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Abstract

Despite the impressive performance of recent Large Vision-Language Models (LVLMs),
these models often produce inaccurate responses. To address this issue, previous studies
have aimed to reduce hallucinations by using contrastive decoding (CD) with modified
images, such as cropping objects related to query or adding noise, thereby contrasting with
the original image. However, these methods have several limitations. First, employing fixed
visual augmentation, such as adding noise, is a simple approach but too rigid to contrast
on various queries. Conversely, using semantics in queries or images by leveraging external
models can adaptively generate contrastive images, but it entails significant additional costs.
To address these shortcomings, we explore using pre-defined visual augmentations to enable
flexible adaptation to each query without relying on external models. We observe that each
query achieves different contrasts through different visual augmentations. Based on this,
we propose a novel method called VSCoDe, Visual-augmentation Selection for Contrastive
Decoding, which adaptively selects augmentations using a proposed distance metric to
identify those with higher contrast. Our empirical evaluations demonstrate that VSCoDe
outperforms previous methods and enhances the quality of various vision-language tasks
without additional training or reliance on external models.

1 Introduction

Pre-trained Large Vision-Language Models (LVLMs) (Liu et al., 2024a; Ye et al., 2023; Zhu et al., 2023;
Dai et al., 2024; Li et al., 2022; 2023a; Radford et al., 2021) have gained prominence due to their ability
to understand multiple data formats, especially vision and language, simultaneously. These models have
demonstrated exceptional performance in various tasks such as zero-shot image classification (Radford et al.,
2021; Yao et al., 2021), image-text retrieval (Yao et al., 2021; Li et al., 2022), visual question answering (Dai
et al., 2024; Liu et al., 2024a), and image captioning (Li et al., 2022; 2023a). Unlike earlier encoder-based
models like CLIP (Radford et al., 2021), most recent large-scale VLMs, such as LLaVA (Liu et al., 2024a),
MPlugOWL (Ye et al., 2023), MiniGPT-4 (Zhu et al., 2023), and InstructBLIP (Dai et al., 2024), utilize
autoregressive language decoders to expand their functionality, allowing them to cover more complex tasks.

However, language decoders sometimes produce incorrect outputs, a phenomenon called hallucination. Among
various methodologies (Wei et al., 2022; Rose et al., 2023; Shao et al., 2024), a promising approach is
contrastive decoding (CD) (Li et al., 2023b), which generates final answers by examining original outputs
through contrastive outputs. More precisely, CD works in two stages: (1) generating output distributions
given original and contrastive prompts each, and (2) subtracting the two output distributions to reduce
the likelihood of hallucinated tokens. The effectiveness of CD relies on how well the contrastive prompt is
generated and facilitates the contrastive predictions effectively. While creating contrast in language models is
relatively straightforward –by replacing original words with their opposites or random words (Kim et al.;
Wang et al., 2024)– vision-language models require a more deliberate approach as no clearly defined strategy
exists for generating contrastive images.

Several works have been performed on the generation of contrastive images, but they are limited to various
semantics considerations. VCD (Leng et al., 2023) adds Gaussian noise to the image, but does not consider the
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Figure 1: CD with a single augmentation may not yield correct answers for all types of questions, as it may
fail to modify the key visual feature related to the semantics of the query. For example, the visual feature of
the position-related query is affected by flip augmentation, whereas color augmentation does not. Therefore,
it is essential to apply the appropriate augmentation for each query when applying CD. VSCoDe selects the
augmentation with the largest distance D(·) we define to identify the augmentation that modifies the key
feature of the image relative to the question. VSCoDe successfully selects the augmentation, enabling CD to
produce the correct answer.

semantics of the query. On the other hand, some studies, such as HALC (Chen et al., 2024) and CRG (Wan
et al., 2024), have attempted to understand semantics to generate object-manipulated images. However,
they are limited to object-level semantics and involve the additional cost of using external models for object
detection. Therefore, we pose the question, “How can we leverage pre-defined cheap visual augmentation
operations while incorporating semantic understanding?”

To answer our question, we first empirically observe that the augmentation required to generate contrast
varies depending on the query’s semantics. For instance, as shown in Figure 1, when the question pertains
to position, using position-related augmentations such as Flip creates significant contrast. Consequently,
selecting augmentations that induce more contrastive predictions for each query can make CD more effective.
Building on this intuition, we hypothesize that augmentations producing greater distances between the logits
of the original and augmented images facilitate contrasting predictions.

Based on our findings, we propose VSCoDe, a novel method for automatically selecting augmentation for
CD, which generates appropriate augmentation based on the semantic of query without requiring additional
training or external model. As illustrated in Figure 1, VSCoDe involves three steps: (1) given multiple candidate
augmentations, provide various types of augmented images to VLMs and generate a single token output on
each image, (2) measure the distance D(·) between output distributions of the original and augmented images,
and (3) select the most contrasting output with the maximum distance D(·) to achieve the final CD result.

Our contributions can be summarized as follows:

• We explore the effect of visual augmentation on LVLMs. Our findings indicate that each augmentation has a
distinct impact on the given question, altering the output distribution of VLMs and subsequently affecting
the response. It highlights the importance of using appropriate augmentation depending on the query.

• Based on the findings, we introduce an algorithm called VSCoDe that selects contrastive augmentation
to empower CD capability without additional training or using external models. Through distance D(·),
VSCoDe automatically determines the appropriate visual augmentation for given query semantics, thereby
achieving a higher level of CD effect.

• We extensively evaluate the performance of VSCoDe across various tasks, including Visual Question
Answering (VQA) on the MME (Fu et al., 2024), MMBench (Liu et al., 2024b), VQAv2 (Goyal et al.,
2017), and POPE (Li et al., 2023c), as well as captioning tasks on the MSCOCO (Lin et al., 2015)
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Figure 2: Examples of visual augmentations utilized in this paper.

dataset using LVLMs . VSCoDe shows improved performance on each task, and in particular, on the MME
benchmark with the LLaVA-1.5 13B model, VSCoDe outperforms both single augmentation approaches
and previous CD-based methods, increasing the performance score ×3.6 more than the previous method.

2 Preliminaries

Here, we provide a concise summary of background information to aid in understanding this research. We
specifically discuss LVLMs, visual data augmentation, and contrastive decoding.

Generative LVLMs. LVLMs are among the most prominent multi-modality models. They process pairs
of input image v and text (e.g.,question) q, denoted as (v, q), and generate answers by utilizing the visual
information within v. In this paper, we primarily focus on generative LVLMs, rather than CLIP-like (Radford
et al., 2021) models. These generative LVLMs produce tokens one at a time in sequence similar to LLMs.
The mathematical expression for this process is:

yt ∼ p(yt|v, q, y<t).

Here, p(·) represents the softmax of the output of the vocabulary set, and y<t denotes the tokens generated
up to but not including the timestamp t. Like LLMs, LVLMs are also prone to hallucination (Li et al., 2023c;
Liu et al., 2023a; Tong et al., 2024), where the model erroneously assigns higher probabilities to tokens that
do not factually exist in the provided image.

Visual Augmentation (VA). VA consists of long-established techniques that modify visual data to
produce desired images for computer vision research, such as enhancing sharpness, adjusting color jitters, and
more. While some augmentation techniques, like mixup (Zhang et al., 2017) or CutMix (Yun et al., 2019),
require combining more than two images, our discussion focuses on single-image augmentation operations for
simplicity. We focus on a specific framework:

v′ = Oo∈A(v),

where O(v) represents a manipulation on the image v, and o an augmentation within the set A. In this
paper, we employ the augmentations A ={color, flip, random crop, random erase, sharp, edge, noise}.
Examples are illustrated in Figure 2. The descriptions of the augmentations are: (1) color: color inversion,
(2) flip: horizontal flip followed by vertical flip, (3) crop: cropping a random part of the image, (4) erase:
randomly erasing part of the image, (5) sharp: adjusting image sharpness, (6) edge: extracting edge textures,
and (7) noise: adding diffusion noise. Note that we use the default noise setting from VCD (Leng et al., 2023).

Contrastive Decoding (CD). The CD approach was first introduced in the language domain (Li et al.,
2023b). It operates by generating two outputs using two different models: an expert model that produces
the original outputs and an amateur model that generates contrastive outputs. The CD is then performed
based on the contradictions between them. This idea has also been explored in the vision-language domain,
where manipulated images are used to induce contrastiveness and help remove unrelated information, such as
hallucinations. Instead of employing two separate models, the VLM setting uses original and manipulated
images as two distinct inputs to make the contrast. The process operates as follows:

pCD(y|v, q,O) = (1 + α)SOFTMAX
(

f(y|v, q)
)
−αSOFTMAX

(
f(y|O(v), q)

)
, (1)

where f(·) is the output logit obtained from VLM, and α as hyperparameter for the strength of contrastiveness.
To amplify the inherent hallucinations in VLMs, VCD (Leng et al., 2023) introduced noise to the image,
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Figure 3: The examples show output probabilities from the MME benchmark using the LLaVA-1.5 7B model.
The influence of augmentation varies depending on the query type. For instance, in (a) with a count-type
question, a cropped image generates a contrastive distribution, whereas a color-changed image does not.
Conversely, in (b), a color-related question is affected by color augmentation.

HALC (Chen et al., 2024) applied cropping, and CRG (Wan et al., 2024) employed object-wise erasing. Another
approach, ICD (Wang et al., 2024), involves modifying the text prompt to create confusion in the model’s
outputs. Subsequently, they subtracted the logits of the hallucinated image from the logits of the original image.

3 VSCoDe: Visual-Augmentation Selection for Contrastive Decoding

This section explores the impact of VAs on LVLMs, focusing specifically on CD. In essence, we demonstrate that
certain VAs cause either contrast or persistence on key visual feature, implying that the output distribution
of the augmented image either varies or stays consistent with the distribution of the original image for the
given query. Furthermore, we detail our discovery that contrastive augmentation can be identified using the
distance metric we propose, which relies on the difference between probability distributions. Building on these
insights, we present a novel algorithm named VSCoDe, which selects contrastive augmentation among multiple
candidate augmentations for the given query.

3.1 Query-Dependent Augmentation Effect

We begin by demonstrating that augmentations affect LVLM outputs differently, depending on the information
required by the query from the image. This difference occurs because an augmentation that modifies a crucial
feature needed for the query results in a shift in the LVLM’s output. Conversely, when the essential feature is
left unchanged, the output remains stable. We define these cases as contrastive augmentation and persistent
augmentation, respectively. Figure 3 illustrates the output distribution from differently augmented images,
where the bar represents probabilities computed with the softmax function of logits. In the first example,
the crop augmentation is a contrastive augmentation, altering the key feature for a count-related question,
leading to a significant change in probability distribution. Conversely, color augmentation is classified as
persistent augmentation, having a similar probability distribution. This effect is similarly observed in the
second example.

This effect results in varied performance on the LVLM. To demonstrate the distinct impact of each aug-
mentation on different queries, we evaluated CD performance with each augmentation applied to the MME
benchmark. The perception tasks in the MME benchmark are categorized into 10 groups, including color,
count, and existence. Observing performance in each category enables us to clearly assess the impact of
each augmentation on specific question types. Table 1 shows the difference between the number of samples
corrected by CD and those that became incorrect due to CD across categories for each augmentation. Positive
values, especially higher ones, indicate effective augmentations that likely act contrastively for the respective
query type, whereas negative values suggest that an augmentation may not be suitable for that query type.
For instance, changing the color of the image acts contrastively for color-related queries by leading to incorrect
predictions, while it remains consistent with position-related queries, as positional information is unchanged.
This underscores that no single augmentation is universally effective, emphasizing the importance of selecting
the optimal augmentation for each question.
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Table 1: The values indicate the net change from CD per
category, with blue and yellow marking the best and worst
results. No augmentation performs best across all categories,
and effectiveness varies. Results are averaged over five seeds
on the MME benchmark using LLaVA-1.5 7B.

Category
Aug Ext Cnt Pos Clr Pst Cel Scn Lmk Art OCR
Noise -2 20 2 -15 -6 69 41 69 37 -2
Color -2 11 -6 10 60 76 42 82 68 -15
Crop 2 13 -4 -11 33 32 49 15 11 -14
Edge -4 18 0 0 68 91 58 93 27 -13
Flip -1 8 5 2 36 35 31 53 10 -5
Erase 1 12 -11 -4 4 0 38 26 26 -14
Sharpness 3 2 -5 -2 13 -24 41 3 14 -17

Figure 4: Both (a) and (b) show Gain measured
on the MME benchmark using all augmentations
in A. (a) Larger distance D(·) yields larger Gain.
(b) Choosing augmentation with the largest D(·)
is most effective in achieving high Gain.
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For effective CD, contrastive augmentation should be applied to guide the LVLM toward generating incorrect
answers, thereby increasing the logit for the correct token while decreasing the logit for the wrong token after
logit subtraction. As the contrastiveness of each augmentation depends on the visual information required
by each question, selecting an appropriate augmentation is crucial. To address this, we propose an automatic
augmentation selection strategy that identifies the optimal contrastive augmentation for each question.

3.2 Maximizing Contrast: Selecting Visual Augmentation with the Largest Distance

The remaining challenge is to select a suitable visual augmentation that yields the most contrastive outputs
relative to inference on the original image. In this section, we outline the indicators for effective contrastive
augmentation. Intuitively, applying CD should lead to (1) an increase in logit for the correct token and (2) a
decrease for the incorrect token. Based on the intuition, we hypothesize that the augmentation resulting in
the most different output distribution can serve as a contrastive augmentation. To measure the distribution
difference D(·) between the output distributions from original and augmented images, we use L2-norm.

D(v, q,O) =
∥∥∥(

SOFTMAX(f(y|v, q))− SOFTMAX(f(y|O(v), q))
)∥∥∥

2
. (2)

Note that we mainly use L2-norm hereinafter, and report analysis of various metrics in Appendix A.

To assess the effectiveness of CD, we use the logit increase of the ground truth token achieved through CD
as a key indicator. This measure, referred to as Gain, is calculated as follows:

Gain(v, q,O) = p(yGT|O(v), q)− p(yGT|Ooriginal(v), q)). (3)

where yGT is the ground truth token and Ooriginal is a transformation that returns the original image. To
verify our hypothesis – a bigger distance D(·) can have the most contrastiveness – we measure the Gain and
D(·) on the MME benchmark using augmentations from A across 5 seed runs. As shown in Figure 4a, as D(·)
increases, the Gain gets bigger, most resulting in positive Gain values, which supports our hypothesis. Thus,
choosing the augmentation with the largest D(·) can be an effective strategy for maximizing the Gain. To test
this approach, we select the augmentation that has the biggest D(·) on each augmentation and average their
Gain scores and percentage of positive Gain scores. As shown in Figure 4b, we confirm that the augmentation
with the greatest D(·) yields the highest average increase in the Gain score. Notably, this increase surpasses
that of any single augmentation, validating the effectiveness of a D(·)-based augmentation selection strategy.
This finding supports using the augmentation with the largest D(·) as the contrastive augmentation o for
each query q.
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Algorithm 1 VSCoDe: Visual-Augmented Contrastive Decoding
Input: Image and question pair (v, q), target sequence length T , Augmentation set A, The number of of
Visual augmentations N , Distance function D(·), Amplification coefficient α for CD, plausibility constraint
parameter β
for t = 1...T do

if t = 1 then ▷ Determine contrast augmentation for the entire decoding process
zt ← f(yt|v, q, y<t) and z̃t,i ← f(yt|Oo(v), q, y<t), ∀o ∈ A ▷ Generate logits
pt ← SOFTMAX(zt) and p̃t,i ← SOFTMAX(z̃t,i), ∀o ∈ A ▷ Compute probability
ô← arg maxo∈A(D(pt, p̃t,i)) ▷ Select the most constrastive augmentation

else
zt ← f(yt|v, q, y<t) and z̃t,ô ← f(yt|Oô(v), q, y<t) ▷ Generate logits
pt ← SOFTMAX(zt) and p̃t,ô ← SOFTMAX(z̃t,ô) ▷ Compute probability

end if
pVSCoDe,t = (1 + α) · pt − α · p̃t,ô ▷ Compute VSCoDe probability
Vcand(y<t)← {yt ∈ V : pt(yt|v, q, y<t) ≥ β maxw pt(w|v, q, y<t)} ▷ Candidate Set
pVSCoDe,t(y) = 0, if y /∈ Vcand(y<t) ▷ Discard not-candidate words
yt = SAMPLINGy(pVSCoDe,t) ▷ Sampling next word

end for

3.3 Proposed Algorithm

Based on the above observations, we propose VSCoDe to automatically select an appropriate augmentation for
each query by utilizing the D(·). The entire procedure is summarized in Algorithm 1. In the initial decoding
phase with the given question, we adaptively select contrastive augmentation by choosing the augmentation
with the maximum D(·). This produces a similar effect to applying CD for every token while significantly
reducing the computational cost. The chosen augmentation ô is then used for the remainder of the decoding
process. Once the contrastive augmentation is determined, LVLM calculates the probability of tokens pVSCoDe,t

using Eq. (1). Subsequently, among the whole vocabulary V , the candidate vocabulary set Vcand ∈ V is
defined to select a more reliable token following the original CD algorithm (Li et al., 2023b). This process is
repeated iteratively to generate the output words yt.

We use two scenarios to define candidate augmentations: All and Coreset. All uses all the augmentations in
the candidate set A. However, due to the characteristics of data distributions, certain augmentations may not
yield meaningful contrast effects and may be effectively replaced with alternative ones. In this case, excluding
these augmentations may work to eliminate noisy augmentations. So we introduce the Coreset strategy that
leverages validation to choose a subset of augmentations A′ ⊂ A to use only the more effective augmentations.

3.4 Coreset Strategy

Removing noisy augmentations via acceptance threshold τ . Using the D(·), we aim to select a VA
that shows high-performance improvement when applied to CD. However, there may exist cases where certain
VAs may not be appropriate contrastive augmentation for a specific task. In this case, these VAs contribute
less to performance improvement than other VAs on average and can sometimes become noise that prevents
other VAs from being chosen as contrast. To determine these, We introduce the acceptance threshold τ , a
simple baseline that eliminates the noise VAs. To determine the suitability of VAs for the target task, we
utilize the LVLM’s first token generation distance by VSCoDe for each VA in the sample sub-dataset. Let ci

be the number of times that VAi selected as contrast VA among a total of M VAs. For the N data samples
and acceptance threshold τ , candidate VAs with ci < τ N

M are treated as unsuitable for this task and removed.
We used the τ = 0.5 as a baseline throughout the main experiments.
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Table 2: MME score on perception tasks using the LLaVA-1.5 13B. The best and second-best performances
are reported using bold and underline formatting, respectively. We indicate whether a single augmentation
was used or a set of augmentations was selected based on a specific metric. Note that All uses a set of seven
augmentation types including noise but excluding text augmentation, while Coreset utilizes a subset of four
augmentations. We exclude HALC from the baselines as it does not generate proper outputs on LLaVA-1.5
13B model.

Augmentation Category

Method Type Select Metric Existence Count Position Color Posters Celebrity Scene Landmark Artwork OCR Total

Vanilla - - - 182.00 125.33 110.33 154.67 128.57 123.00 153.05 131.30 108.30 111.00 1327.55±16.2

Single CD

Color ✗ - 182.00 134.00 129.33 160.00 142.86 142.24 154.60 143.40 112.60 113.50 1414.53±9.56

Edge ✗ - 185.00 146.00 125.00 157.67 141.70 142.24 152.95 139.50 113.15 121.00 1424.20±22.0

Sharp ✗ - 182.00 113.33 130.00 156.33 136.46 130.76 156.90 137.10 109.85 109.00 1361.74±20.3

Crop ✗ - 183.00 127.00 124.33 150.00 143.13 139.24 153.05 141.70 108.70 114.50 1384.65±24.7

Erase ✗ - 185.00 126.67 116.33 144.67 147.55 128.29 156.60 132.85 110.95 117.00 1365.91±22.5

Flip ✗ - 183.00 122.00 129.00 155.00 143.61 132.12 151.45 133.90 109.55 115.00 1374.62±14.9

VCD Noise ✗ - 185.00 122.33 125.00 151.67 137.62 133.12 151.15 139.10 110.85 98.50 1354.34±24.5

ICD Text ✗ - 182.00 124.00 127.33 159.00 134.63 126.47 156.00 137.00 110.45 103.00 1359.88±16.78

CRG Erase ✗ - 187.00 109.67 129.33 147.67 147.35 140.76 162.15 153.35 105.15 116.00 1398.43±12.46

Rand CD All ✓ Rand 183.00 118.33 135.00 153.67 141.29 133.06 151.45 140.95 110.40 106.00 1373.15±28.09

VSCoDe
All ✓ Dist 184.00 138.67 134.00 167.00 146.80 144.29 149.35 145.30 114.65 119.00 1443.06±6.80

Coreset ✓ Dist 183.00 140.33 132.00 165.33 146.46 143.71 149.80 145.05 114.45 123.00 1443.14±9.99

4 Experiments

4.1 Experimental Settings

Datasets and evaluation metrics. We conduct experiments on Visual Question Answering (VQA) tasks
and captioning tasks. VQA task evaluates how well LVLM generates robust and correct answers to various
questions, and the captioning task measures how well the LVLM generates captions given the image. We
use MME (Fu et al., 2024), MMBench (Liu et al., 2024b), VQAv2 (Goyal et al., 2017), and POPE (Li et al.,
2023c) benchmarks for the VQA task, and each dataset consists of image-question pairs. For the captioning
task, we evaluate on MSCOCO (Lin et al., 2015).

• MME is an LVLM evaluation dataset with granular question categories, including 10 categories from the
perception tasks and 4 from the cognition tasks. The labels consist of ‘Yes’ or ‘No,’ and performance is
measured by MME score, which is derived from accuracy. In this paper, we evaluate the perception tasks
as our method focuses on observation ability.

• MMBench is a dataset of image-question pairs from 20 categories to validate how skillfully LVLM performs
on various vision-language tasks with given option labels. For evaluation, we incorporate CircularEval,
which rotates the positions of the possible option labels in a circular manner.

• VQAv2 is a dataset containing open-ended questions paired with images. This allows for a proper evaluation
of how expertly the model can utilize the given visual information rather than simply using the learned
language priors of the decoder. We randomly select 30K samples from the VQAv2 evaluation dataset to
validate our method.

• POPE benchmark is proposed to evaluate the hallucination of LVLMs. It asked whether the given object
exists in the image or not. The fake object is generated from three sampling strategies: random, popular,
and adversarial. Images are from three sources: MSCOCO (Lin et al., 2015), A-OKVQA (Schwenk et al.,
2022), and GQA (Hudson & Manning, 2019), and we report the average performance across the sampling
strategies on each image source.

• MSCOCO dataset provides 328K images for various tasks, such as object detection, or captioning. We use
500 random images from the validation set to generate image captions and evaluate with CHAIR (Rohrbach
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et al., 2018) metric, which is designed to evaluate hallucination in image captioning models. It assesses how
accurately generated captions reflect the visual content of an image without including irrelevant details.
CHAIR_{I,S} metrics each assess on alignment with the image and semantic plausibility.

For the reliability of the results, we report performance using the average of the results of 5 different seed
runs for MME and MMBench, and a single run for VQAv2.

Models. We evaluate the performance of VSCoDe using state-of-the-art LVLMs, mainly on LLaVA-1.5 (Liu
et al., 2023b). Specifically, we use pre-trained LLaVA-1.5 with Vicuna (Chiang et al., 2023) 7B and 13B as
the language decoder. Additional experiments on various LVLMs are provided in Appendix B.

CD methods. We use 7 augmentations in Figure 2 set A. For the baseline, we use vanilla setting that do
not use CD, and CD with each single augmentation. To evaluate the effectiveness of VSCoDe, we compare
with VCD (Leng et al., 2023), ICD (Wang et al., 2024), CRG (Wan et al., 2024) and HALC (Chen et al.,
2024). Note that a single noise addition augmentation is equivalent method to the VCD. For VSCoDe, we
experiment on both all and coreset strategies. The augmentations used by coreset differs depending on the
datasets. For example, on the MME benchmark, the LLaVA-7B model utilizes 4 augmentations: color, edge,
crop, and flip. The implementation details for each method can be found in Appendix E.

Implementation details. We choose α = 1.0 and β = 0.1 for the main experiment. Additionally, we use
T = 1.0 and p = 1.0 for the sampling strategy, which employs the softmax distribution for the next token
generation. Additionally, we conducted experiments under various decoding settings, and the corresponding
ablation studies can be found in Appendix C.

4.2 Experiment Results

Result on each category. Table 2 presents the MME score of CD with various augmentations and different
methods applied on the MME dataset across different perception categories, using the LLaVA-1.5 13B model.
The baseline performance with individual augmentations shows an overall increase in the total MME score.
This suggests that augmentations likely help create contrast in the visual features for CD. For example, in
questions involving the identification of celebrities or landmarks, humans can still answer accurately even if
the color of the image is altered. However, LVLMs may struggle to recognize objects when color, implying that
color information is one of the important feature to recognize the object. Still, each augmentation is effective
within specific categories, underscoring the need to choose suitable augmentations for optimal results.

Comparing with baselines, VSCoDe results best performance. When using a single augmentation for CD
of LVLMs, it is challenging to gain distinguished performance across all types of questions. In contrast,
VSCoDe, which selects the most suitable visual augmentation based on the given question, demonstrates
significant performance improvements across various question categories compared to single augmentation
approaches. Furthermore, it surpasses both VCD and ICD, emphasizing the critical role of selecting appropriate
augmentations. Note that we exclude HALC from the baseline as it fails to generate proper output on LLaVA-
1.5 13B model. In Appendix D, we report the analysis on the selected augmentations on each categories by
VSCoDe.

Result on performance and cost comparison Table 3 presents the evaluation scores for all datasets(MME,
MMBench, VQAv2, POPE, BLEU, and CHAIR) used in the experiments on LLaVA-1.5 7B. Additionally,
it includes the time and memory costs, which were measured during the captioning task. Although HALC
records high performance in captioning task, it consumes big cost for using external model. In contrast,
VSCoDe shows best performance with slight increase on the cost. Detailed setting for measuring the cost is
described in Appendix E.

In the process of applying VSCoDe, our model requires inference as the number of VAs used in the first step
only, and each subsequent generation step requires twice token generation stages, which is the same with other
CD methods. Table 3 illustrates the cost on MSCOCO captioning task. They are denoted as a respective
cost compared to the vanilla baseline, which does not utilize CD. In the case of HALC and CRG, since they
use an external object detector, the amount of memory used and the time taken in the decoding process
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Table 3: Performance on the various benchmarks and computational costs for different methods for LLaVA-1.5
7B. Q-Dep indicates that the method varies the contrast based on the given query. (M), (A), and (G) denote
the MSCOCO, A-OKVQA, and GQA datasets for POPE. Detailed descriptions of each experiment are
provided in Appendix E.

Augmentation Score Cost

Method Type Q-Dep Ext Select Metric BLEU CHAIRS CHAIRI POPE (M) POPE (A) POPE (G) MME MMBench VQAv2 Time Mem

Vanilla - - - - - 40.13 8.00 5.47 83.63 80.44 80.85 1272.22 71.46 66.48 1.00 1.00

VCD (Leng et al., 2023) Noise ✗ ✗ ✗ - 47.98 6.40 4.24 83.40 81.41 81.53 1323.44 72.03 69.19 1.96 1.00
ICD (Wang et al., 2024) Text ✗ ✗ ✗ - 44.99 5.36 6.62 83.72 81.23 81.12 1325.47 72.05 70.27 1.97 1.00
HALC (Chen et al., 2024) Segment ✓ ✓ ✗ - 16.87 20.40 6.75 - - - 1114.16 - - 54.27 1.45
HALC† Segment ✓ ✓ ✗ - 50.24 5.80 4.31 85.03 - - - - - 7.02 1.44
CRG (Wan et al., 2024) Erase ✓ ✓ ✗ - 42.70 5.20 3.37 85.28 82.27 82.25 1310.02 73.07 70.25 2.64 1.19

Random CD All ✗ ✗ ✓ Rand 49.02 5.75 3.91 83.87 81.80 81.81 1339.76 72.49 69.41 1.96 1.00

VSCoDe
All ✓ ✗ ✓ Dist 51.37 4.80 3.21 84.4 83.06 82.75 1368.89 74.32 71.02 2.45 1.04

Coreset ✓ ✗ ✓ Dist 51.97 4.60 3.10 84.65 82.75 82.84 1364.36 74.27 70.94 2.15 1.03

are longer. In particular, in the case of HALC, the basic reproduction process takes a long time because of
generating very long interpretations. Although optimized HALC† generates short answers, it took 7 times
more time than the original due to the complexity of the method itself. For CRG, we include the time cost
for object detection while we use provided external data. VSCoDe does not use an external model or dataset,
and especially using coreset, the time and memory cost is similar to that of single CD methods.

While HALC and CRG show high performance on some tasks, the time and memory cost of using an external
model is expensive. In addition, the performance of the two methods can be affected depending on which
object detector is used. In the case of CRG, the MSCOCO dataset was used in the pre-training process of
GroundingDINO-B, the object detector, resulting in high performance on POPE of MSCOCO dataset.

Vanilla
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VSCoDe (All)
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MME

 MMBench

 VQAv2

 POPE
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Figure 5: Performance of the LLaVA-7B model on
various VQA and captioning tasks. In most tasks,
VSCoDe shows the best performance.

Results on various tasks. As shown in Figure 5,
VSCoDe demonstrates superior performance across both
VQA and captioning tasks. The figure shows that
VSCoDe consistently outperforms other CD methods
across diverse VQA task categories and answer for-
mats, including benchmarks such as MME, MMBench,
VQAv2, and POPE. Furthermore, it generates signif-
icantly fewer hallucinated answers, as evidenced by
multiple performance metrics on the captioning task
and the POPE benchmark. In particular, higher BLEU
scores indicate that the generated captions more accu-
rately describe the given image, while lower CHAIR
scores demonstrate a reduction in hallucinated content.

4.3 Discussion

Analysis of the validity of CD selection by dis-
tance. Table 1 shows that choosing appropriate visual
augmentation for each question is essential to maximize
contrastiveness for an effective CD. In this section, we
analyze the effectiveness of using distance D(·) for augmentation selection. Figure 6 shows the proportion of
single augmentations selected by VSCoDe for each category of MME when distance D(·) is used. Accordingly,
D(·) can effectively select visual augmentations that significantly increase contrast for each category. For
example, the ’color’ category has a high proportion of color augmentation, which distorts the image’s color,
and the ’position’ category has a considerable proportion of flip augmentation, which distorts the position
information of the given image. Furthermore, D(·) goes beyond simply using a single augmentation for queries
of a specific category. According to Table 2, for many categories, VSCoDe outperforms each augmentation.
This means that distance improves effective augmentation selecting for CD on a single category, beyond
simply using a single high-contrastiveness augmentation. More detailed analysis can be found at Appendix D.
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Figure 6: The percentage of each augmentation being selected based on the distance D(·) within each category
on MME benchmark.

Table 4: Selection percentage (%) of VSCoDe
across different datasets and augmentation
types. Augmentation candidates not selected
by the coreset strategy are underlined.

Augmentation Types

Dataset Noise Color Crop Edge Flip Erase Sharp

MME 5.42 17.00 16.00 40.16 15.72 4.96 0.74
MMBench 5.04 13.84 16.45 36.27 21.51 5.82 1.09
VQAv2 7.38 18.77 14.51 40.82 12.16 5.22 1.14
POPE(MSCOCO) 8.03 15.03 17.40 38.83 13.03 5.43 1.74
POPE(AOKVQA) 5.90 15.43 16.37 40.20 14.67 5.63 1.80
POPE(GQA) 3.00 15.00 18.27 42.23 13.77 5.93 1.80
Captioning 1.60 6.80 28.20 43.00 14.00 6.00 0.40

Table 5: Comparison of augmentation selection on the first
token and full tokens at the captioning task. The best
performance is bolded.

Method Type BLEU CHAIRS CHAIRI Time Mem
Vanilla - 40.13±1.10 8.00±0.82 5.47±0.59 1.00 1.00

Random All 49.02±1.38 5.75±0.83 3.91±0.66 1.96 1.00

VSCoDe
All 51.37±0.56 4.80±0.77 3.21±0.59 ×2.45 ×1.04

Coreset 51.97±0.48 4.60±0.56 3.10±0.40 ×2.15 ×1.03

VSCoDe-E
All 51.75±0.45 4.20±0.33 2.83±0.13 ×3.34 ×1.41

Coreset 51.61±1.17 4.24±0.87 2.83±0.55 ×2.69 ×1.37

Effect of coreset strategy. As shown in Table 2 and Figure 5, although coreset uses less number of
augmentations than all, it performs better in many cases. This indicates that our coreset strategy, which
removes noisy augmentations, is effective and underscores the importance of selecting only the most impactful
augmentations for better results. This method not only enhances both efficiency and effectiveness but also
serves as a useful tool for choosing augmentations from multiple options. Table 4 presents the selection ratio
of augmentations by VSCoDe across different datasets. According to the strategy, when 7 augmentations are
used in the set, each must have a selection ratio of at least 7.14% to be included. This demonstrates that the
most impactful augmentation types vary depending on the data distribution. For instance, in the captioning
task, which requires accurate image description, augmentations like the crop—which removes the background
regions of an image—have a higher impact on it, while the effects of noise and color are relatively diminished.

Selecting augmentation ô on the first token. VSCoDe mainly uses the first token to select the
augmentation. Selecting the augmentation on every token improves performance, but it comes from an
additional cost. In this case, the memory cost is severe but can reduce time by running in a batch-wise manner.
Without batch-wise operation, the time cost increases linearly depending on the number of augmentation
candidates. We name this strategy that CD on every token as VSCoDe-E and report the result in Table 5 on
captioning task using the MSCOCO benchmark. While it needs about 130% more time and memory, it shows
about 115% more performance gain in CHAIR metrics compared to VSCoDe. Using contrastive augmentation
on each token may be more helpful to mitigate hallucination.

Analysis of the combination of visual augmentations. We evaluate different combinations of aug-
mentations to estimate the impact of each augmentation. For simplicity, we limit the augmentation set to
{color, flip, random crop} for this section. Table 6 shows the effect of using all augmentation candidates
in the set and the impact of excluding each one individually. According to the results, VSCoDe performance
using all three augmentations, color, crop and flip, shows higher performance than other sub-combinations.
Specifically, when color or flip augmentation is removed from the augmentation set, performance in the color
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Table 6: MME performance of VSCoDe with different candidate combinations. We evaluate the performance
of the candidate set A by excluding each candidate one by one.

Augmentation Category

Method Type Select Existence Count Position Color Posters Celebrity Scene Landmark Artwork OCR Total

Vanilla - - 180.00 112.00 117.67 147.00 121.02 110.24 148.80 129.15 109.35 97.00 1327.55

Single CD
Color ✗ 182.00 134.00 129.33 160.00 142.86 142.24 154.60 143.40 112.60 113.50 1414.53
Crop ✗ 187.00 110.33 138.33 147.67 149.80 146.65 156.70 146.65 105.75 103.50 1392.38
Flip ✗ 183.00 122.00 129.00 155.00 143.61 132.12 151.45 133.90 109.55 115.00 1374.62

VSCoDe

A{color,crop} ✓ 186.00 116.67 132.33 160.00 150.27 149.82 155.70 153.35 108.75 108.00 1420.90
A{color,flip} ✓ 181.00 138.33 136.33 161.67 145.10 141.41 150.10 141.00 113.55 108.00 1416.50
A{crop,flip} ✓ 184.00 116.00 133.33 150.67 148.57 147.94 155.55 151.50 107.80 103.50 1398.86

A{color,crop,flip} ✓ 183.00 120.33 133.33 161.00 150.07 149.94 155.70 155.70 109.20 108.00 1426.28
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Figure 7: Two qualitative examples of VSCoDe on MMBench benchmark. On both cases, VSCoDe successfully
corrects the wrong prediction from the original image by selecting the augmentation with biggest distance
D(·).

or position categories significantly decreases. Considering each augmentation has a different contrastive effect,
the results confirm that providing an appropriate combination of VAs for A to cover all types of queries can
provide proper contrast for a given task.

Qualitative study. In this section, we discuss examples of applying VSCoDe on MMBench with LLAVA-13B as
illustrated in Figure 7. The first example shows that the original image yields an incorrect prediction, identifying
an empty space as ‘top-left’. To adjust the logit of the ground truth token through CD, the augmented image
must have a low logit for the ground truth token. Only the flipped image introduces positional contrast,
resulting in a low logit for the token and enabling a successful CD. On the second example, the incorrect answer
already holds a high probability, indicating that strong contrastiveness is needed to correct the prediction.
Although all augmentations increase the logit of the wrong answer token, adding noise to the image produces
only a minor difference, which keeps the prediction incorrect. In this situation, maximizing contrastiveness
is essential to achieve the correct answer. Therefore, selecting the augmentation with bigger D(·) is effective
in reaching the correct answer. The CD results from unselected augmentations can be found in Appendix F.
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5 Related Works

Contrastive decoding. CD (Li et al., 2023b) was introduced in the NLP domain using two differently sized
language models. It leverages contrastive output by subtracting the small model’s probability from the larger
model’s to retain the strengths of the large model while eliminating the weaknesses that are evident in the
small model. There are variants like DOLA (Chuang et al., 2023) which utilizes contrast in layer-level outputs
and Instructive Decoding (Kim et al.) uses two contrastive instructions to generate an output opposite to the
original output.

Recently, similar approaches have been applied in LVLMs, utilizing contrastive images to guide the model in
generating accurate text, mainly focusing on reducing hallucination in LVLM (Li et al., 2023c; Liu et al.,
2023a; Tong et al., 2024). VCD (Leng et al., 2023) demonstrates that adding noise to the image can elevate
the hallucination inherent in LVLMs, subsequently applying CD to manage the hallucination. Another work
CRG (Wan et al., 2024) employs a black bounding box from external data to conceal the object relevant
to the question, amplifying hallucination, while HALC (Chen et al., 2024) uses multiple different cropped
images from the detection model and explores multiple pairs of cropped images to find pairs that amplify
the information in the cropped image. These works address methods to manage hallucination in LVLMs
using a single type of augmentation, which has limitations in generating enough contrast for various types of
questions. Unlike previous studies, VSCoDe explores multiple augmentations and selects the most effective one
to answer the question. Moreover, it does not require additional training or an external model, providing
direct perturbation to the image.

Visual augmentation. In the computer vision domain, visual augmentation has been employed to increase
the diversity of sample data, thereby helping to overcome the challenges associated with acquiring large training
datasets and mitigating overfitting issues in environments with limited samples. Traditional augmentations
include changes in color, cropping, and flipping. Additionally, there are more advanced techniques such as
erasing (Kumar Singh & Jae Lee, 2017; DeVries & Taylor, 2017; Zhong et al., 2020), and other techniques
such as mixup (Zhang et al., 2017) and CutMix (Yun et al., 2019). Furthermore, the automatic application of
multiple augmentations has been explored (Cubuk et al., 2019; Lim et al., 2019).

Some studies in LVLMs employ VA to achieve the desired output in various methods. FGVP (Yang et al.,
2024) adds blur to the background of the image, leaving the main object clear to emphasize it. To focus on
each object in the image, (Chen et al., 2023; Surís et al., 2023; Lin et al., 2024) use multiple cropped images,
each focusing on a single object to generate the desired output, while (Kim et al., 2023) uses inpainting to
erase objects to measure the correlation between objects.

6 Conclusion

In this paper, we present VSCoDe, a method that leverages multiple augmentations by adaptively selecting
the most contrastive augmentation for effective CD. Our initial analysis revealed that the level of contrast
generated by augmentations varies according to the query, so choosing an appropriate augmentation is critical
for enhancing CD. Building on this insight, we developed VSCoDe, an algorithm that selects augmentations
based on the largest distance D(·) metric. Experimental results demonstrate that VSCoDe surpasses existing
methods across various tasks, highlighting the importance of using appropriate augmentations.

Limitation. Our method selects the appropriate contrastive augmentation among augmentation candidates.
No matter how well VSCoDe works and the appropriate augmentation is chosen for the given task, if there is
no sufficient contrastive augmentation for the task among the candidates, it is difficult to expect a significant
performance gain.

Future Work. For future work, exploring methods to determine task-specific augmentation candidates could
be a valuable direction. Additionally, identifying a subset of highly influential augmentations or leveraging
augmentation sets proposed in other works could be a promising direction. Furthermore, investigating the
impact of text augmentations in conjunction with visual augmentations and integrating the two approaches
could further improve the results.
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-Supplementary Material-
VSCoDe: Visual-Augmentation Selection for Contrastive Decoding

A Ablation on Distance metric D(·)

In this section, we examine comprehensive several additional ablation experiments that are considerable
in the environment in which VSCoDe is applied. Based on these ablation results, we expect VSCoDe to have
universally high robustness and be able to perform various tasks, models, and inferences.

We perform experiments using several common distance measures to define our function D(·) that VSCoDe
uses to select which VA will produce high contrast. The experiment is performed in the MME dataset using
the LLaVA-1.5 13B model. Also, we use the average softmax Gain directly to check the effect. In detail,
Gain on the correct answer label obtained when applying the distance measure candidate Di used in the
experiment and the VAs used in Figure 2 to VSCoDe for all samples. In order to control the variables of VAs
that contain randomness, each experiment performs a total of 5 experiments with different seeds on the entire
MME dataset and then measures Gain through the average.
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Figure 8: Average softmax gain by different distance metrics.

Figure 8 shows the result of affectness of different D(·) metrics. In this experiment, we use L1, L2, L3, L∞,
Cosine similarity, Kullback-Leibler Divergence (KL divergence), and Earth Mover’s distance (EM distance)
as candidates. The x-axis of the results in Figure 8 means the candidate distance names used, and the y-axis
means the average softmax gain improved compared to regular decoding obtained through VSCoDe when
each distance is used as a measurement. From the results, we can check that L1, L2, and L3 norms show
high performance improvement almost no difference overall. This means that any of these can be used in
the algorithm as a distance function at a similar level. However, in the case of L∞ and KL divergence, it
can be seen that the actual performance improvement is much smaller compared to others. These show very
low-performance improvement compared to the L2 distance, which we used in the main experiment, meaning
they are improper measurements for estimating the expected contrast of VAs. The other two distances, cosine
similarity, and EM distance, performed higher than KL divergence but did not perform higher than L2 norm
for the entire MME dataset. Based on this result, we empirically confirmed that using L2 norm as our main
D(·) for VSCoDe is a meaningful standard through experiments with these distance measures and the results
shown throughout our main experiments.

B Analysis of Different Model Sizes

We showed that VSCoDe is proper for general LVLMs and has a significant effect on performance by experi-
menting with three different models LLaVA-1.5, InstructBLIP, and Qwen-VL on various types of datasets at
the Section 4. In this ablation, we conduct an experiment using LLaVA-1.5 7B, 13B and InstructBLIP 7B,
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Table 7: MME performance by different models and sizes.

Augmentation Model

Method Type Select LLaVA-1.5 7B LLaVA-1.5 13B InstructBLIP 7B InstructBLIP 13B Qwen-VL 7B

Vanilla - - 1272.22 1327.55 1155.26 1151.45 1355.32

Single CD

Color ✗ 1347.24 1414.53 1224.26 1237.71 1422.69
Edge ✗ 1350.68 1424.20 1221.15 1220.63 1393.32
Sharp ✗ 1323.60 1361.74 1177.84 1164.32 1395.14
Crop ✗ 1338.50 1384.65 1194.13 1205.55 1396.83
Erase ✗ 1310.89 1365.91 1195.27 1185.32 1385.33
Flip ✗ 1344.75 1374.62 1222.34 1213.61 1425.20

VCD Leng et al. (2023) Noise ✗ 1323.44 1354.34 1218.90 1208.44 1406.15

VSCoDe
All ✓ 1368.89 1443.06 1249.56 1248.30 1406.05

Corset ✓ 1364.36 1443.14 1254.16 1256.09 1426.43

13B to check the effect of the model size on VSCoDe. MME dataset is used for this experiment. We measured
the performance for the perception category and the total performance for each model.

Table 7 shows the performance of VSCoDe on each model and size for the MME dataset. From the result, we
can confirm even if the model size and model used are different, the softmax gain obtained when each VA is
used in VSCoDe is robust to the type and size of the model and shows a tendency to be dependent on the
given task. Throughout the experimental results, the single VA edge and color show very high performance.
On the other hand, we can see that single VA sharp and erase have a slight performance gain than others.
For different models, the performance gain shown by each VA shows an overall similar trend, and there is a
higher performance improvement compared to the original regular decoding.

Furthermore, for different model sizes, there is a significant performance gain when applying our algorithm
VSCoDe. VSCoDe using all of the VAs specified in Figure 2 shows a higher performance improvement than
using each single VA. This indicates that, regardless of model and size, each application has the highest
performance in the entire perception category and total performance.

C Analysis of Different Sampling Strategies

We perform analysis studies on different sampling strategies to see how VSCoDe is affected by sampling methods
other than basic regular decoding. In this experiment, 4 sampling techniques are applied: (1) Top P sampling
(specifically, p = 0.9), (2) Top K sampling (specifically, k = 50), (3) Temperature sampling (specifically,
T = 0.7/1.5). Top P sampling is a method in which the only token candidates in the distribution on cumulative
probability p can be selected as the next token. This has the effect of preventing noise samples with too
low a probability to be extracted from candidates. Top K sampling uses only the top k candidates from the
highest probability for sampling. In temperature sampling, temperature scaling is applied to the softmax to
calculate the next token logits. When temperature T is low, the possibility of selecting a high-probability
candidate group increases, and the possibility of choosing low-probability candidates decreases. It has the
effect of increasing the probability of more static responses. Conversely, when the temperature T is large,
the chance of choosing among the high-probability candidates decreases, and the low-probability candidates
increases. It has the effect of increasing the possibility of making more diverse responses.

Table 8 show the experiment result of VSCoDe with different sampling strategies. From the table, we can check
that VSCoDe gives us a high performance in various types of samplings. This is not only for regular decoding,
but it also shows higher performance compared to single VA in the Top P sampling and Top K sampling. A
notable observation is that VSCoDe shows high performance in both cases where the temperature scale gets
higher or lower. In the case of high temperature, the model has a higher probability of generation more
diverse, and the explanations and representations are getting richer. However, in this case, there is a potential
problem that the entire output is inaccurate while in generation. In particular, if specific information for a
given image must be utilized rather than using inherent prior knowledge, there is a possibility that incorrect
output may lose correlation with visual information on LVLMs. Our results show that using VSCoDe in
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Table 8: MME Performance by different sampling strategies.

Augmentation Sampling Strategy

Method
Type Select

Top P Top K Temperature

p = 0.9 k = 50, T = 0.7 T = 0.7 T = 1.5

Vanilla - - 1352.87 1399.33 1403.99 1169.71

Single CD

Color ✗ 1405.90 1443.27 1445.19 1349.20
Edge ✗ 1434.14 1433.86 1420.64 1364.72
Sharp ✗ 1381.00 1415.88 1416.63 1294.08
Crop ✗ 1391.01 1413.09 1422.15 1342.43
Erase ✗ 1374.47 1404.27 1399.67 1315.08
Flip ✗ 1404.76 1426.97 1425.54 1340.88

VCD Leng et al. (2023) Noise ✗ 1370.47 1425.60 1429.52 1316.95

VSCoDe
All ✓ 1462.67 1456.03 1454.32 1389.03

Corset ✓ 1462.58 1457.10 1458.73 1377.47

this situation can be expected to have the effect of concentrating the model to intentionally utilize visual
information by contrastive decoding the output through contrast VA. As can be seen from the results, in
situations where the temperature scale is large, CD through VA produces a more significant performance
gain. Additionally, the magnitude of contrastiveness produced by each VA is different in the task so we
can see a considerable performance difference between single VA CDs. In this situation, VSCoDe, which
automatically selects and applies the appropriate VA for a given task, can be used more appropriately and
robustly to the given scenario. Furthermore, it shows that VSCoDe has the highest performance improvement.

Our algorithm can also be used in low-temperature scale scenarios, which increases the sampling possibility
of a high-probability token being chosen as the next token. In this scenario, the original model’s high logits
become more extensive than usual by temperature scaling, increasing the probability of being selected as
the next token. When the correct answer logit does not have a high value, the possibility of being chosen as
the next token is crucially dropped. For a low-temperature scale, once the model starts generation with an
incorrect token, it is more likely to continue generating incorrect responses. As mentioned in CD, in the case
of high confidence in high logit sampling methods in a generation, a wrong token selection can significantly
impact the quality of future responses. In this situation, using VSCoDe can increase the likelihood that a low
correct answer token will be selected as the correct answer through CD using contrast VA. As a result, it
shows high robustness against the temperature sampling scale and increases the likelihood of providing an
appropriate response.

D Analysis of the Selected Augmentations

In this section, we discuss how often each augmentation is selected by VSCoDe based on the maximum distance
D within each category of the MME benchmark using LLaVA-1.5 13B. The corresponding MME benchmark
performance of using each augmentation and VSCoDe for CD is reported in Table 2, and the selection ratio of
each augmentation by categories can be seen at Figure 6. In most categories, edge is predominantly selected,
which aligns with its high performance, as shown in the table. Moreover, flip and color are mostly selected
in the position and color categories, respectively, which is intuitive since flip and color augmentations alter
position- and color-related information. Noise and sharp augmentations, which show low performance in the
table, are selected less frequently, as there are other more effective augmentations available.
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E Experiment Details

E.1 Experimental Setting

Here, we provide detailed description about the setting and results of the experiments with an additional
baseline and computational cost. We compare with VCD (Leng et al., 2023) ICD (Wang et al., 2024),
HALC (Chen et al., 2024), and CRG (Wan et al., 2024) and follow the setting of original paper for the
experiments. VCD (Leng et al., 2023) is a method that applies contrastive decoding to an image manipulated
by adding diffusion noise. It adds Gaussian diffusion noise to a given image with a total of 500 steps. ICD
uses a contrastive query that adds ‘You are a confused object detector’ to the head of the given query text.

HALC (Chen et al., 2024) is a method that uses an additional object detector to contrastively decode an
adaptive sample for a given query image called Adaptive Focal-Contrast Grounding. We used the official
HALC code to reproduce results with the default setting using GroundingDINO as object detector (Liu
et al., 2023c). It provides the codes for MME, MSCOCO captioning, and POPE COCO, which we used to
reproduce the results. However, in this process, although the reproduced performance of HALC was similar
to the values reported in the HALC paper, the scores were significantly lower compared to our baselines. In
addition, HALC uses a unique evaluation metric called OPOPE, which was unavailable for conducting an
accurate comparison.

Therefore, we conducted various types of prompt engineering to bring out the potential of the HALC
method and achieve a similar level. However, HALC did not perform well in prompt instruction following.
Using the default prompt texts we applied to other baselines or common prompts used in VLM resulted in
poor performance and generated output sentences with unwanted lengthy interpretations. Consequently, we
obtained captioning output using a prompt ‘provide a short description for this photo without interpretations.’,
which was almost the only prompt that could force the output to answer with a short caption. The result of
the performance obtained was recorded as HALC† at Table 3.

We provide CRG (Wan et al., 2024) for an additional baseline, which is a method that uses an image with the
corresponding region of interest (RoI) removed from the image given in the query for contrastive decoding. If
no specific RoI is given, CRG extracts noun phrases from the given query text and gets the RoI of extracted
phrases by using the object detector. Following the original paper, we use spaCy (Honnibal et al., 2020) for
the noun phrase detector and obtained bounding boxes by using GroundingDINO-B (Liu et al., 2023c) with
a threshold of 0.3. In this process, we filtered noun phrases that do not represent objects (“the image”, “the
type”, “the photo”, etc.) in the prompt of MME or POPE benchmark to prevent incorrect RoI extraction.
For the MSCOCO captioning task, we use bounding boxes provided by the annotation of the dataset.

In this paper, all reports of our experiment used LVLM models that can run on a single 48 GB NVIDIA RTX
A6000.

F More Case Studies

We present additional examples of MMBench using the LLaVA-1.5 13B model. The figures illustrate the
probability distribution of outputs from original and augmented images, along with the probabilities after
applying CD. The yellow bar represents the option with the highest probability for the original image, the
green bar shows the top option for the augmented image with the maximum distance D(·), and the blue
bar indicates the option with the highest probability which is correctly aligned with the ground truth after
applying CD.

Figure 11a and Figure 12a demonstrate that augmentations with maximum D(·) effectively manipulate the
image to produce incorrect predictions. Note that due to hallucination, the model retains a non-negligible
probability for the original prediction. CD mitigates this hallucination, enabling the model to generate correct
outputs. Conversely, as shown in Figure 12b, Figure 12c, and Figure 10a, augmentations with maximum
D amplify the incorrect predictions of the original image, facilitating successful CD. Figure 13a highlights
that, although the augmented images yield high confidence for the same option as the original image, which
corresponds to the ground truth option, CD leverages only reliable tokens with subsequent probabilities Vcand,
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as explained in Section 3.3, to produce trustworthy answers. In this case, only option D is considered as
Vcand since other options have low logit values. Finally, Figure 9a illustrates a failure case where the output
distribution of the original image is uniformly spread across options, causing ambiguity in determining the
direction of image manipulation that facilitates the incorrect output. Although the probability of a correctly
predicted output turning into an incorrect one is only 3.5%, this challenge remains in future research.

Original Noise Crop FlipColor Edge Crop Sharp

How many bananas are there in the image? 
 

A. 6
B. 4 
C. 5 
D. 3

(a) An additional case involves the question “How many bananas are there in the image?”

Figure 9: Additional case studies utilizing VSCoDe
Roughly how much of the picture is occupied by the cat in the picture?
 

A. 0.5 
B. less than 40% 
C. more than 50% 
D. 0.8

Original Noise Crop FlipColor Edge Crop Sharp

(a) An additional case involves the question “Roughly how much of the picture is occupied bt the cat in the
picture?”
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Original Noise Crop FlipColor Edge Crop Sharp

Which corner doesn’t have any fruits?

A. top-left 
B. bottom-left 
C. bottom-right 
D. top-right

(a) An additional case involves the question “Which corner doesn’t have any fruits?”

Figure 11: Additional case studies utilizing VSCoDe

Original Noise Crop FlipColor Edge Crop Sharp

Which is the main topic of the image?
  

A. A toy bear and a toy dog 
B. A toy bear and a toy chicken 
C. A toy bear and a toy cat 
D. A toy bear and a toy rabbit

(a) An additional case involves the question “Which is the main topic of the image?”

Original Noise Crop FlipColor Edge Crop Sharp

In nature, what's the relationship between these two creatures?
  

A. Predatory relationships 
B. Competitive relationships 
C. Parasitic relationships 
D. Symbiotic relationship

Original Noise Crop FlipColor Edge Crop Sharp

(b) An additional case involves the question “In nature, what’s the relationship between these two creatures?”
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Original Noise Crop FlipColor Edge Crop Sharp

Where is the sheep? 
 

A. The sheep is behind the car 
B. The sheep is in the front of the car 
C. The sheep is on the right of the car 
D. The sheep is on the left of the car

(c) An additional case involves the question “Where is the sheep?”

Figure 12: Additional case studies utilizing VSCoDe

Original Noise Crop FlipColor Edge Crop Sharp

Where is the giraffe located in the picture? 
 

A. right 
B. top 
C. bottom 
D. left

(a) An additional case involves the question “Where is the giraffe located in the picture?”

22


	Introduction
	Preliminaries
	VSCoDe: Visual-Augmentation Selection for Contrastive Decoding
	Query-Dependent Augmentation Effect
	Maximizing Contrast: Selecting Visual Augmentation with the Largest Distance
	Proposed Algorithm
	Coreset Strategy

	Experiments
	Experimental Settings
	Experiment Results
	Discussion

	Related Works
	Conclusion
	Ablation on Distance metric D()
	Analysis of Different Model Sizes
	Analysis of Different Sampling Strategies
	Analysis of the Selected Augmentations
	Experiment Details
	Experimental Setting

	More Case Studies

