
Published in Transactions on Machine Learning Research (06/2023)

Robust Multi-Agent Reinforcement Learning with State Un-
certainty

Sihong He sihong.he@uconn.edu
Department of Computer Science and Engineering
University of Connecticut

Songyang Han songyang.han@uconn.edu
Department of Computer Science and Engineering
University of Connecticut

Sanbao Su sanbao.su@uconn.edu
Department of Computer Science and Engineering
University of Connecticut

Shuo Han hanshuo@uic.edu
Department of Electrical and Computer Engineering
University of Illinois, Chicago

Shaofeng Zou szou3@buffalo.edu
Department of Electrical Engineering
University at Buffalo, The State University of New York

Fei Miao fei.miao@uconn.edu
Department of Computer Science and Engineering
University of Connecticut

Reviewed on OpenReview: https: // openreview. net/ forum? id= CqTkapZ6H9

Abstract

In real-world multi-agent reinforcement learning (MARL) applications, agents may not have
perfect state information (e.g., due to inaccurate measurement or malicious attacks), which
challenges the robustness of agents’ policies. Though robustness is getting important in
MARL deployment, little prior work has studied state uncertainties in MARL, neither in
problem formulation nor algorithm design. Motivated by this robustness issue and the
lack of corresponding studies, we study the problem of MARL with state uncertainty in
this work. We provide the first attempt to the theoretical and empirical analysis of this
challenging problem. We first model the problem as a Markov Game with state perturbation
adversaries (MG-SPA) by introducing a set of state perturbation adversaries into a Markov
Game. We then introduce robust equilibrium (RE) as the solution concept of an MG-SPA.
We conduct a fundamental analysis regarding MG-SPA such as giving conditions under
which such a robust equilibrium exists. Then we propose a robust multi-agent Q-learning
(RMAQ) algorithm to find such an equilibrium, with convergence guarantees. To handle
high-dimensional state-action space, we design a robust multi-agent actor-critic (RMAAC)
algorithm based on an analytical expression of the policy gradient derived in the paper.
Our experiments show that the proposed RMAQ algorithm converges to the optimal value
function; our RMAAC algorithm outperforms several MARL and robust MARL methods in
multiple multi-agent environments when state uncertainty is present. The source code is
public on https://github.com/sihongho/robust_marl_with_state_uncertainty.

1

https://openreview.net/forum?id=CqTkapZ6H9
https://github.com/sihongho/robust_marl_with_state_uncertainty

Published in Transactions on Machine Learning Research (06/2023)

1 Introduction

Figure 1: Motivation of considering state uncertainty in
single-agent reinforcement learning.

Reinforcement Learning (RL) recently has
achieved remarkable success in many decision-
making problems, such as robotics, autonomous
driving, traffic control, and game playing (Espeholt
et al., 2018; Silver et al., 2017; Mnih et al., 2015; He
et al., 2022). However, in real-world applications,
the agent may face state uncertainty in which ac-
curate information about the state is unavailable.
This uncertainty may be caused by unavoidable
sensor measurement errors, noise, missing informa-
tion, communication issues, and/or malicious at-
tacks. A policy not robust to state uncertainty can
result in unsafe behaviors and even catastrophic
outcomes. For instance, consider the path planning
problem shown in Figure 1, where the agent (green
ball) observes the position of an obstacle (red ball)
through sensors and plans a safe (no collision) and
shortest path to the goal (black cross). In Fig-
ure 1-(a), the agent can observe the true state s
(red ball) and choose an optimal and collision-free
curve a∗ (in red) tangent to the obstacle. In com-
parison, when the agent can only observe the perturbed state s̃ (yellow ball) caused by inaccurate sensing or
state perturbation adversaries (Figure 1-(b)), it will choose a straight line ã (in blue) as the shortest and
collision-free path tangent to s̃. However, by following ã, the agent actually crashes into the obstacle. To
avoid collision in the worst case, one can construct a state uncertainty set that contains the true state based
on the observed state. Then the robustly optimal path under state uncertainty becomes the yellow curve ã∗

tangent to the uncertainty set, as shown in Figure 1-(c).

In single-agent RL, imperfect information about the state has been studied in the literature of partially
observable Markov decision process (POMDP) (Kaelbling et al., 1998). However, as pointed out in recent
literature (Huang et al., 2017; Kos & Song, 2017; Yu et al., 2021b; Zhang et al., 2020a), the conditional
observation probabilities in POMDP cannot capture the worst-case (or adversarial) scenario, and the learned
policy without considering state uncertainties may fail to achieve the agent’s goal. Dealing with state
uncertainty becomes even more challenging for Multi-Agent Reinforcement Learning (MARL), where each
agent aims to maximize its own total return during the interaction with other agents and the environment
(Yang & Wang, 2020b). Even if one agent receives misleading state information, its action affects both its
own return and the other agents’ returns (Zhang et al., 2020b) and may result in catastrophic failure. The
existing literature of decentralized partially observable Markov decision process (Dec-POMDP) (Oliehoek
et al., 2016) does not provide theoretical analysis or algorithmic tools for MARL under worst-case state
uncertainties either.

To better illustrate the effect of state uncertainty in MARL, the path planning problem in Figure 1 is modified
such that two agents are trying to reach their individual goals without collision (a penalty or negative reward
applied). When the blue agent knows the true position sg

0 (the subscript denotes time, which starts from 0)
of the green agent, it will get around the green agent to quickly reach its goal without collision. However, in
Figure 2-(a), when the blue agent can only observe the perturbed position s̃g

0 (yellow circle) of the green
agent, it would choose a straight line that it thought safe (Figure 2-(a1)), which eventually leads to a crash
(Figure 2-(a2)). In Figure 2-(b), the blue agent adopts a robust trajectory by considering a state uncertainty
set based on its observation. As shown in Figure 2-(b1), there is no overlap between (sb

0, s̃
g
0) or (sb

T , s̃
g
T).

Since the uncertainty sets centered at s̃g
0 and s̃g

T (the dotted circles) include the true state of the green agent,
this robust trajectory also ensures no collision between (sb

0, s
g
0) or (sb

T , s
g
T). The blue agent considers the

interactions with the green agent to ensure no collisions at any time. Therefore, it is necessary to consider
state uncertainty in a multi-agent setting where the dynamics of other agents should be considered.

2

Published in Transactions on Machine Learning Research (06/2023)

Figure 2: Motivation of considering state uncertainty in MARL.

In this work, we develop a robust
MARL framework that accounts for
state uncertainty. Specifically, we
model the problem of MARL with state
uncertainty as a Markov game with
state perturbation adversaries (MG-
SPA), in which each agent is associ-
ated with a state perturbation adver-
sary. One state perturbation adver-
sary always plays against its correspond-
ing agent by preventing the agent from
knowing the true state accurately. We
analyze the MARL problem with adver-
sarial or worst-case state perturbations.
Compared to single-agent RL, MARL
is more challenging due to the interac-
tions among agents and the necessity
of studying equilibrium policies (Nash,
1951; McKelvey & McLennan, 1996;
Slantchev, 2008; Daskalakis et al., 2009;
Etessami & Yannakakis, 2010). The
contributions of this work are summa-
rized as follows.

Contributions: To the best of our knowledge, this work is the first attempt to systematically characterize
state uncertainties in MARL and provide both theoretical and empirical analysis. First, we formulate the
MARL problem with state uncertainty as a Markov game with state perturbation adversaries (MG-SPA). We
define the solution concept of the game as a robust equilibrium (RE), where all players including the agents
and the adversaries use policies from which no one has an incentive to deviate. In an MG-SPA, each agent not
only aims to maximize its return when considering other agents’ actions but also needs to act against all state
perturbation adversaries. Therefore, a robust equilibrium policy of one agent is robust to state uncertainties.
Second, we study its fundamental properties and prove the existence of a robust equilibrium under certain
conditions. We develop a robust multi-agent Q-learning (RMAQ) algorithm with a convergence guarantee
and a robust multi-agent actor-critic (RMAAC) algorithm for handling high-dimensional state-action space.
Finally, we conduct experiments in a two-player game to validate the convergence of the proposed Q-learning
method RMAQ. We test our RMAAC algorithm in several benchmark multi-agent environments. We show
that our RMAQ and RMAAC algorithms can learn robust policies that outperform baselines under state
perturbations in multi-agent environments.

Organization: The rest of the paper is organized as follows. The related work is presented in Section 2.
In Section 3, we introduce some preliminary concepts in RL and MARL. The proposed methodology and
corresponding analysis are in Section 4. The proposed algorithms are in Section 5 and experiments results
are in Section 6. We discuss some future work in Section 7. In Section 8 we conclude.

2 Related work

Robust Reinforcement Learning: Recent robust reinforcement learning studied different types of
uncertainties, such as action uncertainties (Tessler et al., 2019) and transition kernel uncertainties (Sinha
et al., 2020; Yu et al., 2021b; Hu et al., 2020; Wang & Zou, 2021; Lim & Autef, 2019; Nisioti et al., 2021;
He et al., 2022). Some recent attempts at adversarial state perturbations for single-agent validated the
importance of considering state uncertainty and improving the robustness of the learned policy in Deep
RL (Huang et al., 2017; Lin et al., 2017; Zhang et al., 2020a; 2021; Everett et al., 2021). The works of
Zhang et al. (2020a; 2021) formulate the state perturbation in single-agent RL as a modified Markov decision
process, then study the robustness of single-agent RL policies. The works of Huang et al. (2017) and Lin
et al. (2017) show that adversarial state perturbation undermines the performance of neural network policies

3

Published in Transactions on Machine Learning Research (06/2023)

in single-agent reinforcement learning and proposes different single-agent attack strategies. In this work, we
consider the more challenging problem of adversarial state perturbation for MARL, when the environment of
an individual agent is non-stationary with other agents’ changing policies during the training process.

Robust Multi-Agent Reinforcement Learning: There is very limited literature on the solution concept
or theoretical analysis when considering adversarial state perturbations in MARL. Other types of uncertainties
have been investigated in the literature, such as uncertainties about training partner’s type (Shen & How,
2021), the other agents’ policies (Li et al., 2019; Sun et al., 2021; van der Heiden et al., 2020), and reward
uncertainties (Zhang et al., 2020b). However, the policy considered in these papers relies on the true state
information. Hence, the robust MARL considered in this work is fundamentally different since the agents do
not know the true state information. Dec-POMDP enables a team of agents to optimize policies with the
partial observable states (Oliehoek et al., 2016; Chen et al., 2022). The work of Lin et al. (2020) studies state
perturbation in identical-interest MARL, and proposes an attack method to attack the state of one single
agent in order to decrease the team reward. In contrast, we consider the worst-case scenario that the state of
every agent can be perturbed by an adversary and focus on the theoretical analysis of robust MARL including
the existence of optimal value function and robust equilibrium (RE). Our work provides formal definitions of
the state uncertainty challenge in MARL, and derives both theoretical analysis and practical algorithms.

Game Theory and MARL: MARL shares theoretical foundations with the game theory research field
and a literature review has been provided to understand MARL from a game theoretical perspective (Yang
& Wang, 2020a). A Markov game, sometimes called a stochastic game models the interaction between
multiple agents (Owen, 2013; Littman, 1994). Algorithms to compute the Nash equilibrium (NE) in Dec-
POMDP (Oliehoek et al., 2016), POSG (partially observable stochastic game) and analysis assuming that
NE exists (Chades et al., 2002; Hansen et al., 2004; Nair et al., 2002) have been developed in the literature
without proving the conditions for the existence of NE. The main theoretical contributions of this work include
proving conditions under which the proposed MG-SPA has robust equilibrium solutions, and convergence
analysis of our proposed robust multi-agent Q-learning algorithm. This is the first attempt to analyze the
fundamental properties of MARL under adversarial state uncertainties.

3 Preliminary

Q-learning is a model-free single-agent reinforcement learning algorithm (Sutton et al., 1998). The core of
this method is a Bellman equation that q∗(s, a) = r(s, a) + γ

∑
s′ maxa′∈A q

∗(s′, a′). The Bellman equation
encourages a simple value iteration update which uses the weighted average of old Q-value and the new one.
Q-learning learns the optimal action-value function q∗(s, a) by value iteration: qnew(s, a) = (1− α)qold(s, a) +
α [r(s, a) + γ

∑
s′ p(s′|s, a) maxa′∈A qold(s′, a′)], and the optimal action a∗(s) = arg maxa∈A q∗(s, a). Deep

Q-Networks (DQN) use a neural network with parameter θ to approximate Q-value (Mnih et al., 2015).
This allows the algorithm to handle larger state spaces. DQN minimizes the loss function defined in (1),
where q′ is a target network that copies the parameter θ occasionally to make training more stable. D is an
experience replay buffer. DQN uses experience replay, which involves storing and randomly sampling previous
experiences to train the neural network, to improve the stability and efficiency of the learning process. The
target network helps to prevent the algorithm from oscillating or diverging during training.

L(θ) = Eτ∼D [y − q(s, a|θ)]2 , y = r(s, a) + γmax
a′∈A

q′(s′, a′). (1)

Actor-Critic (AC) is a single-agent reinforcement learning algorithm with two parts: an actor decides
which action should be taken and a critic evaluates how well the actor performs (Sutton et al., 1998). The
actor is parameterized by πθ(·|s) and iteratively updates the parameter θ to maximize the objective function
J(θ) = Eτ∼p,a∼πθ

[
∑∞

t=1 γ
t−1rt(st, at)], where τ denotes a trajectory and p is the state transition probability

distribution. The critic is parameterized by qϕ(s, a) and evaluates actions chosen by the actor by computing
the Q-value i.e. action-value function. The critic can update itself by using (1). The actor updates its
parameter by using the gradient: ∇θJ(θ) = Es∼p,a∼πθ

[qπ(s, a)∇θ log πθ(a|s)].

4

Published in Transactions on Machine Learning Research (06/2023)

Markov game (MG) is used to model the interaction between multiple agents (Littman, 1994).
A Markov game, sometimes is called a stochastic game (Owen, 2013) defined as a tuple G :=
(N , S, {Ai}i∈N , {ri}i∈N , p, γ), where S is the state space, N is a set of N agents, Ai is the action space of agent
i, respectively (Littman, 1994; Owen, 2013).γ ∈ [0, 1) is the discounting factor. We define A = A1 × · · · ×AN

as the joint action space. The state transition p : S ×A→ ∆(S) is controlled by the current state and joint
action, where ∆(S) represents the set of all probability distributions over the joint state space S. Each
agent has a reward function, ri : S ×A→ R. At time t, agent i chooses its action ai

t according to a policy
πi : S → ∆(Ai). For each agent i, it attempts to maximize its expected sum of discounted rewards, i.e. its
objective function J i(s, π) = E

[∑∞
t=1 γ

t−1ri
t(st, at)|s1 = s, at ∼ π(·|st)

]
.

4 Methodology

In this section, to solve the robust multi-agent reinforcement learning problem with state uncertainty, we
first introduce the framework of the Markov game with state perturbation adversaries. We then provide
characterization results for the proposed framework: Markov and history-dependent policies, the definition of
a solution concept called robust equilibrium based on value functions, derivation of Bellman equations, as
well as certain conditions for the existence of a robust equilibrium and the optimal value function.

4.1 Markov Game with State Perturbation Adversaries

We use a tuple G̃ := (N ,M, S, {Ai}i∈N , {B ĩ}ĩ∈M, {ri}i∈N , p, f, γ) to denote a Markov game with state
perturbation adversaries (MG-SPA). In an MG-SPA, we introduce an additional set of adversaries
M = {1̃, · · · , Ñ} to a Markov game (MG) with an agent set N . Each agent i is associated with an adversary
ĩ and can observe the true state s ∈ S if without adversarial perturbation. Each adversary ĩ is associated
with an action bĩ ∈ B ĩ and the same state s ∈ S that agent i has. We define the adversaries’ joint action
as b = (b1̃, ..., bÑ) ∈ B, B = B1̃ × · · · × BÑ . At time t, adversary ĩ can manipulate the corresponding
agent i’s state information. Once adversary ĩ gets state st, it chooses an action bĩ

t according to a policy
ρĩ : S → ∆(B ĩ). According to a perturbation function f , adversary ĩ perturbs state st to s̃i

t = f(st, b
ĩ
t) ∈ S.

We use s̃t = (s̃1
t , · · · , s̃N

t) to denote a joint perturbed state and use the notation f(st, bt) = s̃t. We denote
the adversaries’ joint policy as ρ(b|s) =

∏
ĩ∈M ρĩ(bĩ|s). The definitions of agent action and agents’ joint

action are the same as their definitions in an MG. Agent i chooses its action ai
t with s̃i

t according to a policy
πi(ai

t|s̃i
t), πi : S → ∆(Ai). We denote the agents’ joint policy as π(a|s̃) =

∏
i∈N π(ai|s̃i). Agents execute

the agents’ joint action at, then at time t+ 1, the joint state st turns to the next state st+1 according to a
transition probability function p : S ×A×B → ∆(S). Each agent i gets a reward according to a state-wise
reward function ri

t : S×A×B → R. Each adversary ĩ gets an opposite reward −ri
t. In an MG, the transition

probability function and reward function are considered as the model of the game. In an MG-SPA, the
perturbation function f is also considered as a part of the model, i.e., the model of an MG-SPA consists of
f, p and {ri}i∈N .

Definition 4.1 (Value Functions).

vπ,ρ = (vπ,ρ,1, · · · , vπ,ρ,N), qπ,ρ = (qπ,ρ,1, · · · , qπ,ρ,N) are defined as the state-value function or value
function for short, and the action-value function, respectively. The ith element vπ,ρ,i and qπ,ρ,i are
defined as following:

qπ,ρ,i(s, a, b) = E

[∞∑
t=1

γt−1ri
t|s1 = s, a1 = a, b1 = b, at ∼ π(·|s̃t), bt ∼ ρ(·|st), s̃t = f(st, bt)

]
, (2)

vπ,ρ,i(s) = E

[∞∑
t=1

γt−1ri
t|s1 = s, at ∼ π(·|s̃t), bt ∼ ρ(·|st), s̃t = f(st, bt)

]
. (3)

To incorporate realistic settings into our analysis, we restrict the power of each adversary, which is a common
assumption for state perturbation adversaries in the RL literature (Zhang et al., 2020a; 2021; Everett et al.,
2021). We define perturbation constraints s̃i ∈ Bdist(ϵ, s) ⊂ S to restrict the adversary ĩ to perturb a

5

Published in Transactions on Machine Learning Research (06/2023)

state only to a predefined set of states. Bdist(ϵ, s) is a ϵ-radius ball measured in metric dist(·, ·), which is
often chosen to be the l-norm distance: dist(s, s̃i) = ∥s− s̃i∥l. We omit the subscript dist in the following
context. For each agent i, it attempts to maximize its expected sum of discounted rewards, i.e. its objective
function J i(s, π, ρ) = E

[∑∞
t=1 γ

t−1ri
t(st, at)|s1 = s, at ∼ π(·|s̃t), s̃t = f(st, bt), bt ∼ ρ(·|st)

]
. Each adversary

ĩ aims to minimize the objective function of agent i and is considered as receiving an opposite reward
of agent i, which also leads to a value function −J i(s, π, ρ) for adversary ĩ. We further define the value
functions in an MG-SPA as in Definition 4.1. Then we propose robust equilibrium (RE), a NE-structured
solution as our solution concept for the proposed MG-SPA framework. We formally define RE in Definition 4.2.

Definition 4.2 (Robust Equilibrium).

Given a Markov game with state perturbation adversaries G̃, a joint policy d∗ = (π∗, ρ∗) where π∗ =
(π1

∗, · · · , πN
∗) and ρ∗ = (ρ1̃

∗, · · · , ρÑ
∗) is said to be in robust equilibrium, or a robust equilibrium, if and

only if, for any i ∈ N , ĩ ∈M, s ∈ S,

v(π−i
∗ ,πi

∗,ρ−ĩ
∗ ,ρĩ),i(s) ≥ v(π−i

∗ ,πi
∗,ρ−ĩ

∗ ,ρĩ
∗),i(s) ≥ v(π−i

∗ ,πi,ρ−ĩ
∗ ,ρĩ

∗),i(s), (4)

where −i/− ĩ represents the indices of all agents/adversaries except agent i/ adversary ĩ.

As the maximin solution is also a popular solution concept in robust RL problems (Zhang et al., 2020a), here,
we discuss why we choose a NE-structured solution other than a maximin solution. Firstly, we aim to propose
a framework that can describe and model the interactions among agents when each agent has its own interest
or reward function under state perturbations, and maximin solution may not be a general solution concept
for robust MARL problems. A maximin solution is natural to use when considering robustness in single-agent
RL problems and identical-interest MARL problems, but it fails to handle those MARL problems where each
agent has its own interest or reward function. Secondly, the Nash equilibrium is also a commonly used robust
solution concept in both single-agent RL and MARL problems (Tessler et al., 2019; Zhang et al., 2020b).
Many papers have used NE as their solution concept to investigate robustness in RL problems, and to the
best of our knowledge, the NE-structured solution is the only one used in robust non-identical-interest MARL
problems (Zhang et al., 2020b). Lastly, for finite two-agent zero-sum games, it is known that NE, minimax,
and maximin solution concepts all give the same answer (Yin et al., 2010; Owen, 2013).

After defining RE, we seek to characterize the optimal value v∗(s) = (v1
∗(s), · · · , vN

∗ (s)) defined by vi
∗(s) =

maxπi minρĩ v(π−i
∗ ,πi,ρ−ĩ

∗ ,ρĩ),i(s). For notation convenience, we use vi(s) to denote v(π−i
∗ ,πi,ρ−ĩ

∗ ,ρĩ),i(s). The
Bellman equations of an MG-SPA are in the forms of (5) and (6). The Bellman equation is a recursion for
expected rewards, which helps us identify or find an RE.

qi
∗(s, a, b) = ri(s, a, b) + γ

∑
s′∈S

p(s′|s, a, b) max
πi

min
ρĩ

E
[
qi

∗(s′, a′, b′)|a′ ∼ π(·|s̃), b′ ∼ ρ(·|s)
]
, (5)

vi
∗(s) = max

πi
min

ρĩ
E

[∑
s′∈S

p(s′|s, a, b)[ri(s, a, b) + γvi
∗(s′)]|a ∼ π(·|s̃), b ∼ ρ(·|s)

]
, (6)

for all i ∈ N , ĩ ∈M, where π = (πi, π−i
∗), ρ = (ρĩ, ρ−ĩ

∗), and (πi
∗, π

−i
∗ , ρĩ

∗, ρ
−ĩ
∗) is a robust equilibrium for G̃.

We prove them in the following subsection. The policies in(5) and (6) are defined to be Markov policies which
only input the current state. The robust equilibrium is also based on Markov policies. History-dependent
policies for MARL under state perturbations may improve agents’ ability to adapt to adversarial state
perturbations and random sensor noise, by allowing agents to take into account past observations when
making decisions. Therefore, we further discuss how the current MG-SPA frame and solution concept adapt
to history-dependent policies in subsection 4.3.

4.2 Theoretical Analysis of MG-SPA

In this subsection, we first introduce the vector notations we used in the theoretical analysis and define a
minimax operator in Definition 4.3. We then introduce Assumption 4.4 which is considered in our theoretical

6

Published in Transactions on Machine Learning Research (06/2023)

analysis. Later, we prove two propositions about the minimax operator and Theorem 4.7 which shows a
series of fundamental characteristics of an MG-SPA under Assumption 4.4, e.g., the derivation of Bellman
equations, the existence of optimal value functions and robust equilibrium.

Vector Notations: To make the analysis easy to read, we follow and extend the vector notations in
Puterman (2014). Let V denote the set of bounded real valued functions on S with component-wise partial
order and norm ∥vi∥ := sups∈S |vi(s)|. Let VM denote the subspace of V of Borel measurable functions. For
discrete state space, all real-valued functions are measurable so that V = VM . But when S is a continuum, VM

is a proper subset of V . Let v = (v1, · · · , vN) ∈ V be the set of bounded real valued functions on S × · · · × S,
i.e. the across product of N state set and norm ∥v∥ := supj ∥vj∥. For discrete S, let |S| denote the number
of elements in S. Let ri denote a |S|-vector, with sth component ri(s) which is the expected reward for agent
i under state s. And P the |S| × |S| matrix with (s, s′)th entry given by p(s′|s). We refer to ri

d as the reward
vector of agent i, and Pd as the probability transition matrix corresponding to a joint policy d = (π, ρ).
ri

d + γPdv
i is the expected total one-period discounted reward of agent i, obtained using the joint policy

d = (π, ρ). Let z as a list of joint policy {d1, d2, · · · } and P 0
z = I, we denote the expected total discounted

reward of agent i using z as vi
z =

∑∞
t=1 γ

t−1P t−1
z ri

dt
= ri

d1
+ γPd1r

i
d2

+ · · ·+ γn−1Pd1 · · ·Pdn−1r
i
tn

+ · · · . Now,
we define the following minimax operator which is used in the rest of the paper.

Definition 4.3 (Minimax Operator).

For vi ∈ V, s ∈ S, we define the nonlinear operator Li on vi(s) by Livi(s) := maxπi minρĩ [ri
d +

γPdv
i](s), where d := (π−i

∗ , πi, ρ−ĩ
∗ , ρĩ). We also define the operator Lv(s) = L(v1(s), · · · , vN (s)) =

(L1v1(s), · · · , LNvN (s)). Then Livi is a |S|-vector, with sth component Livi(s).

For discrete S and bounded ri, it follows from Lemma 5.6.1 in Puterman (2014) that Livi ∈ V for all vi ∈ V .
Therefore Lv ∈ V for all v ∈ V. And in this paper, we consider the following assumptions in Markov games
with state perturbation adversaries.

Assumption 4.4.

(1) Bounded rewards; |ri(s, a, b)| ≤M i < M <∞ for all i ∈ N , a ∈ A, b ∈ B, and s ∈ S.

(2) Finite state and action spaces: all S,Ai, B ĩ are finite.

(3) Stationary transition probability and reward functions.

(4) f(s, ·) is a bijection for any fixed s ∈ S.

(5) All agents share one common reward function.

Finite state and action spaces, bounded rewards, stationary transition kernels, and stationary reward
functions are common assumptions in both reinforcement learning and multi-agent reinforcement learning
literature (Puterman, 2014; Başar & Olsder, 1998). Additionally, the bijection property of perturbation
functions implies that in a finite MG-SPA, adversaries that adopt deterministic policies provide a permutation
on the state space. Collaboration and coordination among agents are often required in real-world scenarios
to achieve a common goal. In such cases, a shared reward function can motivate agents to work together
effectively. Moreover, the assumption of a shared reward function is necessary to transform an MG-SPA into
a zero-sum two-agent extensive-form game in our proof. Although these assumptions do not always hold true
in real-world applications, they provide good properties for an MG-SPA and enable the first attempt of
theoretical analysis on an MG-SPA. The next two propositions characterize the properties of the minimax
operator L and space V. We provide the proof in Appendix A.2. These contraction mapping and complete
space results are used in the proof of RE existence for an MG-SPA.

Proposition 4.5 (Contraction mapping).

Suppose 0 ≤ γ < 1, and Assumption 4.4 holds. Then L is a contraction mapping on V.

7

Published in Transactions on Machine Learning Research (06/2023)

Proposition 4.6 (Complete Space). The space V is a complete normed linear space.

In Theorem 4.7, we show some fundamental characteristics of an MG-SPA. In (1), we show that an optimal
value function of an MG-SPA satisfies the Bellman equations by applying the Squeeze theorem [Theorem
3.3.6, Sohrab (2003)]. Theorem 4.7-(2) shows that the unique solution of the Bellman equation exists, a
consequence of the fixed-point theorem (Smart, 1980). Therefore, the optimal value function of an MG-SPA
exists under Assumption 4.4. By introducing (3), we characterize the relationship between the optimal value
function and a robust equilibrium. However, (3) does not imply the existence of an RE. To this end, in (4),
we formally establish the existence of RE when the optimal value function exists. We formulate a 2N -player
Extensive-form game (EFG) (Osborne & Rubinstein, 1994; Von Neumann & Morgenstern, 2007) based on the
optimal value function such that its Nash equilibrium (NE) policy is equivalent to an RE policy of the MG-SPA.

Theorem 4.7.

Suppose 0 ≤ γ < 1 and Assumption 4.4 holds.

(1) (Solution of Bellman equation) A value function v∗ ∈ V is an optimal value function if for all i ∈ N ,
the point-wise value function vi

∗ ∈ V satisfies the corresponding Bellman Equation (6), i.e. v∗ = Lv∗.

(2) (Existence and uniqueness of optimal value function) There exists a unique v∗ ∈ V satisfying Lv∗ = v∗,
i.e. for all i ∈ N , Livi

∗ = vi
∗.

(3) (Robust equilibrium and optimal value function) A joint policy d∗ = (π∗, ρ∗), where π∗ = (π1
∗, · · · , πN

∗)
and ρ∗ = (ρ1̃

∗, · · · , ρÑ
∗), is a robust equilibrium if and only if vd∗ is the optimal value function.

(4) (Existence of robust equilibrium) There exists a mixed RE for an MG-SPA.

Proof. The full proof of Theorem 4.7 is presented in Appendix A, specifically in A.3. We provide a high-level
proof sketch here. Our proof consists of two main parts: 1. Constructing an extensive-form game that
is connected to an MG-SPA. 2. Proof of Theorem 4.7. In the first part, we begin by constructing an
extensive-form game (EFG) whose payoff function is related to the value functions of an MG-SPA (Appendix
A.1). Using the EFG as a tool, we can analyze the properties of an MG-SPA. We provide insights into solving
an MG-SPA by solving a constructed EFG: a robust equilibrium (RE) of an MG-SPA can be derived from
a Nash equilibrium of an EFG when the EFG’s payoff function is related to the optimal value function of
the MG-SPA (Lemma A.7 in Appendix). Thus, by providing conditions under which a Nash equilibrium
of a well-constructed EFG exists (Appendix A.1.1), we can prove the existence of an RE of the MG-SPA
(Theorem 4.7-(4)). The existence of an optimal value function is not yet proven and is left for the second
part. In the second part, we prove Theorem 4.7-(1) by showing that for all i, there exists a vi ∈ V such that
vi ≥ Lvi, then vi ≥ vi

∗, and there also exists a vi ∈ V such that vi ≤ Lvi, then vi ≤ vi
∗. Propositions 4.5 and

4.6 enable us to use Banach Fixed-Point Theorem (Smart, 1980) to prove Theorem 4.7-(2). The proof of
Theorem 4.7-(3) benefits from the definitions of the optimal value function and robust equilibrium, Theorem
4.7-(1) and (2). Finally, given the existence of the optimal value function and the results from the first part,
we prove the existence of an RE.

Though the existence of NE in a stochastic game with perfect information has been investigated (Shapley,
1953; Fink, 1964), it is still an open and challenging problem when players have partially observable
information (Hansen et al., 2004; Yang & Wang, 2020a). There is a bunch of literature developing algorithms
trying to find the NE in Dec-POMDP or partially observable stochastic game (POSG), and conducting
algorithm analysis assuming that NE exists (Chades et al., 2002; Hansen et al., 2004; Nair et al., 2002)
without proving the conditions for the existence of NE. Once established the existence of RE, we design
algorithms to find it. In Section 5, we first develop a robust multi-agent Q-learning (RMAQ) algorithm with
a convergence guarantee, then propose a robust multi-agent actor-critic (RMAAC) algorithm to handle the
case with high-dimensional state-action spaces.

8

Published in Transactions on Machine Learning Research (06/2023)

Remark 4.8 (Heterogeneous agents and adversaries). In the above problem formulation, we assume all
agents have the same type of state perturbations (share one f), and all adversaries have the same level of
perturbation power (share one ϵ), which made the notation more concise and the analysis more tractable.
However, these assumptions are sometimes unrealistic in practice since agents/adversaries may have
different capabilities. To introduce heterogeneous agents and adversaries to an MG-SPA, we let each agent
i has its own perturbation function f i, and each adversary ĩ has its own perturbation power constraint
ϵi, such that s̃i = f i(s, bi) ∈ B(ϵi, s). We use f(s, b) = (f1(s, b1), · · · , fN (s, bN)) = s̃ to denote the joint
perturbation function. When all perturbation functions f i(s, ·) are bijective for any fixed s ∈ S, the joint
perturbation function f(s, ·) is also a bijection. Assumption 4.4-(4) still holds. When constructing an
extensive-form game, the action set for player P1 is defined as S̃ = B1(ϵ1, s)× B2(ϵ2, s)× · · · BN (ϵN , s)
instead of S̃ = B(ϵ, s)× · · · × B(ϵ, s). The subsequent proofs still hold and they are not affected by the
introduction of heterogeneous agents and adversaries. After extending our MG-SPA framework to handle
heterogeneous agents and adversaries, we can model more complex and realistic multi-agent systems.

Remark 4.9 (A reduced case of MG-SPA: a single-agent system). When there is only one agent in
the system, the MG-SPA problem reduces to a single-agent robust RL problem with state uncertainty,
which has been studied in the literature (Zhang et al., 2020a; 2021). In this case, single-agent robust RL
with state uncertainty can be seen as a specific and special instance of MG-SPA presented in this paper.
However, the proposed analysis and algorithm in this paper provide a new perspective and approach
to single-agent robust reinforcement learning, by explicitly modeling the adversary’s perturbations and
optimizing the agent’s policy against them in a game-theoretic framework. Moreover, the presence of
multiple agents and adversaries in the system can result in more complex and challenging interactions,
joint actions and policies that do not present in single-agent RL problems. Our proposed MG-SPA
framework allows for the modeling of a wide range of agent interactions, including cooperative, competitive,
and mixed interactions.

4.3 History-dependent-policy-based Robust Equilibrium

It is natural and desirable to consider history-dependent policies in robust MARL with state perturbations,
since the agents may not fully capture the state uncertainty from the current state information, and a policy
that only depends on the current state may not be sufficient for ensuring robustness. The history-dependent
policy allows agents to take into account past observations when making decisions, which helps agents better
reason about the adversaries’ possible strategies and intentions. This is particularly true in the case of
Dec-POMDPs and POSGs, where the agent cannot fully observe the state. Therefore, we further extend the
above Markov-policy-based RE to a history-dependent-policy-based robust equilibrium and discuss Theorem
4.7 under history-dependent policies in this subsection. In Section 5, we also discuss how the proposed
algorithms can adapt to historical state input. We further validate that a history-dependent-policy-based RE
outperforms a Markov-policy-based RE in Section 6.

In this subsection, we clarify the generalization steps of extending Markov-policy-based RE to history-
dependent-policy-based RE. We first introduce the definition of history-dependent policy with a finite
time horizon h in an MG-SPA. We then give the formal definition of a history-dependent-policy-based
robust equilibrium. Finally, we show that Theorem 4.7 still holds when agents and adversaries adopt
history-dependent policies.

We consider an MG-SPA with a time horizon h, in which adversaries and agents respectively observe the states
and perturbed states in the latest h time steps and adopt history-dependent policies. More concretely, adversary
ĩ can manipulate the corresponding agent i’s state at time t by using a history-dependent policy ρĩ

h(·|sh,t) and
agent i chooses its actions using a history-dependent policy πi

h(·|s̃i
h,t). Specifically, once adversary ĩ gets the

true state st at time t, it chooses an action bĩ
t according to a history-dependent policy ρĩ

h : Sh → ∆(B ĩ), where
sh,t = (st, · · · , st−h+1) ∈ Sh is a concatenated state consists of the latest h time steps of states. According to
a perturbation function f , adversary ĩ perturbs state st to s̃i

t = f(st, b
ĩ
t) ∈ S. The adversaries’ joint policy

is defined as ρh(b|sh) =
∏

ĩ∈M ρĩ
h(bĩ|sh). Agent i chooses its action ai

t for s̃i
h,t = (s̃i

t, · · · , s̃i
t−h+1) ∈ Sh with

probability πi
h(ai

t|s̃i
h,t) according to a history dependent policy πi

h : Sh → ∆(Ai). The agents’ joint policy

9

Published in Transactions on Machine Learning Research (06/2023)

is defined as πh(a|s̃h) =
∏

i∈N πi
h(ai|s̃i

h). Then a joint history-dependent policy dh,∗ = (πh,∗, ρh,∗) where
πh,∗ = (π1

h,∗, · · · , πN
h,∗) and ρh,∗ = (ρ1̃

h,∗, · · · , ρÑ
h,∗) is said to be in a history-dependent-policy-based robust

equilibrium if and only if, for any i ∈ N , ĩ ∈M, s ∈ S,

v(π−i
h,∗,πi

h,∗,ρ−ĩ
h,∗,ρĩ

h),i(s) ≥ v(π−i
h,∗,πi

h,∗,ρ−ĩ
h,∗,ρĩ

h,∗),i(s) ≥ v(π−i
h,∗,πi

h,ρ−ĩ
h,∗,ρĩ

h,∗),i(s).

It is worth noting that the main differences between history-dependent-policy-based RE and Markov-policy-
based RE are the definition and notation of policies and states. A Markov-policy-based RE is a special case of
a history-dependent-policy-based RE by adopting the time horizon h = 1. We also notice that these two REs’
definitions are the same if we remove the subscript h from the concatenated state and history-dependent
policies. Therefore, in this paper, we use notations without the time horizon subscripts, i.e. Markov policy
and Markov-policy-based RE, to avoid redundant and complicated notations. While in this subsection, we
clarify the definitions of history-dependent policy and history-dependent-policy-based RE and show that
Theorem 4.7 still holds when agents and adversaries use history-dependent policies in the following corollary.

Corollary 4.9.1. Theorem 4.7 still holds when all agents and adversaries in an MG-SPA use history-
dependent policies with a finite time horizon.

Proof. See Appendix A.4.

Remark 4.10 (MG-SPA, Dec-POMDP, and POSG). Decentralized Partially Observable Markov Decision
Process (Dec-POMDP) enables a team of agents to optimize policies with partial observable states
(Oliehoek et al., 2016; Nair et al., 2002), while a Partially Observable Stochastic Game (POSG)
(Hansen et al., 2004; Emery-Montemerlo et al., 2004) is an extension of stochastic games with imperfect
information that can handle partial observable states. We are inspired by them to consider history-
dependent policies for our proposed MG-SPA problem. However, there are several differences between
MG-SPA, Dec-POMDP and POSG. First, unlike Dec-POMDP, an MG-SPA does not restrict all agents
to share the same interest or reward function. The proposed MG-SPA framework is applicable for
modeling different relationships between agents, including cooperative, competitive, or mixed interactions.
Second, neither Dec-POMDP nor POSG considers the worst-case state perturbation scenarios. In
contrast, in an MG-SPA, state perturbation adversaries receive opposite rewards to the agents, which
motivates them to find the worst-case state perturbations to minimize the agents’ returns. As we explained
in the introduction, considering worst-case state perturbations is important for MARL. Third, while
in a Dec-POMDP or a POSG, all agents cannot observe the true state information, in an MG-SPA,
adversaries can access the true state and utilize it to select state perturbation actions. Based on these
differences in problem formulation, Dec-POMDP and POSG methods cannot solve the proposed MG-SPA
problem.

5 Algorithm

5.1 Robust Multi-Agent Q-learning (RMAQ) Algorithm

By solving the Bellman equation, we are able to get the optimal value function of an MG-SPA as shown in
Theorem 4.7. We therefore develop a value iteration (VI)-based method called robust multi-agent Q-learning
(RMAQ) algorithm. Recall the Bellman equation using action-value function in (5), the optimal action-
value q∗ satisfies qi

∗(s, a, b) := ri(s, a, b) + γE
[∑

s′∈S p(s′|s, a, b)qi
∗(s′, a′, b′)|a′ ∼ π∗(·|s̃′), b′ ∼ ρ∗(·|s′)

]
. As a

consequence, the tabular-setting RMAQ update can be written as below,
qi

t+1(st, at, bt) = (1 − αt)qi
t(st, at, bt)+ (7)

αt

ri
t + γ

∑
at+1∈A

∑
bt+1∈B

πqt
∗,t(at+1|s̃t+1)ρqt

∗,t(bt+1|st+1)qi
t(st+1, at+1, bt+1)

 ,

where (πqt

∗,t, ρ
qt

∗,t) is an NE policy by solving the 2N -player extensive-form game (EFG) based on a payoff
function (q1

t , · · · , qN
t ,−q1

t , · · · ,−qN
t). The joint policy (πqt

∗,t, ρ
qt

∗,t) is used in updating qt. All related definitions

10

Published in Transactions on Machine Learning Research (06/2023)

of the EFG (q1
t , · · · , qN

t ,−q1
t , · · · ,−qN

t) are introduced in Appendix A.1. How to solve an EFG is out of the
scope of this work, algorithms to do this exist in the literature (Čermák et al., 2017; Kroer et al., 2020). Note
that, in RMAQ, each agent’s policy is related to not only its own value function, but also other agents’ value
function. This multi-dependency structure considers the interactions between agents in a game, which is
different from the Q-learning in single-agent RL that considers optimizing its own value function. Meanwhile,
establishing the convergence of a multi-agent Q-learning algorithm is also a general challenge. Therefore,
we try to establish the convergence of (7) in Theorem 5.2, motivated from Hu & Wellman (2003). Due to
space limitation, in Appendix B.1, we prove that RMAQ is guaranteed to get the optimal value function
q∗ = (q1

∗, · · · , qN
∗) by updating qt = (q1

t , · · · , qN
t) recursively using (7) under Assumptions 5.1.

Assumption 5.1.

(1) State and action pairs have been visited infinitely often. (2) The learning rate αt satisfies the
following conditions: 0 ≤ αt < 1,

∑
t≥0 α

2
t ≤ ∞; if (s, a, b) ̸= (st, at, bt), αt(s, a, b) = 0. (3) An NE of

the 2N -player EFG based on (q1
t , · · · , qN

t ,−q1
t , · · · ,−qN

t) exists at each iteration t.

Theorem 5.2.

Under Assumption 5.1, the sequence {qt} obtained from (7) converges to {q∗} with probability 1, which
are the optimal action-value functions that satisfy Bellman equations (5) for all i = 1, · · · , N .

Assumption 5.1-(1) is a typical ergodicity assumption used in the convergence analysis of Q-learning (Littman
& Szepesvári, 1996; Hu & Wellman, 2003; Szepesvári & Littman, 1999; Qu & Wierman, 2020; Sutton &
Barto, 1998). And for Q-learning algorithm design papers that the exploration property is not the main
focus, this assumption is also a common assumption (Fujimoto et al., 2019). For exploration strategies in RL
(McFarlane, 2018), researchers use ϵ-greedy exploration (Gomes & Kowalczyk, 2009), UCB (Jin et al., 2018;
Azar et al., 2017), Thompson sampling (Russo et al., 2018), Boltzmann exploration (Cesa-Bianchi et al.,
2017), etc. For assumption 5.1-(3) in multi-agent Q-learning, researchers have found that the convergence is
not necessarily so sensitive to the existence of NE for the stage games during training (Hu & Wellman, 2003;
Yang et al., 2018). In particular, under Assumption 4.4, an NE of the 2N -player EFG exists, which has been
proved in Lemma A.6 in Appendix A.1. We also provide an example in the experiment part (the two-player
game) where assumptions are indeed satisfied, and our RMAQ algorithm successfully converges to an RE of
the corresponding MG-SPA.

5.2 Robust Multi-Agent Actor-Critic (RMAAC) Algorithm

According to the above descriptions of a tabular RMAQ algorithm, each learning agent has to maintain N
action-value functions. The total space requirement is N |S||A|N |B|N if |A1| = · · · = |AN |, |B1| = · · · = |BN |.
This space complexity is linear in the number of joint states, polynomial in the number of agents’ joint actions
and adversaries’ joint actions, and exponential in the number of agents. The computational complexity
is mainly related to algorithms to solve an extensive-form game (Čermák et al., 2017; Kroer et al., 2020).
However, even for general-sum normal-form games, computing an NE is known to be PPAD-complete, which
is still considered difficult in game theory literature (Daskalakis et al., 2009; Chen et al., 2009; Etessami &
Yannakakis, 2010). These properties of the RMAQ algorithm motivate us to develop an actor-critic method to
handle high-dimensional space-action spaces, which can incorporate function approximation into the update
(Konda & Tsitsiklis, 1999).

We consider each agent i’s policy πi is parameterized as πθi for i ∈ N , and the adversary’s policy ρĩ is
parameterized as ρωi . We denote θ = (θ1, · · · , θN) as the concatenation of all agents’ policy parameters, ω
has the similar definition. For simplicity, we omit the subscript θi, ωi, since the parameters can be identified
by the names of policies. Then the value function vi(s) under policy (π, ρ) satisfies

vπ,ρ,i(s) = Ea∼π,b∼ρ

[∑
s′∈S

p(s′|s, a, b)[ri(s, a, b) + γvπ,ρ,i(s′)]
]
. (8)

11

Published in Transactions on Machine Learning Research (06/2023)

We establish the general policy gradient with respect to the parameter θ, ω in the following theorem. Then
we propose our robust multi-agent actor-critic algorithm (RMAAC) which adopts a centralized-training
decentralized-execution algorithm structure in MARL literature (Lowe et al., 2017; Foerster et al., 2018).

Theorem 5.3 (Policy Gradient in RMAAC for MG-SPA). For each agent i ∈ N and adversary ĩ ∈M,
the policy gradients of the objective J i(θ, ω) with respect to the parameter θ, ω are:

∇θiJ i(θ, ω) = E(s,a,b)∼p(π,ρ)
[
qi,π,ρ(s, a, b)∇θi log πi(ai|s̃i)

]
(9)

∇ωiJ i(θ, ω) = E(s,a,b)∼p(π,ρ)

[
qi,π,ρ(s, a, b)[∇ωi log ρĩ(bĩ|s) + reg]

]
(10)

where reg = ∇s̃i log πi(ai|s̃i)∇bĩf(s, bĩ)∇ωiρĩ(bĩ|s).

Proof. See details in Appendix B.2.1.

We put the pseudo-code of RMAAC in Appendix B.2.3.
Remark 5.4 (History-dependent Policy). RMAAC can calculate history-dependent policies by using
recent observations as the policy input. For example, DQN (Mnih et al., 2015) maps history–action pairs
to scalar estimates of Q-value. It uses the history (4 most recent frames) of the states and the action as
the inputs of the neural network.

6 Experiment

We aim to answer the following questions through experiments: (1) Can RMAQ algorithm find an RE? (2)
Are RE policies robust to state uncertainties? (3) Does RMAAC algorithm outperform other MARL and
robust MARL algorithms in terms of robustness? The host machine used in our experiments is a server
configured with AMD Ryzen Threadripper 2990WX 32-core processors and four Quadro RTX 6000 GPUs.
All experiments are performed on Python 3.5.4, Gym 0.10.5, Numpy 1.14.5, Tensorflow 1.8.0, and CUDA 9.0.
Our code is public on https://github.com/sihongho/robust_marl_with_state_uncertainty.

6.1 Robust Multi-Agent Q-learning (RMAQ)

We show the performance of the proposed RMAQ algorithm by applying it to a two-player game. We first
introduce the designed two-player game. Then, to answer the first and second questions, we investigate the
convergence of this algorithm and compare the performance of robust equilibrium policies with other agents’
policies under different adversaries’ policies.

Figure 3: Two-player game: each player has two states
and the same action set with size 2. Under state s0,
two players get the same reward 1 when they choose
the same action. At state s1, two players get the same
reward 1 when they choose different actions. One state
switches to another state only when two players get a
reward.

Two-player game: For the game in Figure 3, two
players have the same action space A = {0, 1} and
state space S = {s0, s1}. The two players get the
same positive rewards when they choose the same ac-
tion under state s0 or choose different actions under
state s1. The state does not change until these two
players get a positive reward. Possible Nash equilib-
rium (NE) in this game can be π∗

1 = (π1
1 , π

2
1) that

player 1 always chooses action 1, player 2 chooses
action 1 under state s0 and action 0 under state s1;
or π∗

2 = (π1
2 , π

2
2) that player 1 always chooses action

0, player 2 chooses action 0 under state s0 and action
1 under state s1. When using the NE policy, these
two players always get the same positive rewards.
The optimal discounted state value of this game is

vi
∗(s) = 1/(1− γ) for all s ∈ S, i ∈ {1, 2}, γ is the reward discounted rate. We set γ = 0.99, then vi

∗(s) = 100.

12

https://github.com/sihongho/robust_marl_with_state_uncertainty

Published in Transactions on Machine Learning Research (06/2023)

MG-SPA formulation for the two-player game: According to the definition of MG-SPA, we add two
adversaries, one for each player to perturb the state and get a negative reward of the player. They have the
same action space B = {0, 1}, where 0 means do not disturb, 1 means perturb the observed state to another
one. Sometimes no perturbation would be a good choice for adversaries. For example, when the true state is
s0, players are using π∗

1 , if adversary 1 does not perturb player 1’s observation, player 1 will still select action
1. While adversary 2 changes player 2’s observation to state s1, player 2 will choose action 0 which is not the
same as player 1’s action 1. Thus, players always fail the game and get no rewards. A robust equilibrium
for MG-SPA would be d̃∗ = (π̃1

∗, π̃
2
∗, ρ̃

1̃
∗, ρ̃

2̃
∗) that each player chooses actions with equal probability and so

do adversaries. The optimal discounted state value of corresponding MG-SPA is ṽi
∗(s) = 1/2(1− γ) for all

s ∈ S, i ∈ {1, 2} when players use robust equilibrium (RE) policies. We use γ = 0.99, then ṽi
∗(s) = 50. For

more explanations of this two-player game and corresponding MG-SPA formulation, please see Appendix C.1.

Implementing RMAQ on the two-player game: We initialize q1(s, a, b) = q2(s, a, b) = 0 for all s, a, b.
After observing the current state, adversaries choose their actions to perturb the agents’ state. Then players
execute their actions based on the perturbed state information. They then observe the next state and rewards.
Then every agent updates its q according to (7). In the next state, all agents repeat the process above.
The training stops after 7500 steps. When updating the Q-values, the agent applies a NE policy from the
Extensive-form game based on (q1, q2,−q1,−q2).

Figure 4: RE policy outperforms other policies in terms
of total discounted rewards and total accumulated re-
wards when strong state uncertainties exist.

Training results: After 7000 steps of training,
we find that agents’ Q-values stabilize at certain
values. Since the dimension of q is a bit high as
q ∈ R32, we compare the optimal state value ṽ∗
and the total discounted rewards in Table 1. The
value of the total discounted reward converges to the
optimal state value of the corresponding MG-SPA.
This two-player game experiment result validates the
convergence of our RMAQ method and the answer
to the first question is ’Yes’.

Testing results: We further test well-trained
RE policy when ’strong’ adversaries exist. ’Strong’
adversary means its probability of modifying play-
ers’ observations is larger than the probability of no
perturbations in the state information. We make
two players play the game using 3 different poli-
cies for 1000 steps under different adversaries. The
accumulated rewards and total discounted rewards
are calculated. We use the robust equilibrium (of
the MG-SPA), the Nash equilibrium (of the original
game), and a baseline policy (two players use deter-
ministic policies) and report the result in Figure 4.
The vertical axis is the accumulated/discounted re-
ward, and the horizon axis is the probability that
the adversary will attack/perturb the state. And we
let these two adversaries share the same policy. We
can see as the probability increase, the accumulated
and discounted rewards of RE players are stable but
those rewards of NE players and baseline players
keep decreasing. These experimental results show
that the RE policy is robust to state uncertainties.
It turns out the answer to the second question is ’Yes’ as well.

Discussion: Even for general-sum normal-form games, computing an NE is known to be PPAD-complete,
which is still considered difficult in game theory literature (Conitzer & Sandholm, 2002; Etessami & Yannakakis,

13

Published in Transactions on Machine Learning Research (06/2023)

Table 1: Convergence Values of Total Discounted Rewards when Training Ends
v1(s0) v2(s0) v1(s1) v2(s1) ṽ1

∗(s0) ṽ2
∗(s0) ṽ1

∗(s1) ṽ2
∗(s1)

value 49.99 49.99 49.99 49.99 50.00 50.00 50.00 50.00

2010). Therefore, we do not anticipate that the RMAQ algorithm can scale to very large MARL problems. In
the next subsection, we show RMAAC with function approximation can handle large-scale MARL problems.

6.2 Robust Multi-Agent Actor-Critic (RMAAC)

To answer the third question, we compare our RMAAC algorithm with two benchmark MARL algorithms:
MADDPG (https://github.com/openai/maddpg) (Lowe et al., 2017) which does not consider robustness,
and M3DDPG (https://github.com/dadadidodi/m3ddpg) (Li et al., 2019), a robust MARL algorithm
which considers uncertainties from opponents’ policies altering. M3DDPG utilizes adversarial learning to train
robust policies. We run experiments in several benchmark multi-agent scenarios, based on the multi-agent
particle environments (MPE) (Lowe et al., 2017). The hyper-parameters used to train RMAAC and the
baseline algorithms are summarized in Appendix C.2.2, Table 4.

Experiment procedure: We first train agents’ policies using RMAAC, MADDPG and M3DDPG,
respectively. For our RMAAC algorithm, we set the constraint parameter ϵ = 0.5. And we choose two types
of perturbation functions to validate the robustness of trained policies under different MG-SPA models. The
first one is the linear noise format that f1(s, bĩ) := s+ bĩ, i.e. the perturbed state s̃i is calculated by adding a
random noise bĩ generated by adversary ĩ to the true state s. And f2(s, bĩ) := s+Gaussian(bĩ,Σ), where
the adversary ĩ’s action bĩ is the mean of the Gaussian distribution. And Σ is the covariance, we set it as I,
i.e. an identity matrix. We call it Gaussian noise format. These two formats f1, f2 are commonly used in
adversarial training (Creswell et al., 2018; Zhang et al., 2020a; 2021). Then we test the well-trained policies in
the optimally disturbed environment (injected noise is produced by those adversaries trained with RMAAC
algorithm). The testing step is chosen as 10000 and each episode contains 25 steps. All hyperparameters used
in experiments for RMAAC, MADDPG and M3DDPG are attached in Appendix C.2.2. Note that since the
rewards are defined as negative values in the used multi-agent environments, we add the same baseline (100)
to rewards for making them positive. Then it’s easier to observe the testing results and make comparisons.
Those used MPE scenarios are Cooperative communication (CC), Cooperative navigation (CN), Physical
deception (PD), Predator prey (PP) and Keep away (KA). The first two scenarios are cooperative games, the
others are mixed games. To investigate the algorithm performance in more complicated situations, we also
run experiments in a scenario with more agents, which is called Predator prey+ (PP+). More details of these
games are in Appendix C.2.1.

Experiment results: In Figure 5 and Table 2, we report the mean episode testing rewards and variance of
10000 steps testing rewards, respectively. We will use mean rewards and variance for short in the following
experimental report and explanations. In the table and figure, we use RM, M3, MA for abbreviations of
RMAAC, M3DDPG and MADDPG, respectively. In Figure 5, the left five figures are mean rewards under the
linear noise format f1, the right ones are under the Gaussian noise format f2. Under the optimally disturbed
environment, agents with RMAAC policies get the highest mean rewards in almost all scenarios no matter
what noise format is used. The only exception is in Keep away under linear noise. However, our RMAAC
still achieves the highest rewards when testing in Keep away under Gaussian noise. In Figure 7, we show the
comparison results in a complicated scenario with a larger number of agents and RMAAC policies are trained

Figure 5: RMAAC outperforms baseline MARL algorithms in terms of mean episode testing rewards under
different perturbation functions in most MPE scenarios.

14

https://github.com/openai/maddpg
https://github.com/dadadidodi/m3ddpg

Published in Transactions on Machine Learning Research (06/2023)

Figure 6: Comparison of mean episode testing rewards using different algorithms and different perturbation
functions, under cleaned environments.

with the Gaussian noise format f2. As we can see that the RMAAC policies get the highest reward when
testing under optimally perturbed environments, cleaned and randomly perturbed environments. Higher
rewards mean agents are performing better. It turns out RMAAC policies outperform the other two baseline
algorithms when there exist worst-case state uncertainties. In Table 2, the left three columns report the
variance under the linear noise format f1, and the right ones are under the Gaussian noise format f2. RM1
denotes our RMAAC policy trained with the linear noise format f1, RM2 denotes our RMAAC policy trained
with the Gaussian noise format f2. The variance is used to evaluate the stability of the trained policies, i.e.
the robustness to system randomness. Because the testing experiments are done in the same environments
that are initialized by different random seeds. We can see that, by using our RMAAC algorithm, the agents
can get the lowest variance in most scenarios under these two different perturbation formats. Therefore, our
RMAAC algorithm is also more robust to the system randomness, compared with the baselines. In summary,
our answer to the third question is ’Yes’.

Figure 7: RMAAC outperforms baseline MARL algorithms in
terms of mean episode testing rewards in complicated scenarios
with a larger number of agents of MPE.

Interesting results when testing
under lighter perturbations and
cleaned environments: We also pro-
vide the testing results under a cleaned en-
vironment (accurate state information can
be attained) and a randomly disturbed
environment (injecting standard Gaussian
noise into agents’ observations). In Fig-
ures 6 and 8, we respectively show the
comparison of mean episode testing re-
wards under a cleaned environment and
a randomly disturbed environment by us-
ing 4 different methods: RM1 denotes
our RMAAC policy trained with the lin-
ear noise format f1, RM2 denotes our
RMAAC policy trained with the Gaussian
noise format f2, MA denotes MADDPG,
M3 denotes M3DDPG. We can see that

only in the Predator prey scenario, our method outperforms others under a cleaned environment. In Figure 8,
we can see that our method outperforms others in the Cooperative communication, Keep away and Predator
prey scenarios, and achieves similar performance as others in the Cooperative navigation scenario under a
randomly perturbed environment.

This kind of performance also happens in robust optimization (Beyer & Sendhoff, 2007; Boyd & Vandenberghe,
2004) and distributionally robust optimization (Delage & Ye, 2010; Rahimian & Mehrotra, 2019; Miao et al.,
2021; He et al., 2020; 2023) where the robust solutions outperform other non-robust solutions in the worst-case

15

Published in Transactions on Machine Learning Research (06/2023)

Figure 8: Comparison of mean episode testing rewards using different algorithms and different perturbation
functions, under randomly perturbed environments.

Table 2: Variance of Testing Rewards under optimal perturbed environment
Perturbation function Linear noise f1 Gaussian noise f2

Algorithms RM1 M3 MA RM2 M3 MA
Cooperative communication (CC) 1.007 1.311 1.292 0.872 1.012 0.976
Cooperative navigation (CN) 0.322 0.357 0.351 0.322 0.349 0.359
Physical deception (PD) 0.225 0.218 0.217 0.244 0.161 0.252
Keep away (KA) 0.161 0.168 0.175 0.161 0.17 0.167
Predator prey (PP) 3.213 0.161 3.671 2.304 2.711 2.811

scenario. Similarly, for single-agent RL with state perturbations, robust policies perform better compared
with baselines under state perturbations (Zhang et al., 2020b). However, there exists a trade-off between
optimizing the average performance and the worst-case performance for robust solutions in general, and
the robust solutions may get relatively poor performance compared with other non-robust solutions when
there is no uncertainty or perturbation in the environment even in a single agent RL problem (Zhang et al.,
2020b). Improving the robustness of the trained policy may sacrifice the performance of the decisions when
perturbations or uncertainties do not happen. That’s why our RMAAC policies only beat all baselines in
one scenario when the state uncertainty is eliminated. However, for many real-world systems, we can not
assume that agents always have accurate information about the states. Hence, improving the robustness of
the policies is very important for MARL as we explained in the introduction. It is worth noting that our
RMAAC policies also work well in environments with random perturbations instead of only the worst-case
perturbations. As shown in Fig. 8, the performance of our RMAAC policies outperforms the baselines in
most scenarios when random noise is introduced into the state.

More experimental results and explanations are provided in Appendix C.2.

Ablation study: We conducted ablation studies for RMAAC algorithm. We first study the performance
of RMAAC when it is used to train history-dependent policies. Other than using the current information
as the input of the policy neural network, we also use history information in the latest three time steps,
i.e. h = 4. In Table 3, we show the mean and variance of mean episode rewards in 10 runs. We use the
same hyper-parameters in training history-dependent policies as training Markov policies. We can see that in

Table 3: Means and Variances of Mean Episode Rewards using Different Polices
Scenarios History-dependent policy Markov policy
Cooperative communication (CC) -52.83 ± 1.51 -54.75 ± 3.03
Cooperative navigation (CN) -208.19 ± 1.68 -210.41 ± 1.13
Physical deception (PD) 7.72 ± 0.33 5.71 ± 0.19
Keep away (KA) -20.69 ± 0.09 -21.18 ± 0.14
Predator prey (PP) 7.10 ± 0.17 6.116 ± 0.24

16

Published in Transactions on Machine Learning Research (06/2023)

all five scenarios, history-dependent policies outperform Markov policies. Besides, we investigate how the
robustness performance of RMAAC is affected by varying variances of Gaussian noise format Σ and the
constraint parameter ϵ. We also investigate the performance of RMAAC under other types of attacks. Please
check the experimental setups and results of these ablation studies in Appendix C.3.

7 Discussion

Our proposed method provides a foundation for modeling robust agents’ interactions in multi-agent reinforce-
ment learning with state uncertainty, and training policies robust to state uncertainties in MARL. However,
there are still several urgent and promising problems to solve in this field.

First, exploring heterogeneous agent modeling is an important research direction in robust MARL. Training
a team of heterogeneous agents to learn robust control policies presents unique challenges, as agents may
have different capabilities, knowledge, and objectives that can lead to conflicts and coordination problems
(Lin et al., 2021). State uncertainty can exacerbate the impact of these differences, as agents may not be
able to accurately estimate the state of the environment or predict the behavior of other agents. All of these
factors make modeling heterogeneous agents in the presence of state uncertainty a challenging problem.

Second, investigating methods for handling continuous state and action spaces can benefit both general
MARL problems and our proposed method. While discretization is a commonly used approach for dealing
with continuous spaces, it is not always an optimal method for handling high-dimensional continuous spaces,
especially when state uncertainty is present. Adversarial state perturbation may disrupt the continuity on
the continuous state space, which can lead to difficulties in finding globally optimal solutions using general
discrete methods. This is because continuous spaces have infinite possible values, and discretization methods
may not be able to accurately represent the underlying continuous structure. When state perturbation occurs,
it may lead to more extreme values, which can result in the loss of important information. We will investigate
more on methods for continuous state and action space robust MARL in the future.

8 Conclusion

We study the problem of multi-agent reinforcement learning with state uncertainties in this work. We model
the problem as a Markov game with state perturbation adversaries (MG-SPA), where each agent aims to find
out a policy to maximize its own total discounted reward and each associated adversary aims to minimize that.
This problem is challenging with little prior work on theoretical analysis or algorithm design. We provide the
first attempt at theoretical analysis and algorithm design for MARL under worst-case state uncertainties. We
first introduce robust equilibrium as the solution concept for MG-SPA, and prove conditions under which such
an equilibrium exists. Then we propose a robust multi-agent Q-learning algorithm (RMAQ) to find such an
equilibrium, with convergence guarantees under certain conditions. We also derive the policy gradients and
design a robust multi-agent actor-critic (RMAAC) algorithm to handle the more general high-dimensional
state-action space MARL problems. We also conduct experiments that validate our methods.

Acknowledgments

Sihong He, Songyang Han, Sanbao Su and Fei Miao are supported by the National Science Foundation under
Grants CNS-1952096, CMMI-1932250, and CNS-2047354 grants. Shaofeng Zou is supported by the National
Science Foundation under Grants CCF-2106560, and CCF-2007783.

This material is based upon work supported under the AI Research Institutes program by National Science
Foundation and the Institute of Education Sciences, U.S. Department of Education through Award # 2229873
- National AI Institute for Exceptional Education. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation, the Institute of Education Sciences, or the U.S. Department of Education.

17

Published in Transactions on Machine Learning Research (06/2023)

References
Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforcement

learning. In International Conference on Machine Learning, pp. 263–272. PMLR, 2017.

Tamer Başar and Geert Jan Olsder. Dynamic noncooperative game theory. SIAM, 1998.

Hans-Georg Beyer and Bernhard Sendhoff. Robust optimization–a comprehensive survey. Computer methods
in applied mechanics and engineering, 196(33-34):3190–3218, 2007.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, USA, 2004.
ISBN 0521833787.

Jiří Čermák, Branislav Bošansky, and Viliam Lisy. An algorithm for constructing and solving imperfect recall
abstractions of large extensive-form games. In Proceedings of the 26th International Joint Conference on
Artificial Intelligence, pp. 936–942, 2017.

Nicolò Cesa-Bianchi, Claudio Gentile, Gábor Lugosi, and Gergely Neu. Boltzmann exploration done right.
Advances in neural information processing systems, 30, 2017.

Iadine Chades, Bruno Scherrer, and François Charpillet. A heuristic approach for solving decentralized-pomdp:
Assessment on the pursuit problem. In Proceedings of the 2002 ACM symposium on Applied computing, pp.
57–62, 2002.

Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing two-player nash equilibria.
Journal of the ACM (JACM), 56(3):1–57, 2009.

Xinning Chen, Xuan Liu, Canhui Luo, and Jiangjin Yin. Robust multi-agent reinforcement learning for noisy
environments. Peer-to-Peer Networking and Applications, 15(2):1045–1056, 2022.

Vincent Conitzer and Tuomas Sandholm. Complexity results about nash equilibria. arXiv preprint cs/0205074,
2002.

Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sengupta, and Anil A Bharath.
Generative adversarial networks: An overview. IEEE Signal Processing Magazine, 35(1):53–65, 2018.

Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadimitriou. The complexity of computing a
nash equilibrium. SIAM Journal on Computing, 39(1):195–259, 2009.

Erick Delage and Yinyu Ye. Distributionally robust optimization under moment uncertainty with application
to data-driven problems. Operations Research, 58(3):595–612, 2010. doi: 10.1287/opre.1090.0741.

Jay L Devore, Kenneth N Berk, and Matthew A Carlton. Modern mathematical statistics with applications,
volume 285. Springer, 2012.

Rosemary Emery-Montemerlo, Geoff Gordon, Jeff Schneider, and Sebastian Thrun. Approximate solutions for
partially observable stochastic games with common payoffs. In Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent Systems, 2004. AAMAS 2004., pp. 136–143. IEEE,
2004.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam Doron, Vlad
Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with importance weighted
actor-learner architectures. In ICML, pp. 1407–1416. PMLR, 2018.

Kousha Etessami and Mihalis Yannakakis. On the complexity of nash equilibria and other fixed points. SIAM
Journal on Computing, 39(6):2531–2597, 2010.

Michael Everett, Björn Lütjens, and Jonathan P How. Certifiable robustness to adversarial state uncertainty
in deep reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems, 2021.

18

Published in Transactions on Machine Learning Research (06/2023)

Arlington M Fink. Equilibrium in a stochastic n-person game. Journal of science of the hiroshima university,
series ai (mathematics), 28(1):89–93, 1964.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson. Coun-
terfactual multi-agent policy gradients. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without exploration.
In International conference on machine learning, pp. 2052–2062. PMLR, 2019.

Eduardo Rodrigues Gomes and Ryszard Kowalczyk. Dynamic analysis of multiagent q-learning with epsilon-
greedy exploration. In ICML’09: Proceedings of the 26th international Conference on Machine Learning,
volume 47, 2009.

Eric A Hansen, Daniel S Bernstein, and Shlomo Zilberstein. Dynamic programming for partially observable
stochastic games. In AAAI, volume 4, pp. 709–715, 2004.

Sihong He, Lynn Pepin, Guang Wang, Desheng Zhang, and Fei Miao. Data-driven distributionally robust
electric vehicle balancing for mobility-on-demand systems under demand and supply uncertainties. In 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2165–2172. IEEE,
2020.

Sihong He, Yue Wang, Shuo Han, Shaofeng Zou, and Fei Miao. A robust and constrained multi-agent
reinforcement learning framework for electric vehicle amod systems. arXiv preprint arXiv:2209.08230,
2022.

Sihong He, Zhili Zhang, Shuo Han, Lynn Pepin, Guang Wang, Desheng Zhang, John A Stankovic, and Fei
Miao. Data-driven distributionally robust electric vehicle balancing for autonomous mobility-on-demand
systems under demand and supply uncertainties. IEEE Transactions on Intelligent Transportation Systems,
2023.

Junling Hu and Michael P Wellman. Nash q-learning for general-sum stochastic games. Journal of machine
learning research, 4(Nov):1039–1069, 2003.

Yizheng Hu, Kun Shao, Dong Li, HAO Jianye, Wulong Liu, Yaodong Yang, Jun Wang, and Zhanxing Zhu.
Robust multi-agent reinforcement learning driven by correlated equilibrium. 2020.

Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel. Adversarial attacks on
neural network policies. arXiv preprint arXiv:1702.02284, 2017.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably efficient?
Advances in neural information processing systems, 31, 2018.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in partially
observable stochastic domains. Artificial Intelligence, 101(1):99–134, 1998. ISSN 0004-3702. doi: https:
//doi.org/10.1016/S0004-3702(98)00023-X. URL https://www.sciencedirect.com/science/article/
pii/S000437029800023X.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information processing systems,
12, 1999.

Jernej Kos and Dawn Xiaodong Song. Delving into adversarial attacks on deep policies. ArXiv, abs/1705.06452,
2017.

Christian Kroer, Kevin Waugh, Fatma Kılınç-Karzan, and Tuomas Sandholm. Faster algorithms for extensive-
form game solving via improved smoothing functions. Mathematical Programming, 179(1):385–417, 2020.

Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J Smola. Efficient mini-batch training for stochastic
optimization. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 661–670, 2014.

19

https://www.sciencedirect.com/science/article/pii/S000437029800023X
https://www.sciencedirect.com/science/article/pii/S000437029800023X

Published in Transactions on Machine Learning Research (06/2023)

Shihui Li, Yi Wu, Xinyue Cui, Honghua Dong, Fei Fang, and Stuart Russell. Robust multi-agent reinforcement
learning via minimax deep deterministic policy gradient. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pp. 4213–4220, 2019.

Shiau Hong Lim and Arnaud Autef. Kernel-based reinforcement learning in robust markov decision processes.
In International Conference on Machine Learning, pp. 3973–3981. PMLR, 2019.

Chendi Lin, Wenhao Luo, and Katia Sycara. Online connectivity-aware dynamic deployment for heterogeneous
multi-robot systems. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pp.
8941–8947. IEEE, 2021.

Jieyu Lin, Kristina Dzeparoska, Sai Qian Zhang, Alberto Leon-Garcia, and Nicolas Papernot. On the
robustness of cooperative multi-agent reinforcement learning. In 2020 IEEE Security and Privacy Workshops
(SPW), pp. 62–68. IEEE, 2020.

Yen-Chen Lin, Zhang-Wei Hong, Yuan-Hong Liao, Meng-Li Shih, Ming-Yu Liu, and Min Sun. Tactics of
adversarial attack on deep reinforcement learning agents. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence, IJCAI’17, pp. 3756–3762. AAAI Press, 2017. ISBN 9780999241103.

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In Machine
learning proceedings 1994, pp. 157–163. Elsevier, 1994.

Michael L Littman and Csaba Szepesvári. A generalized reinforcement-learning model: Convergence and
applications. In ICML, volume 96, pp. 310–318. Citeseer, 1996.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. Advances in neural information processing
systems, 30, 2017.

Roger McFarlane. A survey of exploration strategies in reinforcement learning. McGill University, 2018.

Richard D McKelvey and Andrew McLennan. Computation of equilibria in finite games. Handbook of
computational economics, 1:87–142, 1996.

Fei Miao, Sihong He, Lynn Pepin, Shuo Han, Abdeltawab Hendawi, Mohamed E Khalefa, John A Stankovic,
and George Pappas. Data-driven distributionally robust optimization for vehicle balancing of mobility-on-
demand systems. ACM Transactions on Cyber-Physical Systems, 5(2):1–27, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, et al. Human-level control through deep reinforcement learning.
nature, 518(7540):529–533, 2015.

Facundo Mémoli. Some properties of gromov–hausdorff distances. Discrete & Computational Geometry, pp.
1–25, 2012. ISSN 0179-5376. URL http://dx.doi.org/10.1007/s00454-012-9406-8. 10.1007/s00454-
012-9406-8.

R Nair, M Tambe, M Yokoo, D Pynadath, and S Marsella. Towards computing optimal policies for
decentralized pomdps. In Notes of the 2002 AAAI Workshop on Game Theoretic and Decision Theoretic
Agents, 2002.

John Nash. Non-cooperative games. Annals of mathematics, pp. 286–295, 1951.

Eleni Nisioti, Daan Bloembergen, and Michael Kaisers. Robust multi-agent q-learning in cooperative games
with adversaries. In Proceedings of the AAAI Conference on Artificial Intelligence, 2021.

Frans A Oliehoek, Christopher Amato, et al. A concise introduction to decentralized POMDPs, volume 1.
Springer, 2016.

Martin J Osborne and Ariel Rubinstein. A course in game theory. MIT press, 1994.

Guillermo Owen. Game theory. Emerald Group Publishing, 2013.

20

http://dx.doi.org/10.1007/s00454-012-9406-8

Published in Transactions on Machine Learning Research (06/2023)

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley &
Sons, 2014.

Guannan Qu and Adam Wierman. Finite-time analysis of asynchronous stochastic approximation and
q-learning. In Conference on Learning Theory, pp. 3185–3205. PMLR, 2020.

Hamed Rahimian and Sanjay Mehrotra. Distributionally robust optimization: A review. arXiv preprint
arXiv:1908.05659, 2019.

Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al. A tutorial on thompson
sampling. Foundations and Trends® in Machine Learning, 11(1):1–96, 2018.

Burkhard C Schipper. Kuhn’s theorem for extensive games with unawareness. Available at SSRN 3063853,
2017.

Lloyd S Shapley. Stochastic games. Proceedings of the national academy of sciences, 39(10):1095–1100, 1953.

Macheng Shen and Jonathan P How. Robust opponent modeling via adversarial ensemble reinforcement
learning. In Proceedings of the International Conference on Automated Planning and Scheduling, volume 31,
pp. 578–587, 2021.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas
Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without human
knowledge. nature, 550(7676):354–359, 2017.

Aman Sinha, Matthew O’Kelly, et al. Formulazero: Distributionally robust online adaptation via offline
population synthesis. In ICML, pp. 8992–9004. PMLR, 2020.

B Slantchev. Game theory: Perfect equilibria in extensive form games. UCSD script, 2008.

David Roger Smart. Fixed point theorems, volume 66. Cup Archive, 1980.

Houshang H Sohrab. Basic real analysis, volume 231. Springer, 2003.

Chuangchuang Sun, Dong-Ki Kim, and Jonathan P How. Romax: Certifiably robust deep multiagent
reinforcement learning via convex relaxation. arXiv preprint arXiv:2109.06795, 2021.

Richard S Sutton and Andrew G Barto. Reinforcement learning: an introduction mit press. Cambridge, MA,
22447, 1998.

Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning, volume 135. MIT press
Cambridge, 1998.

Csaba Szepesvári and Michael L Littman. A unified analysis of value-function-based reinforcement-learning
algorithms. Neural computation, 11(8):2017–2060, 1999.

Chen Tessler, Yonathan Efroni, and Shie Mannor. Action robust reinforcement learning and applications in
continuous control. In International Conference on Machine Learning, pp. 6215–6224. PMLR, 2019.

Tessa van der Heiden, C Salge, Efstratios Gavves, and H van Hoof. Robust multi-agent reinforcement learning
with social empowerment for coordination and communication. arXiv preprint arXiv:2012.08255, 2020.

John Von Neumann and Oskar Morgenstern. Theory of games and economic behavior. In Theory of games
and economic behavior. Princeton university press, 2007.

Yue Wang and Shaofeng Zou. Online robust reinforcement learning with model uncertainty. Advances in
Neural Information Processing Systems, 34:7193–7206, 2021.

Yaodong Yang and Jun Wang. An overview of multi-agent reinforcement learning from game theoretical
perspective. ArXiv, abs/2011.00583, 2020a.

21

Published in Transactions on Machine Learning Research (06/2023)

Yaodong Yang and Jun Wang. An overview of multi-agent reinforcement learning from game theoretical
perspective. arXiv preprint arXiv:2011.00583, 2020b.

Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang, and Jun Wang. Mean field multi-agent
reinforcement learning. In International conference on machine learning, pp. 5571–5580. PMLR, 2018.

Zhengyu Yin, Dmytro Korzhyk, Christopher Kiekintveld, Vincent Conitzer, and Milind Tambe. Stackelberg
vs. nash in security games: interchangeability, equivalence, and uniqueness. In AAMAS, volume 10, pp. 6,
2010.

Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu. The surprising effectiveness
of ppo in cooperative, multi-agent games. arXiv preprint arXiv:2103.01955, 2021a.

Jing Yu, Clement Gehring, Florian Schäfer, and Animashree Anandkumar. Robust reinforcement learning:
A constrained game-theoretic approach. In Learning for Dynamics and Control, pp. 1242–1254. PMLR,
2021b.

Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan Liu, Duane Boning, and Cho-Jui Hsieh. Robust
deep reinforcement learning against adversarial perturbations on state observations. Advances in Neural
Information Processing Systems, 33:21024–21037, 2020a.

Huan Zhang, Hongge Chen, Duane Boning, and Cho-Jui Hsieh. Robust reinforcement learning on state
observations with learned optimal adversary. arXiv preprint arXiv:2101.08452, 2021.

Kaiqing Zhang, Tao Sun, Yunzhe Tao, Sahika Genc, Sunil Mallya, and Tamer Basar. Robust multi-agent
reinforcement learning with model uncertainty. Advances in Neural Information Processing Systems, 33:
10571–10583, 2020b.

22

Published in Transactions on Machine Learning Research (06/2023)

Appendix for “Robust Multi-Agent Reinforcement
Learning with State Uncertainty”

There are three sections in the appendix: section A for theoretical proof, section B for algorithms, and section
C for experiments.

A Theory

In this section, we give the full proof of all propositions and theorems in the theoretical analysis of an
MG-SPA.

In section A.1, we construct an extensive-form game (EFG) (Başar & Olsder, 1998; Osborne & Rubinstein,
1994; Von Neumann & Morgenstern, 2007) whose payoff function is related to value functions of an MG-SPA.
We then give certain conditions under which, a Nash equilibrium for the constructed EFG exists. In section
A.2, we prove the propositions 4.5 and 4.6. In section A.3, we give the full proof of Theorem 4.7. In section
A.4, we prove Corollary 4.9.1 that Theorem 4.7 applies to history-dependent-policy-based RE as well.

To make the appendix self-contained, we re-show the vector notations and assumptions we have presented in
section 4.2. Readers can also skip the repeated text and directly go to section A.1.

We follow and extend the vector notations in Puterman (2014). Let V denote the set of bounded real valued
functions on S with component-wise partial order and norm ∥vi∥ := sups∈S |vi(s)|. Let VM denote the
subspace of V of Borel measurable functions. For discrete state space, all real-valued functions are measurable
so that V = VM . But when S is a continuum, VM is a proper subset of V . Let v = (v1, · · · , vN) ∈ V be
the set of bounded real valued functions on S × · · · × S, i.e. the across product of N state set and norm
∥v∥ := supj ∥vj∥. We also define the set Q and Q in a similar style such that qi ∈ Q, q ∈ Q.

For discrete S, let |S| denote the number of elements in S. Let ri denote a |S|-vector, with sth component
ri(s) which is the expected reward for agent i under state s. And P the |S| × |S| matrix with (s, s′)th
entry given by p(s′|s). We refer to ri

d as the reward vector of agent i, and Pd as the probability transition
matrix corresponding to a joint policy d = (π, ρ). ri

d + γPdv
i is the expected total one-period discounted

reward of agent i, obtained using the joint policy d = (π, ρ). Let z as a list of joint policy {d1, d2, · · · } and
P 0

z = I, we denote the expected total discounted reward of agent i using z as vi
z =

∑∞
t=1 γ

t−1P t−1
z ri

dt
=

ri
d1

+ γPd1r
i
d2

+ · · ·+ γn−1Pd1 · · ·Pdn−1r
i
tn

+ · · · . Now, we define the following minimax operator which is
used in the rest of the paper.

Definition A.1 (Minimax Operator, same as definition 4.3).

For vi ∈ V, s ∈ S, we define the nonlinear operator Li on vi(s) by Livi(s) := maxπi minρĩ [ri
d +

γPdv
i](s), where d := (π−i

∗ , πi, ρ−ĩ
∗ , ρĩ). We also define the operator Lv(s) = L(v1(s), · · · , vN (s)) =

(L1v1(s), · · · , LNvN (s)). Then Livi is a |S|-vector, with sth component Livi(s).

For discrete S and bounded ri, it follows from Lemma 5.6.1 in Puterman (2014) that Livi ∈ V for all vi ∈ V .
Therefore Lv ∈ V for all v ∈ V. And in this paper, we consider the following assumptions in Markov games
with state perturbation adversaries.

Assumption A.2 (Same as assumption 4.4).

(1) Bounded rewards; |ri(s, a, b)| ≤M i < M <∞ for all i ∈ N , a ∈ A, b ∈ B and s ∈ S.

(2) Finite state and action spaces: all S,Ai, B ĩ are finite.

(3) Stationary transition probability and reward functions.

(4) f(s, ·) is a bijection for any fixed s ∈ S.

(5) All agents share one common reward function.

23

Published in Transactions on Machine Learning Research (06/2023)

A.1 Extensive-form game

Figure 9: a team extensive-form game

An extensive-form game (EFG) (Başar & Olsder, 1998; Osborne & Rubinstein, 1994; Von Neumann &
Morgenstern, 2007) basically involves a tree structure with several nodes and branches, providing an explicit
description of the order of players and the information available to each player at the time of his decision.

Look at Figure 9, an EFG involves from the top of the tree to the tip of one of its branches. And a centralized
nature player (P1) has |S̃| alternatives (branches) to choose from, whereas a centralized agent (P2) has |A|
alternatives, and the order of play is that the centralized nature player acts before the centralized agent
does. The set A is the same as the agents’ joint action set in an MG-SPA, set S̃ is a set of perturbed states
constrained by a constrained parameter ϵ. At the end of lower branches, some numbers will be given. These
numbers represent the playoffs to the centralized agent (or equivalently, losses incurred to the centralized
nature player) if the corresponding paths are selected by the players. We give the formal definition of an
EFG we will use in the proof and the main text as follows:

Definition A.3. An extensive-form game based on (v1, · · · , vN ,−v1, · · · ,−vN) under s ∈ S is a finite
tree structure with:

1. A player P1 has a action set S̃ =
N︷ ︸︸ ︷

B(ϵ, s)× · · · × B(ϵ, s), with a typical element designed as s̃.
And P1 moves first.

2. Another player P2 has an action set A, with a typical element designed as a. And P2 which
moves after P1.

3. A specific vertex indicating the starting point of the game.

4. A payoff function gs(s̃, a) = (g1
s(s̃, a), · · · , gN

s (s̃, a)) where gi
s(s̃, a) = ri(s, a, f−1

s (s̃)) +∑
s′ p(s′|a, f−1

s (s̃))vi(s′) assigns a real number to each terminal vector of the tree. Player
P1 gets −gs(s̃, a) while player P2 gets gs(s̃, a).

5. A partition of the nodes of the tree into two player sets (to be denoted by N̄1 and N̄2 for P1
and P2, respectively).

6. A sub-partition of each player set N̄ i into information set {ηi
j}, such that the same number of

immediate branches emanates from every node belonging to the same information set, and no
node follows another node in the same information set.

Note that fs(b) := f(s, b) = (f(s, b1̃), · · · , f(s, bÑ)) is the vector version of the perturbation function f
in an MG-SPA. Since in an MG-SPA, qi(s, a, b) = ri(s, a, b) +

∑
s′ p(s′|s, a, b)vi(s′) for all i = 1, · · · , N ,

gi
s(s̃, a) = qi(s, a, f−1

s (s̃)) as well. We can also use (q1, · · · , qN ,−q1, · · · ,−qN) to denote an extensive-

24

Published in Transactions on Machine Learning Research (06/2023)

form game based on (v1, · · · , vN ,−v1, · · · ,−vN). Then we define the behavioral strategies for P1 and P2,
respectively in the following definition.

Definition A.4. (Behavioral strategy) Let Ii denote the class of all information sets of Pi, with a
typical element designed as ηi. Let U i

ηi denote the set of alternatives of Pi at the nodes belonging to
the information set ηi. Define U i = ∪U i

ηi where the union is over ηi ∈ Ii. Let Yη1 denote the set of
all probability distributions on U1

η1 , where the latter is the set of all alternatives of P1 at the nodes
belonging to the information set η1. Analogously, let Zη2 denote the set of all probability distributions
on U2

η2 . Further define Y = ∪I1Yη1 , Z = ∪I2Zη2 . Then, a behavioral strategy λ for P1 is a mapping
from the class of all his information sets I1 into Y , assigning one element in Y for each set in I1, such
that λ(η1) ∈ Yη1 for each η1 ∈ I1. A typical behavioral strategy χ for P2 is defined, analogously, as a
restricted mapping from I2 into Z. The set of all behavioral strategies for Pi is called his behavioral
strategy set, and it is denoted by Γi.

The information available to the centralized agent (P2) at the time of his play is indicated on the tree diagram
in Figure 9 by dotted lines enclosing an area (i.e. the information set) including the relevant nodes. This
means the centralized agent is in a position to know exactly how the centralized nature player acts. In this
case, a strategy for the centralized agent is a mapping from the collection of his information sets into the set
of his actions.

And the behavioral strategy λ for P1 is a mapping from his information sets and action space into a probability
simplex, i.e. λ(s̃|s) is the probability of choosing s̃ given s. Similarly, the behavioral strategy χ for P2 is
χ(a|s̃), i.e. the probability of choosing action a when s̃ is given. Note that every behavioral strategy is a
mixed strategy. We then give the definition of Nash equilibrium in behavioral strategies for an EFG.

Definition A.5. (Nash equilibrium in behavioral strategies) A pair of strategies {λ∗ ∈ Γ1, χ∗ ∈ Γ2} is
said to constitute a Nash equilibrium in behavioral strategies if the following inequalities are satisfied that
for all i = 1, · · · , N, λ ∈ Γ1, χ ∈ Γ2, s ∈ S:

J i(λi, λ−i
∗ , χi

∗, χ
−i
∗) ≥ J i(λi

∗, λ
−i
∗ , χi

∗, χ
−i
∗) ≥ J i(λi

∗, λ
−i
∗ , χi, χ−i

∗) (11)

where J i(λ, χ) is the expected payoff i.e. Eλ,χ[gi
s] when P1 takes λ, P2 takes χ, λ(s̃|s) =

∏N
i=1 λ

i(s̃i|s),
χ(a|s̃) =

∏N
i=1 χ

i(ai|s̃i).

In the following parts as well as the main text, when we mention a Nash equilibrium for an EFG, it refers
to a Nash equilibrium in behavioral strategies. How to solve an EFG is out of our scope since it has been
investigated in much literature (Başar & Olsder, 1998; Schipper, 2017; Slantchev, 2008). And policies λi

and χi can be attained through the marginal probabilities calculation with chain rules (Devore et al., 2012;
Mémoli, 2012).

A.1.1 Existence of NE for an EFG

In Lemma A.6, we give conditions (partial items of Assumption 4.4) under which an NE of the EFG based
on (v1, · · · , vN ,−v1, · · · ,−vN) exists.

Lemma A.6. Suppose v1 = · · · = vN , and S,A are finite. An NE (λ∗, χ∗) of the EFG based on
(v1, · · · , vN ,−v1, · · · ,−vN) exists.

Proof. Since S̃ is a subset of S, S̃ is finite when S is finite. When v1 = · · · = vN , and S̃, A are finite, an
EFG based on (v1, · · · , vN ,−v1, · · · ,−vN) degenerates to a zero-sum two-person extensive-form game with
finite strategies and perfect recall. Thus, an NE of this EFG exists (Başar & Olsder, 1998; Schipper, 2017;
Slantchev, 2008).

The following Lemma A.7 provides insights into solving an MG-SPA by solving a constructed EFG.

25

Published in Transactions on Machine Learning Research (06/2023)

Lemma A.7. Suppose f is a bijection when s is fixed and an NE (λ∗, χ∗) exists for an EFG
(v1, · · · , vN ,−v1, · · · ,−vN). We define a joint policy (πv

∗ , ρ
v
∗) as the joint policy implied from the

NE (λ∗, χ∗) , where ρv
∗(b|s) = λ∗(s̃ = fs(b)|s), πv

∗(a|s̃ = fs(b)) = χ∗(a|s̃). Then the joint policy (πv
∗ , ρ

v
∗)

satisfies Livi(s) = ri
(πv

∗ ,ρv
∗)(s) + γ

∑
s′∈S p(πv

∗ ,ρv
∗)(s′|s)vi(s′) for all s ∈ S.

Proof. The NE of the extensive-form game (λ∗, χ∗) implies that for all i = 1, · · · , N , s ∈ S, λ ∈ Γ1, χ ∈ Γ2,
we have

J i(λ, χ∗) ≥ J i(λ∗, χ∗) ≥ J i(λ∗, χ),

where J i(λ, χ) = E[ri(s, a, f−1
s (s̃)) +

∑
s′ p(s′|s, a, f−1

s (s̃))vi(s′)|s̃ ∼ λ(·|s), a ∼ χ(·|s̃)] according to Definition
A.5. Let b denote f−1

s (s̃), because f is a bijection when s is fixed, fs(b) = (fs(b1̃), · · · , fs(bÑ)) is a bijection,
and the inverse function f−1

s (s̃) = (f−1
s (s̃1), · · · , f−1

s (s̃N)) exists and is a bijection as well, then we have

J i(λ∗, χ∗) =E

[
ri(s, a, f−1

s (s̃)) +
∑

s′

p(s′|s, a, f−1
s (s̃))vi(s′)|s̃ ∼ λ∗(·|s), a ∼ χ∗(·|s̃)

]

=E

[
ri(s, a, b) +

∑
s′

p(s′|s, a, b)vi(s′)|b ∼ λ∗(fs(b)|s), a ∼ χ∗(·|fs(b))
]

=E

[
ri(s, a, b) +

∑
s′

p(s′|s, a, b)vi(s′)|b ∼ ρv
∗(·|s), a ∼ πv

∗(·|s̃)
]

Similarly, we have

J i(λ∗, χ) = E

[
ri(s, a, b) +

∑
s′

p(s′|s, a, b)vi(s′)|b ∼ ρv
∗(·|s), a ∼ πv(·|s̃)

]
,

J i(λ, χ∗) = E

[
ri(s, a, b) +

∑
s′

p(s′|s, a, b)vi(s′)|b ∼ ρv(·|s), a ∼ πv
∗(·|s̃)

]
,

where πv, ρv are corresponding policies implied from behavioral strategies χ, λ, respectively. Recall the
definition of the minimax operator of Livi(s), we have, for all s ∈ S,

Livi(s) = ri
(πv

∗ ,ρv
∗)(s) + γ

∑
s′∈S

p(πv
∗ ,ρv

∗)(s′|s)vi(s′)

Based on the proof, we also denote (πv
∗ , ρ

v
∗) as an NE policy for the EFG (v1, · · · , vN ,−v1, · · · ,−vN) for

convenience, instead of calling it the joint policy derived from an NE for the EFG (v1, · · · , vN ,−v1, · · · ,−vN).

We can get a corollary from Lemma A.7 that when optimal value functions of an MG-SPA exist, we are
able to get a joint policy that satisfies the Bellman equations of the MG-SPA by computing an NE for a
constructed EFG (v1

∗, · · · , vN
∗ ,−v1

∗, · · · ,−vN
∗). Later in Theorem 4.7, we show that a joint policy that satisfies

the Bellman equations of an MG-SPA is in a robust equilibrium under Assumption 4.4. Therefore, Lemma
A.7 provides insights into solving an MG-SPA by solving a corresponding EFG.

In the following proof, we aim to prove the existence of optimal value functions for an MG-SPA under
Assumption 4.4.

26

Published in Transactions on Machine Learning Research (06/2023)

A.2 Proof of two propositions
Proposition A.8 (Contraction mapping, same as proposition 4.5 in the main text.). Suppose 0 ≤ γ < 1
and Assumption 4.4 hold. Then L is a contraction mapping on V.

Proof. Let u and v be in V. Given Assumption 4.4, these two EFGs (u1, · · · , uN ,−u1, · · · ,−uN),
(vi, · · · , vN ,−vi, · · · ,−vN) both have at least one mixed Nash equilibrium according to Lemma A.6. And let
(πu

∗ , ρ
u
∗) and (πv

∗ , ρ
v
∗) be two Nash equilibriums for these two games, respectively. According to Lemma A.7,

we have the following equations hold for all s ∈ S,

Livi(s) = ri
(πv

∗ ,ρv
∗)(s) + γ

∑
s′∈S

p(πv
∗ ,ρv

∗)(s′|s)vi(s′)

Liui(s) = ri
(πu

∗ ,ρu
∗)(s) + γ

∑
s′∈S

p(πu
∗ ,ρu

∗)(s′|s)ui(s′)

Then we have

ri
(πu

∗ ,ρv
∗)(s) + γ

∑
s′∈S

p(πu
∗ ,ρv

∗)(s′|s)vi(s′) ≤ Livi(s) ≤ ri
(πv

∗ ,ρu
∗)(s) + γ

∑
s′∈S

p(πv
∗ ,ρu

∗)(s′|s)vi(s′),

ri
(πv

∗ ,ρu
∗)(s) + γ

∑
s′∈S

p(πv
∗ ,ρu

∗)(s′|s)ui(s′) ≤ Liui(s) ≤ ri
(πu

∗ ,ρv
∗)(s) + γ

∑
s′∈S

p(πu
∗ ,ρv

∗)(s′|s)ui(s′),

since (πu
∗ , ρ

v
∗) and (πv

∗ , ρ
u
∗) are derived from the Nash equilibrium of the EFG (vi, · · · , vN ,−vi, · · · ,−vN),

and (πu
∗ , ρ

v
∗) and (πv

∗ , ρ
u
∗) are also derived from the Nash equilibrium of the EFG (ui, · · · , uN ,−ui, · · · ,−uN).

We assume that Livi(s) ≤ Liui(s), then we have

0 ≤ Liui(s)− Livi(s)

≤

[
ri

(πu
∗ ,ρv

∗)(s) + γ
∑
s′∈S

p(πu
∗ ,ρv

∗)(s′|s)ui(s′)
]
−

[
ri

(πu
∗ ,ρv

∗)(s) + γ
∑
s′∈S

p(πu
∗ ,ρv

∗)(s′|s)vi(s′)
]

≤ γ
∑
s′∈S

p(πu
∗ ,ρv

∗)(s′|s)(ui(s′)− vi(s′))

≤ γ||vi − ui||.

Repeating this argument in the case that Liui(s) ≤ Livi(s) implies that

||Livi(s)− Liui(s)|| ≤ γ||vi − ui||

for all s ∈ S, i.e. Li is a contraction mapping on V . Recall that ||v|| = supj ||vj ||, then we have

||Lv − Lu|| = sup
j
||Ljvj − Ljuj || ≤ γ sup

j
||vj − uj || = γ||v − u||.

L is a contraction mapping on V.

Proposition A.9 (Complete Space, same as proposition 4.6 in the main text.). V is a complete normed
linear space.

Proof. Recall that V denote the set of bounded real-valued functions on S × · · · × S, i.e. the cross product of
N state set with component-wise partial order and norm ||v|| := sups∈S supj |vi(s)|. Since V is closed under
addition and scalar multiplication and is endowed with a norm, it is a normed linear space. Since every
Cauchy sequence contains a limit point in V, V is a complete space.

27

Published in Transactions on Machine Learning Research (06/2023)

A.3 Proof of Theorem 4.7

In this section, our goal is to prove Theorem 4.7. We first prove (1) the optimal value function of an MG-SPA
satisfies the Bellman equation by applying the Squeeze theorem [Theorem 3.3.6, Sohrab (2003)] in A.3.1.
Then we prove that a unique solution of the Bellman equation exists using fixed-point theorem (Smart,
1980) in A.3.2. Thereby, the existence of the optimal value function gets proved. By introducing (3), we
characterize the relationship between the optimal value function and a robust equilibrium. The proof of
(3) can be found in A.3.3. However, (3) does not imply the existence of an RE. To this end, in (4), we
formally establish the existence of RE when the optimal value function exists. We formulate a 2N -player
Extensive-form game (EFG) (Osborne & Rubinstein, 1994; Von Neumann & Morgenstern, 2007) based on
the optimal value function such that its Nash equilibrium (NE) is equivalent to an RE of the MG-SPA. The
details are in A.3.4.

Theorem A.10 (Same as theorem 4.7 in the main text).

Suppose 0 ≤ γ < 1 and Assumption 4.4 holds.

(1) (Solution of Bellman equation) A value function v∗ ∈ V is an optimal value function if for all i ∈ N ,
the point-wise value function vi

∗ ∈ V satisfies the corresponding Bellman Equation (6), i.e. v∗ = Lv∗.

(2) (Existence and uniqueness of optimal value function) There exists a unique v∗ ∈ V satisfying Lv∗ = v∗,
i.e. for all i ∈ N , Livi

∗ = vi
∗.

(3) (Robust equilibrium and optimal value function) A joint policy d∗ = (π∗, ρ∗), where π∗ = (π1
∗, · · · , πN

∗)
and ρ∗ = (ρ1̃

∗, · · · , ρÑ
∗), is a robust equilibrium if and only if vd∗ is the optimal value function.

(4) (Existence of robust equilibrium) There exists a mixed RE for an MG-SPA.

A.3.1 (1) Solution of Bellman equation

Proof. First, we prove that if there exists a vi ∈ V such that vi ≥ Lvi then vi ≥ vi
∗. vi ≥ Lvi implies

vi ≥ max min[ri + γPvi] = ri
d + γPdv

i, where d = (πv,−i
∗ , πv,i

∗ , ρv,−ĩ
∗ , ρv,̃i

∗) is a Nash equilibrium for the EFG
v = (v1, · · · , vN ,−v1, · · · ,−vN). We omit the superscript v for convenience when there is no confusion. We
choose a list of policy i.e. z = (d1, d2, · · ·) where dj = (π−i

∗ , πi
j , ρ

−ĩ
∗ , ρĩ

∗). Then we have

vi ≥ rd1 + γPd1v
i ≥ ri

d1
+ γPd1(ri

d2
+ γPd2v

i) = ri
d1

+ γPd1r
i
d2

+ γPd1Pd2v
i

By induction, it follows that, for n ≥ 1,

vi ≥ ri
d1

+ γPd1r
i
d2

+ · · ·+ γn−1Pd1 · · ·Pdn−1r
i
dn

+ γnPn
z v

i

vi − vi
z ≥ γnPn

z v
i −

∞∑
t=n

γtP t
zr

i
dt+1

(12)

Since ||γnPn
z v

i|| ≤ γn||vi|| and γ ∈ [0, 1), for ϵ > 0, we can find a sufficiently large n such that

ϵe/2 ≥ γnPn
z v

i ≥ −ϵe/2 (13)

where e denotes a vector of 1’s. And as a result of Assumption 4.4-(1), we have

−
∞∑

t=n

γtP t
zr

i
dt+1
≥ −γ

nMe

1− γ (14)

Then we have

vi(s)− vi
z(s) ≥ −ϵ (15)

28

Published in Transactions on Machine Learning Research (06/2023)

for all s ∈ S and ϵ > 0. Let all dj the same, since ϵ was arbitrary, we have

vi(s) ≥ max
πi

min
ρĩ

vi
z(s) = vi

∗(s) (16)

Then we prove that if there exists a vi ∈ V such that vi ≤ Lvi then vi ≤ vi
∗. For arbitrary ϵ > 0 there exists

a joint policy d′ = (π−i
∗ , πi

∗, ρ
−ĩ
∗ , ρĩ) and a list of policy z = (d′, d′, · · ·) such that

vi ≤ ri
d′ + γPd′vi + ϵ

(I − γPd′)vi ≤ ri
d′ + ϵ

≤ (I − γPd′)−1ri
d′ + (1− γ)−1ϵe = vi

z + (1− γ)−1ϵe

≤ vi
∗ + (1− γ)−1ϵe

The equality holds because the Theorem 6.1.1 in Puterman (2014). Since ϵ was arbitrary, we have

vi ≤ vi
∗ (17)

So if there exists a vi ∈ V such that vi = Livi i.e. vi ≤ Livi and vi ≥ Livi, we have vi = vi
∗, i.e. if vi satisfies

the Bellman equation, vi is an optimal value function.

A.3.2 (2) Existence of optimal value function

Proof. Proposition 4.5 and 4.6 establish that V is a complete normed linear space and L is a contraction
mapping, so that the hypothesis of Banach Fixed-Point Theorem are satisfied (Smart, 1980). Therefore there
exists a unique solution v∗ ∈ V to Lv = v. From (1), we know if v∗ satisfies the Bellman equation, it is an
optimal value function. Therefore, the existence of the optimal value function is proved.

A.3.3 (3) robust equilibrium and optimal value function

Proof. (i) robust equilibrium → Optimal value function.

Suppose d∗ is a robust equilibrium. Then vd∗ = v∗. From (2), it follows that vd∗ satisfies Lv = v. Thus vd∗

is the optimal value function.

(ii) Optimal value function → robust equilibrium.

Suppose vd∗ is the optimal value function, i.e., Lvd∗ = vd∗ . The proof of (1) implies that vd∗ = v∗, so d∗ is
in robust equilibrium.

A.3.4 (4) Existence of robust equilibrium

Proof. From (2), we know that there exists a solution v∗ ∈ V to the Bellman equation Lv = v. Now, we
consider an EFG based on (v1

∗, · · · , vN
∗ ,−v1

∗, · · · ,−vN
∗). Under Assumption 4.4, we can get an NE policy

(πv∗
∗ , ρv∗

∗) by solving the EFG as a consequence of Lemma A.6. According to Lemma A.7, (πv∗
∗ , ρv∗

∗) satisfies

Livi
∗(s) = ri

(πv∗
∗ ,ρv∗

∗)(s) + γ
∑
s′∈S

p(πv∗
∗ ,ρv∗

∗)(s′|s)vi
∗(s′),

for all s ∈ S. According to (3), (πv∗
∗ , ρv∗

∗) is a robust equilibrium.

29

Published in Transactions on Machine Learning Research (06/2023)

A.4 Proof of Corollary 4.9.1
Corollary A.10.1 (Same as Corollary 4.9.1).

Theorem 4.7 still holds when all agents and adversaries in an MG-SPA use history-dependent policies
with a finite time horizon.

Proof. From subsection 4.3, we can find the main difference between history-dependent-policy-based RE and
Markov-policy-based RE are the definitions and notations of policies and states. To prove Theorem 4.7, we
construct an EFG based on the current state st. Similarly, to prove Corollary 4.9.1, we construct an EFG
based on the concatenated states sh,t and s̃h−1,t−1 that includes the current state st and historical state
information st−1, · · · , st−h+1, s̃t−1, · · · , s̃t−h+1. Notice that h is a finite number. Hence, the concatenated
state space is still finite. We now construct another extensive-form game in which a centralized nature player
(P1) has |S̃| alternatives (branches) to choose from, whereas a centralized agent (P2) has |A| alternatives,
and the order of play is that the centralized nature player acts before the centralized agent does. The set A
is the same as the agents’ joint action set in an MG-SPA, set S̃ is a set of perturbed states constrained by a
constrained parameter ϵ.

Definition A.11. An extensive-form game based on (v1, · · · , vN ,−v1, · · · ,−vN) under concatenated
states sh,t = (st, · · · , st−h+1) ∈ Sh and s̃h,t−1 = (s̃t−1, · · · , s̃t−h+1) ∈ Sh−1 is a finite tree structure with:

1. A player P1 has a action set S̃ =
N︷ ︸︸ ︷

B(ϵ, s)× · · · × B(ϵ, s), with a typical element designed as s̃.
And P1 moves first.

2. Another player P2 has an action set A, with a typical element designed as a. And P2 which
moves after P1.

3. A specific vertex indicating the starting point of the game.

4. A payoff function gs(s̃, a) = (g1
s(s̃, a), · · · , gN

s (s̃, a)) where s = st = sh,t[1] is the first element of
sh,t, s̃ = s̃t ∈ S̃, gi

s(s̃, a) = ri(s, a, f−1
s (s̃)) +

∑
s′ p(s′|a, f−1

s (s̃))vi(s′) assigns a real number to
each terminal vector of the tree. Player P1 gets −gs(s̃, a) while player P2 gets gs(s̃, a).

5. A partition of the nodes of the tree into two player sets (to be denoted by N̄1 and N̄2 for P1
and P2, respectively).

6. A sub-partition of each player set N̄ i into information set {ηi
j}, such that the same number of

immediate branches emanates from every node belonging to the same information set, and no
node follows another node in the same information set.

The definitions of behavioral strategy and Nash equilibrium keep the same. Then the behavioral strategy λ
for P1 is a mapping from his information sets and action space into a probability simplex, i.e. λ(s̃|sh,t =
(st, · · · , st−h+1)) is the probability of choosing s̃ given sh,t. Similarly, the behavioral strategy χ for P2 is
χ(a|s̃h,t = (s̃, s̃t−1, · · · , s̃t−h+1)), i.e. the probability of choosing action a when s̃h,t is given.

Now let us check the correctness of Lemma A.6 when EFG is constructed following Definition A.11. We can
find that Sh is a finite state space for any finite time horizon h since Sh is a product topology on finite spaces.
Then Lemma A.6 still holds because the EFG degenerates to a zero-sum two-person extensive-form game
with finite strategies and perfect recall.

Then let us check Lemma A.7. We re-write it in Lemma A.12 in which the behavioral strategy χ(a|s̃h,t) and
λ(s̃|sh,t) are used. The proof of Lemma A.12 is similar to that of Lemma A.7.

30

Published in Transactions on Machine Learning Research (06/2023)

Lemma A.12. Suppose f is a bijection when s is fixed and an NE (λ∗, χ∗) exists for an EFG
(v1, · · · , vN ,−v1, · · · ,−vN). We define a joint policy (πv

∗ , ρ
v
∗) as the joint policy implied from the

NE (λ∗, χ∗) , where ρv
∗(b|sh) = λ∗(s̃ = fs(b)|sh), πv

∗(a|s̃h = (fs(b), s̃t−1, · · · , s̃t−h+1)) = χ∗(a|s̃h). Then
the joint policy (πv

∗ , ρ
v
∗) satisfies Livi(s) = ri

(πv
∗ ,ρv

∗)(s) + γ
∑

s′∈S p(πv
∗ ,ρv

∗)(s′|s)vi(s′) for all s ∈ S.

Proof. The NE of the extensive-form game (λ∗, χ∗) implies that for all i = 1, · · · , N , s ∈ S, λ ∈ Γ1, χ ∈ Γ2,
we have

J i(λ, χ∗) ≥ J i(λ∗, χ∗) ≥ J i(λ∗, χ),

where J i(λ, χ) = E[ri(s, a, f−1
s (s̃)) +

∑
s′ p(s′|s, a, f−1

s (s̃))vi(s′)|s̃ ∼ λ(·|sh), a ∼ χ(·|s̃h)] according to Defi-
nition A.5. Let b denote f−1

s (s̃), because f is a bijection when s is fixed, fs(b) = (fs(b1̃), · · · , fs(bÑ)) is a
bijection, and the inverse function f−1

s (s̃) = (f−1
s (s̃1), · · · , f−1

s (s̃N)) exists and is a bijection as well, then we
have

J i(λ∗, χ∗) =E

[
ri(s, a, f−1

s (s̃)) +
∑

s′

p(s′|s, a, f−1
s (s̃))vi(s′)|s̃ ∼ λ∗(·|sh), a ∼ χ∗(·|s̃h)

]

=E

[
ri(s, a, b) +

∑
s′

p(s′|s, a, b)vi(s′)|b ∼ λ∗(fs(b)|sh), a ∼ χ∗(·|(fs(b), s̃t−1, · · · , s̃t−h+1))
]

=E

[
ri(s, a, b) +

∑
s′

p(s′|s, a, b)vi(s′)|b ∼ ρv
∗(·|sh), a ∼ πv

∗(·|s̃h)
]

Similarly, we have

J i(λ∗, χ) = E

[
ri(s, a, b) +

∑
s′

p(s′|s, a, b)vi(s′)|b ∼ ρv
∗(·|sh), a ∼ πv(·|s̃h)

]
,

J i(λ, χ∗) = E

[
ri(s, a, b) +

∑
s′

p(s′|s, a, b)vi(s′)|b ∼ ρv(·|sh), a ∼ πv
∗(·|s̃h)

]
,

where πv, ρv are corresponding policies implied from behavioral strategies χ, λ, respectively. Recall the
definition of the minimax operator of Livi(s), we have, for all s ∈ S,

Livi(s) = ri
(πv

∗ ,ρv
∗)(s) + γ

∑
s′∈S

p(πv
∗ ,ρv

∗)(s′|s)vi(s′)

Proposition 4.6 still holds when agents and adversaries adopt history-dependent policies since we do not
require Markov policies in the proof. Propositions 4.5 also holds which can be proved by utilizing the
properties of NE for EFGs defined in Definition A.11. Specifically, in the proof, we use EFGs defined in
Definition A.11 instead of Definition A.3. The subsequent proof of Propositions 4.5 keeps the same.

Then in the proof of Theorem 4.7, we are able to continue to utilize Propositions 4.6 and 4.5. Similarly,
the EFGs used in the proof are replaced by Definition A.11. The definition of the minimax operator does
not constrain the type of policies. The properties of the minimax operator can be continually used as
well. The main body of proof keeps the same. Theorem 4.7 still holds when agents and adversaries adopt
history-dependent policies.

31

Published in Transactions on Machine Learning Research (06/2023)

B Algorithm

B.1 Robust multi-agent Q-learning (RMAQ)

In this section, we prove the convergence of RMAQ under certain conditions. First, let’s recall the convergence
theorem and certain assumptions.

Assumption B.1 (Same as assumption 5.1).

(1) State and action pairs have been visited infinitely often. (2) The learning rate αt satisfies the following
conditions: 0 ≤ αt < 1,

∑
t≥0 α

2
t ≤ ∞; if (s, a, b) ̸= (st, at, bt), αt(s, a, b) = 0. (3) An NE of the EFG

based on (q1
t , · · · , qN

t ,−q1
t , · · · ,−qN

t) exists at each iteration t.

Theorem B.2 (Same as theorem 5.2).

Under Assumption B.1, the sequence {qt} obtained from (18) converges to {q∗} with probability 1, which
are the optimal action-value functions that satisfy Bellman equations (5) for all i = 1, · · · , N .

qi
t+1(st, at, bt) = (1− αt)qi

t(st, at, bt)+ (18)

αt

ri
t + γ

∑
at+1∈A

∑
bt+1∈B

πqt

∗,t(at+1|s̃t+1)ρqt

∗,t(bt+1|st+1)qi
t(st+1, at+1, bt+1)

 ,
Proof. Define the operator Tqt = T (q1

t , · · · , qN
t) = (T 1q1

t , · · · , TNqN
t) where the operator T i is defined as

below:

T iqi
t(s, a, b) = ri

t + γ
∑

a′∈A

∑
b′∈B

πqt
∗ (a′|s̃′)ρqt

∗ (b′|s′)qi
t(s′, a′, b′) (19)

for i ∈ N , where (πqt
∗ , ρ

qt
∗) is the tuple of Nash equilibrium policies for the EFG based on

(q1
t , · · · , qN

t ,−q1
t , · · · ,−qN

t) obtained from (18). Because of proposition B.3 and proposition B.4 the Lemma
8 in Hu & Wellman (2003) or Corollary 5 in Szepesvári & Littman (1999) tell that qt+1 = (1− αt)qt + αtTqt

converges to q∗ with probability 1.

Proposition B.3 (Contraction mapping).

Tqt = (T 1q1
t , · · · , TNqN

t) is a contraction mapping.

Proof. We omit the subscript t when there is no confusion. Assume T ipi ≥ T iqi, we have

0 ≤ T ipi − T iqi

=γ

∣∣∣∣∣
∣∣∣∣∣∑
a′∈A

∑
b′∈B

πp
∗(a′|s̃′)ρp

∗(b′|s′)pi(s′, a′, b′)−
∑

a′∈A

∑
b′∈B

πq
∗(a′|s̃′)ρq

∗(b′|s′)qi(s′, a′, b′)

∣∣∣∣∣
∣∣∣∣∣

≤γ

∣∣∣∣∣
∣∣∣∣∣∑
a′∈A

∑
b′∈B

πq
∗(a′|s̃′)ρq

∗(b′|s′)pi(s′, a′, b′)−
∑

a′∈A

∑
b′∈B

πp
∗(a′|s̃′)ρp

∗(b′|s′)qi(s′, a′, b′)

∣∣∣∣∣
∣∣∣∣∣

≤γ
∣∣∣∣pi − qi

∣∣∣∣ . (20)

Repeating the case T ipi ≤ T iqi implies that T i is a contraction mapping such that ||T ipi−T iqi|| ≤ γ||pi−qi||
for all pi, qi ∈ Q. Recall that ||p− q|| = supj ||pj − qj ||

||Tp− Tq|| = sup
j
||T jpj − T jqj || ≤ γ sup

j
||pj − qj || = γ||p− q||

T is a contraction mapping such that ||Tp− Tq|| ≤ γ||p− q|| for all p, q ∈ Q.

32

Published in Transactions on Machine Learning Research (06/2023)

Proposition B.4 (A condition of Lemma 8 in Hu & Wellman (2003) also Corollary 5 in Szepesvári &
Littman (1999)).

q∗ = E[Tq∗] (21)

Proof.

E
[
T iqi

∗(s, a, b)
]

= E

[
ri(s, a, b) + γ

∑
a′∈A

∑
b′∈B

π∗(a′|s̃′)ρ∗(b′|s′)qi
∗(s′, a′, b′)

]
= ri(s, a, b) + γ

∑
s′∈S

p(s′|s, a, b)
∑

a′∈A

∑
b′∈B

π∗(a′|s̃′)ρ∗(b′|s′)qi
∗(s′, a′, b′)

= qi
∗(s, a, b) (22)

Therefore q∗ = E[Tq∗].

33

Published in Transactions on Machine Learning Research (06/2023)

B.2 Robust multi-agent actor-critic (RMAAC)

In this section, we first give the details of policy gradients proof in MG-SPA and then list the Pseudo code of
RMAAC.

B.2.1 Proof of policy gradients

Recall the policy gradient in RMAAC for MG-SPA in the following:
Theorem B.5 (Policy gradient in RMAAC for MG-SPA, same as the theorem 5.3). For each agent
i ∈ N and adversary ĩ ∈M, the policy gradients of the objective J i(θ, ω) with respect to the parameter
θ, ω are:

∇θiJ i(θ, ω) = E(s,a,b)∼p(π,ρ)
[
qi,π,ρ(s, a, b)∇θi log πi(ai|s̃i)

]
(23)

∇ωiJ i(θ, ω) = E(s,a,b)∼p(π,ρ)
[
qi,π,ρ(s, a, b)[∇ωi log ρi(bi|s) + reg]

]
(24)

where reg = ∇s̃i log πi(ai|s̃i)∇bif(s, bi)∇ωiρ(bi|s).

Proof. We first start with the derivative of the state value function on θi:

∇θivi,π,ρ(s)

=∇θi

[∑
a∈A

∑
b∈B

π(a|s̃)ρ(b|s)qi,π,ρ(s, a, b)
]

=
∑
a∈A

∑
b∈B

[
∇θiπ(a|s̃)ρ(b|s)qi,π,ρ(s, a, b) + π(a|s̃)ρ(b|s)∇θiqi,π,ρ(s, a, b)

]
=
∑
a∈A

∑
b∈B

∇θiπ(a|s̃)ρ(b|s)qi,π,ρ(s, a, b) + π(a|s̃)ρ(b|s)∇θi

∑
s′,r

p(s′, r|s, a, b)(ri + vi,π,ρ(s′))


=
∑
a∈A

∑
b∈B

[
∇θiπ(a|s̃)ρ(b|s)qi,π,ρ(s, a, b) + π(a|s̃)ρ(b|s)∇θi

∑
s′

p(s′|s, a, b)vi,π,ρ(s′)
]

(25)

We use ϕθi(s) to denote
∑

a∈A

∑
b∈B[∇θiπ(a|s̃)ρ(b|s)qi,π,ρ(s, a, b)]. We use pπ,ρ(s → x, k) to denote the

probability of transition from state s to state x with agents’ joint policy π and adversaries’ joint policy ρ after
k steps. For example, pπ,ρ(s→ s, k = 0) = 1 and pπ,ρ(s→ s′, k = 1) =

∑
a∈A

∑
b∈B π(a|s̃)ρ(b|s)p(s′|s, a, b).

In the following proof, we sometimes use the superscript i instead of ĩ to denote adversary ĩ when there is no
confusion. Then we have:

∇θivi,π,ρ(s)

=ϕθi

(s) +
∑
a∈A

∑
b∈B

π(a|s̃)ρ(b|s)∇θi

∑
s′∈S

p(s′|s, a, b)vi,π,ρ(s′)

=ϕθi

(s) +
∑
a∈A

∑
b∈B

∑
s′∈S

π(a|s̃)ρ(b|s)p(s′|s, a, b)∇θivi,π,ρ(s′)

=ϕθi

(s) +
∑
s′∈S

pπ,ρ(s→ s′, 1)∇θivi,π,ρ(s′)

=ϕθi

(s) +
∑
s′∈S

pπ,ρ(s→ s′, 1)
[
ϕθi

(s′) +
∑

s′′∈S

pπ,ρ(s′ → s′′, 1)∇θivi,π,ρ(s′′)
]

= · · ·

=
∑
x∈S

∞∑
k=0

pπ,ρ(s→ x, k)ϕθi

(x) (26)

34

Published in Transactions on Machine Learning Research (06/2023)

By plugging in ∇θivi,π,ρ(s) =
∑

x∈S

∑∞
k=0 p

π,ρ(s→ x, k)ϕθi(x) into the objective function J i(θ, ω), we can
get the following results:

∇θiJ i(θ, ω) = ∇θivi,π,ρ(s1)

=
∑
s∈S

∞∑
k=0

pπ,ρ(s1 → s, k)ϕθi

(s)

=
∑
s∈S

η(s)ϕθi

(s) ;Let η(s) =
∞∑

k=0

pπ,ρ(s1 → s, k)ϕθi
(s)

=
(∑

s∈S

η(s)
)∑

s∈S

η(s)∑
s∈S η(s)ϕ

θi

(s)

∝
∑
s∈S

η(s)∑
s∈S η(s)ϕ

θi

(s) ;

(∑
s∈S

η(s)

)
is a constant

=
∑
s∈S

∑
a∈A

∑
b∈B

dπ,ρ(s)∇θiπ(a|s̃)ρ(b|s)qi,π,ρ(s, a, b) ;Let dπ,ρ(s) =
η(s)∑

s∈S
η(s)

=
∑
s∈S

∑
a∈A

∑
b∈B

dπ,ρ(s)∇θiπ(a|s̃)
π(a|s̃) ρ(b|s)qi,π,ρ(s, a, b)π(a|s̃)

=E(s,a,b)∼p(π,ρ)
[
qi,π,ρ(s, a, b)∇θi log πi(ai|s̃i)

]
(27)

Now we calculate the derivative of the state value function on ωi:

∇ωivi,π,ρ(s)

=∇ωi

[∑
a∈A

∑
b∈B

π(a|s̃)ρ(b|s)qi,π,ρ(s, a, b)
]

=
∑
a∈A

∑
b∈B

[
∇ωiρ(b|s)π(a|s̃)qi,π,ρ(s, a, b) +∇ωiπ(a|s̃)ρ(b|s)qi,π,ρ(s, a, b) + ρ(b|s)π(a|s̃)∇ωiqi,π,ρ(s, a, b)

]
(28)

We let ψωi(s) =
∑

a∈A

∑
b∈B

[
∇ωiρ(b|s)π(a|s̃)qi,π,ρ(s, a, b)

]
and

ϕωi(s) =
∑

a∈A

∑
b∈B

[
∇ωiπ(a|s̃)ρ(b|s)qi,π,ρ(s, a, b)

]
. Similar to ∇θivi,π,ρ(s), we have:

∇ωivi,π,ρ(s)

=ψωi

(s) + ϕωi

(s) +
∑
a∈A

∑
b∈B

[
π(a|s̃)ρ(b|s)∇θi

∑
s′∈S

p(s′|s, a, b)vi,π,ρ(s′)
]

=ψωi

(s) + ϕωi

(s) +
∑
a∈A

∑
b∈B

∑
s′∈S

π(a|s̃)ρ(b|s)p(s′|s, a, b)∇ωivi,π,ρ(s′)

=ψωi

(s) + ϕωi

(s) +
∑
s′∈S

pπ,ρ(s→ s′, 1)∇ωivi,π,ρ(s′)

=ψωi

(s) + ϕωi

(s) +
∑
s′∈S

pπ,ρ(s→ s′, 1)
[
ψωi

(s′) + ϕωi

(s′) +
∑
s′∈S

pπ,ρ(s′ → s′′, 1)∇ωivi,π,ρ(s′′)
]

= · · ·

=
∑
x∈S

∞∑
k=0

pπ,ρ(s→ x, k)[ψωi

(s) + ϕωi

(s)] (29)

35

Published in Transactions on Machine Learning Research (06/2023)

By plugging in ∇ωivi,π,ρ(s) =
∑

x∈S

∑∞
k=0 p

π,ρ(s→ x, k)[ψωi(s)+ϕωi(s)] into the objective function J i(θ, ω),
we can get the following results:

∇ωiJ i(θ, ω) = ∇ωivi,π,ρ(s1)

=
∑
s∈S

∞∑
k=0

pπ,ρ(s1 → s, k)
[
ψωi

(s) + ϕωi

(s)
]

∝
∑
s∈S

∑
a∈A

∑
b∈B

dπ,ρ(s)
[
∇ωiπ(a|s̃)ρ(b|s)qi,π,ρ(s, a, b) +∇ωiρ(b|s)π(a|s̃)qi,π,ρ(s, a, b)

]
=E(s,a,b)∼p(π,ρ)

[
qi,π,ρ(s, a, b)∇ωi log ρ(b|s) + qi,π,ρ(s, a, b)∇ωi log π(a|s̃)

]
=E(s,a,b)∼p(π,ρ)

[
qi,π,ρ(s, a, b)∇ωi log ρi(bi|s) + qi,π,ρ(s, a, b)∇ωi log πi(ai|s̃i)

]
=E(s,a,b)∼p(π,ρ)

[
qi,π,ρ(s, a, b)∇ωi log ρi(bi|s) + qi,π,ρ(s, a, b)∇s̃iπi(ai|s̃i)∇bif(s, bi)∇ωiρ(bi|s)

πi(ai|s̃i)

]
=E(s,a,b)∼p(π,ρ)

{
qi,π,ρ(s, a, b)[∇ωi log ρi(bi|s) +∇s̃i log πi(ai|s̃i)∇bif(s, bi)∇ωiρ(bi|s)]

}
(30)

B.2.2 Policy gradients for deterministic polices
Theorem B.6 (Policy gradients for deterministic polices in RMAAC for MG-SPA). For each agent
i ∈ N and adversary ĩ ∈ M using deterministic policies, the policy gradients of the objective J i(θ, ω)
with respect to the parameter θ, ω are:

∇θiJ i(θ, ω) = 1
T

T∑
t=1
∇aiqi(st, at, bt)∇θiπi(s̃i

t)|ai
t=πi(s̃i

t),bi
t=ρi(st) (31)

∇ωiJ i(θ, ω) = 1
T

T∑
t=1

[
∇biqi(st, at, bt) + reg

]
∇ωiρi(st)|ai

t=πi(s̃i
t),bi

t=ρi(st) (32)

where reg = ∇bi
t
f(st, b

i
t)∇aiqi(st, at, bt)∇fπ

i(f).

Proof. Note that we here parameterize all policies πi, ρĩ as deterministic policies. Then we have:

∇θiJ i(θ, ω) = Es∼p(π,ρ)

[
∇θiqi(s, a, b)

]
= Es∼p(π,ρ)

[
∇aiqi(s, a, b)∇θiπi(s̃i)

]
, (33)

∇ωiJ i(θ, ω) = Es∼p(π,ρ)

[
∇ωiqi(s, a, b)

]
= Es∼p(π,ρ)

[
∇aiqi(s, a, b)∇s̃iπi(s̃i)∇bif(si, bi)∇ωiρi(s) +∇biqi(s, a, b)∇ωiρi(s)

]
= Es∼p(π,ρ)

[
∇ωiρi(s)

[
∇biqi(s, a, b) + reg

]]
, (34)

where reg = ∇aiqi(s, a, b)∇s̃iπi(s̃i)∇bif(s, bi). When the actors are updated in a mini-batch fashion (Mnih
et al., 2015; Li et al., 2014), (9) and (10) approximate (33) and (34), respectively.

B.2.3 Pseudo code of RMAAC

We provide the Pseudo code of RMAAC with deterministic policies in Algorithm 1. The stochastic policy
version RMAAC is similar to Algorithm 1 but uses different policy gradients.

36

Published in Transactions on Machine Learning Research (06/2023)

Algorithm 1: RMAAC with deterministic policies
1 Randomly initialize the critic network qi(s, a, b|ηi), the actor network πi(·|θi), and the adversary network

ρi(·|ωi) for agent i. Initialize target networks qi′, πi′, ρi′;
2 for each episode do
3 Initialize a random process N for action exploration;
4 Receive initial state s;
5 for each time step do
6 For each adversary i, select action bi = ρi(s) +N w.r.t the current policy and exploration.

Compute the perturbed state s̃i = f(s, bi). Execute actions ai = π(s̃i) +N and observe the
reward r = (r1, ..., rn) and the new state information s′ and store(s, a, b, s̃, r, s′) in replay buffer
D. Set s′ → s;

7 for agent i=1 to n do
8 Sample a random minibatch of K samples (sk, ak, bk, rk, s

′
k) from D;

9 Set yi
k = ri

k + γqi′(s′
k, a

′
k, b

′
k)|ai′

k
=πi′(s̃i

k
),bi′

k
=ρi′(sk);

10 Update critic by minimizing the loss L = 1
K

∑
k

[
yi

k − qi(sk, ak, bk)
]2;

11 for each iteration step do
12 Update actor πi(·|θi) and adversary ρi(·|ωi) using the following gradients
13 θi ← θi + αa

1
K

∑
k∇θiπi(s̃i

k)∇aiqi(sk, ak, bk) where ai
k = πi(s̃i

k), bi
k = ρi(sk);

14 ωi ← ωi − αb
1
K

∑
k∇ωiρi(sk)

[
∇biqi(sk, ak, bk) + reg

]
where

reg = ∇ai
k
qi(sk, ak, bk)∇s̃i

k
πi(s̃i

k), ai
k = πi(s̃i

k), bi
k = ρi(sk);

15 end
16 end
17 Update all target networks: θi′ ← τθi + (1− τ)θi′, ωi′ ← τωi + (1− τ)ωi′.
18 end
19 end

37

Published in Transactions on Machine Learning Research (06/2023)

C Experiments

C.1 Robust multi-agent Q-learning (RMAQ)

In this section, we first introduce the designed two-player game in that the reward function and transition
probability function are formally defined. The MG-SPA based on the two-player game is also further
explained. Then we show more experimental results about the proposed robust multi-agent Q-learning
(RMAQ) algorithm, such as the training process of the RMAQ algorithm in terms of the total discounted
rewards.

C.1.1 Two-player game

Figure 10: Two-player game: each player has two states and the same action set with size 2. Under state s0,
two players get the same reward 1 when they choose the same action. At state s1, two players get the same
reward 1 when they choose different actions. One state switches to another state only when two players get a
reward, i.e. two players always stay in the current state until they get the reward.

Look at Figure 10 (same as Figure 3 in the main text.), this is how we run the designed two-player game.
The reward function r and transition probability function p are defined as follows.

These two players get the same rewards all the time, i.e. they share a reward function r.

ri(s, a1, a2) =


1, a1 = a2, and s = s0

1, a1 ̸= a2, and s = s1

0, a1 ̸= a2, and s = s0

0, a1 = a2, and s = s1

(35)

The state does not change until these two players get a positive reward. So the transition probability function
p is

p(s1|s, a1, a2) =


1, a1 = a2, and s = s0

0, a1 ̸= a2, and s = s0

1, a1 = a2, and s = s1

0, a1 ̸= a2, and s = s1

p(s0|s, a1, a2) =


0, a1 = a2, and s = s0

1, a1 ̸= a2, and s = s0

0, a1 = a2, and s = s1

1, a1 ̸= a2, and s = s1

(36)

Possible Nash Equilibrium can be π∗
1 = (π1

1 , π
2
1) or π∗

2 = (π1
2 , π

2
2) where

π1
1(a1|s) =


1, a1 = 1, and s = s0

0, a1 = 0, and s = s0

1, a1 = 1, and s = s1

0, a1 = 0, and s = s1

π2
1(a2|s) =


1, a2 = 1, and s = s0

0, a2 = 0, and s = s0

0, a2 = 1, and s = s1

1, a2 = 0, and s = s1

(37)

π1
2(a1|s) =


0, a1 = 1, and s = s0

1, a1 = 0, and s = s0

0, a1 = 1, and s = s1

1, a1 = 0, and s = s1

π2
2(a2|s) =


0, a2 = 0, and s = s0

1, a2 = 1, and s = s0

1, a2 = 0, and s = s1

0, a2 = 1, and s = s1

(38)

38

Published in Transactions on Machine Learning Research (06/2023)

NE π∗
1 means player 1 always selects action 1, player 2 selects action 1 under state s0 and action 0 under

state s1. NE π∗
2 means player 1 always selects action 0, player 2 selects action 0 under state s0 and action 0

under state s1.

According to the definition of MG-SPA, we add two adversaries for each player to perturb the player’s
observations. And adversaries get negative rewards of players. We let adversaries share a same action space
B1 = B2 = {0, 1}, where 0 means do not disturb, 1 means change the observation to the opposite one.
Therefore, the perturbed function f in this MG-SPA is defined as:

f(s0, b = 0) = s0

f(s1, b = 0) = s1

f(s0, b = 1) = s1

f(s1, b = 1) = s0

(39)

Obviously, f is a bijective function when s is given. And the constraint parameter ϵ = ||S||, where
||S|| := max |s− s′|∀s,s′∈S , i.e. no constraints for adversaries’ power.

A Robust Equilibrium (RE) of this MG-SPA would be d̃∗ = (π̃1
∗, π̃

2
∗, ρ̃

1
∗, ρ̃

2
∗), where

π̃1
∗(a1|s) = 0.5, ∀s ∈ S
π̃2

∗(a2|s) = 0.5, ∀s ∈ S
ρ̃1

∗(b1|s) = 0.5, ∀s ∈ S
ρ̃2

∗(b2|s) = 0.5, ∀s ∈ S

(40)

C.1.2 Training procedure

In Figure 11, we show the total discounted rewards in the function of training episodes. We set the learning
rate as 0.1 and train our RMAQ algorithm for 400 episodes. And each episode contains 25 training steps. We
can see the total discounted rewards converges to 50, i.e. the optimal value in the MG-SPA, after about 280
episodes or 7000 steps.

Figure 11: The total discounted rewards converge to the optimal value after about 280 training episodes.

39

Published in Transactions on Machine Learning Research (06/2023)

C.2 Robust multi-agent actor-critic (RMAAC)

In this section, we first briefly introduce the multi-agent environments we use in our experiments. Then we
provide more experimental results and explanations, such as the testing results under a cleaned environment
(accurate state information can be attained) and a randomly perturbed environment (injecting standard
Gaussian noise in agents’ observations). In the last subsection, we list all hyper-parameters we used in the
experiments, as well as the baseline source code.

C.2.1 Multi-agent environments

Figure 12: Illustrations of the experimental scenarios and some games we consider, including a) Cooperative
communication b) Cooperative navigation c) Predator prey d) Keep away e) Physical deception f) Navigate
communication
Cooperative communication (CC): This is a cooperative game. There are 2 agents and 3 landmarks of
different colors. Each agent wants to get to their target landmark, which is known only by other agents. The
reward is collective. So agents have to learn to communicate the goal of the other agent, and navigate to
their landmark.

Cooperative navigation (CN): This is a cooperative game. There are 3 agents and 3 landmarks. Agents
are rewarded based on how far any agent is from each landmark. Agents are penalized if they collide with
other agents. So, agents have to learn to cover all the landmarks while avoiding collisions.

Physical deception (PD): This is a mixed cooperative and competitive task. There are 2 collaborative
agents, 2 landmarks, and 1 adversary. Both the collaborative agents and the adversary want to reach the
target, but only collaborative agents know the correct target. The collaborative agents should learn a policy
to cover all landmarks so that the adversary does not know which one is the true target.

Keep away (KA): This is a competitive task. There is 1 agent, 1 adversary, and 1 landmark. The agent
knows the position of the target landmark and wants to reach it. The adversary is rewarded if it is close to
the landmark, and if the agent is far from the landmark. The adversary should learn to push the agent away
from the landmark.

Predator prey (PP): This is a mixed game known as predator-prey. Prey agents (green) are faster and
want to avoid being hit by adversaries (red). Predators are slower and want to hit good agents. Obstacles
(large black circles) block the way.

40

Published in Transactions on Machine Learning Research (06/2023)

Navigate communication (NC): This is a cooperative game that is similar to Cooperative communication.
There are 2 agents and 3 landmarks of different colors. An agent is the ‘speaker’ that does not move but
observes the goal of another agent. Another agent is the listener that cannot speak, but must navigate to the
correct landmark.

Predator prey+ (PP+): This is an extension of the Predator prey environment by adding more agents.
There are 2 preys, 6 adversaries, and 4 landmarks. Prey agents are faster and want to avoid being hit by
adversaries. Predators are slower and want to hit good agents. Obstacles block the way.

C.2.2 Experiments hyper-parameters

In Table 4, we show all hyper-parameters we use to train our policies and baselines. We also provide our
source code in the supplementary material. The source code of M3DDPG (Li et al., 2019) and MADDPG
(Lowe et al., 2017) accept the MIT License which allows any person obtaining them to deal in the code
without restriction, including without limitation the rights to use, copy, modify, etc. More information about
this license refers to https://github.com/openai/maddpg and https://github.com/dadadidodi/m3ddpg.

Table 4: Hyper-parameters
Parameter RMAAC M3DDPG MADDPG
optimizer Adam Adam Adam
learning rate 0.01 0.01 0.01
adversarial learning rate 0.005 / /
discount factor 0.95 0.95 0.95
replay buffer size 106 106 106

number of hidden layers 2 2 2
activation function Relu Relu Relu
number of hidden unites per layer 64 64 64
number of samples per minibatch 1024 1024 1024
target network update coefficient τ 0.01 0.01 0.01
iteration steps 20 20 20
constraint parameter ϵ 0.5 / /
episodes in training 10k 10k 10k
time steps in one episode 25 25 25

C.2.3 More testing results

In this subsection, we provide more testing results under a cleaned environment (accurate state information
can be attained) and a randomly disturbed environment (injecting standard Gaussian noise into agents’
observations).

As we have reported the comparison of mean episode testing rewards under a cleaned environment by using 4
different methods in the main manuscript (Figures 6 and 8), we further report the variance of testing results
in the appendix. In Table 5 and 6, we also report the variances of testing rewards in different scenarios under
different environment settings. Our method has the lowest variance in three of the five scenarios. Notice that
RM1 denotes our RMAAC policy trained with the linear noise format f1, RM2 denotes our RMAAC policy
trained with the Gaussian noise format f2, MA denotes MADDPG (https://github.com/openai/maddpg),
M3 denotes M3DDPG (https://github.com/dadadidodi/m3ddpg).

MAPPO is a multi-agent reinforcement learning algorithm that performs well in cooperative multi-agent set-
tings (Yu et al., 2021a). We use MP to denote MAPPO (https://github.com/marlbenchmark/on-policy.).
In Figure 13, we compare its performance with our RMAAC algorithm in two cooperative scenarios of MPE.
The details of scenarios such as Cooperative navigation, Navigate communication can be found in the last
section. We can see that under the optimally perturbed environment, RMAAC outperforms MAPPO in
all scenarios. Additionally, the reason we included MAPPO in the Appendix but not in the main text

41

https://github.com/openai/maddpg
https://github.com/dadadidodi/m3ddpg
https://github.com/openai/maddpg
https://github.com/dadadidodi/m3ddpg
 https://github.com/marlbenchmark/on-policy.

Published in Transactions on Machine Learning Research (06/2023)

is that the current source code provider of MAPPO only provides instructions and codes for using it in
cooperative environments. However, to validate our proposed method in different settings, we carefully
selected experimental environments to include different game types: cooperative, competitive, and mixed.
Due to the lack of MAPPO source codes/implementation in competitive and mixed environments, if we were
to include the experimental results of MAPPO in the main text, it could disrupt the integrity and uniformity
of the experiment section in the main text. Therefore, we included them in the appendix as supplementary
content.

In Figure 14 and Table 7, we compare the mean episode testing rewards and variances under different
environments in the complicated scenario with a large number of agents between different algorithms. We
adopt the Gaussian noise format in training RMAAC polices. We can see our method has the lowest variance
under two of three environments and has the highest rewards under all environments.

Table 5: Variance of testing rewards under cleaned environment
Algorithms RM with f1 RM with f2 M3 MA

Cooperative communication (CC) 0.383 0.376 0.295 0.328
Cooperative navigation (CN) 0.413 0.361 0.416 0.376

Physical deception (PD) 0.175 0.165 0.133 0.143
Keep away (KA) 0.137 0.134 0.17 0.145

Predator prey (PP) 5.139 1.450 4.681 4.725

Table 6: Variance of testing rewards under randomly perturbed environment
Algorithms RM with f1 RM with f2 M3 MA

Cooperative communication (CC) 0.592 0.547 1.187 0.937
Cooperative navigation (CN) 0.336 0.33 0.328 0.321

Physical deception (PD) 0.222 0.292 0.209 0.184
Keep away (KA) 0.155 0.155 0.166 0.161

Predator prey (PP) 4.629 2.752 3.644 2.9

Table 7: Variance of testing rewards under different environments in Predator prey+.
Algorithm RM M3 MA

Optimally Perturbed Env 4.199 4.046 3.924
Randomly Perturbed Env 4.664 5.774 6.191

Cleaned Env 3.928 5.521 6.006

42

Published in Transactions on Machine Learning Research (06/2023)

Figure 13: Comparison of mean episode testing rewards using MAPPO and RMAAC under optimally
perturbed environments. RMAAC outperforms MAPPO in all cooperative scenarios under optimally
perturbed environments.

Figure 14: Comparison of mean episode testing rewards using different algorithms under different environments
in Predator prey+. RMAAC outperforms all MARL baseline algorithms in the complicated multi-agent
scenario.

C.3 Ablation Study for RMAAC

In this subsection, we first investigate the effect of using different values of constraint parameters ϵ in the
implementation of the RMAAC algorithm, then the effect of using different values of variance σ. Finally, we
study the performance of the RMAAC algorithm under other types of attacks.

C.3.1 Training Results Using Linear Noise with Different Constraint Parameters

Training Setup: In this subsection, we train several RMAAC policies using linear noise format as the
state perturbation function, i.e. f1(s, bĩ) = s + bĩ. The constraint parameter ϵ is respectively set as
0.01, 0.05, 0.1, 0.5, 1 and 2, given other hyper-parameters unchanged. Other used hyper-parameters can be
found in Table 4.

Training Results: In Figure 15, 16, and 17, we show the training process in three scenarios: Cooperative
communication (CC), Cooperative navigation (CN), Predator Prey (PP), respectively. The y-axis denotes
the mean episode reward of the agents and the x-axis denotes the training episodes.

From these figures, we can see that, in general, the smaller the used variance, the higher the mean episode
rewards RMAAC can achieve. However, RMAAC has different sensitivities to the value of variance in
different scenarios. When we use ϵ = 2, the RMAAC policies have the lowest mean episode rewards in all

43

Published in Transactions on Machine Learning Research (06/2023)

three scenarios. Nevertheless, when we use the smallest constraint parameter ϵ = 0.01, the trained RMAAC
policies do not achieve the highest mean episode rewards in all three scenarios. In these three scenarios, it
is clear to see the performance of RMAAC using ϵ = 0.5 is better than or similar to the performance of
RMAAC using ϵ = 1, and better than the performance of RMAAC using ϵ = 2, i.e. Performance(ϵ = 0.5)
≥ Performance(ϵ = 1) > Performance(ϵ = 2). The performance of the RMAAC policies is close when the
constraint parameters are less or equal to than 0.1.

C.3.2 Testing Results Using Linear Noise with Different Constraint Parameters

In this subsection, we test well-trained RMAAC policies in perturbed environments where adversaries adopt
linear noise format and different constraint parameters.

Testing Setup: The tested policy πtest is trained with the linear noise format f1(s, bĩ) = s+ bĩ, constraint
parameter is 0.5, where bĩ = ρĩ

test(s|ϵ = 0.5). The policy ρĩ
test is adversary ĩ’s policy which is trained with

πtest in RMAAC, for all ĩ = 1̃, · · · , Ñ . We use ρtest to denote the joint policy of adversaries which is used in
the testing. In summary, we test agents’ joint policy πscenario

test (s̃) when adversaries adopt the joint policy
ρscenario

test (s|ϵ), and ϵ = 0.01, 0.05, 0.1, 0.5, 1, 2, scenario = Cooperative communication (CC), Cooperative
navigation (CN), Predator Prey (PP), respectively. The testing is conducted over 400 episodes, and each
episode has 25 time steps.

Testing Results: In Figures 18, 19 and 20, we compare the performance of RMAAC, M3DDPG, and
MADDPG in scenarios CC, CN, and PP with different values of constraint parameters. MADDPG is a
MARL baseline algorithm. M3DDPG is a robust MARL baseline algorithm. The y-axis denotes the mean
episode reward of the agents.

From these figures, we can see that in all three scenarios, our RMAAC policies outperform the baseline MARL
and robust MARL policies in terms of mean episode testing rewards under the attacks of linear noise format
with different constraint parameters ϵ. Our proposed RMAAC algorithm is robust to the state information
attacks of linear noise format with different constraint parameters.

C.3.3 Training Results Using Gaussian Noise with Different Variance

Training Setup: In this subsection, we train several RMAAC policies using Gaussian noise format as the state
perturbation function, i.e. f2(s, bĩ) = s+N (bĩ, σ). The variance σ is respectively set as 0.001, 0.05, 0.1, 0.5, 1, 2
and 3, given other hyper-parameters unchanged. Other used hyper-parameters can be found in Table 4.

Training Results: In Figure 21, 22 and 23, we show the training process of RMAAC in three scenarios:
Cooperative communication (CC), Cooperative navigation (CN), Predator Prey (PP). The y-axis denotes the
mean episode rewards of the agents and the x-axis denotes the training episodes.

From the figures, we can see that, in general, the smaller the value of variance used, the higher the mean
episode rewards RMAAC can achieve. However, RMAAC has different sensitivities to the value of variance
in different scenarios. When we use σ = 3, the RMAAC policies have the lowest mean episode rewards in all
three scenarios. Nevertheless, when we use the smallest magnitude 0.001, the trained RMAAC policies do not
always achieve the highest mean episode rewards. In these three scenarios, it is clear to see the performance
of RMAAC using σ = 1 is better than or close to that of using σ = 2, and better than that of using σ = 3,
i.e. Performance(σ = 1) ≥ Performance(σ = 2) > Performance(σ = 3). The performance of the RMAAC
policies is close when the constraint parameters are less than or equal to 0.5.

C.3.4 Testing Results Using Gaussian Noise with Different Variance

In this subsection, we test well-trained RMAAC policies in perturbed environments where adversaries adopt
Gaussian noise format and different variances.

Testing Setup: The tested policy πtest is trained with Gaussian noise format f2(s, bĩ) = s+N (bĩ, σ = 1),
constraint parameter is 0.5, where bĩ = ρĩ

test(s|ϵ = 0.5). ρĩ is adversary i’s policy which is trained with
πtest in RMAAC, for all i = 1, · · · , N . We use ρtest to denote the joint policy of adversaries. In summary,
we test agents’ joint policy πscenario

test (s̃) when adversaries adopt the joint policy ρscenario
test (s|ϵ = 0.5) and

44

Published in Transactions on Machine Learning Research (06/2023)

Figure 15: We train RMAAC policies using different values of constraint parameters in the scenario Cooperative
Communication. In general, the smaller the constraint parameter is used, the higher the mean episode
rewards RMAAC can achieve.

Figure 16: We train RMAAC policies using different values of constraint parameters in the scenario Cooperative
Navigation. In general, the smaller the constraint parameter is used, the higher the mean episode rewards
RMAAC can achieve.

Figure 17: We train RMAAC policies using different values of constraint parameters in the scenario Predator-
Prey. In general, the smaller the constraint parameter is used, the higher the mean episode rewards RMAAC
can achieve.

Gaussian noise format f2(s, bĩ) = s+N (bĩ, σ), where σ = 0.001, 0.05, 0.1, 0.5, 1, 2, 3, scenario = Cooperative
communication (CC), Cooperative navigation (CN), Predator Prey (PP). The testing is conducted over 400
episodes, and each episode has 25 time steps.

45

Published in Transactions on Machine Learning Research (06/2023)

Testing Results: In Figures 24, 25 and 26, we respectively compare the performance of RMAAC, M3DDPG,
and MADDPG in scenarios Cooperative communication, Cooperative navigation and Predator Prey with
different values of constraint parameters. MADDPG is a MARL baseline algorithm. M3DDPG is a robust
MARL baseline algorithm. The y-axis denotes the mean episode reward of the agents.

From these figures, we can see that in all three scenarios with all different values of constraint parameters,
our RMAAC policies outperform the MARL and robust MARL baseline policies in terms of mean episode
rewards under the attacks of Gaussian noise format with different variance. Our proposed RMAAC algorithm
is robust to the state information attacks of Gaussian noise format with different values of variance.

C.3.5 Testing Results under Different State Perturbation Functions

In this subsection, we test the well-trained RMAAC policies in perturbed environments where adversaries
adopt different noise formats and policies.

Testing Setup: The tested agents’ joint policy πtest is trained with Gaussian noise format f2(s, bĩ) =
s+Gaussian(bĩ, σ = 1), constraint parameter is 0.5, where bĩ = ρĩ

test(s|ϵ = 0.5). ρĩ
test is adversary ĩ’s policy

which is trained with πtest in RMAAC, for all ĩ = 1̃, · · · , Ñ . We use ρtest to denote the joint policy of
adversaries. In a summary, we test agents’ joint policy πscenario

test (s̃) when adversaries adopt the joint policy
ρscenario

test (s|ϵ = 0.5), in three scenarios scenario = Cooperative communication (CC), Cooperative navigation
(CN), Predator Prey (PP), under non-optimal Gaussian format f3, Uniform noise format f4, fixed Gaussian
noise format f5 and Laplace noise format f6, respectively. These noise formats are defined in the following:

f3(s, bĩ) = s+Gaussian(bĩ, 1) where bĩ = ρĩ
non−optimal(s|ϵ),

f4(s, bĩ) = s+ Uniform(−ϵ,+ϵ),

f5(s, bĩ) = s+Gaussian(0, 1),

f6(s, bĩ) = s+ Laplace(bĩ, 1) where bĩ = ρĩ
test(s|ϵ), (41)

where ρĩ
non−optimal is a non-optimal policy of adversary ĩ. ρĩ

non−optimal is randomly chosen from the training
process. As we can see that f3 and f6 are independent of the optimal joint policy of adversaries, but f4 and
f6 are not. The testing is conducted over 400 episodes, and each episode has 25 time steps.

Testing Results: In Figures 27, 28, and 29, we compare the performance of RMAAC, M3DDPG and
MADDPG in scenarios Cooperative communication, Cooperative navigation and Predator Prey under 4
different noise formats, respectively. MADDPG is a MARL baseline algorithm. M3DDPG is a robust MARL
baseline algorithm. The y-axis denotes the mean episode reward of the agents.

As we can see from these figures, most of the time, our RMAAC policy outperforms the MARL (MADDPG)
and robust MARL (M3DDPG) baseline policies. In Cooperative communication and Predator Prey, under
all 4 different noise formats, RMAAC policies achieve the highest mean episode rewards. In Cooperative
navigation, RMAAC policies have the highest mean episode rewards when the non-optimal Gaussian noise
format and Laplace noise format are used. The only exception happens in Cooperative navigation when the
Uniform noise format and fixed Gaussian noise format are used. However, we can find that the performance
of RMAAC policies is close to that of the baseline policies in terms of mean episode testing rewards. In
general, our RMAAC algorithm is robust to different types of state information attacks.

46

Published in Transactions on Machine Learning Research (06/2023)

Figure 18: We test the performance of RMAAC(RM), MADDPG(MA), and M3DDPG(M3) policies under the
attack of linear noise format when using different values of constraint parameters in the scenario Cooperative
Communication. RM denotes our robust MARL algorithm, i.e. RMAAC. MA denotes MADDPG, a MARL
baseline algorithm. M3 denotes M3DDPG, a robust MARL baseline algorithm. Our RMAAC algorithm
outperforms baseline algorithms in terms of mean episode testing rewards under all situations using different
values of constraint parameters.

Figure 19: We test the performance of RMAAC(RM), MADDPG(MA), and M3DDPG(M3) policies under
the attack of linear noise format when using different values of constraint parameters in the scenario
Cooperative Navigation. RM denotes our robust MARL algorithm, i.e. RMAAC. MA denotes MADDPG,
a MARL baseline algorithm. M3 denotes M3DDPG, a robust MARL baseline algorithm. Our RMAAC
algorithm outperforms baseline algorithms in terms of mean episode testing rewards under all situations
using different values of constraint parameters.

Figure 20: We test the performance of RMAAC(RM), MADDPG(MA), and M3DDPG(M3) policies under the
attack of linear noise format when using different values of constraint parameters in the scenario Predator-Prey.
RM denotes our robust MARL algorithm, i.e. RMAAC. MA denotes MADDPG, a MARL baseline algorithm.
M3 denotes M3DDPG, a robust MARL baseline algorithm. Our RMAAC algorithm outperforms baseline
algorithms in terms of mean episode testing rewards under all situations using different values of constraint
parameters.

47

Published in Transactions on Machine Learning Research (06/2023)

Figure 21: We train RMAAC policies using different values of variance in the scenario Cooperative Commu-
nication. In general, the smaller the variance is used, the higher the mean episode rewards RMAAC can
achieve.

Figure 22: We train RMAAC policies using different values of variance in the scenario Cooperative Navigation.
In general, the smaller the variance is used, the higher the mean episode rewards RMAAC can achieve.

Figure 23: We train RMAAC policies using different values of variance in the scenario Predator-Prey. In
general, the smaller the variance is used, the higher the mean episode rewards RMAAC can achieve.

48

Published in Transactions on Machine Learning Research (06/2023)

Figure 24: We test the performance of RMAAC(RM), MADDPG(MA), and M3DDPG(M3) policies under
the attacks of Gaussian noise format with different variances in the scenario Cooperative Communication.
RM denotes our robust MARL algorithm, i.e. RMAAC. MA denotes MADDPG, a MARL baseline algorithm.
M3 denotes M3DDPG, a robust MARL baseline algorithm. Our RMAAC algorithm outperforms baseline
algorithms in terms of mean episode testing rewards under all Gaussian noise formats with different variances.

Figure 25: We test the performance of RMAAC(RM), MADDPG(MA), and M3DDPG(M3) policies under
the attacks of Gaussian noise format with different variances in the scenario Cooperative Navigation. RM
denotes our robust MARL algorithm, i.e. RMAAC. MA denotes MADDPG, a MARL baseline algorithm.
M3 denotes M3DDPG, a robust MARL baseline algorithm. Our RMAAC algorithm outperforms baseline
algorithms in terms of mean episode testing rewards under all Gaussian noise formats with different variances.

Figure 26: We test the performance of RMAAC(RM), MADDPG(MA), and M3DDPG(M3) policies under
the attacks of Gaussian noise format with different variances in the scenario Predator-Prey. RM denotes our
robust MARL algorithm, i.e. RMAAC. MA denotes MADDPG, a MARL baseline algorithm. M3 denotes
M3DDPG, a robust MARL baseline algorithm. Our RMAAC algorithm outperforms baseline algorithms in
terms of mean episode testing rewards under all Gaussian noise formats with different variances.

49

Published in Transactions on Machine Learning Research (06/2023)

Figure 27: We test the performance of RMAAC(RM), MADDPG(MA), and M3DDPG(M3) policies under
the attacks of different noise formats in the scenario Cooperative Communication. RM denotes our robust
MARL algorithm, i.e. RMAAC. MA denotes MADDPG, a MARL baseline algorithm. M3 denotes M3DDPG,
a robust MARL baseline algorithm. Our RMAAC algorithm outperforms baseline algorithms in terms of
mean episode testing rewards under all kinds of attacks.

Figure 28: We test the performance of RMAAC policies under the attacks of different noise formats in the
scenario Cooperative Navigation. RM denotes our robust MARL algorithm, i.e. RMAAC. MA denotes
MADDPG, a MARL baseline algorithm. M3 denotes M3DDPG, a robust MARL baseline algorithm. Our
RMAAC algorithm either outperforms or is close to baseline algorithms in terms of mean episode testing
rewards under all kinds of attacks.

Figure 29: We test the performance of RMAAC policies under the attacks of different noise formats in the
scenario Predator-Prey. RM denotes our robust MARL algorithm, i.e. RMAAC. MA denotes MADDPG,
a MARL baseline algorithm. M3 denotes M3DDPG, a robust MARL baseline algorithm. Our RMAAC
algorithm outperforms baseline algorithms in terms of mean episode testing rewards under all kinds of attacks.

50

	Introduction
	Related work
	Preliminary
	Methodology
	Markov Game with State Perturbation Adversaries
	Theoretical Analysis of MG-SPA
	History-dependent-policy-based Robust Equilibrium

	Algorithm
	Robust Multi-Agent Q-learning (RMAQ) Algorithm
	Robust Multi-Agent Actor-Critic (RMAAC) Algorithm

	Experiment
	Robust Multi-Agent Q-learning (RMAQ)
	Robust Multi-Agent Actor-Critic (RMAAC)

	Discussion
	Conclusion
	Theory
	Extensive-form game
	Existence of NE for an EFG

	Proof of two propositions
	Proof of Theorem 4.7
	(1) Solution of Bellman equation
	(2) Existence of optimal value function
	(3) robust equilibrium and optimal value function
	(4) Existence of robust equilibrium

	Proof of Corollary 4.9.1

	Algorithm
	Robust multi-agent Q-learning (RMAQ)
	Robust multi-agent actor-critic (RMAAC)
	Proof of policy gradients
	Policy gradients for deterministic polices
	Pseudo code of RMAAC

	Experiments
	Robust multi-agent Q-learning (RMAQ)
	Two-player game
	Training procedure

	Robust multi-agent actor-critic (RMAAC)
	Multi-agent environments
	Experiments hyper-parameters
	More testing results

	Ablation Study for RMAAC
	Training Results Using Linear Noise with Different Constraint Parameters
	Testing Results Using Linear Noise with Different Constraint Parameters
	Training Results Using Gaussian Noise with Different Variance
	Testing Results Using Gaussian Noise with Different Variance
	Testing Results under Different State Perturbation Functions

