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Abstract
We present an unsupervised 3D deep learning framework based on a ubiquitously true proposition named by us view-object
consistency as it states that a 3D object and its projected 2D views always belong to the same object class. To validate
its effectiveness, we design a multi-view CNN instantiating it for salient view selection and interest point detection of 3D
objects, which quintessentially cannot be handled by supervised learning due to the difficulty of collecting sufficient and
consistent training data. Our unsupervised multi-view CNN, namely UMVCNN, branches off two channels which encode the
knowledge within each 2D view and the 3D object respectively and also exploits both intra-view and inter-view knowledge
of the object. It ends with a new loss layer which formulates the view-object consistency by impelling the two channels to
generate consistent classification outcomes. The UMVCNN is then integrated with a global distinction adjustment scheme
to incorporate global cues into salient view selection. We evaluate our method for salient view section both qualitatively and
quantitatively, demonstrating its superiority over several state-of-the-art methods. In addition, we showcase that our method
can be used to select salient views of 3D scenes containingmultiple objects.We also develop amethod based on theUMVCNN
for 3D interest point detection and conduct comparative evaluations on a publicly available benchmark, which shows that the
UMVCNN is amenable to different 3D shape understanding tasks.

Keywords Unsupervised 3D deep learning · Multi-view CNN · View-object consistency · View selection · 3D interest point
detection
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1 Introduction

Unsupervised deep learning has demonstrated its great value
and impact in many tasks. One important reason is that the
manual collection and annotation of a large dataset for train-
ing a deep neural network in a supervised manner is usually
laborious. This is particularly the case for 3D tasks where
data collection and annotation are generally more challeng-
ing than those in 2D tasks. For instance, the ground truth
generation of 3D interest point detection on 3D objects is
more time-consuming than that of 2D interest point detec-
tion on 2D images since human subjects need to rotate amesh
to mark the points of interest (Dutagaci et al. 2012) and may
also have to rotate it forward or backward again after the
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first round of marking to check if some interest points are
not marked due to occlusion. Therefore, a widely applicable
unsupervised 3D deep learning framework is potentially of
broad interest in the fields of 3D computer vision, computer
graphics and 3D machine learning.

A simple but ubiquitously true proposition is that a 3D
object and its projected 2D views always belong to the same
object class no matter what taxonomy is applied to the clas-
sification. We name the proposition view-object consistency
and propose a novel unsupervised 3D deep learning frame-
work based on it. Essentially, the unsupervised framework
learns a meaningful embedding of a 3D object optimised
for the view-object consistency but not necessarily the most
distinctive features for its classification subject to a set of
explicit categorical labels.

Since it is not feasible for us to solidly and thoroughly
explore the utility of the framework through various 3D tasks
in one paper, we intentionally pick salient view selection and
interest point detection of 3Dobjects to demonstrate its effec-
tiveness for three reasons. First, both tasks are challenging as
they do not only rely on low-level geometric features but also
involve complex high-level semantic understandings of the
objects. Thus a data-driven method is naturally sound. Sec-
ond, however, they are the particular tasks where collecting
a large amount of accurately and consistently annotated data
is notoriously difficult. We found that all existing datasets
for the two tasks are very small (e.g. 68 objects in Dutagaci
et al. (2010) and 16 objects in Secord et al. (2011) for salient
view selection and 43 objects in Dutagaci et al. (2012) for
3D interest point detection) no matter whether the annota-
tions were collected directly (e.g. by asking human subjects
to mark a viewpoint on a view sphere surrounding the object
(Dutagaci et al. 2010) or a group of interest points on the
surface of the object (Dutagaci et al. 2012) or indirectly (e.g.
by paired comparisons where subjects were asked to select
the preferred view from two views for multiple times (Sec-
ord et al. 2011). Third, we shall further show the advantage
of an unsupervised method by extending salient view selec-
tion to 3D scenes. Salient view selection of 3D scenes can
hardly be addressed by a weakly supervised method relying
on such annotation as a single class label because a scene
often contains objects belonging to different classes.

The problem of salient view selection of 3D objects is
arguably well defined. Besides the chunk of related litera-
tures in computer vision and graphics that will be discussed
in Sect. 2, researchers in psychology (Cutzu and Edelman
1994; Blanz et al. 1999) have revealed that for many classes
of familiar objects, the preferred views are reasonably consis-
tent among human subjects. Tomake it clear, the most salient
view of a 3D object herein is defined as the view that a human
subject likesmost for whatever reason. Andwe shall evaluate
our method using the publicly available benchmark (Duta-
gaci et al. 2010) where subjects were asked to rotate a 3D

object to directly select the view that they preferred. We also
show that our method can be directly extended to 3D scenes
composed ofmultiple 3D objects where each object typically
has its own best view when appearing independently. Salient
view selection of 3D scenes has a range of applications such
as virtual scene understanding, panoramic scene synthesis,
ray tracing optimisation and camera path planning (Zhang
and Fei 2019). Since there is no available ground truth, we
conduct a user study to evaluate our method and demonstrate
that it achieves a good performance on selecting salient views
of various 3D scenes.

To instantiate the proposition of view-object consistency
in the context of both 3Ddeep learning and salient view selec-
tion, we develop a multi-view convolutional neural network
(CNN). It formulates the view-object consistency through a
two-channel architecture and a newly designed loss function.
It also integrates with an important heuristic of human’s view
preference via a specifically designed layer. The proposed
multi-view CNN is trained end-to-end in an unsupervised
manner using only a collection of 3D objects without any
manual annotations and is thus named as Unsupervised
Multi-View CNN (UMVCNN). It exploits both intra-view
and inter-view knowledge via a multi-view representation
of 3D objects and scenes for salient view selection. Such
intra-view knowledge is inherently local as it is based fully
on the information within a particular view. Such inter-view
knowledge is hardly global aswell because it is based only on
pairwise distinction of views.However, salient view selection
of 3Dobjects and scenes obviously involves the global under-
standing for them. Therefore, we further present a global
distinction adjustment (GDA) scheme by exploiting the deep
features extracted through the learned UMVCNN. The GDA
essentially investigates whether a local pairwise distinction
is globally important or not. It is then integrated with the
UMVCNN to further boost the performance of salient view
selection.

To show that the proposed UMVCNN has wide applica-
bility to 3D shape understanding tasks, we further explore
its effectiveness on another downstream task, 3D interest
point detection, which also has many applications, such as
shape registration, mesh segmentation, mesh simplification,
and object matching and retrieval (Dutagaci et al. 2012). For
instance, using interest points for 3D object matching has
the advantage of providing local features of both semantic
significance and invariance to noise, rotation, deformation
and articulation. In this work, we provide a simple method
based on the UMVCNN to derive 3D interest points of vari-
ous objects. It is noteworthy that we are concerned with the
detection of the 3D points that most human subjects are inter-
ested in for whatever reasons. Thus it is with regard to the
subjective and perceptual judgements of humans about 3D
interest points and will be evaluated using human-generated
ground truth data.
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The contribution of our work is hence fourfold:

(1) We propose a novel unsupervised framework of 3D deep
learning where the core idea is valid ubiquitously and
thus potentially has a wide range of applications.

(2) We propose a new multi-view CNN, namely UMVCNN,
in accordancewith this unsupervised framework and inte-
grate it with a GDA scheme for salient view selection of
3D objects.

(3) We extend salient view selection from individual 3D
objects to scenes containing multiple 3D objects and
demonstrate that the UMVCNN can select good views
for various scenes via a user study.

(4) We show that the proposed UMVCNN can also be used
for detecting the points that humans are perceptually
interested in from a 3D object.

The rest of the paper is organised as follows. After briefly
reviewing the related work in Sect. 2, we first introduce the
details of the proposed UMVCNN in Sect. 3. Then we elabo-
rate the GDA scheme for salient view selection based on the
UMVCNN in Sect. 4. In Section 5, we exhibit the experimen-
tal results of salient view selection for both 3D objects and
scenes containing multiple objects. We further demonstrate
the effectiveness of the UMVCNN through its application
for 3D interest point detection in Sect. 6. Finally, we draw
the conclusions in Sect. 7.

A preliminary version of this work was published as a
poster presentation in European Conference on Computer
Vision (ECCV’20) (Song et al. 2020b)1, which has been used
as a baseline (i.e. UMVCNN-VGG in Tables 1 and 2) for
comparisons in this paper.

2 RelatedWork

In this section, we review the literatures for salient view sec-
tion and 3D interest point detection, respectively. Generally,
each of them can be categorised into two groups: handcrafted
and learning-based methods.

2.1 Salient View Selection

A number of methods for salient view selection are based
only on the handcrafted attributes of 3D objects. Polonsky
et al. (2005) explored general frameworks for view selec-
tion by analysing several handcrafted attributes associated
with geometrical or statistical properties of a 3D object or its
projected 2D views. Lee et al. (2005) selected salient views

1 Data, codes and the pretrained model are publicly available at https://
github.com/rsong/UMVCNN.

using the attribute of mesh saliency computed via Gaussian-
weighted mean curvatures. Yamauchi et al. (2006) employed
mesh saliency as the intra-view cue for finding salient views
while taking into account such an inter-view cue as the sim-
ilarity of projected views. Han et al. (2014) selected good
views of 3D objects by first computing the saliency-based
mesh segmentation and then ranking the viewpoints based
on the segmentation results. Lienhard et al. (2014) used not
only geometrical attributes but also aesthetic and semantic
cues to find the good views for procedural 3D models. Leif-
man et al. (2016) computed a saliencymeasure based on both
local geometrical and global topological attributes for salient
view selection.However,mostmethods based onhandcrafted
attributes do not generalise well due mainly to the limited
expressive capabilities of the attributes extracted by some
fixed schemes for objects of different classes.

For the learning-based methods, we found that some of
them are essentially shallow learning of a certain model
to combine multiple attributes while all attributes are not
learned but still handcrafted. Vieira et al. (2009) learned
good views via an SVM classifier where the candidate views
were represented by a collection of handcrafted attributes.
To investigate human view preference, Secord et al. (2011)
collected a small dataset to learn a regression model com-
bining a list of handcrafted attributes. Mezuman and Weiss
(2012) leveraged Internet images to learn the view from
which we most often see the object, where the handcrafted
GIST descriptor was employed to measure view similar-
ity. Zhao et al. (2015) learned best views from hand-drawn
sketches by asking participants to align a 3D model accord-
ing to a given sketch. He et al. (2018) proposed a multi-view
learning framework exploiting both 2D and 3D handcrafted
attributes to assess and recommend viewpoints for pho-
tographing architectures.

Apart from the psychological work (Tarr and Pinker 1989;
Cutzu and Edelman 1994; Hayward 1998), in computer
vision, there is also evidence (Wu et al. 2015; Su et al. 2015;
Novotny et al. 2017) of the relation between view selection
and object recognitionwhere view-dependent attributes were
extracted via deep neural networks for 3D object recogni-
tion. Kim et al. (2017) and Song et al. (2020a) leveraged
deep CNNs for salient view selection of objects instead of
improving recognition accuracy.Ourwork is inspired by both
of them but fundamentally different for two reasons: 1) both
Kim et al. (2017) and Song et al. (2020a) require annotated
data for trainingwhile our work is unsupervised with no need
for data annotation; 2) both of them cannot be trained end-to-
end where the former trains two CNNs and a Random Forest
classifier separately and the latter trains a CNN and aMarkov
Random Field individually while our UMVCNN is trained
fully end-to-end.
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2.2 3D Interest Point Detection

Early work on 3D interest point detection mostly relied
on handcrafted attributes. Shilane and Funkhouser (2006)
selected points that contribute to improving retrieval perfor-
mance by assigning a predicted distinctiveness value to each
selected point using a training model. Castellani et al. (2008)
first defined a saliency measure by applying a Gaussian at
the vertices. Then a scale space was constructed and vertices
highly displaced after the filtering were marked as candi-
date points of interest. Zaharescu et al. (2009) assumed that
the vertices of a 3D object have associated information such
as curvature or photometric properties, and applied a differ-
ence of Gaussian on the function defined by the associated
information for the detection. Mian et al. (2010) extracted
scale-invariant key points and ranked them using a measure
directly related to their repeatability and the distinctiveness of
the underlying local descriptor. Song et al. (2013) detected
3D points of interest by the spectral irregularity diffusion
which captures not only the geometric information about
local neighbourhood of a given point in amulti-scalemanner,
but also cues related to the global structure of an object.

Recently, some deep learning-based methods have been
proposed for 3D keypoint detection. However, we notice that
most of thesemethods actually focused on the detection of the
3D points helpful for some particular tasks such as matching
and registration. For instance, Zeng et al. (2017) presented a
Siamese network that learned local geometric descriptors of
keypoints for establishing correspondences between partial
3D data. Deng et al. (2018) proposed a deep neural network
for 3D point matching by learning both local geometric fea-
tures and global context-aware cues of 3Dobjects and scenes.
Yew and Lee (2018) holistically learned a 3D feature detec-
tor and descriptor through a deep network for point cloud
registration. Li and Lee (2019) presented a method that can
detect highly repeatable and accurately localised keypoints
from 3D point clouds in an unsupervised manner. Bai et al.
(2020) proposed a convolutional network for the dense detec-
tion and description of 3D local features to achieve accurate
and fast point cloud alignment.

We found that these methods based on deep learning just
sought to improve some low-level criteria such as “repeata-
bility” but did not aim to detect the points perceptually
interesting to human subjects. As we mentioned above, col-
lecting a large dataset with human-generated ground truth for
3D interest point detection is time-consuming as the subjects
often have to rotate a 3D object forward and backward to
find the interest points. Due to the lack of training data, such
supervised methods are hardly applicable for detecting 3D
points of interest in accordance with human perception.

3 UnsupervisedMulti-View CNN

In this section, we first describe each component of our
method in a piecewise manner. We then elaborate the imple-
mentation as a whole in both training and deployment modes
where each component is situated in the context of the com-
plete pipeline.

3.1 Multi-view Representation of 3D Objects

Multi-view CNNs have been widely used to adapt image-
based deep networks to 3D objects where an object is
represented as a selection of its projected views. Com-
pared with other methods which generalise deep learning
to non-Euclidean domains, multi-view CNNs showed state-
of-the-art performance in various 3D shape understanding
tasks (Su et al. 2015; Qi et al. 2016; Kalogerakis et al. 2017;
Huang et al. 2018). One consensus among these tasks is that
we should avoid using the very ‘bad’ views usually defined
as the ones that cause misrecognition or misunderstanding of
the objects. We propose a scheme considering two low-level
attributes to ensure that the selected 2D views for represent-
ing a 3D object are at least ‘not very bad’.

We start with an icosahedron to uniformly sample a view
sphere surrounding the input 3D object. Then we iteratively
subdivide the icosahedron to produce more vertices (i.e.,
viewpoints) on the view sphere. We end with a polyhedron
with 162 vertices. Next, we rank the views taken from these
viewpoints based on the attributes of view area and silhouette
length. View area is calculated as the area of the projection
of the object as seen from a particular viewpoint. Silhouette
length is the length of the outer contour of the silhouette of
the object as seen from a particular viewpoint. We collect the
top N (N = 20 in this work) views with the highest ranks on
average based on the two attributes as the multi-view repre-
sentation of the 3D object.

3.2 UMVCNN Architecture

Overview Figure 1 illustrates the architecture of the pro-
posed UMVCNN. It starts with the classic ResNet50 model
(He et al. 2016) as the backbone and then branches off the
view and the object channels after the global average pooling
layers. Through the view distinction (VD) layer, it gener-
ates an inter-view heuristic using the deep features extracted
from the 2D views. A weighted sum pooling (WSP) layer
is then employed to incorporate this heuristic and multiple
intra-view features derived from each individual view into a
single tensor encoding the information corresponding to the
entire 3D object. These two layers and the newly added fully
connected layer Fc2 followed by a Softmax normalisation
form the object channel. It outputs to the loss layer a vector
composed of the probabilities of the 3D object belonging to
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Fig. 1 Overview of the proposed UMVCNN containing two channels. The green and the red arrows denote the view channel and the object channel
respectively. “VD” and “WSP” denote the view distinction and the weighted sum pooling layers respectively (Color figure online)

a certain class. On the other hand, we also add a fully con-
nected layer Fc1 in the view channel that generates a vector
for each view predicting which class the view belongs to.
Every trainable ResNet50 layer from Conv1 to the average
pooling layer in the UMVCNN shares the same weights for
all views. Finally, the outputs of the view and the object chan-
nels converge at the newly designed Multi-View Logistic
Loss (MV-LogLoss) layer which formulates the view-object
consistency principle to enable an unsupervised learning.

View Distinction (VD) Layer Existing work (Yamauchi
et al. 2006; Secord et al. 2011; Zhao and Ooi 2016) showed
that human subjects find a good view by not only scrutinising
its own intra-view content, but also comparing it with other
views of the same object. Note that a limitation of most pre-
vious work is the lack of the consideration of such inter-view
knowledge in their algorithms. In this work, we propose a
heuristic mechanism to formulate the inter-view knowledge
via paired comparisons of views. Previouswork (Wolfe 1994;
Koch andPoggio 1999) in psychology pointed out that a basic
principle of human visual system is to suppress the response
to frequently occurring features, while at the same time it
remains sensitive to features that deviate from the norm. We
thus propose the VD layer as a heuristic method to formulate
this principle where the viewmost different from all the other
views are regarded as the most distinct one.

TheVD layer takes as input the outputs of all average pool-
ing layers. Since one 3D object is represented as N views,
the input of the VD layer is a matrix of size 2048 × N for
a given object. Each of its columns can be regarded as a

feature descriptor of one view. The VD layer outputs an N -
dimensional vector to the WSP layer. Each element of the
vector corresponds to the distinction of a particular view,
reflecting how distinct that view is. The more distinct the
view, the larger the contribution it will make in the aggre-
gation of multi-view information implemented by the WSP
layer.

Given two views Vi and Vj , their difference can be
measured as the Euclidean distance between their feature
descriptors Fi and Fj output by the average pooling layer
of the ResNet50 backbone. However, this measure is insuf-
ficient as a view tends to have similar content with its
neighbouring views. If a view is even very different from
its neighbouring ones, it is likely to contain some unique
content and thus can be considered confidently distinct from
the others. Hence, the dissimilarity of two views should be
proportional to the difference computed as the Euclidean
distance between their feature descriptors and inversely
proportional to the geodesic distance between their corre-
sponding viewpoints on the view sphere. Such a heuristic also
computationally holds for symmetric objects. For symmet-
ric views, the dissimilarity is always 0 as Fi = Fj and thus
has nothing to do with the geodesic distance between them.
Besides the N projected views, the UMVCNN also requires
as input the view index VIndi ∈ {1, 2, ..., 162} generated as
a byproduct when creating the multi-view representation of
the object (see Section 3.1).

LetGeod(VIndi ,VInd j )be thegeodesic distancebetween
the viewpoints corresponding to Vi and Vj , the dissimilarity
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between the two views is defined as:

Di j =
∥
∥Fi − Fj

∥
∥

1 + α · Geod(VIndi ,VInd j ))
,

s.t. i, j ∈ {1, 2 . . . , N } and i �= j

(1)

where α = 2 in our implementation. The distinction of Vi is
then computed as the sum of its pairwise dissimilarity to all
the other views.

Si =
∑

j �=i

Di j . (2)

Both Eqs. (1) and (2) are differentiable. So for back-
propagation, given that the gradient passed to the VD layer
is an N -dimensional vector S, according to the chain rule,
the gradient F of this layer with regard to its input can be
computed as

Fi = Si ∂Si
∂Fi

(3)

Considering Eqs. (1) and (2) and the partial derivative of the
Euclidean distance function ∂‖x‖

∂xi
= xi‖x‖ , it can be computed

as

∂Si
∂Fi

=
∑

j �=i

Fi − Fj

(1 + α · Geod(VIndi ,VInd j )) · ∥
∥Fi − Fj

∥
∥
. (4)

Weighted Sum Pooling (WSP) Layer To implement
the view-object consistency principle through the loss layer
which requires that the outputs of the view and the object
channels have the samedimensions,we need to pool to aggre-
gate the learned knowledge across all the 2D views to create
a single descriptor for the 3D object. Also, we need to con-
sider how to cast the influence of view distinction into this
aggregation process where distinct views should have larger
weights. Thus instead of the popular element-wisemax pool-
ing (Su et al. 2015; Kalogerakis et al. 2017) in multi-view
CNNs, we carry out a WSP to incorporate view distinction
as the weights into the pooling

P =
N

∑

i=1

Fi Si (5)

where Fi is the column vector of the output of the average
pooling layer F which denotes the feature descriptor of view
Vi and Si is its distinction output by the VD layer. It shows
that the output of the WSP layer P regarded as the feature
descriptor of the 3D object is estimated as the weighted sum
of the feature descriptors of all the views where the weights
are their distinctions. Eq. (5) can be expressed in a bilinear
form as P = FS. Thus in the back-propagation, the gradients

F and S of the WSP layer with regard to its inputs F and S
respectively can be computed as

F = PST , S = FTP (6)

where P denotes the gradient passed to the WSP layer.
MV-LogLoss Layer We propose the MV-LogLoss layer

to formulate the proposition of view-object consistency,
which enables an unsupervised learning. The basic idea
herein is that no matter what the taxonomy is, the outcome
of the classification based on the information of each 2D
view should be consistent with that based on the entire 3D
object. Note that as illustrated in Fig. 1, either of the view and
the object channels alone is specifically designed to have the
architecture of a classification network, which significantly
facilitates the formulation of the view-object consistency.
Moreover, such a design benefits salient view selection as the
features vital for object classification are usually also impor-
tant for the selection of a salient view. Psychological studies
(Tarr and Pinker 1989; Cutzu and Edelman 1994; Hayward
1998) have validated the strong correlation between view
selection and object recognition: a good view of an object
can significantly help people to correctly recognise it.

The MV-LogLoss simply adapts the log loss in a multi-
view scenario. This loss layer first computes the individual
log loss of the softmax-normalised output of each Fc1 layer,
V(i) with regard to that of the Fc2 layer,O, which represent
the final outputs of the view channel and the object channel
respectively. The multi-view loss is then computed as the
sum of all individual log losses:

L = −
N

∑

i=1

C
∑

c=1

Oc · log (Vc(i)) (7)

where for simplicity, we write the output of the view channel
Vc(Vi ) as Vc(i). Through training, Eq. (7) is minimised by
impelling O to be consistent with V(i) and the view-object
consistency is thus realised. It canbe clearly seen that theMV-
LogLoss defined asEq. (7) does not rely on any annotations as
Oc and Vc(i) are internally generated by the object channel
and the view channel of the UMVCNN respectively. C in
Eq. (7) is a picked integer defining the output dimensionof the
Fc1/Fc2 layer when building the UMVCNN. And we shall
provide an experimental study on the influence of varying C
in Section 5.4.

3.3 Implementation Details

The proposed method is fully unsupervised as it is trained
using only a set of 3D objects without any annotations.

Wefirst render each 3Dobject as 20 2Dviews as described
in Section 3.1 using a standard OpenGL renderer with the
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perspective projection mode. The strengths of the ambient
light, the diffuse light and the specular reflection are set to
0.2, 0.6 and 0.1 respectively. We apply flat shading to the
meshed object. Note that using different illumination mod-
els or shading coefficients does not affect our method due
to the invariance of the learned convolutional filters to illu-
mination changes, as observed in image-based CNNs. All
rendered views are printed at 200 dpi, also in the OpenGL
mode, and further resized to the resolution of 224 × 224.
Then for training we feed these views into the UMVCNN
wherein the convolutional layers taken from the ResNet50
backbone are initialised with the weights pretrained on Ima-
geNet while the fully connected layers Fc1 and Fc2 are both
initialised with random weights using the popular method
proposed by He et al. (2015). The UMVCNN is trained end-
to-end through stochastic gradient descent with the learning
rate of 10−5. As we observed, the training always converged
within 50 epochs for all of the variants of the UMVCNN
that we shall discuss in Sect. 5. When deploying the learned
UMVCNN to select the salient view or detect the interest
points of a given 3D object, we again render the object as
20 views with the same rendering settings and then use the
schemes described in Sects. 4 and 6 below to output salient
viewpoint and 3D interest points, respectively.

4 Salient View Selection with Global
Distinction Adjustment

This section describes the method for salient view selection
based on the UMVCNN as illustrated in Fig. 2. Given an
object represented as a set of N views, we first feed the
views into the learned UMVCNN and hijack the output of
the Softmax layer connected with the Fc2 layer during the
forward-propagation to predict its object class C. Then, we
back-propagate a C-dimensional one-hot vector where only

the entry of index C is 1 from this Softmax layer to the input
views with all the network weights fixed. This strategy leads
to a per-pixel saliency map Ii for all the pixels in each view
Vi based on their influence on the predicted class C. The
2D saliency map Ii can be interpreted as a measure of pixel
importance with regard to the recognition of the object. Like
most methods for salient view selection (Lee et al. 2005;
Secord et al. 2011; Leifman et al. 2016) and also to facili-
tate evaluations, we are keen to obtain the goodness of any
viewpoint on a view sphere, which requires to generate a
per-vertex saliency map.

To this end, we employed the 2D-to-3D saliency trans-
fer scheme proposed in Song et al. (2020a) to derive a 3D
saliency map Hi from a single 2D saliency map Ii . Then we
aggregate multi-view saliency maps Hi s into a single one
through a linear model

H =
N

∑

i=1

wi Hi (8)

where wi denotes the contribution of a view-based 3D
saliency map Hi . As a weighting parameter, it reflects the
importance of a view in the aggregation. Secord et al. (2011)
showed that such a linear model performed well when esti-
mating the importance of views for various 3D objects. We
propose to compute wi as

wi = Si�i (9)

where Si is the output of the VD layer which represents the
learned distinction of viewVi . However, according toEqs. (1)
and (2), Si is based only on local pairwise distinction while
the perceptual importance of a view should be subject to
a global observation. So we further adjust the aggregation
weight wi by a factor of global distinction �i calculated via
the scheme detailed in the following.

Fig. 2 The workflow of salient view selection based on the learned UMVCNN. Here we visualise two views for each view-based 3D saliency map,
including the current view and the view roughly symmetric to it which mostly shows the vertices invisible to the current viewpoint

123



International Journal of Computer Vision

4.1 Global Distinction Computation

Directly aggregating all pairwise distinctions as in Eq. (2)
cannot reliably lead to a global distinction as we do not
know whether a local pairwise distinction is globally impor-
tant or not. However, salient view selection of a 3D object is
obviously influenced by global knowledge and thus methods
integrating global cues have been proposed. For instance,
Leifman et al. (2016) proposed an algorithm for detecting
surface regions of interest and explored how to select view-
points based on these salient regions. Their algorithm looks
for regions that are distinct both locally and globally where
the global consideration is if the object is ‘limb-like’ or not.
We thus develop a specific scheme to calculate the global
distinction �i for a view Vi .

First, we construct a matrix D where each entry Di j is the
pairwise distinction Di j of the two views Vi and Vj computed
via Eq. (1) using the deep features Fi and Fj extracted by
the UMVCNN. D can be viewed as the weighted adjacency
matrix of a graph where every pair of views are connected
and the length connecting i and j is determined by the pair-
wise distinctiveness Di j . As such, D encodes the information
about how views are distinct from each other. We then define
the global distinction as the centrality, ameasure of the global
influence of a node in a graph. By the Perron-Frobenius the-
orem (Perron 1907), D has a unique largest eigenvalue and
its corresponding eigenvector ψ has strictly positive compo-
nents. Accoding to Newman (2008), the i-th component of
ψ gives the centrality score of the viewpoint i in the graph.
Hence, we formulate the global distinction � as the normal-
isation of ψ .

The above method can also be understood from a perspec-
tive of global distinction maximisation, formulated as below

argmaxG =
∑

i

G(Vi )
∑

j

G(Vj )Di j ,

s.t. G ∈ R
+ and ‖G‖ = 1

(10)

whereG can be understood as weights assigned to the views.
A large G for the viewpoint i means that the view Vi is
globally distinctive and thus its pairwise distinction Di j has
a large weighted impact in the overall distinction G. Note
that the ideal configuration is that the likelihood of the most
distinctive view is 1 and that of anyother view is 0. In practice,
such situation is ‘soften’ and g is subject to ‖G‖ = 1 where
we hope that the likelihood of the most salient view is a value
close to 1. Eq. (10) can be written as

argmaxG = GT DG, s.t. G ∈ R
+ and ‖G‖ = 1. (11)

Since D is a symmetric real matrix, it is Hermitian. Thus
Eq. (11) suggests that G is its Rayleigh quotient. The upper
bound of the Rayleigh quotient is the largest eigenvalue of

D and can be reached when G is equal to its correspond-
ing eigenvector ψ . Therefore, as the solution to Eq. (10),
the view distinction G = ψ where each of its N elements
is the distinction score of a particular view maximises the
overall distinction G and essentially suggests whether a local
pairwise distinction is globally important or not. Thus we
calculate the global distinction �i for a view Vi as the nor-
malised ψi .

4.2 Viewpoint Selection

We then select the viewpoint that maximises the sum of the
saliency map H for the visible regions of the 3D object as
the salient viewpoint:

vs = argmax
v

(
∑

m∈B(v)

H(m)) (12)

where B(v) is the set of the vertices visible from the view-
point v and H(m) computed by Eq. (8) denotes the saliency
of the vertex m. M(v) = ∑

m∈B(v) H(m) can be regarded as
the saliency map of the viewpoints. Figure 3 shows the 2D
representation of the unwarped viewpoint saliency map on a
view sphere normalised to the interval of [0, 1]. It is generated
via theMercator projection where the x and the y axes corre-
spond to the latitude and the longitude, respectively. Initially,
the model is not up oriented in the view sphere. A view-
point saliency map suggests which viewpoints are salient
and which are not for a specific 3D object or scene. Impor-
tantly, compared to a single salient view, a viewpoint saliency
map assists us to more solidly judge whether a method for
salient view selection works truly properly as it visualises the
goodness of all sampled viewpoints.

5 Salient View Selection: Results

This section reports the results of salient view selection. We
first introduce the datasets used in the experiments and eval-
uate our method qualitatively. Then, we evaluate both the

Fig. 3 Viewpoint saliencymap. a–c are the projected views of the Lucy
model. d is the viewpoint saliency map where the black square, circle
and diamond mark the locations of the viewpoints corresponding to the
views shown in (a)–(c) respectively (Color figure online)
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proposed UMVCNN and its variants via quantitative com-
parisons for the demonstration of its superiority as well as a
better understanding of our method. In addition, we evaluate
the robustness of the UMVCNN against noise. Finally, we
demonstrate via a user study that our method can be directly
used to select good views for various 3D scenes to attract
further interest.

5.1 Datasets

We create a new dataset containing 2747 3D objects down-
loaded from the PrincetonModelNet dataset (Wu et al. 2015),
the Schelling dataset (Chen et al. 2012) and the Trimble 3D
Warehouse (Warehouse 2020). These models are originally
from 30 object categories while in this work, all categori-
cal annotations are removed in training and validation for an
unsupervised learning. We use the same data split of Model-
Net40 as in Wu et al. (2015) where four fifths of the objects
in each category are used for training and one fifth are used
for validation.

We test our method on the Best View Selection (BVS)
benchmark (Dutagaci et al. 2010). To the best of our knowl-
edge, it is the only one publicly available benchmark suitable
for quantitatively evaluating view selection methods. The
BVS benchmark contains 68 3D objects of various classes
including some that do not belong to any of the 30 object
categories mentioned above from the perspective of human
recognition. It also provides a quantitative benchmarking
measure, the ground truth best viewpoints picked by 26 peo-
ple and the results of 7 baseline methods.

We also used objects from the Stanford 3D Scanning
Repository (Curless and Levoy 1996), the Princeton Shape
Benchmark (Shilane et al. 2004) and the Watertight Mod-
els Track of SHREC’07 (Giorgi et al. 2007) for qualitative
evaluations.

5.2 Qualitative Results

Figure 4 shows our results of salient view selection for a
variety of 3D objects, with the ground truth best viewpoints
supplied by the BVS benchmark. It is noteworthy that the
ground truth best viewpoints could be more or less than 26
because 1) several human participants could select the same
viewpoint and 2) the symmetry of each object is taken into
account and thus the symmetric viewpoints of those picked
by the participants are also included. It can be seen that
the consistency of human preferred viewpoints varies over
different objects. Even though, for most objects, the major-
ity of the ground truth best viewpoints fall into the red or
orange areas in the viewpoint saliency maps generated by
our method, which demonstrates that it is good at predicting
human’s viewpoint preference over various objects. Also, for
most objects, the salient viewpoint found by our method is,

or at least very close to, a ground truth viewpoint picked by a
human subject. It is worth mentioning that due to the default
distortion of the Mercator projection, for the Ant model, the
viewpoints on the bottom boundary of the viewpoint saliency
map that look distant from each other are actually very close
to each other on the view sphere since they are all very close
to its bottom pole.

To visualise the effectiveness of the proposed GDA
scheme, we show the qualitative results with andwithout it in
Fig. 5 for comparison. It can be seen thatwhen integratedwith
the UMVCNN, the GDA improves the salient view selection
for various objects, producing good views that most of us
would prefer. It can also be observed that for most objects,
the UMVCNN without the GDA generates roughly correct
viewpoint saliency maps as well. And in such cases, apply-
ing the GDA does not significantly change the viewpoint
saliency maps. The mug is an exception as the method with-
out the GDA generates an incorrect viewpoint saliency map
inconsistent with the symmetry of the object. By contrast,
the introduction of the GDA leads to the viewpoint saliency
map consistent with the symmetry of the mug and generates
a good view for it. The quantitative results with and without
the GDA scheme which enable a more solid comparison can
be found in Section 5.3.

We next compare our results to some produced by com-
peting state-of-the-art methods. Since some of them require
tuning of parameters and some are not open-sourced,we used
our method to select salient views for the same objects used
in the papers where the methods were reported. Figure 6
compared our method with Lee et al. (2005) and Yamauchi
et al. (2006). It can be seen that our method is less influ-
enced by some local geometric features such as the sharp
edges at the bottom of the hand object if semantically they
do not help the recognition of the object. Similarly, as shown
in Fig. 7, the method proposed in Leifman et al. (2016) chose
a back view of the lamp which contains many local details
such as wires and screws. In comparison, for both the lamp
and the jeep, our method tends to select views natural and
good for recognising the objects. Figure 7 also shows that our
method outperforms Song et al. (2020a) over a helicopter and
a horse object while more convincing quantitative compar-
isons using a variety of 3D objects are provided in Section 5.3
below. Note that Song et al. (2020a) is essentially based on a
weakly supervised deep learning framework where the class
labels of the objects are available during training.

Please refer to the supplemental material for more quali-
tative results of salient view selection of 3D objects.

5.3 Quantitative Results

We tested ourmethod on the BVS benchmark (Dutagaci et al.
2010) which contains 68 objects using a computer with an
Intel i7-4790 3.6GHz CPU and 32GB RAM without any
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Fig. 4 Qualitative results of the salient views and the estimated view-
point saliency maps generated by our method. In each map, the black
square corresponds to the salient viewpoints selected by our method.

The white “X”s correspond to the ground truth best viewpoints picked
by 26 human subjects (including their symmetric viewpoints) via the
user study carried out by Dutagaci et al. (2010)

GPU acceleration. The salient views of most objects can be
computed within 1 minute where the vertex visibility to each
viewpoint is precomputed.

Table 1 gives the statistics of the View Selection Error
(VSE) of 9 automatic view selection methods over all of
the 68 objects. The VSE proposed by Dutagaci et al. (2010)
measures the geodesic distance between the viewpoint found
by amethod and the ground truth supplied by a human subject
on a unit view sphere and is averaged over the choices of all
subjects, with the consideration of object-specific symmetry.

According to Table 1, our method yields the best perfor-
mance in terms of the mean VSE, the median VSE and the
number of objects for which a method gave the lowest VSE
among all the competing methods. Here we set C = 30 for
all versions of UMVCNNs. As mentioned at the end of Sec-
tion 3.2, this means that the output dimension of the Fc1 and

Fc2 layers is set to 30 when we build the UMVCNN, which
indicates that either of the view and the object channels cat-
egorises the objects into 30 classes. As shown in Fig. 4, due
to the inconsistency of the ground truth choices of human
subjects over the same object, reaching a zero mean VSE is
impossible and improving the VSE is very challenging if it
is already low. In most cases, a viewpoint with a mean VSE
lower than 0.3 corresponds to a good view. Even though, our
method (UMVCNN-ResNet-GDA) outperforms the state-of-
the-art method proposed in Song et al. (2020a) by 5.0%,
4.3%, 12.1% and 32.8% in terms of the mean, the median,
the standard deviation and the interquartile range of the VSE
respectively. Note that their method is also based on deep
learning but trained, in a weakly supervised manner, on a
large dataset with the annotations of object class member-
ship.
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Fig. 5 Qualitative results of the methods with and without the GDA
scheme. The first and the third rows show the detected salient views
and the estimated viewpoint saliency maps using the method with the
GDA scheme. For comparison, the second and the fourth rows show

the corresponding results using the method without the GDA scheme.
The black squares in the viewpoint saliency maps mark the most salient
viewpoints

Fig. 6 Qualitative comparisons with Lee et al. (2005) and Yamauchi
et al. (2006). a The best views selected by Lee et al. (2005) (as imple-
mented and shown in Yamauchi et al. (2006)). bThe best views selected

by Yamauchi et al. (2006). c The best views selected by our method. d
The viewpoint saliency maps generated by our method where the black
squares mark the most salient viewpoints

None of the methods is consistently the best over all 68
objects although our method accomplishes the best results
for 17 objects, the most over all competing methods. This is
in agreement with the conclusions in Biederman (1987) and
Secord et al. (2011) which argued that human’s view prefer-
ence is driven by a variety of attributes. But in general, the
methods based on low-level attributes perform significantly
worse than those based on deep neural networkswhich poten-
tially learn some high-level attributes of 3D objects. It is also
worth mentioning that the number of objects for which the

UMVCNN-VGG gave the lowest VSE is 20 as reported in
Song et al. (2020b) while it is 15 according to Table 1. This
is because the updated method with GDA (i.e. UMVCNN-
ResNet-GDA) outperforms UMVCNN-VGG on 5 out of the
20 objects while they achieve the same performance on most
of them.

In particular, Table 1 shows that our method significantly
outperforms Dutagaci et al. (2010) based on view area and
Polonsky et al. (2005) based on silhouette length in terms of
theVSE. This demonstrates that the improvement of theVSE
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Fig. 7 Qualitative comparisons with Leifman et al. (2016) and Song et
al. (2020a). a and dThe best views selected by Leifman et al. (2016) and
Song et al. (2020a) respectively. b and e The best views selected by our

method. c and f The viewpoint saliency maps generated by our method
where the black squares mark the most salient viewpoints (Color figure
online)

Table 1 Statistics of the View Selection Error (VSE) of different view
selection methods over the 68 objects from the BVS benchmark. SD
and IQR represent the standard deviation and the interquartile range
respectively. n gives the number of objects for which a method gave the
lowest VSE (including the joint lowest) among all the competing meth-

ods. UMVCNN-VGG and UMVCNN-ResNet denote the UMVCNNs
using VGG19 and ResNet50 as backbone, respectively. UMVCNN-
VGG-GDA and UMVCNN-ResNet-GDA indicate that the UMVCNNs
are integrated with the GDA scheme

View selection method Mean VSE Median VSE SD of VSE IQR of VSE n

View area (Dutagaci et al. 2010) 0.517 0.539 0.186 0.306 6

Ratio of visible area (Polonsky et al. 2005) 0.473 0.473 0.196 0.338 1

Surface area entropy (Vázquez et al. 2001) 0.396 0.386 0.144 0.195 8

Silhouette length (Polonsky et al. 2005) 0.446 0.445 0.172 0.275 6

Silhouette entropy (Page et al. 2003) 0.484 0.469 0.153 0.241 4

Curvature entropy (Page et al. 2003) 0.474 0.466 0.139 0.239 7

Mesh saliency (Lee et al. 2005) 0.430 0.395 0.165 0.233 2

Deep mesh distinction (Song et al. 2020a) 0.380 0.346 0.173 0.314 11

UMVCNN-VGG (Song et al. 2020b) 0.367 0.336 0.165 0.236 15

UMVCNN-ResNet (Ours) 0.365 0.334 0.155 0.229 15

UMVCNN-VGG-GDA (Ours) 0.364 0.334 0.153 0.227 15

UMVCNN-ResNet-GDA (Ours) 0.361 0.331 0.152 0.211 17

Bold values denote the top performing methods in terms of the corresponding metrics

does come from the UMVCNN rather than the handcrafted
features, i.e. view area and silhouette length that we use for
themulti-view representationof a 3Dobject (seeSection3.1).

5.4 Evaluations over the Variants of UMVCNN

Effect of varying C Table 2 gives the mean VSE of the
variants of the UMVCNN. We first redesign and test the
UMVCNNwith different values of the variableC introduced
in Eq. (7). It can be seen that varyingC from the default value
30 leads to an insignificant degradation of performance. As
mentioned in Section 5.1, the 3D objects used for training
are originally from 30 object categories while we removed
all categorical annotations in this work for an unsupervised
learning. Presumably, that C = 30 is indeed a good choice

for designing the UMVCNN can be interpreted by the fact
that salient view selection is a task highly related to 3D object
classification as we observe that the objects of the same class
tend to have analogous salient viewpoints while it is not the
case the other way round. However, we cannot observe any
obvious rule that suggests a way for deciding C . In a super-
vised learning, the network is forced to adopt the taxonomy
of object classification consistent with human annotations
while there is no guarantee that this taxonomy is optimal to
the particular task such as salient view selection. Thus in dif-
ferent tasks, C might need to be tuned, but not necessarily
fine-tuned as the UMVCNN is not very sensitive to it.

Ablation study for validating VD and WSP We are
also interested in the heuristic component of the UMVCNN,
i.e. the VD and WSP layers. To validate its effective-

123



International Journal of Computer Vision

Table 2 Mean view selection error (VSE) of the variants of the UMVCNN over 68 objects

UMVCNN variants C = 10 C = 15 C = 20 C = 25 C = 30 C = 30, C = 30, C = 35 C = 40
Max-pooling 30 views

UMVCNN-VGG (Song et al. 2020b) 0.379 0.373 0.382 0.381 0.367 0.384 0.366 0.377 0.380

UMVCNN-ResNet (Ours) 0.388 0.384 0.375 0.368 0.365 0.378 0.365 0.376 0.381

UMVCNN-VGG-GDA (Ours) 0.375 0.371 0.370 0.380 0.364 0.382 0.363 0.372 0.374

UMVCNN-ResNet-GDA (Ours) 0.379 0.372 0.370 0.365 0.361 0.372 0.361 0.372 0.375

Bold values denote the top performing methods in terms of the corresponding metrics

ness, we replace the VD and WSP layers with the popular
element-wisemax pooling which has demonstrated the state-
of-the-art performance in various 3D shape understanding
tasks such as classification (Su et al. 2015), retrieval (Su et al.
2015) and segmentation (Kim et al. 2017). Such variants cor-
respond to the column of ‘C = 30, max pooling’ in Table 2.
To aggregate the multi-view 3D saliency maps Hi in Eq. (8),
we set all weighting parameters wi to 1 as it is not available
via this variant. As shown in Table 2, the performance of
the UMVCNN is significantly worse without the VD and the
WSP layers. This demonstrates the effectiveness of the view
distinction heuristic we introduced in Sect. 3.2. It also sug-
gests that the unsupervised learning based on the view-object
consistency principle is likely to benefit from some heuris-
tics introduced for the specific task. It is worth mentioning
that an ablation experiment with only the WSP layer is not
available. This is because without the VD layer, the weights
required for implementing the weighted sum pooling cannot
be computed in an unsupervised setup.

Effect of the Number of Views We tested the variants
corresponding to the columnof ‘C = 30, 30 views’ in Table 2
where a 3D object is projected into 30 (i.e. N = 30) instead
of 20 views using the method described in Sect. 3.1. All the
other variants in Table 2 used a 20-view setup. It can be seen
that using 30 views usually cannot further boost the perfor-
mance. Using more or different views is trivial, however,
we found that a 20-view setup is already enough to achieve
high performance but with an advantage of computational
efficiency.

5.5 Evaluation of the Robustness against Noise

We have conducted experiments by adding Gaussian noise
with σ = 0.001B, 0.002B and 0.004B respectively to all
of the 68 3D objects in the BVS benchmark where B is the
length of the diagonal of the bounding box of a particular
object. Table 3 lists the results of salient view selection on
the noisy objects using the UMVCNN-ResNet-GDA model.
It demonstrates that our method is relatively robust against
noise.

Table 3 Evaluation of the robustness of our method against noise in
terms of mean VSE, median VSE and standard deviation (SD) of VSE.
B denotes the length of the diagonal of the bounding box of the mesh

Noise amount Mean VSE Median VSE SD of VSE

No noise 0.361 0.331 0.152

0.001B 0.373 0.338 0.154

0.002B 0.381 0.348 0.155

0.004B 0.387 0.356 0.159

5.6 Salient View Selection of 3D Scenes

High-quality view of 3D scenes could navigate observers to
the region of interest, help them to seek the hidden relations
of hierarchical structure, and improve the efficiency of virtual
exploration. The selection of best views of 3D scenes thus
has a range of applications including virtual reality (Freitag
et al. 2018), scene synthesis (Zhang and Fei 2019), robotic
manipulation (Guérin et al. 2018) and autonomous naviga-
tion (Zhu et al. 2020).

The proposed UMVCNN can be directly used for the
salient view selection of 3D scenes for two reasons. First, it
is a multi-view CNN where the global spatial relationship of
multiple objects not connected by mesh edges is recorded in
one or multiple 2D views of the scene. And such relationship
is vital for selecting salient views of 3D scenes. In com-
parison, another popular model for 3D deep learning, graph
neural network (GNN), might not be good at capturing such
relationship. This is because aGNNusually learns a deep rep-
resentation over themesh treated as a non-Euclidean graphby
a local operator such as Laplacian (Bruna et al. 2013; Deffer-
rard et al. 2016) and Dirac operators (Kostrikov et al. 2018)
which do not encode global spatial information among mul-
tiple objects. Second, previous deep learning-based methods
for salient view selection of 3D objects (Kim et al. 2017;
Song et al. 2018) relied on category labels of samples for
training. Thus they cannot be directly applied to a 3D scene
which usually do not associatewith a unique category label as
it typically contains objects of different categories. By con-
trast, our UMVCNN does not rely on the knowledge about
object categories, which means that we can simply treat a 3D
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Fig. 8 Salient views for a 3D scene. a Two views are picked by the
evaluators as the best views for representing the 3Dscene.Our computed
salient view (b) is very close to one (View #12) of the two selected as
the ground truth. c The two views selected by the evaluators

scene as an object and directly feed it into the UMVCNN to
predict its salient view.

Since there is no ground truth currently available for eval-
uating the salient view selection of 3D scenes, we conducted
a user study involving 25 human evaluators. The goal was
to learn which views of a 3D scene are considered the most
salient. For each of our 50 scenes, we produced 12 images,
each taken from a different viewpoint. We decided to use 12
images as a compromise between the accuracy of the survey
(which requires a large number of viewpoints) and our wish
to avoid overloading the evaluators (which requires a small
number of viewpoints). We asked the evaluators to mark the
views that can best represent the scene. The number of the
representative views for each scene that could bemarkedwas
unlimited.

Figure 8 shows a typical distribution of the evaluation. In
this example, there are two views considered salient views
by the evaluators. Therefore, rather than defining our ground
truth to be a single view,we define it as a set of views, consist-
ing of the highest-ranked views before the largest decrease in
the histogram. To assess the results of our method, we com-
pared the view selected by our method to the ground truth.
Our result is considered correct if it is geodesically closer to
a view of the ground truth than to any other view.

According to the results shown in Fig. 9, our method suc-
cessfully selects good views for various 3D scenes. For 43 out
of 50 scenes (86 percent), the most salient view selected by
ourmethodmatched the ground truth. The viewpoint saliency

maps of 3D scenes generated by ourmethod are also informa-
tive. For instance, by observing the corresponding locations
of the best and theworst views in the viewpoint saliencymaps
of most scenes, we find that the views with positive eleva-
tion angles are generally much more salient than those with
negative ones, which is consistent with human’s viewpoint
preference. We also observed that the best view of a scene is
not necessarily the best view of each individual object in it.
For example, in the living room scene, the best view of the
entire scene is not that of one of the three sofas. Similarly, in
the work site scene, the best view of the scene is not that of
the person in the middle and some chairs.

Please refer to the supplemental material for more quali-
tative results of salient view selection of 3D scenes.

6 3D Interest Point Detection

Detection of interest points on the surface of a 3D object is
challenging since usually not just local attributes but some
global attributes hard to compute are consideredwhen people
select them (Dutagaci et al. 2012). To extract a set of discrete
interest points from a continuous saliency distribution of a
3D object, we first compute its per-vertex saliency map (i.e.
H in Eq. (8)) based on the learnedUMVCNN integratedwith
the GDA scheme. Then we remove the vertices with saliency
values smaller than a global threshold (set to 70% of the
maximum saliency). Finally, to collect a set of interest points,
we extract any vertex that either has a saliency value larger
than another global threshold (set to 90% of the maximum
saliency) or corresponds to the local maximum of saliency.

6.1 Dataset and EvaluationMetrics

For a fair comparison, we test our method on the publicly
available 3D Interest Point Detection (3DIPD) benchmark
(Dutagaci et al. 2012) which provides 3D interest points
selected by 23 human subjects as ground truth. Previous
evaluation methods usually measured the repeatability rate
according to varying factors, such as model deformation,
scale change, different modalities, noise, and topological
change. Unlike them, the 3DIPD benchmark measured how
similar the detected points of interest are to those selected
by human subjects. It thus proposed three metrics: false neg-
ative error (FNE), false positive error (FPE) and weighted
miss error (WME). FNE and FPE are defined in the obvious
way. Normally, as more 3D interest points are captured, more
false positives are detected while achieving a lower FNE. If
a method tends to mark fewer interest points, it results in a
lower FPE, at the cost of a higher FNE. A method leads to
a low WME if it manages to detect a point that is frequently
voted by human subjects. Thus it measures the ability of
a method to detect the most interesting points. In contrast,
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Fig. 9 Salient and non-salient views of 3D scenes (courtesy of the
Trimble 3D Warehouse (Warehouse 2020)) selected by our method.
From left to right: The first column shows the most salient views of
the scenes selected by our method; The second column shows the least
salient views of the scenes selected by our method; The third column
shows the ground truth best views supplied by the user study where we

only show the one closest to the salient view generated by our method if
there are more than one ground truth views; The fourth column shows
the viewpoint saliencymaps of the scenes where the black squares mark
the most salient views, the black diamonds mark the least salient views
and the white “X”s mark the ground truth best views, respectively
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Fig. 10 Results of 3D interest point detection for various objects on the 3DIPD benchmark (Dutagaci et al. 2012). From left to right: the first
column visualises the interest points detected by our method; the second to the fourth columns show the FNE, FPE and WME graphs, respectively
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Fig. 11 Limitation. Our method sometimes tends to select views good
for recognition but not necessarily “natural”. Left: the view selected by a
subject; Middle: the view selected by our method; Right: the viewpoint
saliencymapwhere the diamond and the squaremark the views selected
by the subject and our method respectively

FNE and FPE treat all ground truth points of interest equally.
Hence, an ideal method should keep FNE, FPE and WME
all low.

6.2 Comparative Results

We compare our method based on the UMVCNN-ResNet-
GDA model for 3D interest point detection with the five
baseline methods named as 3D-Harris, 3D-SIFT, Mesh
Saliency, Salient Points and SD-Corners by the 3DIPD
benchmark) for which the 3DIPD benchmark provides the
results to facilitate comparisons. Figure 10 shows the results
throughFNE, FPEandWMEgraphswith respect to the local-
isation error tolerance (LET). A vertex is considered to be
‘correctly detected’ as a point of interest if its geodesic dis-
tance to the closest ground truth point of interest is not larger
than a specific LET value. We can see that the 3D interest
points detected by our UMVCNN-based method correspond
to low FNE andWME,whichmeans that quite a few detected
points are of human perceptual interest. In particular, for the
fish object, all of the three errors are low. Overall, our method
has a good performance compared with the competing meth-
ods specifically designed for 3D interest point detection.

7 Conclusions

This work reveals that the view-object consistency principle
is promising for the establishment of an unsupervised frame-
work of 3D deep learning. We validate its effectiveness on
the challenging tasks of salient view selection and 3D interest
point detection through the relatively naive design of a multi-
viewdeep architecture.While the performance of ourmethod
is impressive, it has some limitations as shown in Fig. 11
when applied to salient view selection. Our method some-
times tends to select a view good for recognising the object,
such as the view that better shows some features important
for recognising the airplane (e.g. the wings and the engines).
However, most human subjects prefer a “natural” side view.

Future work will focus on implementing the unsupervised
learning framework in more applications to demonstrate that
it is amenable to a wide range of 3D shape understanding

tasks. Particularly interesting applications might be some
3D scene understanding tasks hindered by the difficulty of
collecting large amounts of accurately and consistently anno-
tated data for training.
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