped
with tactile sensors (the Play-chess task in Table 6) and
tasks requiring precise manipulation of small objects (see
Figure 6), demonstrating the scalability of the skill library to
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Table 6. Performance of manipulation skills across different scene
configurations, including seen objects, unseen objects, and scenar-
ios with visual perturbations. * denotes the use of dexterous hands
equipped with tactile sensors.

Task Seen
Obj.

Unseen
Obj.

Perturb.

Grasp-bottle 0.86 0.63 0.77
Handout-snack 0.90 1.00 0.80
Place-pole 0.90 -- 0.80
Play-chess* 0.90 -- 0.90

support more complex and challenging manipulation tasks.

6. Related Work
Humanoid Locomotion and Manipulation. Humanoid
robots (Goswami & Vadakkepat, 2018; Gu et al., 2025)
are considered an ideal morphology for human-designed
environments, where locomotion and manipulation are fun-
damental skills. Early approaches focused on locomotion
using optimal control (Miura & Shimoyama, 1984; Dariush
et al., 2008; Wensing et al., 2023), while recent advances
have successfully trained locomotion policies with rein-
forcement learning (RL) and sim-to-real techniques (Ha
et al., 2024), achieving robust walking on flat ground (Xie
et al., 2020), complex terrains (Siekmann et al., 2021; Ra-
dosavovic et al., 2024; Li et al., 2024b), and advanced park-
our skills (Zhuang et al., 2024). For manipulation, while
RL-based methods (Yuan et al., 2024; Huang et al., 2024)
suffer from the significant sim-to-real gap, imitation learn-
ing with teleoperation data has been a dominant approach
due to its simplicity and effectiveness. Research has ex-
plored diverse teleoperation schemes, leveraging VR (Cheng
et al., 2024b), exoskeletons (Fu et al., 2024b; Yang et al.,
2024), or cameras (Fu et al., 2024a). Improved imitation
learning methods, such as Diffusion Policies (Chi et al.,
2023; Ze et al., 2024b;a) and ACT (Zhao et al., 2023), have
further advanced training performance. Recently, whole-
body control (Fu et al., 2024a; He et al., 2024a;b; Ji et al.,
2024) has gained attention for integrating locomotion and
manipulation within a single policy. However, this remains
challenging due to the combined complexities of both fields.

Embodied Agents (Firoozi et al., 2023; Hu et al., 2023)
for robotics require not only low-level skills but also
strong capabilities in common-sense reasoning for high-
level decision-making. Recent research has explored two
primary approaches to building embodied agents with Foun-
dation Models (FMs). The first approach directly applies ex-
isting FMs, pre-trained on Internet-scale datasets, to robotic
tasks without additional fine-tuning. These models leverage
their strong general-purpose vision-language understand-

ing capabilities for embodied tasks such as planning (Ahn
et al., 2022; Yuan et al., 2023; Chen et al., 2024; Kannan
et al., 2024) and reasoning (Huang et al., 2022; Zhang et al.,
2023a; Liu et al., 2024b). These methods typically rely
on a predefined skill library for low-level execution. The
second approach focuses on training robotic FMs using ex-
tensive robotic datasets. Notable efforts include Robotic
Transformers (Brohan et al., 2022; 2023), vision-language-
action (VLA) models (Jiang et al., 2022; Kim et al., 2024;
Team et al., 2024; Liu et al., 2024a; Black et al., 2024;
Cheang et al., 2024), and video-language planning models
(Yang et al., 2023; Du et al., 2023). While these methods
have shown promise for robot arms with grippers, the lack
of large-scale datasets for humanoid robots – particularly
those with dexterous hands and active cameras – remains a
significant barrier to developing FMs for humanoid robots.

Vision-Language Models (VLMs) build upon the remark-
able success of Large Language Models (Achiam et al.,
2023) to develop capabilities in multi-modal understanding
and reasoning. Recent advancements include the develop-
ment of text-image VLMs (Alayrac et al., 2022; Chen et al.,
2023; Li et al., 2023; Bai et al., 2023; Liu et al., 2023) and
text-video VLMs (Zhang et al., 2023b; Shu et al., 2023;
Maaz et al., 2024; Jin et al., 2024). In this work, we uti-
lize the open-source VideoLLaMA2 (Cheng et al., 2024c)
to train the Connector module within the humanoid agent,
enhancing efficiency and grounding decision-making for
embodied tasks.

7. Conclusion and Limitations
In this work, we introduced Being-0, a hierarchical agent
framework for humanoid robots, designed to control a hu-
manoid equipped with dexterous hands and active vision to
solve long-horizon embodied tasks. The novel VLM-based
Connector module effectively bridges the gap between the
high-level Foundation Model and low-level skills, signif-
icantly enhancing the performance and efficiency of the
humanoid agent. Extensive real-world experiments demon-
strate Being-0’s strong capabilities in navigation, manipula-
tion, and long-horizon task-solving. The results highlight
the effectiveness of the proposed Connector, the adjustment
method for coordinating navigation and manipulation, and
the use of active vision.

Despite these advancements, the current system does not in-
corporate complex locomotion skills such as crouching, sit-
ting, or jumping. These skills could extend the humanoid’s
functionality beyond flat-ground settings, enabling tasks like
climbing stairs, working from seated positions, or manipulat-
ing objects at varying heights. Enhancing these capabilities
will be an important direction for future work. Additionally,
while the onboard system is efficient, Being-0 still relies on
the slow Foundation Model for high-level decision-making.
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Future research could explore lightweight Foundation Mod-
els tailored for robotics applications to further improve the
system’s efficiency.

Impact Statement
This work explores advancements in humanoid robotic
agents, which come with specific safety concerns. The
use of Foundation Models and skill libraries introduces
the potential risks of predicting incorrect skills or execut-
ing actions in out-of-distribution scenarios. For full-sized
humanoid robots, such errors could lead to damage to sur-
roundings or harm to people. At present, these systems
should be tested only in controlled, experimental environ-
ments to ensure safety. Future work should prioritize robust
error handling, fail-safes, and ethical guidelines to mitigate
these risks and enable safer deployment of humanoid agents.
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A. Additional Results
In this section, we provide detailed additional results from our experiments. Video recordings are included in the supple-
mentary material.

A.1. First-Person Video Records

Connector

FM

Skill

“Grasp a coffee cup.” “Find a coffee machine.”

Navigation: table Adjustment Manipulation Navigation: Coffee Machine

Locomotion Grasp_Cup Locomotion

“Head_down” “Grasp_cup”

Locomotion Locomotion Grasp_cup

FM

Skill

“Head_up”

w/o
Connector

Being-0

Figure 3. A comparison of Being-0 w/o Connector and Being-0 in the long-horizon task “Prepare-coffee.” The first row shows recordings
of Being-0 without the Connector, while the second row shows recordings of Being-0 with the Connector. Being-0 w/o Connector
frequently queries the FM, which often fails to provide correct plans due to its limited embodied scene understanding. In contrast, Being-0
with the Connector completes the task, requiring only a few queries to the FM.

Navigation: coffee machine Manipulation: grasp coffee

Fixed Cam. (0.3)

Fixed Cam. (0.6)

Fixed Cam. (0.9)

Being-0 
(Active Cam.)

Figure 4. Recordings from the ablation study on the active camera. Each row represents a different camera configuration, with the left
three images depicting the navigation task and the right three images depicting the manipulation task. Only Being-0 with an active camera
achieves robust performance in both navigation and manipulation.
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navigation

w/o Adjustment Being-0

manipulation end navigation manipulation end

Grasp-bottle

Place-coffee (t)

Place-coffee (m)

Figure 5. A comparison of Being-0 with and without the adjustment method in two-stage tasks involving navigation and manipulation.
Each row corresponds to a specific task, with the left three images showing results for Being-0 w/o Adjustment and the right three images
showing results for Being-0. Without adjustment, the agent may terminate navigation in improper poses, leading to failed manipulations.

Play-chess

Toy-bricks

Open-beer

Handout-snack

Grasp-bottle

Place-pole

Figure 6. First-person view recordings of the learned manipulation skills. Each row corresponds to a specific skill, with images from left
to right depicting the progression of the manipulation process.
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A.2. Foundation Model Planning Traces

Information Gathering
Image_Description:
1. The image shows a room with a grey pattern carpet. There are chairs and a table visible in the upper part of the image. The 
floor has a distinct pattern of grey tones.
2. Based on the grey pattern carpet and the presence of chairs and a table, this room matches the description of the Robot 
Laboratory Room.
3. The target task is to get a cup from the table and get coffee from the machine. The table and chairs are visible, but the cup 
and coffee machine are not in the current frame.
4. The target task is not yet successful as the cup and coffee machine are not visible in the current frame.
Target_name: null
Reasoning_for_target: The current frame does not show the cup or the coffee machine. There is no new target to detect in this 
image.
Area_location: Robot Laboratory Room

Self-reflection
None

Task Inference
History_summary:
The task to get a cup from the table and get coffee from the machine has not been completed. The robot is currently in the 
Robot Laboratory Room, which has a grey pattern carpet. The previous subtask was to move towards the wooden table with a 
cup, but it has not been successfully completed as the cup is not yet in the robot's hand.
Subtask_reasoning:
1. The overall task is to get a cup from the table and get coffee from the machine.
2. The next step is to locate the wooden table with the cup in the Robot Laboratory Room.
3. The previous subtask was to move towards the wooden table with a cup, but it was not successfully finished.
4. The robot was previously in the Robot Laboratory Room and is still in the same room.
5. The robot needs to find the wooden table with the cup in the current room.
6. The robot should search the current room to locate the wooden table with the cup.
7. If the wooden table with the cup is found, the robot should then move towards it.
8. If the wooden table with the cup is not found, the robot should continue searching the room.
Subtask_description:
The current subtask is to search the Robot Laboratory Room to locate the wooden table with the cup.

Action Planning
Action:
```python
search_and_move_towards(target_name="wooden table")
```

Information Gathering
Image_Description:
1. The image shows a wooden table with a single cup placed on it. In the background, there are desks with computers, chairs, 
and a black divider. The floor has a grey pattern carpet.
2. Based on the semantic map and the details in the image, you are currently in the Robot Laboratory Room.
3. Yes, you have reached the target area, and the target task of locating the wooden table with the cup is already successful.
4. Yes, you have reached the target area, and the target task of locating the wooden table with the cup is already successful.
5. The cup is positioned on the wooden table, which is in the foreground of the image. The table is oriented horizontally across 
the image.
6. The target is in the current image frame, and the task of locating the wooden table with the cup is complete.
7. The target object (the cup) is in the current image frame, and its position is on the wooden table.
8. There are no new possible targets in the image frame that are more relevant than the current target.
Target_name: cup
Reasoning_for_target: The cup is the target object needed to complete the task of getting coffee from the machine. It is already 
located on the wooden table in the Robot Laboratory Room.
Area_location: Robot Laboratory Room

Self-reflection
Self_Reflection_Reasoning:
1. The last executed action was `search_and_move_towards(target_name="wooden table")`.
2. Based on the images, the robot has successfully moved towards the wooden table, as the table with the cup is now visible in 
the frame.
3. The robot was previously in the Robot Laboratory Room, and it is still in the same room, now closer to the wooden table.
Success_Detection: The overall task is not yet successful. The robot has successfully moved towards the table with the cup, but 
it still needs to grab the cup and get coffee from the machine.

Figure 7. Planning traces of the Foundation Model in Being-0 for the task “Prepare-coffee.”
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Task Inference
History_summary:
The task to get a cup from the table and get coffee from the machine has not been completed. The robot is currently in the 
Robot Laboratory Room, which has a grey pattern carpet. The previous subtask was to move towards the wooden table with a 
cup, and it has been successfully completed as the table with the cup is now visible in the frame. The robot needs to grab the 
cup from the table next.
Subtask_reasoning:
1. The overall task is to get a cup from the table and get coffee from the machine.
2. The next step is to grab the cup from the table.
3. The previous subtask was to move towards the wooden table with a cup, and it has been successfully completed.
4. The robot was previously in the Robot Laboratory Room and is still in the same room, now closer to the wooden table.
5. The robot needs to grab the cup from the table.
6. The robot should grab the cup from the table.
7. If the cup is successfully grabbed, the robot should then search for the coffee machine.
8. If the cup is not successfully grabbed, the robot should attempt to grab it again.
Subtask_description: The current subtask is to grab the cup from the table.

Action Planning
Action:
```python
grab(object_name="cup")
```

Information Gathering
Image_Description:
1. The image shows a wooden table with a cup on it. The cup is located near the bottom right corner of the table. In the 
background, there are chairs, desks, and a black divider. The floor has a grey pattern carpet.
2. Based on the semantic map and the details in the image, you are currently in the Robot Laboratory Room.
3. The target area has been reached, and the target task of locating the cup is successful.
4. The cup is positioned near the bottom right corner of the table in the image.
Target_name: cup
Reasoning_for_target: The cup is the target object needed to complete the current subtask of grabbing the cup from the table.
Area_location: Robot Laboratory Room

Self-reflection
Self_Reflection_Reasoning:
1. The last executed action was `grab(object_name="cup")`.
2. Based on the images, the robot's hand is now holding the cup, indicating that the cup has been successfully grabbed from the 
table.
3. The robot is still in the Robot Laboratory Room, which is the correct location for the task.
Success_Detection: The overall task is not yet successful. The robot has successfully grabbed the cup, but it still needs to get 
coffee from the machine.

Task Inference
History_summary:
The summary is that the robot is tasked with getting a cup from the table and getting coffee from the machine. The robot 
successfully moved towards the wooden table with the cup and grabbed the cup from the table. The robot is currently in the 
Robot Laboratory Room, holding the cup, and needs to find the coffee machine to complete the task.
Subtask_reasoning:
1. The overall task is to get a cup from the table and get coffee from the machine.
2. The next step is to find the coffee machine.
3. The previous subtask was to grab the cup from the table, which has been successfully completed.
4. The robot was previously in the Robot Laboratory Room and is still in the same room.
5. The robot needs to search for the coffee machine in the Robot Laboratory Room.
6. The robot should search for the coffee machine in the current room.
7. If the coffee machine is found, the robot should move towards it.
8. If the coffee machine is not found, the robot should continue searching in the current room.
Subtask_description: The current subtask is to search for the coffee machine in the Robot Laboratory Room.

Action Planning
Action:
```python
search_and_move_towards(target_name="coffee machine")
```

Figure 8. (Continued) Planning traces of the Foundation Model in Being-0 for the task “Prepare-coffee.”

15



Being-0: A Humanoid Robotic Agent with Vision-Language Models and Modular Skills

Information Gathering
Image_Description:
1. The image shows a room with grey pattern carpet flooring. There is a black divider, a wooden table with a cup, some 
machines, and a workspace with computers and desks. There is also a water dispenser and some cables on the floor.
2. Based on the semantic map and the details in the image, you are currently in the Robot Laboratory Room.
3. The target task of finding the coffee machine has not yet been successful.
4. The coffee machine is not visible in the current image frame.
5. The cup is visible in the lower right corner of the image, indicating that you are holding it.
Target_name: coffee machine
Reasoning_for_target: The current task is to search for the coffee machine in the Robot Laboratory Room. The coffee machine is 
the most relevant object to complete this task.
Area_location: Robot Laboratory Room

Self-reflection
Self_Reflection_Reasoning:
1. The last executed action was `search_and_move_towards(target_name="coffee machine")`.
2. Based on the images, the robot has successfully grabbed the cup from the table. The current image shows the robot holding 
the cup and moving towards the coffee machine.
3. The robot is still in the Robot Laboratory Room, as indicated by the grey pattern carpet and the presence of the coffee 
machine in the background.
4. The last executed action was successful. The robot has moved towards the coffee machine while holding the cup, as 
evidenced by the sequential frames showing the robot's movement and the cup in its grasp.
Success_Detection: The overall task is not yet successful. The robot has successfully grabbed the cup and moved towards the 
coffee machine, but it still needs to get coffee from the machine. The next step should be to approach the coffee machine and 
get coffee.

Task Inference
History_summary:
The summary is that the robot is tasked with getting a cup from the table and getting coffee from the machine. The robot 
successfully moved towards the wooden table with the cup and grabbed the cup from the table. The robot is currently in the 
Robot Laboratory Room, holding the cup, and needs to find the coffee machine to complete the task. The robot has moved 
towards the coffee machine while holding the cup, as evidenced by the sequential frames showing the robot's movement and 
the cup in its grasp.
Subtask_reasoning:
1. The overall task is to get a cup from the table and get coffee from the machine.
2. The next step is to get coffee from the machine.
3. The previous subtask was to search for the coffee machine in the Robot Laboratory Room.
4. The robot is still in the Robot Laboratory Room, as indicated by the grey pattern carpet and the presence of the coffee 
machine in the background.
5. The previous subtask was successfully finished as the robot has moved towards the coffee machine while holding the cup.
6. The robot is very close to the coffee machine.
7. The next subtask should be to put the cup on the coffee machine to get coffee.
Subtask_description: The current subtask is to put the cup on the coffee machine.

Action Planning
Action:
```python
search_and_move_towards(target_name="coffee machine")
```

Information Gathering
Image_Description:
1. The image shows a coffee machine with a digital display screen. The screen displays various coffee options. Below the screen, 
there is a dispensing area with a cup holder. A cup is already placed on the cup holder.
2. Based on the presence of the coffee machine and the description of the Robot Laboratory Room, it is likely that this image 
was taken in the Robot Laboratory Room.
3. The target task of putting the cup on the coffee machine is already successful as the cup is placed on the cup holder.
4. The cup is positioned correctly on the coffee machine, ready to receive coffee.
Target_name: null
Reasoning_for_target: The cup is already placed on the coffee machine, so there is no need to detect or use a new target.
Area_location: Robot Laboratory Room

Self-reflection
Self_Reflection_Reasoning:
1. The last executed action was `search_and_move_towards(target_name="coffee machine")`.
2. Based on the images, the robot has successfully moved towards the coffee machine. The coffee machine is now visible in the 
second image frame, and the cup is still in the robot's hand.
3. The robot has reached the target location, which is the coffee machine, as indicated by the presence of the coffee machine in 
the second image frame.
Success_Detection: The overall task is not yet successful. The robot has successfully grabbed the cup and moved towards the 
coffee machine, but it still needs to get coffee from the machine. The next step should be to approach the coffee machine and 
get coffee.

Figure 9. (Continued) Planning traces of the Foundation Model in Being-0 for the task “Prepare-coffee.”

16



Being-0: A Humanoid Robotic Agent with Vision-Language Models and Modular Skills

Task Inference
History_summary:
The summary is that the robot is tasked with getting a cup from the table and getting coffee from the machine. The robot 
successfully moved towards the wooden table with the cup and grabbed the cup from the table. The robot is currently in the 
Robot Laboratory Room, holding the cup, and has successfully moved towards the coffee machine. The coffee machine is now 
visible in the robot's view, and the cup is still in the robot's hand. The next step is to put the cup on the coffee machine to get 
coffee.
Subtask_reasoning:
1. The overall task is to get a cup from the table and get coffee from the machine.
2. The next step is to get coffee from the machine.
3. The previous subtask was to put the cup on the coffee machine.
4. The robot is currently in the Robot Laboratory Room, very close to the coffee machine
.5. The previous subtask was successfully finished as the robot has moved towards the coffee machine while holding the cup.
6. The next subtask should be to put the cup on the coffee machine to get coffee.
7. The robot is very close to the coffee machine, and the cup is visible in the robot's hand.
8. The next subtask should be to put the cup on the coffee machine to get coffee.
Subtask_description: The current subtask is to put the cup on the coffee machine.

Action Planning
Action:
```python
put(object_name="cup")
```

Information Gathering
Image_Description:
1. The image shows a coffee machine on a table. The machine has a digital display at the top showing various coffee options. 
Below the display, there is a dispenser area with a cup placed on the drip tray. The table is white, and there are some cables 
visible on the floor to the left. A robotic arm is visible in the lower right corner of the image, holding a cup.
2. Based on the semantic map and the presence of the coffee machine, the current location is the Robot Laboratory Room.
3. The target area has been reached, and the task of putting the cup on the coffee machine is already successful as the cup is 
placed on the drip tray.
4. The cup is positioned correctly on the coffee machine's drip tray, ready to receive coffee.
Target_name: null
Reasoning_for_target: The current subtask of placing the cup on the coffee machine is already completed successfully, as 
evidenced by the cup being correctly positioned on the drip tray.
Area_location: Robot Laboratory Room

Self-reflection
Self_Reflection_Reasoning:
1. The last executed action was `put(object_name="cup")`.
2. Based on the images, the cup is correctly placed on the coffee machine's cup holder, indicating that the current subtask of 
placing the cup on the coffee machine is complete.
3. The robot is already in the Robot Laboratory Room, which is the correct location for the task.
4. The last executed action was successful because the cup is now positioned correctly on the coffee machine, ready to receive 
coffee.
Success_Detection: The overall task is not yet successful. The robot has successfully placed the cup on the coffee machine, but 
it still needs to get coffee from the machine. The next step should be to interact with the coffee machine to get coffee.

Task Inference
History_summary:
The summary is that the robot is tasked with getting a cup from the table and getting coffee from the machine. The robot 
successfully moved towards the wooden table with the cup and grabbed the cup from the table. The robot is currently in the 
Robot Laboratory Room, holding the cup, and has successfully moved towards the coffee machine. The coffee machine is now 
visible in the robot's view, and the cup is still in the robot's hand. The next step is to put the cup on the coffee machine to get 
coffee. The robot has successfully placed the cup on the coffee machine, and the cup is positioned correctly on the coffee 
machine, ready to receive coffee.
Subtask_reasoning:
1. The overall task is to get a cup from the table and get coffee from the machine.
2. The next step is to get coffee from the machine.
3. The previous subtask was to put the cup on the coffee machine.
4. The previous subtask was successfully finished as the cup is now positioned correctly on the coffee machine, ready to receive 
coffee.
5. The robot is currently in the Robot Laboratory Room, which is the correct location for the task.
6. The next subtask should be to interact with the coffee machine to get coffee.
7. The robot is very close to the coffee machine, and the cup is already placed on the cup holder.
8. The next subtask should be to select a coffee option on the coffee machine's digital display to get coffee.
Subtask_description: The current subtask is to select a coffee option on the coffee machine's digital display to get coffee.

Action Planning
Action:
```python
click(target="espresso button")
```

Figure 10. (Continued) Planning traces of the Foundation Model in Being-0 for the task “Prepare-coffee.”
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Information Gathering
Image_Description:
1. The image shows a room with grey pattern carpet flooring. There are several desks with computers and office supplies on 
them. There are also some open cardboard boxes on the floor, a chair, and some scattered items. The room appears to be a 
workspace with various equipment and supplies.
2. Based on the semantic map and the details in the image, this room is the Robot Laboratory Room.
3. The target task of getting a cup from the table has not been completed yet.
4. The target task of getting a cup from the table has not been completed yet.
5. There is no visible cup on the table in the current image frame.
6. The target location is the table in the Robot Laboratory Room where a cup might be found.
7. The target object (cup) is not visible in the current image frame. The table in the Robot Laboratory Room should be checked 
for the cup.
8. No new possible targets are observed in the current image frame.
Target_name: cup
Reasoning_for_target: The task is to get a cup from the table. The cup is the relevant object needed to complete the current 
task.
Area_location: Robot Laboratory Room

Self-reflection
None

Task Inference
History_summary:
The task of getting a cup from the table and getting coffee from the machine has not been completed. The robot is currently in 
the Robot Laboratory Room, where the coffee machine is located. The previous subtask was to search for the cup on the 
wooden table, but it has not been completed yet.
Subtask_reasoning:
1. The overall task is to get a cup from the table and get coffee from the machine.
2. The next step is to locate the cup on the wooden table.
3. The previous subtask was to search for the cup on the wooden table, but it has not been completed.
4. The robot is still in the Robot Laboratory Room, where the wooden table and coffee machine are located.
5. The robot needs to search for the cup on the wooden table.
6. The robot should search the area around the wooden table to find the cup.
7. The robot should continue with the previous subtask as it is still relevant.
8. The robot should search the area around the wooden table to find the cup.
Subtask_description: The current subtask is to search the area around the wooden table to find the cup.

Action Planning
Decision_Making_Reasoning:
1. ""False"" means the overall task was not successful.
2. The target location is the table in the Robot Laboratory Room.
3. The target (cup) is not visible in the current image.
4. I am already in the Robot Laboratory Room.
5. The previous action was not a search.
6. The current image is not the same as the one from the previous iteration.
7. The task of getting a cup from the table and getting coffee from the machine has not been completed. The robot is currently 
in the Robot Laboratory Room, where the coffee machine is located. The previous subtask was to search for the cup on the 
wooden table, but it has not been completed yet.
8. The last executed action was not a search, so I need to search the area for the cup.
9. I am already in the location required for the task.
10. The target (cup) is not visible in the current frame, so I need to search for it.
11. I should search the place after any movement forward towards a target that was a hallway.
12. I need to search the area around the wooden table to find the cup.
13. I have the skill to search the area, so I do not need to request help.
14. The most related skill to conduct the next step of the current subtask is to search the area.
15. Based on the action rules and self-reflection, the most suitable action in the skill library for the next step is to turn left or 
right to search the area around the wooden table.
Actions:
```python
turn_left(""small"")
```
Key_reason_of_last_action: 
The key reason for choosing this action is to search the area around the wooden table to find the cup, as the target (cup) is not 
visible in the current frame.

Figure 11. Planning traces of the Foundation Model in Being-0 w/o Connector for the task “Prepare-coffee.”
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Information Gathering
Image_Description:
1. The image shows a room with grey pattern carpet flooring. There are several desks with computers and monitors on the left 
side of the image. There is a white drawer unit next to the desks. In the center of the image, there is a black office chair and 
some scattered boxes and items on the floor. On the right side, there are more boxes and a black object that appears to be a 
helmet or similar item. The room has dark walls and ceiling.
2. Based on the semantic map and the description of the room, you are currently in the Robot Laboratory Room.
3. The target area, which is the wooden table, is not visible in the current image frame.
4. The task of finding the cup on the wooden table has not been completed yet.
Target_name :null
Reasoning_for_target: The wooden table, which is the target area to find the cup, is not visible in the current image frame. 
Therefore, there is no need to detect a new target at this moment.
Area_location: Robot Laboratory Room

Self-reflection
Self_Reflection_Reasoning:
1. The last executed action was `turn_left(""small"")`.
2. Based on the images, the robot has turned left but has not yet located the cup on the wooden table. The target object, a cup, 
is not visible in the current image frame.
3. The robot is still in the Robot Laboratory Room, as indicated by the grey pattern carpet and the surrounding environment. The 
robot has not yet completed the subtask of finding the cup on the wooden table.
4. The last executed action was partially successful. The robot did turn left, but it did not achieve the desired outcome of 
locating the cup on the table.
5. The most probable cause for the partial success is that the turn range was too small to bring the cup into view. The robot 
needs to adjust its position or turn further to locate the cup.
Success_Detection: The overall task was unsuccessful because the subtask of getting a cup from the table has not been 
completed. The robot needs to correct the turn action parameter and continue searching for the cup on the table in the Robot 
Laboratory Room.

Task Inference
History_summary:
The summary is the task of getting a cup from the table and getting coffee from the machine has not been completed. The 
robot is currently in the Robot Laboratory Room, where the coffee machine is located. The previous subtask was to search for 
the cup on the wooden table, but it has not been completed yet. The last executed action was t̀urn_left(""small"")`, which 
resulted in an error due to an invalid parameter. The robot needs to correct the turn action parameter and continue searching 
for the cup on the table in the Robot Laboratory Room. The robot has turned left but has not yet located the cup on the wooden 
table. The target object, a cup, is not visible in the current image frame.
Subtask_reasoning:
1. The overall task is to get a cup from the table and get coffee from the machine.
2. The next step is to locate the cup on the wooden table.
3. The previous subtask was to search for the cup on the wooden table, but it has not been completed.
4. The robot is still in the Robot Laboratory Room, where the wooden table and coffee machine are located.
5. The robot needs to search for the cup on the wooden table.
6. The robot should correct the turn action parameter and continue searching for the cup on the table.
7. The robot should search the area around the wooden table to find the cup.
8. The robot should continue with the previous subtask as it is still relevant.
Subtask_description: The current subtask is to turn left with the correct parameter and search the area around the wooden 
table to find the cup.

Action Planning
Decision_Making_Reasoning:
1. The overall task was unsuccessful because the subtask of getting a cup from the table has not been completed. The robot 
needs to correct the turn action parameter and continue searching for the cup on the table in the Robot Laboratory Room.
2. The Robot Laboratory Room is located in Hallway Section A.
3. The target, which is the cup on the wooden table, is not visible in the current image.
4. The robot is already in the Robot Laboratory Room, as indicated by the grey pattern carpet and the surrounding environment.
5. The current image is different from the previous image, indicating that the robot has turned left.
6. The robot needs to continue searching for the cup on the wooden table.
7. The recent history indicates that the robot has turned left but has not yet located the cup on the wooden table.8. The self-
reflection for the last executed action indicates that the turn range was too small to bring the cup into view.
9. The robot is still in the Robot Laboratory Room and needs to adjust its position or turn further to locate the cup.
10. The robot should search the place after any movement forward towards a target that was a hallway.
11. The robot should move towards some target that it can see in front of it.
12. The most suitable action in the skill library for the next step is to turn left with a larger turn range to bring the cup into view.
Actions:
```python
turn_left(turn_range=""LARGE"")
```
Key_reason_of_last_action: 
The key reason for choosing this action is to adjust the robot's position by turning left with a larger turn range to bring the cup 
on the wooden table into view and continue searching for the cup in the Robot Laboratory Room.

Figure 12. (Continued) Planning traces of the Foundation Model in Being-0 w/o Connector for the task “Prepare-coffee.”
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Information Gathering
Image_Description:
1. The image shows a room with grey pattern carpet flooring. There is a black office chair in front of a desk with a computer 
monitor. To the right, there is a wooden table with a cup on it. The background has a black divider with the label “xxx” in blue.
2. Based on the semantic map and the details in the image, this is the Robot Laboratory Room.
3. The target area has been reached, and the target task of locating the cup on the wooden table is successful.
4. The cup is located on the wooden table to the right side of the image.
Target_name: cup
Reasoning_for_target: The cup is the target object needed to complete the current subtask of getting a cup from the table.
Area_location: Robot Laboratory Room

Self-reflection
Self_Reflection_Reasoning:
1. The last executed action was `turn_left(turn_range=""LARGE"")`.
2. Based on the images, the current subtask of finding the cup on the wooden table has not been completed. The wooden table 
is not visible in the current frame, indicating that the turn did not bring the table into view.
3. The robot is still in the Robot Laboratory Room, as indicated by the grey pattern carpet and the presence of desks and 
computers. The target location (wooden table) is not yet in view.
4. The last executed action was not successful. The turn did not bring the wooden table into view, which means the robot's 
position did not change sufficiently to achieve the desired outcome.
5. The most probable cause for the unsuccessful action is that the turn range was too large, causing the robot to overshoot the 
target area.
Success_Detection: The overall task was unsuccessful because the subtask of getting a cup from the table has not been 
completed. The robot needs to correct the turn action parameter and continue searching for the cup on the table in the Robot 
Laboratory Room.

Task Inference
History_summary:
The summary is the task of getting a cup from the table and getting coffee from the machine has not been completed. The 
robot is currently in the Robot Laboratory Room, where the coffee machine is located. The previous subtask was to search for 
the cup on the wooden table, but it has not been completed yet. The last executed action was t̀urn_left(""LARGE"")`, which 
resulted in the wooden table not being visible in the current frame. The robot needs to correct the turn action parameter and 
continue searching for the cup on the table in the Robot Laboratory Room. The robot has turned left but has not yet located the 
cup on the wooden table. The target object, a cup, is not visible in the current image frame.
Subtask_reasoning:
1. The overall task is to get a cup from the table and get coffee from the machine.
2. The next step is to locate the cup on the wooden table.
3. The previous subtask was to search for the cup on the wooden table, but it has not been completed.
4. The robot is still in the Robot Laboratory Room, where the wooden table and coffee machine are located.
5. The robot needs to search for the cup on the wooden table.
6. The robot should correct the turn action parameter and continue searching for the cup on the table.
7. The robot should search the area around the wooden table to find the cup.
8. The robot should continue with the previous subtask as it is still relevant.
Subtask_description: The current subtask is to turn right with a smaller turn range and search the area around the wooden table 
to find the cup.

Action Planning
Decision_Making_Reasoning:
1. The overall task was unsuccessful because the subtask of getting a cup from the table has not been completed. The robot 
needs to correct the turn action parameter and continue searching for the cup on the table in the Robot Laboratory Room.
1.1. The target area is the Robot Laboratory Room, and the robot is already in this room.
1.2. The previous action did not fail with ""Move failed""; it just did not achieve the desired outcome.
3. The target (cup on the wooden table) is visible in the current image.
4. The robot is already in the target area (Robot Laboratory Room).
6. The current image is not the same as the one from the previous iteration.
7. Recent history shows that the robot turned left with a large turn range but did not bring the wooden table into view. The 
robot is still in the Robot Laboratory Room.
8. The self-reflection indicates that the last executed action was not successful because the turn range was too large, causing 
the robot to overshoot the target area.
9. The robot has reached the correct location (Robot Laboratory Room) and the target object (cup) is now visible on the wooden 
table.
10. The position of the target (cup) is on the wooden table to the right side of the image.
11. No further search is needed as the target is already visible.
12. The robot should move towards the cup on the wooden table.
13. The robot has the skill to grab the cup.
15. The most related skill to conduct the next step of the current subtask is ""grab()"".
16. Based on the action rules and self-reflection, the most suitable action is to grab the cup from the wooden table.
Actions:
```python
grab(object_name=""cup"")
```
Key_reason_of_last_action:
The key reason for choosing this action is that the cup is now visible on the wooden table, and the robot needs to grab it to 
complete the current subtask.

Figure 13. (Continued) Planning traces of the Foundation Model in Being-0 w/o Connector for the task “Prepare-coffee.”
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A.3. Details of Experimental Setup and Results

Table 7. Detailed sub-processes required to complete each long-horizon task, along with the success rates of Being-0 and the baseline.

Task Sub-Process w/o Connector Being-0

Fetch-bottle Navigate to table. 0 / 5 5 / 5
Grasp cup. 0 / 5 4 / 5

Deliver-basket Navigate to table. 0 / 5 5 / 5
Place basket. 0 / 5 3 / 5

Prepare-coffee

Navigate to table. 0 / 5 5 / 5
Grasp cup. 0 / 5 4 / 5
Navigate to coffee machine. 0 / 5 3 / 5
Place cup. 0 / 5 3 / 5

Make-coffee

Place cup. 5 / 5 5 / 5
Select coffee. 5 / 5 5 / 5
Select confirmation. 4 / 5 4 / 5
Grasp cup. 4 / 5 4 / 5

Deliver-coffee
Grasp-cup. 5 / 5 5 / 5
Navigate to table. 0 / 5 4 / 5
Place cup. 0 / 5 4 / 5

B. Implementation Details
B.1. Acquiring Manipulation Skills

Table 8 presents the number of successful trajectories collected for each skill via teleoperation. In the ACT policy for
each skill, we utilize a ResNet-50 backbone pre-trained on ImageNet to process binocular images. To enhance robustness
against visual perturbations, data augmentation techniques such as random cropping, rotation, and color jittering are applied.
The entire model, including the pre-trained encoder, is updated during training. Table 9 lists the hyperparameters used for
training ACT.

Table 8. Number of trajectories collected for each manipulation skill.

Skill Num. Trajectories

Carry Basket 25
Handout Snack 50
Grasp Bottle 150
Grasp Cup 200
Open Beer 50
Place Basket 25
Place Cup 200
Place Pole 50
Play Chess 70
Play Toy Bricks 50

B.2. The Embodied Connector

B.2.1. DATASET STATISTICS

Our dataset consists of two major types of tasks: Visual Understanding (VLU) tasks and Action Planning (AP) tasks.
The VLU tasks include bounding box detection, yes/no questions, and image description tasks. We collected a total of 3,177
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Table 9. Hyperparameters used for training the ACT policy.

Hyperparameter Value

Training steps 500,000
Batch size 90
Learning rate 1e-5
Gradient clip norm 10
Chunk size (train) 30
Chunk size (test) 10

images, with 2,483 images dedicated to visual understanding tasks and 694 images for action planning tasks. Specifically,
the image description tasks were initially labeled by GPT-4o and then refined by human annotators to ensure accuracy. The
examples of the visual understanding labeling tasks are presented in Table 10. Table 11 summarizes the number of samples
available for each type of task. Table 12 and 13 shows the data statistics of the bounding box tasks and the yes/no tasks,
respectively.

To enhance visual grounding capabilities, we also include a general visual grounding dataset. We filtered 300K data samples
from three open-source visual grounding datasets (Krishna et al., 2016; Tian et al., 2024; Shao et al., 2024). These data are
fed into the model prior to training on our VLU and AP datasets, which will be further mentioned in Appendix B.2.2.

Table 10. Examples of the training data for training the vision-language model to acquire the visual understanding ability.
Task Name Samples

Bounding Boxes Text Prompt: Detect the bounding box of target object: Reception desk.
Answer: [0.471, 0.082, 0.765, 0.951]

Identify items Text Prompt: Is there an exit in the image? Do not generate anything else except ’Yes’ or ’No’.
Answer: No.

Describe image Text Prompt: Describe the current image. List all the items you could see.
Answer: The image shows a corridor or office area with the following items visible:
1. A person wearing a light-colored outfit.
2. A green-framed glass door.
3. A yellow sofa with cushions.
4. A wall-mounted tablet or screen.

Describe the ground and identify the transition Text Prompt: Describe the ground and identify the transition between different grounds if there are any.
Answer: grey pattern carpet

Table 11. Task Categories and Sample Numbers
Task categories Tasks Sample number

Visual Understanding

Bounding boxes 14,784
Identify items 20,536
Describe image 1,530
Describe the ground and identify the transition 1,530

Action Planning - 771

B.2.2. TRAINING DETAILS

We fine-tuned our vision-language model using the VideoLLaMA2 framework with a multi-node distributed training strategy.
The training was conducted with a global batch size of 128 and a local batch size of 2 per device, with gradient accumulation
steps dynamically computed based on the number of nodes and processing units per node. The model was trained for three
epochs using a learning rate of 2 × 10−5, a cosine learning rate scheduler, and a warmup ratio of 0.03. We employed
AdamW as the optimizer with zero weight decay. To enhance computational efficiency, we enabled mixed precision training
with bfloat16 (BF16) and TensorFloat32 (TF32). Gradient checkpointing was applied to reduce memory consumption,
and the maximum sequence length was set to 4096 tokens. The vision encoder was based on SigLIP1 (Zhai et al., 2023),

1https://huggingface.co/google/siglip-so400m-patch14-384
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Table 12. Category data overview for the bounding box task.
Category Value

Kitchen Area 792
Hallway 3,834
Robot Laboratory Room 896
Reception Area 247
Coffee machine 1,323
Workspace 118
Meeting Room 1,590
Wooden Table 414
Closed door 727
Workspace Area 697
Reception Desk 1,026
Door label 513
Doorway 706
Reception 114
Digital screen 428
Cup area 338
Espresso coffee button 496
Confirm button 286
Cancel button 239

Total 14,784
Number of Categories 19

Table 13. Category data overview for the yes/no task.

Category Value

Coffee machine 1,530
Reception desk 1,530
Closed door 1,530
Door label 1,530
Water fountain 1,530
Glass door 1,530
Hallway 1,530
Reception area 1,530
Exit 1,530
Workspace 1,530
Passage 1,530
Doorway 1,530
Digital screen 428
Espresso coffee button 428
Confirm button 446
Preparing screen 428
Coffee ready screen 428
Cancel button 18

Total 20,536
Number of Categories 18
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while the projection module was implemented using a multi-layer perceptron (MLP). We grouped multimodal samples by
modality length, selected vision features from the second-to-last layer, and applied image padding to maintain aspect ratios.
Each sample contained 16 frames.

The overall training process is divided into two stages. First, we finetune the model with the filtered 300K general visual
grounding dataset based on the checkpoint provided by VideoOrion+(Feng et al., 2024), which shares the same architecture
with VideoLLaMA2 but offers better object-centric understanding capabilities. Considering the training efficiency, we
modify VideoOrion by removing the object-centric branch. Then we finetune the resulting model with our collected dataset
including VLU tasks and AP tasks together.

This training setup ensures efficient vision-language modeling, leveraging optimized data handling, memory-efficient
techniques, and distributed computation for improved performance.

B.2.3. USAGE OF THE CONNECTOR

Visual Understanding. For visual understanding , the trained model predicts the bounding boxes of target objects in an
image by generating the coordinates of the box, or it outputs “None” if no target object is present. The visual understanding
capability of the VLM provides the robot with concrete information about its environment, enabling effective navigation and
laying the foundation for informed skill planning decisions.

Skill Planning. For skill planning, given an overall task and a subtask, the model predicts the appropriate skill code for
the robot to execute from either the modular skill library or the composite navigation skills. Skill planning facilitates the
acquisition of spatial and embodied knowledge by enabling the model to make decisions based on the presence, relative
distances and positioning of objects within its environment. Through training, the model learns to assess these spatial
relationships and select the appropriate skill such as navigation and manipulation according to the proximity and orientation
of the target objects. This embodied understanding allows the robot to adapt its actions in real-time, ensuring the translation
of high-level task instructions into precise, contextually relevant actionable skills.

Below, we present details of the composite locomotion skills for navigation.

Move towards. We define the move towards skill as a skill that help the robot navigate to an target object in its view. The
bounding box generated by the VLM is leveraged in this skill to determine the angle and the existence of the target object.
The pseudo code for this skill is shown in Algorithm 1.

Algorithm 1 Move Towards Target
1: Input: target name
2: Output: Status of movement towards the target
3: Initialize: max iterations, angle threshold, max iterations
4: for each iteration from 1 to max iterations do
5: Get camera image and depth data
6: Detect the target object in the image using VLM
7: if No target detected then
8: Stop moving
9: Break the loop

10: end if
11: if Target is within threshold distance then
12: Stop moving
13: Break the loop
14: end if
15: if Obstacles detected then
16: Avoid obstacle using sidestep
17: else
18: Move forward or turn depending on angle
19: end if
20: end for
21: Return: status: True/False
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Search for. We define the search for skill as constantly turning to one direction until the target object is found in the view.
The bounding box generated by the VLM is leveraged in this skill to determine the existence of the target object. The pseudo
code for this skill is shown in Algorithm 2.

Algorithm 2 Search for Target
1: Input: target name
2: Output: Status of target search
3: Initialize: max iterations, direction, head angle, tilt angle
4: for each iteration from 1 to max iterations do
5: Get camera image
6: Check if target is detected in the image
7: if Target detected then
8: Stop moving
9: Break the loop

10: end if
11: if Direction is ”right” then
12: Turn right
13: else
14: Turn left
15: end if
16: end for
17: Return: status: True/False

Adjustment. To perform adjustment during navigation, we modify the move-forward skill so that the robot first adjusts its
head to look aside to the direction of the item, then decides whether to turn or move forward based on the adjusted view.
The direction to look aside is predicted by the VLM. This approach allows the robot to gradually approach the target object
in an arc-shaped path, ultimately reaching the optimal position. The pseudo code for this skill is shown in Algorithm 3.

Algorithm 3 Adjustment
1: Input: target name, direction
2: Output: Status of final approach
3: Initialize: head angle, tilt angle, max iterations
4: for each iteration from 1 to max iterations do
5: Set head position and tilt
6: Get camera image and detect target direction
7: if Target detected and within threshold distance then
8: Stop moving, adjust to face target
9: Break the loop

10: end if
11: If target angle is small/large, adjust direction (left/right)
12: If target angle is 0, check for obstacles and avoid if necessary
13: Move towards the target if no obstacles detected
14: end for
15: Return: status: True/False
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B.3. Prompt Design

We present prompts designed to enable the foundation model to perform various levels of agent abilities. Specifically, we
include prompts for information gathering, self-reflection, and subtask inference in Tables 14, 16, and 15, respectively.
Additionally, we provide the action planning prompt for scenarios where the embodied Connector is not used in Table 17.
For cases involving the embodied Connector, we utilize a more concise version of the prompt for action planning, which is
shown in Table 18.

Table 14. The prompt we used for information gathering process.
Information Gathering

You are a helpful AI assistant integrated with a humanoid robot body equipped to handle diverse tasks in the real world. Your advanced
capabilities enable you to process textual and visual information, including computer application screenshots, and to control the robot body.

<image introduction>

Overall task:
<task description>

Subtask description:
<subtask description>

Semantic map:
<semantic map>

Current Location:
<robot location>

Holding Cup Status:
<robot holding cup status>

Image Description:
1. Using the latest image, please describe it in detail. Pay attention to the details in the image, if any, especially critical objects or icons.
2. Identify in which area of the map you are currently in, based on the semantic map provided above and the past action history.
3. Pay attention if you have reached a target area and if the target task is already successful.
4. Pay attention if you have reached a target area and if the target task is already successful.
5. Keep in mind the target object or area and describe its position and orientation in the image, if any.
6. If you are trying to navigate to a location, use its place name from the semantic map as a target, if possible.
7. If the target is not in the current image frame, but it has been found previously, use the recent actions and the previous frames to reason about
its position, location, and orientation.
8. In the latest image, if you observe new possible targets, compare the new targets with the current target and decide which one is more likely to
be the correct target.

Target Name:
Assume you can use a detection model to detect the most relevant object, image area, or UI item to complete the current task, if any is needed.
What target should be detected to complete the task based on the latest image and the current task? You should obey the following rules:
1. Identify an item or area that is relevant to the current or intermediate target of the task.
2. For a target object, consider its possible forms and list as many as possible.
3. If there is a new possible target object, compare it with the current one and choose the one that is the most promising.
4. If there is no need to detect a target, only output “null”.

Reasoning for Target:
Why was this target chosen, or why is there no need to detect or use a new target? Why is this target more promising than other possible targets?
You should only respond in the format described below and not output comments or other information. DO NOT change the title of each item.
Image Description:
1. ...
2. ...
3. ...
4. ...
Target Name:
name
Reasoning for Target:
...
Area Location:
area name
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Table 15. The prompt for summarizing task progress and proposing a new subtask.
Task Reflection and Subtask Proposal

Overall task description:
<task description>

Previous proposed subtask for the task:
<subtask description>

Previous reasoning for proposing the subtask:
<subtask reasoning>

<image introduction>

Description of current image frame:
<image description>

Last executed action:
<previous action>

Error report for the last executed action:
<executing action error>

Key decision-making reasoning for the last executed action:
<previous reasoning>

Self-reflection for the last executed action:
<self reflection reasoning>

Success Detection for the overall task:
<success detection>

The following is the summary of history that happened before the last screenshot:
<previous summarization>

Semantic map:
<semantic map>

Current Location:
<robot location>

Holding Cup Status:
<robot holding cup status>

History summary:
Summarize what happened previously, especially the last step according to the decision-making reasoning and self-reflection reasoning for the last executed action. The summary needs to be
precise, concrete, highly related to the task, and follow the rules below.
1. Determine if the task has been completed successfully. If it is successful, ignore question 2 to 5.
2. Summarize the tasks from the history and the current task. What is the current progress of the task? For example, to open a file, you first need to select the file, then open it by clicking
somewhere or using the keyboard. Subtasks may have other pre-requisites.
3. Record the successful actions and organize them into events, step by step.
4. What is the current area you are in? What is the target area? What is the next area going to be if you move forward?
5. Which subtask has been completed? Which subtasks have not been completed?
6. Do not forget the information and key events in the previous steps of the overall task.

Subtask reasoning:
1. Based on the unfinished part of overall task and the current visual information, identify the way to complete the task without making any assumptions beyond the provided information.
2. Analyze the target task step by step to determine how to complete it.
3. What was the previous subtask? Was the previous subtask successfully finished according to self-reflection? Is it improper for the current situation? If finished or improper, please select a new
subtask, otherwise you must reuse the last subtask.
4. What was the previous location you were in? Have you reached a new place based on the current observation? Pay attention if you have already reached the target location of the previous
subtask or task.
5. If you are already in a new location, PLEASE propose a new subtask and skip question 14.
6. If the target of the action is not visible in the current image, DO NOT try to move towards it. Instead, if you are in the target location, the new subtask should be to search around to find it.
7. You should search the place for the target after any movement towards a previous target.
8. If the search does not find the target, propose a new task to move towards a new target in the current image, and then search again for the previous target.
9. If the next area in front of you is not the target area, DO NOT move towards it. Instead, if you are in the target location, propose a new subtask to search to find it.
10. If you want to propose a new subtask, give reasons why it is more feasible for the current situation. Please strictly follow the description and requirements in the current task.
11. The proposed subtask needs to be precise and concrete within one sentence.
12. If a given task or subtask is already very simple, like ”wave your hand”, no need to decompose it, the next subtask to perform is just the simple task.

You should only respond in the format described below, and you should not output comments or other information.

History summary:
The summary is...

Subtask reasoning:
1. ...
2. ...
3. ...
4. ...
5. ...
6. ...
7. ...
8. ...
...

Subtask description:
The current subtask is...
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Table 16. The prompt for reflecting on the task and evaluating success.
Task Reflection and Success Evaluation

You are a helpful AI assistant integrated with a humanoid robot body equipped to handle diverse tasks in the real world. Your advanced
capabilities enable you to process textual and visual information, including computer application screenshots, and to control the robot body. Your
task is to examine any inputs, interpret the context, and determine whether the last executed action has succeeded and caused the correct effect.

Overall task description:
<task description>

<image introduction>

Description of current image frame:
<image description>

Key reason for the last action:
<key reason of last action>

Last executed action with parameters used:
<previous action call>

Error report for the last executed action:
<executing action error>

Success Detection flag for the overall task:
<success detection>

Valid action set in Python format to select the next action:
<skill library>

Current and previous image are the same:
<image same flag>

Semantic map:
<semantic map>

Self Reflection Reasoning:
1. What is the last executed action based on the text information above?
2. Make use of the information gathered from the images to decide if you have completed the current subtask. Pay special attention to the error
report for the last executed action.
3. Think about your previous location and whether you have reached a new location (for example, moved from one hallway to another), based on
the current observation and the semantic map. Consider if you are already in the target location for the last task.
5. Was the last executed action successful? Give reasons to this conclusion. You must refer to the following rules:
- If the last action executed was empty, then the previous action is deemed successful.
- If the action seemed to have no effect, pay attention to whether the robot position changed or if any of its hands move during the action
execution process.
6. If the last action is not executed successfully, what was the most probable cause for it? You should give only one cause and refer to the
following rules:
- The reasoning to chose the last action was wrong.
- If it is an interaction action, the most probable cause was that the action was unavailable or not activated in the current state.
- If there is any errors, analyze the cause based on them.
7. Pay attention to targets like ”hallway”, ”exit”, ”doorway”, ”corridor”, ”passage”, ”open door”, ”hole in the wall”, ”opening”, etc. They usually
refers to the same target. Always use the word ”hallway” for these.

Success Detection:
Based on the last action, the current images, and the Success Detection flag, determine whether the overall task <task description> was
successful. This assessment should consider the overall task’s success, not just individual actions.
- If the last action executed was an empty list and <success detection> indicates the task is successful, then the overall task has a high chance
of being considered a success.
- If the overall task was unsuccessful, specify the reason of failure and which steps are missing.
- If the overall task was successful, ONLY output “SUCCESSFUL”.

You should only respond in the format as described below.
Self Reflection Reasoning:
1. ...
2. ...
3. ...

Success Detection:
...
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Table 17. The prompt for decision-making and action execution in humanoid robot tasks.
Action Planning

You are a helpful AI assistant integrated with a humanoid robot body equipped to handle diverse tasks in the real world. Your advanced capabilities enable you to process textual and visual information, including
computer application screenshots, and to control the robot body. By analyzing these inputs, you can understand the current context and situation of the robot. Use these insights to select the most suitable action for the
robot to take next, given the current task.

Overall task description:
<task description>

Subtask description:
<subtask description>

Few shots:
<few shots>

<image introduction>

Description of current image:
<image description>

Current and previous image are the same:
<image same flag>

Last executed action:
<previous action>

Key reason for the last action:
<key reason of last action>

Self-reflection for the last executed action:
<previous self reflection reasoning>

Summarization of recent history:
<previous summarization>

Valid action set in Python format to select the next action:
<skill library>

Success detection for overall task:
<success detection>

Semantic map:
<semantic map>

Decision Making Reasoning:
1. Does <success detection> mean the overall task was successful? If successful, ignore questions 2 to 16. Otherwise, do not make conclusion before answering the other questions.
2. When going to a location target, in which hallway is it located? If you are already in the right hallway, DO NOT move to the wrong hallway. Make sure where you are first. Just because you can see another area, it
does not mean you are in it.
3. If the previous action failed with ”Move failed” because the target was not in the latest image, NEVER try the same action with the same target a second time!
4. If the target is not visible in the current image, you MUST SEARCH for the target (unless the previous action was already a search).
5. If you are not in the target area, and the previous action was already a search for the target, then try to find a way to move towards the target area first. For example, follow down a hallway connected to the target area.
6. If the current image is the same as the one from the previous iteration, DO NOT output the same action as the previous step.
7. Summarize the contents of recent history, mainly focusing on historical tasks and behaviors.
8. Summarize the contents of self-reflection for the last executed action, and do not be distracted by other information.
9. Think about the previous location you were in and if you have reached a new place based on the current observation. Think if you are already in the location required for the task. DO NOT rely on door labels.
10. Keep in mind the position of the target, even if it is no longer in the current frame.
11. You should search the place after any movement forward towards a target that was a hallway.
12. If you have to move, try to move towards some target that you can see in front of you (like the ground near your destination).
13. If you do not have a skill to finish the desired task, use speak("request text") to request help.
14. Which skill in the skill library above is the most related to how to conduct the next step of the current subtask?
15. This is the most critical question. Based on the action rules and self-reflection, what should be the most suitable action in the skill library for the next step? You should analyze the possible effects of the action step
by step.
Actions:
The best action, or first action step in a short sequence of actions, to execute next towards achieving the goal. Pay attention to the names of the available skills and the previous skills already executed, if any. Pay special
attention to the coordinates or direction of any action that needs them. Do not make assumptions about the location of objects or UI elements, analyze in detail any provided images. You should also pay attention to the
following action rules:
1. If <success detection> means the overall task was successful or equal to ”True”, then output action MUST be empty like ”. Be careful to first check that the task was really successful.
2. You should output actions in Python code format and specify any necessary parameters to execute that action. Only use function names and argument names exactly as shown in the skill library of valid actions. If a
function has parameters, you should also include their names and decide their values, like turn right("small"). If an action does not have a parameter, just output the action function call, like go back().
3. You cannot open doors, so NEVER go to doors to open them. To move between rooms or areas, ALWAYS use open doorways or passages (openings) toward hallways. You should only move towards a closed door
to stand in front of it if that is the final location target for the task.
4. Given the current situation and task, you should only choose the most suitable action from the skill library. You cannot use actions that are not in the skill library.
5. If you are walking down a hallway to try to find a target, you MUST perform a search for the target after any movement towards a hallway target.

Key reason for the last action: Summarize the key reasons for choosing this action to execute.

You should only respond in the format described below. In your reasoning for the chosen actions, also describe which object or area you decided to interact with and why. DO NOT change the title of each item in the
response. You should not output other comments or information besides the format below.

Decision Making Reasoning:
1. ...
2. ...
3. ...
4. ...
5. ...
6. ...
7. ...
8. ...
9. ...
10. ...
11. ...
12. ...
...

Actions:
“‘python
action(args1=x,args2=y)
“‘

Key reason of last action:
...
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Table 18. The shorter version of the prompt we used for decision making and action execution of humanoid robot
Decision Making and Action Execution for Humanoid Robot

<image introduction>

Overall task description:
<task description>

Subtask description:
<subtask description>

Map:
<semantic map>

Valid actions to select the next action:
<skill library>

You should only respond in the format described below.

Action:
‘‘‘python
action(args1=x,args2=y)
‘‘‘
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