Under review as a conference paper at ICLR 2026

ENTROPY REGULARIZING ACTIVATION: BOOSTING
CONTINUOUS CONTROL, LARGE LANGUAGE MODELS,
AND IMAGE CLASSIFICATION WITH ACTIVATION AS
ENTROPY CONSTRAINTS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose ERA, a new paradigm for entropy-constrained policy via output
activation. It guarantees minimum sampling entropy by transforming the outputs
of the last layer. Our approach demonstrates broad effectiveness across different
domains: 1) for large language models (LLMs), boosting the AIME 2025 score
for Qwen2.5-Math-7B by 37.4%; 2) for continuous control reinforcement learning
agents, improving performance by more than 30% over strong baselines such as
SAC on the challenging HumanoidBench; 3) for image classification, enhancing
ImageNet top-1 accuracy by 0.69% for ResNet-50. These gains are achieved with
a computational overhead of less than 7%. Our work validates output activation as
a powerful tool for entropy control, opening a new direction for designing simpler
and more robust algorithms.

1 INTRODUCTION

Decision-making problems represent a broad class of challenges, from robotic control to Large
Language Models alignment (Sutton et al., 1998; Ouyang et al., 2022; Kober et al., 2013). In these
settings, encouraging exploration and maintaining policy stochasticity, often quantified by entropy,
is critical (Ziebart et al., 2008; Schulman et al., 2017b). In reinforcement learning, the maximum
entropy paradigm, exemplified by algorithms like Soft Actor-Critic (SAC) (Haarnoja et al., 2018),
has become a prevailing approach in control tasks. However, these methods, which add an entropy
bonus directly to the training objective, inevitably alter the optimization landscape and can interfere
with the optimization of the primary objective.

The challenge becomes even more pronounced in LLM alignment. Policy gradient methods (Sutton
et al,, 1999) such as GRPO (Shao et al., 2024) frequently suffer from entropy collapse (Cui et al.,
2025b), leading to reduced diversity and performance degradation. Directly incorporating entropy
bonuses has been shown to be unstable or ineffective in this setting (Cui et al., 2025b). Moreover,
prior works have explored methods that avoid direct modification of the loss function, including
clip-higher (Yu et al., 2025) and training exclusively on the high-entropy tokens (Wang et al., 2025).
While these methods provide useful insights, they remain ad hoc, lack a principled mechanism for
entropy regulation, and are narrowly tailored to the LLM domain, limiting their applicability to
broader settings such as continuous control and computer vision tasks.

These observations highlight a fundamental gap: existing approaches either distort the primary
optimization objective, as in RL algorithms with entropy bonus terms, or provide heuristic, domain-
specific fixes with no theoretical guarantees, as in LLM alignment. Therefore, there is a pressing need
for a new entropy-constraining paradigm that is universally applicable, non-invasive to the primary
objective, and theoretically grounded.

In this work, we introduce Entropy Regularizing Activation (ERA), a novel paradigm for entropy-
constrained training. The key insight of ERA lies in realizing an entropy-constrained policy via
output activation. Specifically, we impose the constraint through a class of well-designed activation
functions applied to the model’s final output. This approach completely decouples the optimization
of the primary objective from the entropy constraint, allowing the loss function to focus solely on

Under review as a conference paper at ICLR 2026

Base EMKLcov B Clip cov GRPO EEERA Original MM ERA-Augmented M Base FWERA [Base w/Aug EMERA w/Aug
80.0 10 78 93.93 400
728 0.88
70.0 25 084 081 052 77.30 9382
65.1
625 0.8
600 93.75
522 0.63
50.0 061 % 057 0.56
93.50
40.0 356 130 344 37.5
30.0 04
20.0 16.9 93.25
13.1 137 53 02
e F
0.0— 00— 74 93.00
AIME24 AIME25 AMC SAC PPO TDMPC2 OBAC ImageNet CIFAR10
(@ (b) ©

Figure 1: ERA Boosts Large Language Models, Continuous Control and Image Classification.
(a) Large Language Models: ERA consistently enhances the performance of Qwen-2.5-Math-7B on
AIME’24,AIME’25 and AMC datasets. (b) Continuous Control: ERA significantly improves multi-
ple popular RL algorithms, including SAC, PPO, TD-MPC2 and OBAC. (c) Image Classification:
ERA consistently boosts the performance of ResNet-50 on ImageNet and CIFAR-10 datasets.

its original goal (e.g., maximizing rewards). We show that ERA not only provides provable entropy
guarantees in theory, but in practice, it functions as a non-invasive module that can be seamlessly
integrated with existing algorithms.

The generality and effectiveness of this paradigm are validated across diverse domains, including
continuous control, image classification, and large language models. For example, on the DeepMind
Control Suite (Tassa et al., 2018), ERA improves the performance of SAC on high-dimensional tasks
like Humanoid and Dog by over 25%. Its versatility is also demonstrated in image classification,
a domain where preventing model overconfidence via regularization is critical. Our approach
complements established methods, boosting performance on top of strong data augmentation and
label smoothing (Szegedy et al., 2016). In LLM RL, ERA enables a GRPO-trained Qwen-2.5-Math-
7B (Yang et al., 2024b) to achieve a remarkable improvement of 9.0% and 37.4% on the AIME-24
and AIME-25 benchmarks, respectively.

Our main contributions are summarized as follows:

¢ We introduce ERA, a novel entropy constraint paradigm based on activation functions, and
establish a theoretical framework with provable entropy guarantees.

* We design effective instantiations of ERA for both continuous (control) and discrete (image
classification) domains. For large language models, we propose a specialized, adaptive variant
of ERA that addresses the unique challenges within this domain.

* Our experiments of these instantiations demonstrate significant performance improvements
over strong baselines across domains, and reveal their properties such as parameter sensitivity.

2 RELATED WORK

Policy learning in control. Entropy maximization is a crucial aspect of RL, significantly enhancing
exploration and robustness (Ziebart, 2010; Haarnoja et al., 2017). Prior work has explored various
methods to incorporate entropy maximization into RL algorithms (O’ Donoghue et al., 2016; Nachum
et al., 2017; Haarnoja et al., 2017). PPO (Schulman et al., 2017a) introduced an entropy bonus in its
clipped surrogate objective. SAC (Haarnoja et al., 2018) later employed a maximum-entropy objective
with a dynamically adjusted temperature parameter, but this can lead to suboptimal performance.
More recent approaches have introduced alternative methodologies for implementing maximum
entropy RL (Chao et al., 2024; Choe & Kim, 2024), while others have shifted the optimization focus
directly to state entropy (Zhong et al., 2024). A different line of work avoids modifying the objective
function. Akrour et al. (2019); Otto et al. (2021) pioneered this direction by projecting the policy
parameters to a constrained subspace. However, their instantiation relies on isotropic transformations
(e.g., uniform mixing), which impose uniform regularization across all dimensions—a strategy that
scales poorly to high-dimensional action spaces. In contrast, our work intervenes at the output layer
with a non-linear activation that provides dimension-specific gradient guidance, enabling the network
to learn structured exploration strategies rather than being forced into uniform stochasticity.

RL for LLMs. Recent breakthroughs in LLM reasoning, such as OpenAl-ol (Jaech et al., 2024),
DeepSeek-R1 (Guo et al., 2025), and Kimi-k1.5 (Team et al., 2025), have redirected attention from

Under review as a conference paper at ICLR 2026

chain-of-thought prompting (Wei et al., 2022) and supervised fine-tuning (Li et al., 2024a; Yeo et al.,
2025) toward RL. Within this paradigm, policy entropy collapse emerges as a fundamental obstacle:
the decay of exploratory behavior often leads to performance plateaus. A prevalent approach is
reward shaping (Cheng et al., 2025), which augments the reward or advantage with an entropy bonus
to maintain a viable exploration—exploitation trade-off. Complementary strategies, including loss
re-weighting (Wang et al., 2025; Cui et al., 2025b) and clip-higher regularization (Yu et al., 2025),
mitigate the risk of entropy collapse. Unlike these approaches, our method is a general and concise
paradigm, universally applicable across domains and endowed with rigorous theoretical guarantees.

3 PRELIMINARIES

Markov Decision Process. We consider a Markov Decision Process (MDP) (Bellman, 1957) defined
by the tuple (S, A, P, R), where S, A are the state and action spaces, P is the transition dynamics,
and R is the reward function. A policy mp(a¢|s;) parameterized by 6 aims to maximize the expected

discounted return:
T
J(m9) = Errory [Z H<>] : (M

t=0
where v € [0, 1) is the discount factor, ¢ is the timestep, s; € S and a; € A are the state and action at
timestep ¢, and 7 = (sg, ag, $1, a1, . ..) represents a full trajectory sampled by following the policy
9.

Policy optimization. Policy gradient (PG) methods optimize J(7p) via gradient ascent. In the context
of large language model (LLM) alignment, this MDP formalism is adapted: the state s, represents
the initial prompt = combined with the sequence of tokens generated so far (y-;), and the action a,
is the next token y; sampled from the policy 7y (y:|s¢). The full trajectory 7 thus corresponds to the
complete generated response, denoted as y = (y1, . . ., yr). The reward is typically sparse, with a
single score 7(y) (from a reward model) assigned to the entire sequence y at the final timestep.

Proximal Policy Optimization (PPO) (Schulman et al., 2017b) is commonly used for this optimization.
The GRPO variant estimates the advantage A(y) for a single, complete response y. This advantage is
normalized using a set of K responses, y''% = {y! ..., y%}, sampled from the policy for the same
initial prompt:

r(y) — mean(r(y"))
Aly) = . 2
W) = a0y) @
The policy is then updated using the clipped surrogate objective, which operates at the token level:
L (9) = E, [min (r,(0) Ay, clip(r(0),1 — €, 1 4+ €) Ay)], 3)

where r:(0) = %

level advantage A(y) from Eq. 2 propagated back to timestep ¢.

is the probability ratio, and the per-timestep advantage A; is the trajectory-

Policy entropy. Policy entropy, (7 (+|s)), measures the policy’s stochasticity. For discrete action
spaces, the token-level entropy is given by Eq. 4. For continuous policies, there are several common
ways to ensure actions remain within a bounded space. A popular method is to use a squashed
Gaussian policy, which outputs a bounded action ¢ = tanh(u) by sampling « from a Gaussian
distribution 7y (+|s) = N'(ue(s), Xg(s)) parameterized by the policy network. The entropy of this
policy is given by Eq. 5. Alternatively, another common approach is to directly sample actions from
a Truncated Gaussian distribution 74 (+|s) = TN(ug(s), Xe(s), —1, 1) over the bounded hypercube
[~1,1]. Assuming the dimensions are independent, its entropy is given by Eq. 6.

lyl

> logmo(yely<i,z)| | “

H(We) = _EzNPmyNﬂ'G(Z) E
t=1

i=1

D
H(mo) = Eampr unN (o (s), S0 (5) [— log N (uluo(s), So(s)) + > log(1 — tanh(ui)Q)l)

D
=R lz (10800521 (5)V2r) - ﬂi<s>¢<@-<s>2>Zf(?)i<s>¢<ai<s>>>] ©

Under review as a conference paper at ICLR 2026

where for the truncated Gaussian entropy in Eq. 6, ¢ and ® are the PDF and CDF of the standard
normal distribution, respectively. We define the standardized bounds «;(s) = (—1— pg,i(s))/00,i(s),
Bi(s) = (1 — po,i(s))/0s,i(s), and the normalization constant Z;(s) = ®(5;(s)) — ®(ci(s)).

Maximum entropy reinforcement learning. Building upon policy entropy, the maximum entropy
RL framework aims to maximize the standard reward objective subject to a minimum entropy
constraint Hg:

max J(mg) st Egop,, [H(ma(:]s))] > Ho. 7

Practical algorithms like Soft Actor-Critic (SAC) (Haarnoja et al., 2018) solve the Lagrangian dual of
this problem. SAC is an off-policy actor-critic algorithm that updates a soft Q-function () and a
policy mg. The Q-function is updated by minimizing the soft Bellman residual Jg(¢):

1
JQ(¢) = E(st,at,st+1)~'D § (Q¢(Sta at) - y>2 (8)

Y= R(st,at) +VEa, g (fsigr) [Qo (St41, ar11) — alog me(ary1]sit1)] ©)

with the target y computed using a target Q-network Q4. The target network parameters ¢’ are
updated via an exponential moving average (EMA): ¢' + 7¢ + (1 — 7)¢’.

Jr(0) = Esynp,asmmg [Qo(st, ar) — alogmo(aylsy)] . (10)
The policy is then updated by maximizing the objective in Eq. 10.

4 THE ENTROPY REGULARIZING ACTIVATION

4.1 THE CORE IDEA: ENTROPY-CONSTRAINED POLICY VIA OUTPUT ACTIVATION

The core of Entropy Regularizing Activation is to enforce maximum entropy reinforcement learning
on the policy, not through a loss penalty, but via integrating the constraint into the network’s
architecture via a special activation function at the output layer.

Let a parameterized policy fy(s) produce distribution parameters z = fy(s), where z belongs to
a parameter space Z. The policy corresponding to these parameters is 7, (-|s). We introduce an
activation function g : £ — Z, which transforms the initial parameters z to a new set z/ = g(z). The
final policy, which we denote as 7y, is thus given by 7y (-|s) = my(,(s))(|s). The function g(.) is
designed to ensure that the policy 7y satisfies a constraint on its expected entropy, for a given target
entropy Ho:

Esr\«p,\. [H-rrg('\s)] > HO

This formulation enables the policy to satisfy the expected entropy condition while leaving the training
objective for 6 free of an explicit entropy term, as shown in Eq. 7. This architectural perspective
unifies prior projection methods: for instance, the method in Akrour et al. (2019) can be viewed as
a specific, linear instantiation of ¢g(-). ERA generalizes this to a class of non-linear activations that
strictly satisfy the bound while modulating gradients in a dimension-aware manner, avoiding the
suboptimal uniform regularization of prior linear methods.

4.2 INSTANTIATIONS FOR CONTINUOUS AND DISCRETE SPACES

To ground the general framework presented in section 4.1, we now instantiate the entropy regularizing
activation g(.) for two canonical policy classes: policies based on a bounded Gaussian distribution,
such as the Tanh-squashed Gaussian (Haarnoja et al., 2018) or the clipped Gaussian (Fujimoto et al.,
2018), commonly used in continuous control; and the softmax policy prevalent in discrete spaces.

4.2.1 CONTINUOUS CONTROL WITH BOUNDED GAUSSIAN POLICIES

In continuous control, policies often sample actions from a Gaussian distribution and then apply a
bounding function (e.g., a tanh squash or clipping) to ensure outputs lie within a valid range. This
bounding operation complicates direct entropy maximization, as it introduces a state-dependent bias
term. Prior methods typically address this by adding an entropy bonus to the learning objective. Our

Under review as a conference paper at ICLR 2026

insight is that the entropy of the final bounded policy, H -, can be seen as the entropy of the original
unbounded Gaussian, HGaussian, MiNUS a non-negative bias term introduced by the bounding operation,
i.e., Hx = HGaussian — E[bias]. Consequently, a minimum entropy constraint on the final policy
can be satisfied by constraining the underlying Gaussian’s entropy to a corresponding, higher value.
This is achieved by adjusting the Gaussian’s standard deviation, . The entropy of a D-dimensional
Gaussian with a diagonal covariance matrix is:

D
1
HGaussian(s) = 5 E log(27reai(s)2) (11)
i=1

To maintain training stability, the standard deviation must also be kept within a predefined range
[Tmins Tmax)- Our activation function g(.) simultaneously satisfies both constraints. Given network
outputs (before tanh squash or truncation) for the mean p and a pre-activation standard deviation &,
the function g(u, &) produces the final parameters (u’, o) where:

i
Wo=p, o =exp [max <10g Omax + (Hy — Dlog vV2me — D log O’max)%, log Jmin>]
j=1¢"
(12)
Here, |, is the target entropy for the final policy Hg plus a compensation term 6 = —E[bias| to
account for the bounding bias. We use a parameter § to estimate J. In practice, § can either be set a
constant or automatically tuned by learning with the loss in Eq. 13.

L(8) = Eyup |0(H[r(-]5)] — Ho) (13)
We refer the reader to Appendix A.1 for implementation details and Appendix B.1 for a proof of the

entropy bound.

By satisfying the entropy constraint architecturally, our method obviates the need for an explicit
entropy term in the objective function. Hence, target of the critic and the actor loss of SAC in Eq. 9
and Eq. 10 can be simplified to the form in Eq. 14 and Eq 15

Y= R(st;a1) + VEa,, ~omo(cJsesn) [Qdﬂ(stﬂa air1)—alo 711 3t+1)] (14)
Jﬂ'(a) - Esth,atwﬂ'g [Qd)(st7 at)_a t|St (15)

4.2.2 DISCRETE CLASSIFICATION WITH SOFTMAX POLICIES

In discrete classification, regularizing the predictive entropy is crucial for preventing the overconfi-
dence that leads to overfitting. ERA provides architectural regularization by enforcing a minimum
entropy level, analogous to how techniques like label smoothing improve generalization by smooth-
ing the output distribution. For a softmax policy, we enforce this constraint by transforming the
pre-activation logits z into 2’ such that the resulting policy’s entropy is at least Hg:

_ log 7 log ™ 1 e
I __ 1 _ e —
2 =h lmax (. + (CHO n—)] (1 Zp:l eZJ') 70>] (16)

J

Here, h~' denotes the inverse of —ze® on (—oc, —1], approximated by h~'(z) = -1

2(—1—1In(x)) + 2Inz. We also define Cy, = exp(Ho — 1), where 7 > e is a fixed hy-
perparameter (e.g., 7 = 4). A formal proof is provided in Appendix B.2.

In contrast to label smoothing, which applies a fixed and uniform regularization, ERA offers greater
flexibility. It allows the model to learn a structured, input-dependent uncertainty distribution, tailoring
the regularization to each sample and thus offering greater expressive capacity and potential for
improved performance.

4.3 INSTANTIATIONS FOR RL IN LARGE LANGUAGE MODELS

In reinforcement learning for LLMs, each token is treated as a discrete action, with the policy
defined by a canonical softmax distribution. Prior approaches to addressing entropy collapse in

Under review as a conference paper at ICLR 2026

HumanoidBench(6 Tasks) DMC Dog&Humanoid(6 Tasks)

—— SAC = TD-MPC2
= SAC-ERA = TD-MPC2-ERA

HumanoidBench(8 Tasks)

FastTD3
FastSAC-ERA

Mujoco Gym(4 Tasks)
— PPO
= PPO-ERA

1.0

0.5 0.5 0.5 0.5

0.0 0.0 00 0.0
0 1.5M 3.0M 0 500.0K 1LOM 0 50.0K 1000K 0 1.5M 3.0M
steps steps steps steps

Figure 2: Main Results of ERA in Continuous Control. Aggregate normalized performance
on HumanoidBench (6 tasks, with SAC), DMC (Humanoid & Dog) (6 tasks, with TD-MPC2),
HumanoidBench (8 tasks, with FastSAC) and Mujoco Gym (4 tasks, with PPO). ERA consistently
accelerates learning and achieves superior asymptotic performance.

LLMs—such as the traditional entropy bonus, clip-higher , KL.-Cov, and Clip-Cov —do not provide
a provable entropy lower bound, and are incompatible with the on-policy setting, as they often
need the importance sampling ratio or the KL loss term that arises only in off-policy training. In
contrast, our method introduces ERA, a simple and non-invasive activation function that offers a
theoretical guarantee of a minimum entropy level, effectively resolving entropy collapse in on-policy
reinforcement learning.

In contrast to standard RL settings, the action space is extremely large. In the previous ERA
instantiation, each token has a lower entropy bound. However, due to the intrinsic structure of
natural language, most tokens are nearly deterministic; therefore, directly enforcing high entropy
across all tokens is impractical: it will lead to unintended tokens and can corrupt the entire response.
Furthermore, modifying the internal structure of the model also introduces instability in different
training environments, leading to unpredictable behavior.

To address these challenges, we propose a new instantiation of ERA that is applied affer the sampling
process. Specifically, responses are first generated using the original model output z, and the
advantages are computed following the GRPO rule. Then, during model updates, the probabilities of
the sampled tokens are reinterpreted as z’, obtained by applying our entropy-regularized activation.
This design leaves the sampling policy unchanged while still ensuring effective entropy regularization.

Formally, when updating model parameters, we apply an activation layer to the logits z to obtain a
transformed set 2/, defined as:

kz Hresp < Wiow, At > Oa
2 =4z (Wlow < Hresp < Whigh A < 0) or Ay >0, (17
%Z Hresp > Whigh A >0,

where k > 1, and wioy, Whign are algorithm-specific constants. Here, A; denotes the advantage of
the token, and H..p, is the average entropy of the top 20% of tokens with the highest entropy in the
response. To balance the gradient between modified tokens and unmodified tokens (details are shown
in Appendix B.3), we add another scaling factor on the advantages of modified tokens:

%At Hresp < Wiow, At >0,
A; = At (wlow < Hresp < Whigh At < 0) or At > 0, (18)
kA, Hresp > Whigh; Ay >0,

The on-policy GRPO objective becomes:

J(G) = Et[EatNﬂe('|St) 10g7|'/9((1t‘8t)A;] (19)

where 7y is the original policy from z (representing that the inference still follows the original policy),
and 7y is the ERA-adjusted policy from 2’ (representing that the model update relies on the new
policy). Intuitively, this activation layer adjusts all positively advantaged responses: when entropy is
too low, it sharpens the probability distribution; when entropy is too high, it flattens it. Unlike our
instantiation for control tasks, increasing policy entropy here requires sharpening the distribution.
The rationale is that sampling has already occurred, and by treating the samples as if they were drawn
from a sharpened policy, the model perceives itself as overexploiting, thus encouraging additional

Under review as a conference paper at ICLR 2026

exploration. The choice of the top 20% tokens is based on the fact that, in natural language, these
tokens are considered forking tokens, whose entropy is the target of regularization, and the remaining
tokens are allowed to have almost zero entropy (Wang et al., 2025).

We show that, under reasonable assumptions, this ERA instantiation ensures that the policy entropy
remains above a fixed constant Hy. We refer the reader to Appendix B.3 for a formal proof.

5 RESULTS AND ANALYSIS

5.1 EXPERIMENTS ON CONTINUOUS CONTROL

We conduct extensive experiments to validate the effectiveness of ERA in continuous control tasks.
We demonstrate the broad applicability and performance gains by integrating ERA into five distinct
algorithms—SAC, OBAC (Luo et al., 2024), TD-MPC2, PPO, and FastSAC (Seo et al., 2025). The
evaluation is performed on a wide range of challenging benchmarks, including the DeepMind Control
Suite (Humanoid & Dog), HumanoidBench (Sferrazza et al., 2024), and MuJoCo Gym (Todorov
etal., 2012). Implementation details, environment specifics, and hyperparameter settings are available
in Appendix A.1. Comprehensive results for all tasks can be found in the Appendix C.

Main results. We present our main results in continuous control in Figure 2. Integrating ERA
consistently yields significant improvements in both sample efficiency and final performance across
diverse algorithms and benchmarks.

ERA consistently improves performance across various entropy targets. We evaluate the perfor-
mance of SAC and SAC-ERA under varying entropy targets. The results in Figure 3a, tested on four
DMC tasks (dog-run, dog-trot, humanoid-run, humanoid-walk) with 5 seeds on each environment,
show that SAC-ERA consistently outperforms original SAC across the entire tested spectrum of
entropy values. By bypassing the entropy constraint within the learning objective, ERA allows the
policy to focus more directly on reward maximization. While simply removing the entropy term from
SAC can also avoid this constraint, its performance is inferior to the ERA-enhanced version due to
insufficient exploration. This consistent outperformance suggests that ERA can achieve strong results
without precise tuning of the entropy hyperparameter, offering a significant practical advantage.

5.2 EXPERIMENTS ON IMAGE CLASSIFICATION

Table 1: Top-1 and Top-5 accuracy (%) on ImageNet and CIFAR-10. We compare ERA against the
original ResNet-50 baseline. A denotes the absolute improvement of ERA. All models are trained
for 200 epochs.

Dataset Method Without Data Augmentation \ With Data Augmentation
Top-1 Acc. A Top-5 Acc. A | Top-1 Acc. A Top-5 Acc. A
ImaceNet Original 74.75 £ 0.38 - 92.04 £0.23 - 76.93 £+ 0.36 - 93.37 £ 0.21 -
& ERA 7544+ 037 +0.69 92.15+0.23 +0.11 | 77.30 +£ 036 +0.37 93.39 + 0.21 +0.02
CIFAR-10 Original 93.61 £ 0.14 - 99.69 + 0.08 - 93.53 £ 0.03 - 99.84 + 0.02 -
ERA 93.82+0.08 +0.21 99.82+0.03 +0.13 | 93.93+0.12 +04 99.86 +£0.01 +0.02
We evaluate our method on the ImageNet (Russakovsky et al, 2015) and CIFAR-10

datasets (Krizhevsky et al., 2009). Our implementation utilizes the ResNet-50 architecture from the
PyTorch Image Models (timm) library (Wightman, 2019). To ensure a fair comparison, both our
method and the baseline were trained for 200 epochs, with all other hyperparameters held constant.
Notably, we retain key default settings from timm for all experiments, including a label smoothing
factor of 0.1. This demonstrate ERA’s complementarity with existing regularizations.

Main results. Table | summarizes the primary classification results, comparing ERA against the
standard ResNet-50 baseline. For these results, we use a minimal entropy of 1.2 for ImageNet and
0.6 for CIFAR-10. The comparison is conducted under two settings: with and without the standard
data augmentation provided by the timm library. The results show that ERA consistently outperforms
the baseline across both datasets and settings.

Under review as a conference paper at ICLR 2026

ImageNet CIFAR-10
L.op 73. 94.1}
2] 94.0F
0.8 73.0F °
3 \c\ L oot
6} Z sk v e £ o3sh
= R I8 S S 7 S0 IS SR —_ Q ®
=4 1 L 037F o -
o Lo &
. o /- esNet-] F
e = .\ d/ @ ToplResNetERA = 936
. === Top-1 ResNet PRV] ittt Attt ittt
0.2f —®— SAC-ERA 240 ©— Top-5 ResNet-ERA N
-= SAC w/o entropy target Top-5 ResNet 93.4F
0535 05 00 03 22Gs 1o 12 14 1% 00 02 04 6
entropy target entropy target entropy target
() (b)

Figure 3: Sensitivity of ERA to the Minimum Entropy. (a) 1M Steps Performance on DMC
Tasks. Comparison between SAC-ERA and the baseline SAC on Humanoid and Dogs environments
under various minimum entropy constraints. Our method achieves superior performance across all
settings. (b) Accuracy on ImageNet and CIFAR-10. ResNet-ERA maintains stable Top-1 and
Top-5 accuracy across a range of minimum entropy values, indicating its robustness to the choice of
this hyperparameter.

Ablation study on minimal entropy. We study our method’s robustness to the minimal entropy
hyperparameter on ImageNet and CIFAR-10, using checkpoints from the 100th and 200th epochs,
respectively, for efficiency. As shown in Figure 3b, our method exhibits low sensitivity to this
parameter. Rather than fine-tuning for peak performance, our intent is to show that competitive
accuracy is maintained across a reasonable range of values. This demonstrates strong performance is
achievable without extensive tuning.

5.3 RESULTS AND ANALYSIS ON LARGE LANGUAGE MODELS

We first present the results of ERA in §5.3.1 Main Results and §5.3.2 Extension to More Models
and Algorithms. We then use §5.3.3 Analysis on Entropy and Reasoning Capacity Boundary and
§5.3.4 Out-of-Distribution Generalization to illustrate the role of encouraging exploration. Additional
ablation studies on method design are provided in the Appendix C.4.

5.3.1 MAIN RESULTS

We evaluate ERA on Qwen2.5-Math-7B, trained with the DAPO-Math-17K (Yu et al., 2025) dataset
using codebase adopted from verl (Sheng et al., 2025). To improve training stability and ensure
well-controlled entropy decay, we adopt a two-stage training strategy. In the first stage, we set
Wiow = 0.45, whigh = 3.0, and k = 2, and train for 600 steps. In the second stage, we continue
training for 500 steps with a relaxed entropy bound, setting wiow = 0.2, whigh = +00, and keeping
k=2.

We then evaluate the resulting model on six standard mathematical reasoning tasks: AIME’24,
AIME’25, AMC’23 (Li et al., 2024b), MATHS00 (Hendrycks et al., 2021), Minerva (Lewkowycz
etal., 2022), and OlympiadBench (He et al., 2024). Table 2 presents comparisons against base models,
classical RL methods, and recent entropy-control approaches. AIME’24, AIME’25, and AMC’23
are conducted with a decoding temperature of 0.7, and reported as the average accuracy over 16
sampled responses. MATHS500, Minerva, and OlympiadBench are conducted with greedy sampling.
The evaluation process is sampled on the original policy z (before ERA). Full implementation details
and hyperparameter settings are provided in Appendix A.3. The results show that ERA consistently
achieves the best results on most of the benchmarks. Notably, it outperforms strong entropy-based
baselines such as KL.-Cov and Clip-Cov by significant margins.

5.3.2 EXTENSION TO MORE MODELS AND ALGORITHMS

To demonstrate ERA’s effectiveness across different model sizes and algorithms, we extend it to the
weaker Qwen2.5-Math-1.5B model and also apply ERA to other algorithms such as GSPO (Zheng
et al., 2025) on Qwen2.5-Math-7B, showing that ERA is a generic approach not tied to any specific
model or algorithm. As reported in Table 3, ERA yields significant gains on both the smaller model
and GSPO. For instance, on Qwen2.5-Math-1.5B it achieves an average improvement of 14.1%.

Under review as a conference paper at ICLR 2026

Table 2: Main results (%) on five competition-level reasoning benchmarks based on Qwen2.5-Math-
7B. For AIME and AMC, the results are avg. @ 16. The best results on each benchmark are highlighted
in bold.

Model AIME241 AIME251 AMC{ MATHS5001 Minervat Olympiad 1 Avg. T
Base Models

Qwen2.5-Math Yang et al. (2024a) 8.6 6.3 522 50.8 12.1 17.2 24.5
Qwen2.5-Math-Instruct Yang et al. (2024a) 13.3 10.0 57.1 81.0 32.7 38.8 38.8
Classical Methods

SimpleRL-Zero Zeng et al. (2025) 26.7 9.3 60.0 74.6 27.6 35.8 39.0
OpenReasoner-Zero Hu et al. (2025) 15.4 13.4 56.5 81.0 32.7 432 40.4
PRIME-Zero Cui et al. (2025a) 18.9 11.7 571 79.0 36.4 40.6 40.7
Oat-Zero Liu et al. (2025) 28.8 10.8 65.2 79.6 342 39.9 43.1
Entropy Control Methods

GRPO + Entropy Loss 325 14.0 66.9 80.8 36.0 42.5 455
GRPO w/ 20% Forking Tokens (Wang et al., 2025) 29.0 17.7 63.6 81.8 39.7 44.6 46.1
KL-Cov (Cui et al., 2025b) 35.6 13.1 65.1 81.0 40.4 44.1 46.6
Clip-Cov (Cui et al., 2025b) 339 13.7 62.5 78.4 35.6 40.3 44.1
GRPO (Shao et al., 2024) 344 12.3 69.5 80.6 36.8 40.6 45.7
ERA 375 16.9 72.8 84.6 42.6 46.5 50.2
A M) +9.0% +37.4% +4.7% +5.0% +15.8% +14.5% +9.8%

Table 3: Accuracy (%) results of different LLMs and different algorithms across six benchmarks.
The best results in each box are highlighted in bold.

Method AIME24+ AIME251 AMC?T MATH5001 Minervat Olympiad? Avg. 1
Qwen2.5-Math-1.5B Yang et al. (2024a)
CoT 43 2.3 26.4 59.0 243 27.6 24.0
GRPO 11.1 6.0 40.2 66.4 25.0 30.1 29.8
ERA 12.1 6.8 49.5 70.6 30.5 34.7 34.0
A (1) +9.0% +13.3% +23.1% +6.3% +22.0% +15.3% +14.1%
Qwen2.5-Math-7B Yang et al. (2024a)
CoT 8.6 6.3 522 50.8 12.1 17.2 24.5
GSPO 29.8 13.7 61.2 85.1 37.1 35.1 43.7
GSPO + ERA 333 15.2 63.8 84.3 40.8 42.7 46.7
A (1) +11.7% +10.9% +4.2% -0.9% +10.0% +21.7% +6.9%

5.3.3 ANALYSIS ON ENTROPY AND REASONING CAPACITY BOUNDARY

To better understand the effect of our approach on exploration and reasoning, we examine both the
entropy dynamics of the learned policies and their downstream reasoning performance. Figure 4
compares the entropy trajectories of our method (first stage) with the GRPO baseline. While GRPO
suffers from entropy collapse, our method maintains a stable entropy level throughout training. This
stability indicates the existence of a non-trivial entropy lower bound, as we desired by the definition
of ERA, which prevents premature policy concentration and preserves the model’s ability to explore
diverse reasoning paths.

The presence of this entropy floor aligns with improved reasoning performance. As shown in Figure 4,
ERA achieves consistently higher pass@F scores on AIME’24 and AIME’25 compared to GRPO.
This demonstrates that avoiding entropy collapse is not merely a statistical artifact but translates
directly into stronger reasoning capacity. In particular, maintaining sufficient entropy ensures the
model retains multiple candidate reasoning trajectories, thereby improving the likelihood of successful
solutions under pass @k evaluation.

5.3.4 OUT-OF-DISTRIBUTION GENERALIZATION

Models trained in a specific domain often struggle when applied to other domains (Yuan et al., 2023;
Wang et al., 2024a). Since ERA uses entropy constraints to encourage exploration, we hope it can
learn more general skills. Therefore we want to see if ERA will also do better on out-of-distribution
(OOD) data than standard GRPO. To test this, we evaluate ERA on three hard OOD benchmarks:
ARC-C (Clark et al., 2018), GPQA-Diamond (Rein et al., 2024), and MMLU-Pro (Wang et al.,
2024b). As shown in Figure 5, ERA outperforms GRPO by 16.9% on average. This confirms our
hypothesis that ERA can also enable models to learn more generalizable abilities.

Under review as a conference paper at ICLR 2026

Entropy Pass@k Performance - AIME24 Pass@k Performance - AIME25
0.75
0.40 —+— GRPO+ERA —— GRPO+ERA —&— GRPO+ERA
035 —— GRPO 01 —=— GrPO —e— GRPO

o
n

Pass@k Score
(=]
=

Pass@k Score
o
o

0.2

0 100 200 300 400 500
Step

Figure 4: Entropy comparison and pass @k results for GRPO with ERA (ours) versus GRPO
alone. The entropy curves demonstrate that ERA mitigates entropy collapse and establishes a clear
lower bound. The pass@Fk results further indicate that ERA enhances exploration and strengthens the
model’s reasoning ability.

6 LIMITATIONS AND FUTURE WORK

Our work is centered within the maximum entropy reinforce-
ment learning (MaxEnt RL) framework, with the primary objec- Base GRPO M ERA
tive of imposing effective entropy constraints to enhance explo- %
ration. We have demonstrated its effectiveness across diverse s
tasks, including continuous locomotion, discrete-space image

.~ 56.6
classification, and the reinforcement learning post-training of 9 o
A
large language models. ’ 354
26.8 274
However, this reliance on the MaxEnt objective constitutes a =[] ¥ 152I 152

potential limitation. The goal of maximizing entropy is not uni-
versally beneficial and can lead to suboptimal policies in certain ARC-C GPQA-D MMLU-Pro Average
task scenarios, as highlighted by Zhang et al. (2025). There-

fore, the broader applicability of our method in domains where Figure 5: Results on three OOD
maximum entropy may not be the desired objective requires benchmarks (Qwen2.5-Math-7B).
further investigation.

A promising direction for future research is to adapt and apply our method to a wider range of
domains. This includes areas such as diffusion and flow-based generative models, or other tasks that
could benefit from structured policy diversity and efficient exploration, even outside the strict MaxEnt
RL paradigm.

7 CONCLUSIONS

In this work, we introduced ERA, a novel entropy-constrained paradigm built upon the unique
principle of treating output activations as a direct medium for entropy regularization. Our theoretical
analysis is substantiated by strong empirical results across diverse and challenging domains. In these
settings, ERA consistently surpasses prominent baselines without incurring significant computational
overhead. Ultimately, this work offers a new perspective on entropy regularization for both supervised
and unsupervised decision-making, opening a promising research avenue for developing more robust
and efficient learning agents.

10

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We are strongly committed to the reproducibility of our work. To this end, we provide detailed
derivations and proofs for all theoretical claims in the appendix. The appendix also contains compre-
hensive experimental details, including hyperparameters, environment setups, and additional results,
which are crucial for replicating our findings. Furthermore, the core source code for our proposed
method, ERA, instantiated across all domains, is included in the appendix. As our implementations
are built upon publicly available codebases and frameworks, we believe the provided key source code
is sufficient for a straightforward reproduction of our results. We plan to release the full, open-source
codebase and a dedicated repository upon publication to further facilitate future research.

REFERENCES

Riad Akrour, Joni Pajarinen, Jan Peters, and Gerhard Neumann. Projections for approximate policy
iteration algorithms. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of
the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 181-190. PMLR, 09-15 Jun 2019. URL https://proceedings.mlr.
press/v97/akrour19a.html.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. URL
https://arxiv.org/abs/1607.06450.

Richard Bellman. A markovian decision process. Journal of mathematics and mechanics, pp.
679-684, 1957.

Vivek S. Borkar. Stochastic approximation with two time scales. Systems & Control Letters, 29(5):
291-294, 1997.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

Onur Celik, Zechu Li, Denis Blessing, Ge Li, Daniel Palenicek, Jan Peters, Georgia Chalvatzaki, and
Gerhard Neumann. Dime:diffusion-based maximum entropy reinforcement learning, 2025. URL
https://arxiv.org/abs/2502.02316.

Chen-Hao Chao, Chien Feng, Wei-Fang Sun, Cheng-Kuang Lee, Simon See, and Chun-Yi Lee.
Maximum entropy reinforcement learning via energy-based normalizing flow, 2024. URL https:
//arxiv.org/abs/2405.13629.

Daixuan Cheng, Shaohan Huang, Xuekai Zhu, Bo Dai, Wayne Xin Zhao, Zhenliang Zhang, and Furu
Wei. Reasoning with exploration: An entropy perspective. arXiv preprint arXiv:2506.14758, 2025.

Jean Seong Bjorn Choe and Jong-Kook Kim. Maximum entropy on-policy actor-critic via entropy
advantage estimation, 2024. URL https://arxiv.org/abs/2407.18143.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth. On the Lambert W
function. Adv. Comput. Math, 5:329, 1996.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. arXiv preprint
arXiv:2502.01456, 2025a.

Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for
reasoning language models. arXiv preprint arXiv:2505.22617, 2025b.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods, 2018. URL https://arxiv.org/abs/1802.09477.

11

https://proceedings.mlr.press/v97/akrour19a.html
https://proceedings.mlr.press/v97/akrour19a.html
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/2502.02316
https://arxiv.org/abs/2405.13629
https://arxiv.org/abs/2405.13629
https://arxiv.org/abs/2407.18143
https://arxiv.org/abs/1802.09477

Under review as a conference paper at ICLR 2026

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International conference on machine learning, pp. 1352—-1361.
PMLR, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861-1870. Pmlr, 2018.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han,
Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for promoting
agi with olympiad-level bilingual multimodal scientific problems. In Proceedings of the 62nd

Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
3828-3850, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2), 2021.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model, 2025. URL https://arxiv.org/abs/2503.24290.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift, 2015. URL https://arxiv.org/abs/1502.03167.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv preprint
arXiv:2412.16720, 2024.

Zilin Kang, Chenyuan Hu, Yu Luo, Zhecheng Yuan, Ruijie Zheng, and Huazhe Xu. A forget-
and-grow strategy for deep reinforcement learning scaling in continuous control, 2025. URL
https://arxiv.org/abs/2507.02712.

Jens Kober,] Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238-1274, 2013.

Ilya Kostrikov. JAXRL: Implementations of Reinforcement Learning algorithms in JAX, 10 2021.
URL https://github.com/ikostrikov/jaxrl.

Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.

Hojoon Lee, Youngdo Lee, Takuma Seno, Donghu Kim, Peter Stone, and Jaegul Choo. Hyperspherical
normalization for scalable deep reinforcement learning, 2025. URL https://arxiv.org/abs/
2502.15280.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative

reasoning problems with language models. Advances in neural information processing systems,
35:3843-3857, 2022.

Chen Li, Weiqi Wang, Jingcheng Hu, Yixuan Wei, Nanning Zheng, Han Hu, Zheng Zhang, and
Houwen Peng. Common 7b language models already possess strong math capabilities. arXiv
preprint arXiv:2403.04706, 2024a.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q. Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
ai4maths with 860k pairs of competition math problems and solutions. https://huggingface.
co/datasets/Numinamath, 2024b. Hugging Face repository, 13:9.

12

https://arxiv.org/abs/2503.24290
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/2507.02712
https://github.com/ikostrikov/jaxrl
https://arxiv.org/abs/2502.15280
https://arxiv.org/abs/2502.15280
https://huggingface.co/datasets/Numinamath
https://huggingface.co/datasets/Numinamath

Under review as a conference paper at ICLR 2026

Zhi Li. DRL-code-pytorch. https://github.com/Lizhi-sjtu/DRL-code-pytorch, 2022. Ac-
cessed: 2025-09-10.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783,
2025.

Yu Luo, Tianying Ji, Fuchun Sun, Jianwei Zhang, Huazhe Xu, and Xianyuan Zhan. Offline-boosted
actor-critic: Adaptively blending optimal historical behaviors in deep off-policy rl. arXiv preprint
arXiv:2405.18520, 2024.

Haitong Ma, Tianyi Chen, Kai Wang, Na Li, and Bo Dai. Efficient online reinforcement learning for
diffusion policy, 2025. URL https://arxiv.org/abs/2502.00361.

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the gap between
value and policy based reinforcement learning. Advances in neural information processing systems,
30, 2017.

Michal Nauman, Michal Bortkiewicz, Piotr Mito$, Tomasz Trzcinski, Mateusz Ostaszewski, and
Marek Cygan. Overestimation, overfitting, and plasticity in actor-critic: the bitter lesson of
reinforcement learning, 2024. URL https://arxiv.org/abs/2403.00514.

Brendan O’Donoghue, Remi Munos, Koray Kavukcuoglu, and Volodymyr Mnih. Combining policy
gradient and g-learning. arXiv preprint arXiv:1611.01626, 2016.

Fabian Otto, Philipp Becker, Ngo Anh Vien, Hanna Carolin Ziesche, and Gerhard Neumann. Dif-
ferentiable trust region layers for deep reinforcement learning. arXiv preprint arXiv:2101.09207,
2021.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730-
27744, 2022.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research, 22(268):1-8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a benchmark.
In First Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
Ti67584b98.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. Imagenet
large scale visual recognition challenge, 2015. URL https://arxiv.org/abs/1409.0575.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017a.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017b.

Younggyo Seo, Carmelo Sferrazza, Haoran Geng, Michal Nauman, Zhao-Heng Yin, and Pieter
Abbeel. Fasttd3: Simple, fast, and capable reinforcement learning for humanoid control. arXiv
preprint arXiv:2505.22642, 2025.

Carmelo Sferrazza, Dun-Ming Huang, Xingyu Lin, Youngwoon Lee, and Pieter Abbeel. Humanoid-
bench: Simulated humanoid benchmark for whole-body locomotion and manipulation. arXiv
preprint arXiv:2403.10506, 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

13

https://github.com/Lizhi-sjtu/DRL-code-pytorch
https://arxiv.org/abs/2502.00361
https://arxiv.org/abs/2403.00514
http://jmlr.org/papers/v22/20-1364.html
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://arxiv.org/abs/1409.0575

Under review as a conference paper at ICLR 2026

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, pp. 1279-1297, 2025.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradi-
ent methods for reinforcement learning with function approximation. In S. Solla, T. Leen,
and K. Miiller (eds.), Advances in Neural Information Processing Systems, volume 12. MIT
Press, 1999. URL https://proceedings.neurips.cc/paper_files/paper/1999/file/
464d828b85b0bed98e80ade@a5c43b0f-Paper. pdf.

Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2818-2826, 2016.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026-5033.
IEEE, 2012.

Jindong Wang, Xixu Hu, Wenxin Hou, Hao Chen, Runkai Zheng, Yidong Wang, Linyi Yang, Wei Ye,
Haojun Huang, Xiubo Geng, Binxing Jiao, Yue Zhang, and Xing Xie. On the robustness of chatgpt:
An adversarial and out-of-distribution perspective. IEEE Data Eng. Bull., 47(1):48-62, 2024a.

Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
Jianxin Yang, Zhenru Zhang, et al. Beyond the 80/20 rule: High-entropy minority tokens drive
effective reinforcement learning for llm reasoning. arXiv preprint arXiv:2506.01939, 2025.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging
multi-task language understanding benchmark. arXiv preprint arXiv:2406.01574, 2024b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical expert
model via self-improvement, 2024a. URL https://arxiv.org/abs/2409.12122.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024b.

Edward Yeo, Yuxuan Tong, Xinyao Niu, Graham Neubig, and Xiang Yue. Demystifying long chain-of-
thought reasoning in LLMs. In ICLR 2025 Workshop on Navigating and Addressing Data Problems
for Foundation Models, 2025. URL https://openreview.net/forum?id=AgtQ1hMQoV.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source 1lm reinforcement learning system at
scale. arXiv preprint arXiv:2503.14476, 2025.

14

https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://arxiv.org/abs/2409.12122
https://openreview.net/forum?id=AgtQlhMQ0V

Under review as a conference paper at ICLR 2026

Lifan Yuan, Yangyi Chen, Ganqu Cui, Hongcheng Gao, FangYuan Zou, Xingyi Cheng, Heng Ji,
Zhiyuan Liu, and Maosong Sun. Revisiting out-of-distribution robustness in NLP: Benchmarks,
analysis, and LLMs evaluations. In Thirty-seventh Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2023.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild. arXiv
preprint arXiv:2503.18892, 2025.

Ruipeng Zhang, Ya-Chien Chang, and Sicun Gao. When maximum entropy misleads policy opti-
mization, 2025. URL https://arxiv.org/abs/2506.05615.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,

Yugiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. arXiv preprint
arXiv:2507.18071, 2025.

Dianyu Zhong, Yiqin Yang, Ziyou Zhang, Yuhua Jiang, Bo XU, and Qianchuan Zhao. Maximum
next-state entropy for efficient reinforcement learning, 2024. URL https://openreview.net/
forum?id=0G6rRLYcxm.

Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. Carnegie Mellon University, 2010.

Brian D Ziebart, Andrew L Maas, J] Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pp. 1433—-1438. Chicago, IL, USA, 2008.

15

https://arxiv.org/abs/2506.05615
https://openreview.net/forum?id=0G6rRLYcxm
https://openreview.net/forum?id=0G6rRLYcxm

Under review as a conference paper at ICLR 2026

A IMPLEMENTATION DETAILS

A.1 IMPLEMENTATION DETAILS OF CONTINUOUS CONTROL TASKS

A.1.1 CODE IMPLEMENTATION OF ERA IN CONTINUOUS CONTROL

Listing 1: Original Implementation Listing 2: ERA Implementation
Original implementation from the # h_0: target entropy, can be a
jaxrl codebase, suggested by fixed value or a learnable
Ilya parameter
log_std_min, log_std_max: bounds # action_dim: dimension of the
for log standard deviation action space
action_dim: dimension of the k = - self.action_dim * (
action space log_std_max + h_0@ + jnp.log(jnp
pre_stds: direct output from the .sqrt(2 * jnp.pi * jnp.e)))
actor network log_stds = k *x nn.softmax(pre_stds,
log_stds = log_std_min + (axis = -1) + log_std_max
log_std_max - log_std_min) = log_stds = jax.clip(log_stds, self.
0.5 * (1 + nn.tanh(pre_stds)) log_std_min, self.log_std_max)

Figure 6: Comparison of the activation function at the actor’s output.

We provide the following JAX implementation snippet of ERA for the reader’s reference, where h_0
is the target entropy (Hj, in Eq. 12), which can be a constant (e.g., -action_dim/2) or a learnable
parameter. The terms log_std_min and log_std_max represent the lower and upper bounds of the log
standard deviation, respectively; action_dim is the dimension of the action space; and pre_stds refers
to the raw output of the actor network.

A.1.2 ENVIRONMENTS

Figure 7: Visualization of some continuous control environments used in our experiments. From
left to right: dog-run (DMC), h1-hurdle-v0 (HumanoidBench), h1hand-slide-v0 (HumanoidBench),
humanoid-walk (DMC)

Our evaluation of ERA spans a diverse set of continuous control tasks from three established
benchmarks: Mujoco Gym (Todorov et al., 2012), DeepMind Control Suite (DMC) (Tassa et al.,
2018), and HumanoidBench (Sferrazza et al., 2024). For the Mujoco Gym and DMC environments,
we utilized their standard, unmodified configurations. For HumanoidBench, we introduced specific
modifications for certain agents.

For experiments involving SAC and OBAC on HumanoidBench, we implemented an action repeat
of 2 and disabled episode termination. These adjustments were necessary because the standard
tasks proved exceedingly challenging for a baseline SAC agent, as demonstrated in Figure 8. Con-
versely, for the FastSAC agent, which is capable of solving the original tasks, we used the standard
HumanoidBench environments without these modifications.

For our comparison against TD-MPC2 on DMC environments, we used the performance data reported
in the original manuscript. We therefore adhered to their experimental setup, which includes an action
repeat of 2.

16

Under review as a conference paper at ICLR 2026

For main results and training curves, we report results over 10 random seeds for SAC, OBAC, and
FastSAC, 5 seeds for PPO, and 3 seeds for TD-MPC2, matching the number provided in its original
publication.

1000 h1-run-v0 1000 hl-crawl-v0 1000 h1-walk-v0
= W/O Modifications
= With Modifications
g g g
£ 500 £ 500 £ 500
e~ ~ =1
0.00 e 0.00 0.00
1.5M 3.0M 0 1.5M 3.0M 0 1.5M 3.0M
steps steps steps

Figure 8: Ablation of Environment Modifications for HumanoidBench. Performance comparison
of a standard SAC agent on three challenging HumanoidBench tasks with and without our modified
settings (action repeat of 2 and disabled termination). The significant performance gap justifies using
these modified settings for our main SAC-based experiments.

The action, observation spaces and maximal episode length of the respective environments are shown
in Table 4 and Table 5.

Table 4: List of tasks from DeepMind Control and MetaWorld on which the agents were ablated. The
table also contains the dimensions of action, observation space and maximal episode length.

Task | Observation dimension | Action dimension | Max episode length

DEEPMIND CONTROL

Dog-Trot 223 38 1000
Dog-Walk 223 38 1000
Dog-Run 223 38 1000
Humanoid-Run 67 24 1000
Humanoid-Walk 67 24 1000
Humanoid-Stand 67 24 1000
Mujoco GYym
HalfCheetah-v4 17 6 1000
Ant-v4 27 8 1000
Hopper-v4 11 3 1000
Walker2d-v4 17 6 1000

A.1.3 PsSgupo CODE OF SAC-ERA

To better illustrate the role of our method within the algorithmic framework, we present the pseu-
docode for a representative example, the Soft Actor-Critic (SAC) algorithm, adapted with ERA in
Algorithm 1.

A.1.4 HYPERPARAMETERS

‘We present the hyperparameters used in our experiments with SAC and PPO in Table 6

Our implementations of SAC and OBAC are heavily inspired by the official jaxrl reposi-
tory (Kostrikov, 2021). For the network design, we follow the insights from Nauman et al. (2024)
and incorporate LayerNorm (Ba et al., 2016) into the neural networks.

Our OBAC implementation is built upon the codebase provided by Kang et al. (2025). It shares the
same fundamental hyperparameters as our SAC implementation, with the behavior cloning weight
setto 1 x 1073,

17

Under review as a conference paper at ICLR 2026

Table 5: List of tasks from HumanoidBench on which the agents were ablated. The table also contains
the dimensions of action, observation space and maximal episode length.

Task | Observation dimension | Action dimension | Max episode length
h1l-walk-v0 51 19 500
h1-run-v0 51 19 500
h1-stand-v0 51 19 500
h1-hurdle-v0 o1 19 500
h1-stair-v0 51 19 500
h1-crawl-v0 51 19 500
hlhand-balance_simple-v0 164 61 1000
hlhand-hurdle-v0 151 61 1000
hlhand-pole-v0 151 61 1000
hlhand-push-v0 163 61 1000
hlhand-stair-v0 151 61 1000
hlhand-slide-v0 151 61 1000
hlhand-walk-v0 151 61 1000
hlhand-run-v0 151 61 1000

Table 6: Comparison of hyperparameters for SAC and PPO.

Hyperparameter SAC PPO
Optimizer Settings
Actor optimizer Adam
Actor learning rate 3x107%
Critic optimizer AdamW Adam
Critic learning rate 3x 1074
Temperature learning rate 3x 1074 —
Adam epsilon — 1x107°
Gradient clipping — 0.5
Network Architecture
Actor/Critic network 3-layer MLP
Hidden layer dimensions (512, 512) (64, 64)
Activation function ReLU Tanh
LayerNorm True False
Algorithm Hyperparameters
Discount factor () 0.99
Replay buffer size 1 x 10° —
Polyak averaging coefficient (7) 0.005 —
Initial temperature (o) 1.0 —
Target entropy (Ho) —dim(A)/2 —
Gradient steps per env. step 2 —
Random exploration steps 5,000 —
GAE parameter () — 0.95
PPO clip ratio — 0.2
Entropy coefficient — 0.01
Batch size 256 2048
Mini-batch size — 64
Log std Interval [0 min, Omax) [-8,0] for ERA, [-10,2] for baseline

For the PPO and PPO-ERA experiments, our implementation is based on the publicly available
codebase of Li (2022). We use target entropy of —0.3.4 for main experiments on PPO-ERA.

For the TD-MPC2 baseline, we utilize the official implementation provided by the original authors.
The results for comparison are also directly sourced from those reported in the official repository. We
use target entropy of —.A for main experiments on TD-MPC2-ERA.

18

Under review as a conference paper at ICLR 2026

Similarly, our implementations of FastTD3 and FastSAC are based on the official codebases provided
by their respective authors. We note that our construction of FastSAC-ERA differs from the method
described in the original paper; these differences are detailed in Section A.1.5.

A.1.5 FASTSAC-ERA

The FastTD3 (Seo et al., 2025) framework demonstrated the potential of applying off-policy RL
methods to massively parallel RL scenarios, achieving excellent performance on HumanoidBench.

Authors of FastTD3 also provided a FastSAC implementation, which replaced the mixed noise
mechanism in FastTD3 with the standard entropy maximization objective from Soft Actor-Critic
(SAC). However, they noted that this approach yielded unstable results, and hypothesized that
maximizing action entropy in high-dimensional action spaces might be inherently challenging.

To address this issue, we investigated a solution based on minimal modification to the original
FastTD3. Our approach, named FastSAC-ERA, is derived from FastTD3 by retaining its noise
mechanism while removing the Delayed Policy Updates and incorporating an entropy constraint via
ERA implementation. This method achieved performance superior to that of FastTD3.

In practice, our implementation was built directly upon the official FastTD3 codebase. The only mod-
ifications were the removal of Delayed Policy Updates and the addition of the ERA implementation
at the actor’s output. All other hyperparameters and implementation details were kept identical to the
original FastTD3 configuration.

A.1.6 IMPLEMENTATION DETAILS: NORMALIZED SCORE COMPUTATION

In this work, we use normalized scores to evaluate and compare algorithm performance across
multiple environments. The rationale for this is that when aggregating results across a benchmark,
raw scores can allow environments with disparate score ranges to have a disproportionate influence on
the final result. Normalized scores mitigate this by mapping all results onto a uniform scale, enabling
a more equitable comparison and aggregation.

When calculating the normalized score, we uniformly use the minimum and maximum scores
achieved among all tested algorithms in that specific environment as the normalization bounds,
rather than relying on the environment’s theoretical minimum or maximum scores. This approach
avoids distortions that can arise from theoretical score ranges being exceptionally large or small,
thereby providing a more accurate reflection of the algorithms’ relative performance in practice.

Specifically, the normalized score is calculated using the following formula:

. Algorithm Score — Min Score
Normalized Score = £

Max Score — Min Score

Where Algorithm Score is the score of a given algorithm in a specific environment at a particular
time, and Min Score and Max Score are the minimum and maximum scores, respectively, achieved
among all participating algorithms in that same environment.

To compute an aggregate normalized score across multiple environments, we first calculate the
normalized score for each algorithm within each environment. We then average these scores. This
method ensures that each environment contributes equally to the final metric, providing a more
comprehensive and fair assessment of overall algorithm performance.

A.1.7 IMPLEMENTATION DETAILS: SHADING AREAS IN PLOTS

For aggregated performance plots in 2, we use 25% and 75% percentiles to create shaded areas around
the mean performance curves. This choice corresponds to common practices in RL community.

For training curves of individual environments in the appendix, we use 95% confidence intervals to
create shaded areas around the mean performance curves. This choice provides a clearer depiction of
variability in individual environment results, which can be more pronounced than in aggregated plots.

A.2 IMPLEMENTATION DETAILS OF IMAGE CLASSIFICATION

A.2.1 CODE IMPLEMENTATION OF ERA IN IMAGE CLASSIFICATION

19

Under review as a conference paper at ICLR 2026

Algorithm 1 Soft Actor-Critic (SAC) with ERA

1: Initialize: actor parameters 6, critic parameters ¢1, ¢o.
2: Initialize: target network parameters ¢} < ¢1, ¢ < ¢Po.
3: Initialize: replay buffer D.
4: Hyperparameters: learning rates A, Ag, Aq, target entropy Ho, Polyak coefficient 7.
5: for each training step do
Sample action from the policy: a; ~ mg(-|st).
Execute action a;, observe reward r; and next state sy .
Store transition (s, at, r¢, S¢41) in replay buffer D.
9: Sample a random minibatch of transitions B = {(s,a,r, s’)} from D.
10: // Update the Q-functions (critics)
11: Sample next actions: a’ ~ my(+|s’).
12: Compute the target Q-value by taking the minimum of the two target critics:

P RD

Q-0 &= i, Q)

13: Compute the Q-target y (matches Eq. 14):

Y 7+ Y Quger (85 @)

14: Update both critics by one step of gradient descent using the loss from Eq. 8:

1 1 2 ,
vﬁbi?‘ Z B (Qg,(s,a) —y)” fori=1,2
(s,a,y)€B

15: // Update the policy (actor)
16: Sample new actions for the policy update (using reparameterization trick): a ~ mg(-|s).
17: Compute Q-values for the new actions using the minimum of the two critics:

Qmin(sa (~1) — ngng Q¢1ﬂ (57 &)

18: Update the policy by one step of gradient ascent to maximize the objective from Eq. 15:

1 -
vﬁﬁ Z Qmin(37 CL)
seB
19: // Update target networks using Polyak averaging
200 @l Thi+(1—7)p; fori=1,2
21: end for

We provide the implementation of ERA for image classification tasks in Listing 3. In the code, C_H
corresponds to C'yy,, defined in Eq. 16, and n_dims denotes the number of classes. We set 7 = 4 in
our implementation without performing any tuning for this parameter.

A.2.2 TRAINING SETUP

Our training for ImageNet was completed on 4 A100 GPUs, and we report the 95% confidence
interval calculated from the dataset. For CIFAR-10, which requires less computation, we trained three
separate runs on 3 machines, each with 4 A40 GPUs, and report the confidence interval computed
from these three results to ensure maximum reproducibility.

A.2.3 COMMANDS USED FOR EXPERIMENTS

We provide two main commands used for training in image classification. The two commands
delineate the training procedures for our models under two distinct settings: one incorporating
data augmentation and the other without it. The training commands were sourced directly from
the reference ImageNet training script within the timm library. We employed this identical set of

20

Under review as a conference paper at ICLR 2026

Listing 3: ERA Implementation in Image Classification

class ERA(nn.Module):
def __init__(self, C_H: float, n_dims: int):
super () .__init__()
self._tau = 4.
self.C_H = C_H
self.n_dims = n_dims

self.upper_bound = math.log(self._tau) / self._tau

assert C_H >= self.upper_bound

self.slope = (self.upper_bound - C_H / n_dims) / (1 - 1 / n_dims)
self.b = (C_H - self.slope) / n_dims

def forward(self, x: torch.Tensor) -> torch.Tensor:

h self.slope * x.softmax(dim=-1) + self.b
u -1 - torch.log(h)
new_logits = (-1 - torch.sqrt(2 * u) - 3/4 x u).to(x.dtype)

max_values = torch.max(x, dim=-1, keepdim=True).values.detach()

X = X - max_values

min_values = torch.min(new_logits, dim=-1, keepdim=True).values.
detach ()

new_logits = new_logits - min_values

return new_logits

commands for training on both the ImageNet and CIFAR-10 datasets without any dataset-specific
hyperparameter tuning to ensure a consistent experimental setup.

Listing 4: Command to launch training with data augmentation.

./distributed_train.sh 4 --data-dir ../data --dataset torch/cifarie --
— dataset-download -b 64 --model resnet50 --sched cosine --epochs 200
<~ --1lr 0.05 --amp --remode pixel --reprob 0.6 --aug-splits 3 --aa
< rand-m9-mstd@.5-inc1 --resplit --split-bn --jsd --dist-bn reduce

Listing 5: Command to launch training without data augmentation (baseline).

./distributed_train.sh 4 --data-dir ../data --dataset torch/cifarle --
<~ dataset-download -b 64 --model resnet50 --sched cosine --epochs 200
— --1lr ©0.05 --amp --dist-bn reduce

A.3 IMPLEMENTATION DETAILS OF LLM TRAINING

A.3.1 CODE IMPLEMENTATION OF ERA IN LLM

We provide the core implementation of ERA in LLM in Listing 6. In the code, era_lb, era_ub
and era_k corresponds to wiow, whigh, & defined in Eq. 17, respectively. In the first training stage,
we further apply a top-k filter (retaining the 20 largest logits) within the logprobs_from_logits
function to enhance training stability. In addition, the model is trained without advantage scaling, as
applying such scaling would reduce the update to a pure logit shift. The impact of advantage scaling
is discussed in C.4.3.

21

Under review as a conference paper at ICLR 2026

Listing 6: ERA Implementation in LLM

length = response_mask.sum(dim=-1)
k_per_sample = (0.2 * length).long().clamp(min=1)

mean_top_entropy = []

masked_entropy = entropy.masked_fill (~response_mask.bool(), float("-inf")
)

for b in range(entropy.size(0)):
k = k_per_sample[b].item()
top_entropy_b, _ = torch.topk(masked_entropy[bl], k)
mean_top_entropy.append(top_entropy_b.mean())

mean_top_entropy = torch.stack(mean_top_entropy).unsqueeze(-1)
cond_A = (mean_top_entropy < era_lb) & (advantages > 0)
cond_B = (mean_top_entropy > era_ub) & (advantages > 0)

logits[cond_A] = logits[cond_A] * era_k
logtis[cond_B] = logits[cond_B] / era_k

log_prob = logprobs_from_logits(logits)

A.3.2 HYPERPARAMETERS

For GRPO, GRPO w/ 20% Forking Tokens, ERA, we use a training batch size of 256 and a mini batch
size of 256 in the verl configuration, which results in a on-policy setting. For KL-Cov and Clip-Coyv,
we use a training batch size of 256 and a mini batch size of 32, and other hyperparameters are
consistent with their original paper. GRPO + Entropy Loss uses an entropy regularization term with
coefficient 0.002. The learning rate is 10~% and no learning rate warm-up or scheduling is applied.
We also utilize dynamic sampling to enhance training efficiency. Since our setting is on-policy, the
clip ratio is irrelevant. The maximum response length is 8192 with no overlong reward shaping. For
Qwen2.5-Math-1.5B, we use MATH problems of levels 3-5 as the training set in this experiment
since DAPO-Math-17K is too difficult.

The hyperparameters of ERA are fixed to wiow = 0.45, whigh = 3.0, and k = 2 across all settings,
without any tuning. These values are chosen with reference to the initial entropy of the model,
Hieqp ~= 1.5, such that wioy and wyign lie below and above this value, respectively. The only exception
is in the second training stage of ERA for the Qwen2.5-Math-7B model, where we set wiow = 0.2,
Whigh = +09, and £ = 2.

B PROOFS AND DERIVATIONS

B.1 PROOF OF ENTROPY BOUND IN CONTINUOUS SPACE

In this section, we provide a rigorous analysis of the Entropy Regularizing Activation (ERA) for
continuous control. We proceed in three steps:

1. Static Guarantee: We prove that the ERA functional form structurally guarantees the
entropy lower bound, provided the parameter ¢ is sufficiently large.

2. Dynamic Convergence: We prove that the learnable parameter J converges to the required
value under coupled policy updates, using two-timescale stochastic approximation theory.

3. Non-negativity of Bias: We prove that the entropy compensation term §(s) is non-negative
for both Squashed and Truncated Gaussian distributions.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

B.1.1 SETTING AND DEFINITIONS

Recall the continuous form of ERA. For a state s and network outputs (1(s; 0), 5(s; 6)), the activation
maps to the final standard deviation o”:

N N Gi(s50)
ai(0,0;s) = exp lmax <log Omax + (Ho + 0 — C)Dei log 0m1n>] . (20)

2= e%3(s:0)

where C' = Dlog v2me + D log opax. Here, H is the target entropy, and § is a learnable parameter
intended to compensate for the entropy bias dpiss(s) induced by the bounding function (e.g., Tanh or
Truncation).

The actual entropy of the final policy , 5 is given by:
H(?Te,g('|$)) - HGaussian(,u(s; 0)7 diag(a'(@, 87 5))) - 5bias(5)a (21)
where HGaussian = % log(2me) + Zi’;l log 0.

B.1.2 STATIC ENTROPY BOUND

Proposition 1. Given a target entropy Ho and a residual entropy parameterg > Opias($), the policy
defined by Eq. equation 20 satisfies H(m) > Ho, and o' is strictly bounded within [0 i, Omax]-

Proof. The entropy constraint H(m) > Hg is equivalent to Hgaussian — Obias(S) = Ho. Substituting
the Gaussian entropy formula, we require:

- D
> logal > Ho + dius(s) — 5 log(2me). (22)

i=1

From Eq. equation 20, noting that the max operator ensures o > 0y,in, We consider the term inside
the exponent:

D D Gy
Y logo! > 3" |10g Oumax + (Ho + 6 — C) —p—— (23)
i=1 i=1 j=1€7
D s
i=1 Zj:l e
—_———
1
= Dlog omax + Ho + 5— (Dlog v2mwe 4+ D1og omax) (25)
~ D
=Ho+0— B log(2me). (26)

Comparing this result with Eq. equation 22, we see that if 5> Obias (), the condition is satisfied.
Furthermore, the functional form explicitly constrains outputs via max(+, 1og oyin) and 1log opmax (in
the softmax upper bound), ensuring o’ € [Omin, Omax]-

B.1.3 CONVERGENCE UNDER COUPLED UPDATES

‘We now prove that) automatically converges to the necessary value to satisfy the constraint, even
when the policy parameters 6 are updating simultaneously. We utilize the framework of two-timescale
stochastic approximation (Borkar, 1997).

Update Rule. The parameter 4 is updated to minimize the loss £(8) = 6(H () — Ho), leading to
the gradient update:
5t+1 <— 52& -+ ﬂt(Ho — H(W9t75t))' (27)

Assumptions.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

(A1) Regularity: The mappings 1(6) and 6(0) are continuously differentiable with bounded
gradients.

(A2) Non-saturation: The optimization operates in a regime where the ERA activation is not
fully saturated at the lower bound o,;,, for all dimensions. This ensures %—? > 0.

(A3) Timescale Separation: Let {a;} and {§3,;} be the step sizes for 6 and § respectively. We
assume J updates on a faster timescale: lim;_, o % = 0, alongside standard Robbins-Monro
conditions (3~ oy = 00, Y. a? < o0, efc.).

Lemma 1 (Monotonicity). Under (A2), for fixed 0, H(m, ;) is strictly monotonically increasing with

respect to 8

O

01
Proof. Og %

> e
Proposmon 2 (Global Asymptotlc Stability). Under the stated assumptions, the coupled iteration

(04, 0) converges such that 5, asymptotically tracks the equilibrium 5* (0,) satisfying H(mg, 5-) =
Ho.

Proof. We analyze the system dynamics in two timescales:

1. Fast Timescale (5-update): Since o /f; — 0, 0 is viewed as quasi-static. The dynamics of 5
follow the ODE: S(t) =Hy — 7-{,(779’8(15)). Define the Lyapunov function V (§) = %(5 —0%(0))2,
where §*(0) is the unique root of H(mg,5) = Ho. The time derivative is V' = (0 —0%)(Ho — H(9)).
By monotonicity, if 0 > ¢*, then H > H,, implying V' < 0. Thus, § converges globally to *(0).

2. Slow Timescale (¢-update): By the theory of two-timescale stochastic approximation, o, tracks

8*(6,) almost surely. The policy update 8, effectively proceeds along the manifold M = {(6,4) |
H(m, 5) = Ho}, solving the constrained optimization problem.

3. Robustness (Finite Step Sizes): In practice, if «;/5; is bounded but non-zero, the system is
Input-to-State Stable (ISS). The policy update 6 acts as a bounded disturbance. The entropy error is
bounded by the ratio of the disturbance magnitude to the controller gain:

limsup [H(m¢) — Ho| < C - sup a.
t—ro0 t

This guarantees that the entropy remains bounded within a small neighborhood of . O

B.1.4 NON-NEGATIVITY OF THE BIAS TERM

Finally, we show that the bias term dy;,s(s) in Eq. equation 20 is non-negative, justifying the form of
our compensation.

Case 1: Tanh-squashed Gaussian. The bias is given by diann = —E[>_ log(1 — tanh?(u,))].
Since 1 — tanh? (u) € (0,1], its logarithm is non-positive. Therefore, the negative expectation is
non-negative: dyanp > 0.

Case 2: Truncated Gaussian (TN). Let o, = N (p, 02) be the original Gaussian distribution
and 7y be the truncated distribution restricted to the interval [—1, 1]. The bias is defined as the
entropy difference: oty = A(Torig) — h(m1N).

To rigorously prove drn > 0, we introduce a moment-matched Gaussian distribution 7 =
N (mrn, vin), Where mpy and vy denote the true mean and variance of the truncated distribu-
tion 7myn. The proof proceeds in two steps:

1. Maximum Entropy of Gaussians (h(7) > h(7rn)): Among all continuous probability
distributions with a fixed variance, the Gaussian distribution maximizes differential entropy.
Since the constructed distribution 7 is Gaussian and shares the exact same variance vty as
TTN, its entropy must be greater than or equal to that of 7y:

h(ﬁ') > h(ﬂ'TN). (28)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

2. Variance Reduction by Truncation (h(7orig) > h(7)): The entropy of a Gaussian dis-
tribution is monotonically increasing with respect to its variance, given by h(N(,0?)) =
3 log(2meo?). Therefore, showing h(orig) > h(7) is equivalent to proving that truncation
reduces variance, i.e., vry < 2.
We prove this inequality analytically by examining the sensitivity of the truncated mean
mon With respect to the original location parameter /.
First, it is a known result in truncated statistics that the derivative of the truncated mean
with respect to the location parameter p is exactly the ratio of the truncated variance to the
original variance:

8’ULTN UTN

= . 2
ou o2 29

Second, we bound this derivative using properties of log-concave functions. The truncated
mean can be expressed in terms of the normalization constant Z () = ®(5) — ®(«) as:

olnZ
ma = 4 o2 BE W), (30)
o
Differentiating this expression with respect to y yields:
OmIN 2 0%In Z(p)
=1+o0"—F7—5—. 31
ou 7 op? S

The normalization term Z(u) can be viewed as the convolution of the standard normal
PDF ¢(+) and the indicator function of the interval [—1, 1]. Since both the Gaussian PDF
and the indicator function of a convex set are log-concave functions, and the convolution
of log-concave functions preserves log-concavity (Boyd & Vandenberghe, 2004), Z (1) is
log-concave in f.

By definition, the second derivative of the logarithm of a concave function is non-positive.

Thus:))
0*InZ(p
——= <. 32
R (32)
Substituting this inequality back into Eq. equation 31, we obtain the upper bound:
o
MIN (33)
ou
Finally, combining this bound with Eq. equation 29, we arrive at:
e (34)
o

This strictly implies h(7orig) > (7).
Conclusion: Summing the inequalities established in steps 1 and 2, we have:
h(Torig) > h(7) > h(mrx). (35)
Consequently, the bias term drN = h(7orig) — h(7rn) is guaranteed to be non-negative.
B.2 PROOF OF ENTROPY BOUND IN DISCRETE SPACE
Recall the discrete form of ERA:

_ log T log T 1 e*

/ 1 -

= max 1 5

s=h [* (7 +<CHO "r)D 1(> 162’)70)]

Jj=

Before we delve into the proof of its entropy bound, we first provide some insights into the design
of ERA in the context of vision tasks. To adapt the entropy constraint function from continuous
spaces for discrete domains, our initial idea was to have the network output the entropy of individual
components rather than their logits. However, this direct approach is problematic because the function
H(p) = —plnp is non-monotonic over the interval [0, 1]. This ambiguity means a given entropy

25

Under review as a conference paper at ICLR 2026

h(x) = — xe* and its Inverse Approximation
o —xeX
0ss h~1(x)(inversed)
o0
6 5 —4 X*} 2 1
Figure 9: Plot of h(x) = —ze” and its Inverse Approximation h L(x). We reverse the x and y

values for h~! to visualize the inverse relationship(The more two curves overlap, the closer the
approximation). We can see that the approximation is very close to the true inverse function.

value cannot be uniquely mapped back to its corresponding probability; for instance, an entropy of O
could correspond to a probability of either O or 1.

To resolve this ambiguity, we introduce a scaling factor 7 > e and consider a "7-divided distribution,"
where each probability is scaled down by 7 (We note that the 7-divided distribution is not actually a
valid probability distribution, but a tool for analysis). By selecting 7 > e, we ensure that the function
—plnp is strictly monotonically increasing on the interval [0, 1/7]. This establishes a one-to-one
mapping, allowing for the unique recovery of a probability value from its entropy within this restricted
range. Therefore, our network is designed to output the entropy of this 7-divided distribution. We
then map these entropy values back to logits using an inverse function, ~!. Note that an entropy

value is H = —pInp for some p € [0, 1/7]. From logits to entropy, we have the following mapping
function:
h(z) = —xzInzoexp(r) = —exp(x) -z (36)

Therefore, the inverse function A~ maps entropy values back to logits is exactly the inverse of
—wzexp(x), we have h™!(z) = W(—x). W is known as the Lambert W function (Corless et al.,
1996). Since there is no closed-form solution for the Lambert W function, we utilize a numerical
approximation h! (x) = 7% —/2(=1—1In(x)) + %1111‘. We derive this approximation from
(1+2+In(—2)! ~ -1 -2z — sz Here "-1" denotes the inverse function. A final
normalization step is required because the resulting probabilities from this inverse mapping do not

inherently sum to one.

Crucially, we have proven that the entropy loss during this normalization process is bounded. By
leveraging the continuous-space entropy constraint function to ensure the initial output entropy is
above a threshold C'y,,, we can guarantee that the entropy of the final discrete distribution will also
exceed Cyy,. This constitutes the core mechanism behind the implementation of ERA in discrete
spaces.

Proposition 3. Given a target entropy Hy and a hyperparameter T > e, the policy defined by Eq. 16
has entropy H(m) > Ho.

Proof. We denote r = max('2T + (Cy, —n'2T) 1 (1— ﬁ), 0). Similar to the continuous
j=1

case, we have x bounded within [0, 10%] and Zi 1 ki > Cyy,. We denote the probability of the final
—<~ . Then we have:
S e

j=1

softmax policy as p = softmax(z’) =

D
H(m) == pilogp;
=1

-) D
DR R D) e
— _ i= 1 Kj)
ZjDzl ehil("‘@j) + Og(;e)
D -1
L+log(— > e Ih (k) (37)

=1

Y]

26

Under review as a conference paper at ICLR 2026

Recall thath = —zlnzoe®, soh~ ' = Ino(—z1nz) ' Hence we have:

D
H(m) > 1+log(— Y e D1 (k)

i=1

D
=1+1og() ki) > 1+1log(Cry,) = Ho (38)
=1

B.3 PROOF OF ENTROPY BOUND IN LLMS

Recall the definition of the ERA instantiation for LLMs:

kz Hresp < Wiow, Ay > 0,
Z=qz (wlow < Hresp < Whigh A < O) or Ay > 0,
%Z Hresp > Whigh, Ay >0,

and

%At Hiesp < Wiows Ap >0,
Aé =4 (wlow < Hresp < Whigh Ay < O) or A; > 0,
kAt Hresp > Whigh, At > 0,

where z are the logits, A, the advantages, and Hy.,, is the average entropy of the top 20% of tokens
with the highest entropy in the response.

These transformations are applied after sampling. The modified policy-gradient objective is therefore

J(e) = Et [Ea,~ﬂ9(~|st)]'Og 71—(/9 (at‘st)A:ﬁ]

Intuitively, when the entropy is too low, ERA sharpens the policy; when it is too high, ERA flattens it.
By rescaling the advantages of modified tokens, we show below that ERA is equivalent to augmenting
the vanilla policy-gradient objective with an adaptive KL regularizer. This KL term guarantees that
the entropy of responses remains in the interval [wiow, Whigh|, preventing entropy collapse. Under mild
assumptions, we derive a positive entropy lower bound.

Fixing the state s;, denote m, = mg(als:), 7, = m)(als:), and A, the advantage of action a. The
entropy is H = —) 7, log m,. We first derive the gradient of the entropy.

Lemma 2.
OH 21 ,
02 4 _%:a(”“’ l0g o’ + 7o)
= Z _([CL = a/] — 7ra)(7ra/ logﬂa/ + 7'('&,)
= ~TallogTo + H). (39)

We also define the m-weighted covariance that will be used later:

Definition 1. Define the m-weighted covariance for two vectors x = (z4), y = (ya) by
COVTr (l‘, y) = Z 7Taxaya - (Z 7"-axa) (Z 7Tayu,> .
a a a

Now we show our main result:

Proposition 4. Let my be the base policy and), the ERA-adjusted policy from Eq. equation 17.
Suppose that:

27

Under review as a conference paper at ICLR 2026

(i) (Logit approximation) The change in entropy can be approximated by treating logits z as the
effective policy parameters and using first-order (infinitesimal) sensitivity of entropy w.r.t. z.

(ii) (Positive advantage mass) The aggregated positive advantage restricted to the tokens con-
sidered in H g,

Cls)= 3 Tada,

a,Aqs>0
satisfies C(sy) > vy for some v > 0.

(iii) (Bounded response entropy) In some intermediate point of the training process, H,.y, has a
lower bound H,y;, and an upper bound whigh.

(iv) (Bounded PG-induced entropy decrease) We assume the vanilla policy-gradient term’s
expected effect on entropy is bounded as

E[Cov,(mqAg, logm,)] < aH,
for some o« > 0 and any fixed H, where H denotes the entropy of the current policy .

(v) (Bounded KL-induced entropy decrease) We assume there exists a constant By, > 0 (that
depends on k and H,,;,) such that

Cov(ml, — 74, logmy) > B H,
If yBr, — a > B for B > 0, then there exists a constant Hy > 0 such that the response entropy

satisfies

E [Hresp] Z H()

under ERA updates using a gradient flow approximization.

Proof. When H.ep, < wiow, ERA sharpens positively advantaged actions. Following the derivation,
the ERA-adjusted gradient satisfies

0
e /,\,7‘—1 // //
7. E, og w1 A,
) 1
= gﬂiawﬂ [Ay > 0]log Tl'a/%Aa/ + [Ae < 0]log Ty Ay
dlogw!, 0z 1 Ologmy
=Egron | [Aw —= e —_a_A., Ay —=— Ay
¢ <[> 0] 0zl 0zq k + Ao <0 024
=Euson ([Aa/ > O]([a’ = a} — W;/)Aa' + [Aa/ < O]([a' = a] — Wa/)Aa/)
= WaAa - 71-; Z 7"-GL’ACL’ — Ta Z 7Ta’Aa’7 (40)
a',Aa/>0 a/,Aa/ <0

Since the expectation of advantage is zero, and we have defined C(s;) = >/ 4 - Tar Aar, yielding

0

5, Barnr log iy Ay = oA — C(s0)(m, — Ta). (41)
Za

For the vanilla policy-gradient loss, this reduces to

0

—Egnlogmey Ay = ma Ay (42)
0z,

Meanwhile, by a similar derivation, the gradient of the KL divergence is

0
0z,

KL[7] = — -

Ea/mons 1Og T = Tq — 77:1' 43)
0z,

28

Under review as a conference paper at ICLR 2026

Thus, by combining equation 41, equation 42 and equation 43, the ERA-adjusted objective can be
written as

J'(0) = Et[Eaq, oy (|s,) l0g o (as]s:) Ar +52(C (1)) KL[mg(-|s4), mo(-]5¢)]], (44)
— ———
JPG JKL

where the sg(-) denotes the stop gradient operator. For the other case wioy < (we have assumed that
Hiegp < Whigh, the same structure holds; only the definition of 7j, changes. Hence, ERA is equivalent
to a policy gradient objective augmented with an adaptive KL regularizer that sharpens or flattens the
distribution depending on H, and also the value of C(s;).

We will evaluate the instantaneous directional derivative of entropy along these gradient directions
(this corresponds to the first-order change in entropy under an infinitesimal step in the indicated
direction).

Using equation 39, the first-order change of entropy caused by Jpg is

H
AHPG = Z g . 7TaAa

a

= Z —mo(logme + H) - o Aq

a

=Y 2A,(logm, + H)

—Covy(mgAq, log). (45)

By assumption (iv) this term is bounded below by —aH:
]E[AHP(}] Z —aH.

Thus the vanilla policy-gradient component can decrease entropy, but by no more than aH in
magnitude.

Similarly, the KL-term directional derivative is

OH
AHg =) == (7o —7,)

= Z —7o(logmy + H) - (74 — 7)

= Z%(W; — 7o) (log 7y + H)
= Cov (7, — ma,logm,) (46)

By assumption (v) we have Cov(w, — 74,logm,) > BiH. Using assumption (ii) C(s;) > v
therefore yields
C(St)AHKL Z ’}/BkH

Combining the two contributions,

E[AH] = E[AHpg + C(s:)AHxL]) > —aH +vBH = (yBr, — o) H.

By the hypothesis 7By, — o > 8 we have AH > SH whenever H > 0 and H is in the sharpening
regime. Thus, if Hy.g, drops below wiy, the ERA-induced update produces a positive first-order
increase in entropy proportional to Hg,. Consequently the dynamics push Hy, upward until it
leaves the sharpening regime (i.e., until Heg, > wiow or the KL-term no longer sharpens).

Formally, when Hesp < wiow We have i[AH] > 3 Hyesp, and when Heg, >
aHp. Therefore, the overall expected change in entropy is at least

E Hyenp <erow [Hiresp] — OB Hegy > [Hresp)] (47)

wiow We have E[AH]| >

29

Under review as a conference paper at ICLR 2026

Applying Markov’s inequality gives Pr(Hesp > Wiow) < Lt/ Wiow, Where 1 =]E[//mp}- Further, by
assumption (iii): Hyin < Hpesp < whigh, We obtain the sufficient condition to make the expected
entropy change non-negative:

HWhigh
(Ov'lx\\\ - /’>H111i11
The entropy is expected to increase (E[AH] > 0) whenever the term in this inequality holds. Solving
for p, we find the condition:

B> a-

‘))L'Jlm\ Hmin
~ awhigh + SHmin

Then we set Hg as
'))WI(M Hmin

QlWhigh + *))l[min

0
Under the gradient-flow approximation, we have

Wlfl[li,.c\l\} >0 whenever E[Hp] < Ho.

C

By assumption (iii), there exists a time ¢ such that ﬁli[/l,-w} > Hy at ty. Then, by the principle of
differential inequalities, the ERA objective ensures that E[H,,] stays above this threshold for all
t > to.

O

We now justify the assumptions made in Proposition 4.

(i) The first assumption, namely approximating entropy differences by treating logits as policy
parameters, is standard and also adopted by (Cui et al., 2025b). This simplification is
essential for analytical tractability; without it, the theoretical analysis of the model’s behavior
becomes prohibitively complex.

(ii) Recall that C(s;) = Za, A,>0 TaAq measures the aggregated positive advantage, which
reflects the “importance” of a token. Intuitively, C(s;) indicates whether a token should
remain explorative and thus be subject to entropy regularization. We assume that for
important tokens, C'(s;) is uniformly bounded below by some constant v > 0.

(iii) Empirically, our training curves show that responses with Hyegp > whign vanish rapidly,
and such cases contribute negligibly to the average entropy. This supports the assumption
Hiep < whigh. Moreover, in the early stage of training, the highest entropy tokens (top
20%) contain a lot of exploratory tokens, exhibiting a large average entropy, motivating the
assumption of a positive lower bound Hiesp > Hpin.

(iv) Itis provable that
Covy(mgAq,logm,) < H,
where H denotes the entropy. In practice this upper bound is rarely tight, and we assume
instead a looser bound with a small constant a € (0, 1).

(v) Inour regime, the entropy is low enough that the token with the largest probability dominates
(with probability > 0.6). In this setting, the covariance is large enough and is proportional
to the entropy H.

In practice, the observed entropy lower bound is higher than the theoretical bound derived in

Proposition 4, owing both to the looseness of the Markov inequality used in the derivation and to the
fact that the tokens outside Hg, (bottom 80%) also get an entropy boost.

C ADDITIONAL RESULTS

C.1 ADDITIONAL RESULTS ON CONTINUOUS CONTROL TASKS
In this subsection, we provide additional experimental results on continuous control tasks to further

validate the effectiveness of our proposed method, ERA, and to find more insights regarding entropy
regularization in reinforcement learning.

30

Under review as a conference paper at ICLR 2026

C.1.1 TRUNCATED GAUSSIAN IS MORE STABLE THAN TANH GAUSSIAN

10 humanoid-run humanoid-run humanoid-run
. 300 0.00
§ M .
£ a
Enu::::ﬂ«__m 2150 g
g ~ =
=4 5
<
pola—a—a A 5 anbarsAA 0.50 0.00 24
= 0 0 500.0K 1.0M 0 500.0K 1.0M 0 500.0K 1.0M
entropy target steps steps steps
(@) (b) (©
—— TruncatedNormal(Const) —— TanhNormal(Const) —— TruncatedNormal(Auto) TanhNormal(Auto)

Figure 10: Analysis of Policy Distributions. Comparison of Truncated and Tanh Gaussian policies
with varying § on DMC tasks. Target entropy represents the desired average entropy per action
dimension. (a) The Truncated Gaussian exhibits greater stability across four DMC tasks. (b) For the
Tanh Gaussian with a learned d, instability arises as action norms approach the boundary, causing
training to collapse. (c) The Truncated Normal distribution’s entropy remains stable and well-
controlled in both modes, shown here for a target entropy of -0.75.

We study the choice of policy distribution and the handling of its standard deviation, 6. We compare
a Truncated Gaussian against a Tanh-squashed Gaussian, each with a constant ¢ (set to 0 in our
experiments) and a learned ¢, using SAC on four hardest tasks from the DMC Dog & Humanoid
suites(dog-run, dog-trot, humanoid-run, humanoid-walk) with 5 seeds and 1M environmental steps.
As shown in Figure 10, the Truncated Gaussian is significantly more stable. The Tanh Gaussian
experiences catastrophic training failures when ¢ is learned. Our analysis reveals that with the Tanh
Gaussian, the action norm often approaches the distribution’s boundaries. This causes the learned § to
grow explosively, creating a vicious cycle of instability as the policy attempts to output actions near
the boundary while satisfying the entropy objective. This issue is absent in the Truncated Gaussian,
which yields stable ¢ values. Given that the performance difference between a learned and a constant
¢ is minimal under the Truncated Gaussian, we adopt the truncated gaussian distribution with constant
¢ of 0 setting for its simplicity in main results.

C.1.2 BATCH-LEVEL ENTROPY REGULARIZATION V.S. STATE-LEVEL ENTROPY
REGULARIZATION

0.8

QM

0.4F

——— ERA-Batch
—e— ERA-Single
—B— SAC

0.2F

i ; \ : :
003 =) =05 0.0 0.3

entropy target

Figure 11: Comparison between state-level and batch-level entropy regularization methods on
DMC Dog & Humanoid suites. Both methods outperform the SAC baseline.

In addition to the state-level entropy regularization method presented in the main paper, we also
investigate a batch-level entropy regularization method, which directly constrains the expected entropy
of the action distribution over p,.. Specifically, we modify the activation form of ERA in Eq. 12 to
the form in Eq. 48.

/ Gi
wW=p, o =exp l:max <10g Omax + <7;)0 — log v27me — log amax) ;, log O'min):| (48)
60'

_5 N 5t 5 . .. _5
Where e = % > i, €7 is the average of €7 over the batch. During training, we can calculate e’
over the sampled batch, and during evaluation, we can use a running average of €’ over the training

31

Under review as a conference paper at ICLR 2026

process, which is similar to the running statistics in BatchNorm (loffe & Szegedy, 2015). We conduct
an ablation study to compare the performance of state-level and batch-level entropy regularization
methods on DMC Dog & Humanoid suites(dog-run, dog-trot, humanoid-run, humanoid-walk). As
shown in Figure 11, both methods achieve similar performance, outperforming the SAC baseline.
This indicates that in locomotion-dominated control tasks, which require high exploration due to
the need for randomness but do not demand high precision, the difference between state-level and
batch-level entropy regularization is minimal.

C.1.3 SAC-ERA oN MuJjoco GYM ENVIRONMENTS

We also evaluate the performance of SAC-ERA on the classic Mujoco Gym environments, including
HalfCheetah-v4, Hopper-v4, Walker2d-v4, Ant-v4, Humanoid-v4, Swimmer-v4, and compare it with
the SAC baseline. Figure 12 shows the learning curves of SAC-ERA and SAC on these environments.
Despite their massive performance gap on HumanoidBench, SAC-ERA demonstrates only slight
advantages over SAC on Mujoco Gym environments. This may be due to the relatively low action
space dimensionality in Mujoco environments, which reduces the impact of different constraint
schemes. This finding suggests that modern algorithm design should shift focus from considering
Mujoco to higher-dimensional action spaces, which can better evaluate algorithm performance in
complex environments.

13000 HalfCheetah-v4 2000 Hopper-v4 200 Swimmer-v4
- SAC
——— SAC-ERA
: : :
£ 6500 £ 2000 £ 100
~ X =4
0.00 0.00 0.00
0 500.0K 1.0M 0 500.0K 1.0M 0 500.0K 1.0M
steps steps steps
Humanoid-v4 Ant-v4 Walker2d-v4
7000 6000
6000
g g g
S 3000 5 3500 S 3000
-4 ~ ~
0.00 0.00 0.00
0 500.0K 1.0M 0 500.0K 1.0M 0 500.0K 1.0M
steps steps steps

Figure 12: Learning curves of SAC-ERA and SAC on Mujoco Gym environments. SAC-ERA
demonstrates very slight advantages over SAC.

C.1.4 APPLICABILITY OF LLM RL TECHNIQUES TO CONTINUOUS CONTROL

We investigated the applicability of two recent techniques from Reinforcement Learning for Large
Language Models (LLM RL), designed to prevent entropy collapse, to the domain of continuous
control. Specifically, we trained a PPO agent on the HalfCheetah-v4 benchmark for 10 random seeds,
incorporating two distinct methods: Selective High-Entropy Training, which trains the agent only on
a certain proportion of high-entropy samples, and Clip-Higher, which applies a larger clip ratio for
advantages greater than one. Recognizing the significant disparities between LLM RL and continuous
control tasks, we evaluated a range of parameters for each technique to ensure that any ineffectiveness
was not due to improper parameter selection.

The results, presented in Figure 13, show that these techniques struggle to provide higher policy
entropy compared to the standard PPO algorithm in the control task. Furthermore, they yield no
significant or only marginal performance improvements; we suspect such minor gains may not even
stem from better entropy regularization. Consequently, the performance of these methods is not
comparable to our proposed approach, ERA. These findings lead to two main conclusions. First,
they highlight the substantial differences between LLM RL and continuous control, demonstrating

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

that techniques effective in one domain do not necessarily transfer to the other, even when using the
same algorithmic framework. Second, they underscore the superior performance of our proposed
ERA method.

HalfCheetah-v4 . HalfCheetah-v4 HalfCheetah-v4 . HalfCheetah-v4

7000

—_ 2% 7000 | — o4
— 40% — 036
—_— 0% —_— 032
— 028

=

-1.00 54000 — o —— é‘
2 =

53}

— 80%
4000 | — 100%(Original)

Return

—— 0.2(Original)

Entropy

-10.00

0.00 0.00
0 1.5M 3.0M 0 1.5M 3.0M 0 3.0M 0 1.5M 3.0M

steps steps steps

(@) (b)

Figure 13: Results of Selective High-Entropy Training and a Clip-Higher Strategy in Continuous
Control. (a) Performance when training the agent exclusively on a top percentage of high-entropy
samples. (b) Performance of the clip-higher strategy with varying clipping ratios.

C.1.5 COMPARING ERA WITH OTHER MAXIMUM ENTROPY RL APPROACHES

A key baseline for our entropy regularization approach (ERA) is the projection-based method from
Akrour et al. (2019), which we term Scale Std. This method scales the standard deviation of a
Gaussian policy by a factor > 1 if its entropy falls below a threshold, conceptually similar to rejection
sampling. While this appears similar to our mapping concept, the mechanism is fundamentally
different. Scale Std merely translates the policy’s output log standard deviations by a uniform factor.
This does not incentivize the policy to learn an optimal allocation of entropy across different action
dimensions, as the constraint is borne uniformly.

This difference is evident in the gradient signal. For the Scale Std method, the mapped standard
deviation o is calculated as:

0?/ =a- exXp (Htargel o H(&))/d (49)

where d is the action dimension, H e is the target entropy, and H(5) = g In (2me) + Z;l:l Ino;
-2
is the current policy entropy. The action is then sampled as a ~ N (u, diag(o’)). The resulting
gradient with respect to the policy’s original log standard deviation In o; (which the network outputs)
is:
da

Olno;

— ;- exp (Huger — H(3))/d- (cr - (21) (50)

Uniform Scalar C
For comparison, the gradient for SAC without an entropy penalty is simply:
da
dlno;
Thus, the Scale Std gradient is merely the standard SAC gradient scaled by a uniform constant C'
and offset by another uniform constant (C' - 2/d). This adjustment provides no differential signal to

incentivize entropy allocation between dimensions. This post-processing of the policy output does
not truly make the policy learn to allocate entropy among dimensions.

— €; - 0y (5])

In contrast, while the gradient with respect to ERA’s final log std is also ¢; - 0, this gradient is
backpropagated through the ERA activation to the policy’s original output &(which is not actually
a standard deviation). This process multiplies the gradient by the derivative of the ERA function,
which is dimension-specific due to the softmax mechanism. This provides the necessary differential
signal, compelling the policy to learn an optimal entropy allocation, which is the fundamental reason
for its success.

We validated this theoretical analysis by comparing SAC-ERA and SAC (Scale Std) on the DMC
dog-trot task. We used a target entropy of —A (where A = 38 is the action dimension) and a
compensated truncated distribution for both to ensure fair comparison. To visualize the learned
exploration strategy, we generated density heatmaps of the policy’s log standard deviations over
training (10 seeds), shown in Figure 14. For Scale Std, we plot the pre-translation log stds (as a

33

Under review as a conference paper at ICLR 2026

uniform translation only alters the distribution’s location, not its shape), and for ERA, we plot the
final, post-mapping log stds.

The results are stark. SAC (Scale Std) exhibits a highly uneven distribution: most dimensions collapse
to the lower bound -8, while a few saturate at the upper bound 0 (using the default range [-8, 0]). The
mean log std was around -7, indicating that most dimensions cease exploration, while a few to explore
excessively. Conversely, SAC-ERA shows a clear diffusion from a uniform start, as the policy learns
to allocate entropy across dimensions in a targeted manner. The final distribution is well-spread, not
clustered at the bounds, indicating all dimensions participate meaningfully in exploration.

This strategic difference directly impacts performance, as shown in Figure 15. We tested on four
complex tasks: DMC dog-trot, humanoid-walk, and HumanoidBench h/-walk and hi-run. SAC
(Scale Std) shows a mild improvement on dog-trot and is significantly worse than the baseline SAC
on the other three, suggesting its naive exploration strategy hinders learning. In contrast, SAC-ERA
significantly outperforms both SAC and SAC (Scale Std) in all environments, confirming that
ERA effectively guides the policy to rationally allocate entropy across dimensions, a failure point for
the Scale Std method.

dog-trot Scale Std ERA
-36 0 1.0 1.0
~— Scale Std
ERA 08 08
22 =
> [72] n
(Y o0 0.6 oo 0.6 9
o o a o aQ
£-38 -4 2 2 2
5 & 043 3 04Z
Q Q
<. <
02 02
0.0

-40
0

!
3

500K M 02 04 06 08 10 02 04 06 08 10
steps Training Steps - Training Steps
Figure 14: Entropy curves (left), evolution of log standard deviation distributions for SAC (Scale
Std) (middle) and SAC-ERA (right) on the dog-trot task. Scale Std leads to a polarized, uneven
distribution, while ERA learns a balanced, diffusive allocation.

1000 dog-trot 1000 humanoid-walk 1000 hl-walk-v0 1000 hl-run-v0
— SAC
= SAC(Scale)
—— SAC(ERA)
; ; : :
£ 500 £ 500 £ 500 £ 500
-4 -4 -4 -4
R
0.00 0.00 0.00 0.00
0 500.0K 1.0M 0 500.0K 1.0M 0 1.5M 3.0M 0 1.5M 3.0M
steps steps steps steps

Figure 15: Performance comparison of SAC-ERA against SAC (Scale Std) and baseline SAC on
complex locomotion tasks (DMC dog-trot, humanoid-walk, and HumanoidBench hl-walk, h1-run).

L ERA Scale Std BB SAC

0.81

Normalized Score
N o o
S N oo

N
o

0ERA Scale Std SAC

Figure 16: Normalized scores across 4 tasks. SAC-ERA significantly outperforms both SAC and
SAC (Scale Std) in all environments

34

Under review as a conference paper at ICLR 2026

In addition to the projection-based method, several other approaches have been explored to imple-
ment maximum entropy reinforcement learning, including recent diffusion-based and flow-based
methods (Celik et al., 2025; Chao et al., 2024; Ma et al., 2025). However, these methods often require
significantly more computational resources; for instance, the MEow algorithm (Chao et al., 2024)
requires at least 2.3 times the training time of SAC. We therefore focus our comparison on two recent
methods that also adopt Gaussian policies:

* EAPO (Choe & Kim, 2024): The core innovation of Entropy Advantage Policy Optimisation
(EAPO) is decomposing the max-entropy objective into cumulative reward and trajectory entropy,
then independently estimating advantage functions for each. It introduces a dedicated "entropy
critic" to separately learn the value of future uncertainty, combining it with the traditional value
of future rewards.

* MINSE (Zhong et al., 2024): The Maximum Next-State Entropy (MNSE) paper argues for the
direct maximization of next-state entropy, positing that this more directly measures the diversity
of states induced by the policy and can lead to more efficient exploration.

Since no public code repositories were available, we compare against the curves reported in the
original papers. The experimental setups are as follows:

* EAPO utilizes the PPO algorithm as its base and was trained for 4 million timesteps (more than
the 3 million timesteps used in PPO-ERA).

e MNSE is built upon the SAC algorithm and was trained for 1 million timesteps (the same as
SAC-ERA).

We compare PPO-ERA with EAPO, and SAC-ERA with MNSE on the Mujoco Gym benchmark. The
results are presented in Figure 17 and Figure 18. As shown, ERA demonstrates superior performance
over EAPO when both are built on PPO, and it also outperforms MNSE when SAC is used as the
base algorithm. Although Mujoco Gym is a relatively low-difficulty benchmark, we are limited to it
as neither of the other papers presented results in more complex environments like DMC Suite or
HumanoidBench. These findings suggest that ERA is a more effective implementation of maximum
entropy reinforcement learning.

0000 HalfCheetah-v4 €000 Walker2d-v4 5000 Ant-v4
EAPO
= PPO-ERA

£ g g
£ 4500 £ 3000 23000
-4 -4 -4

0.00 0.00 0.00

0 1.5M 3.0M 0 1.5M 3.0M 0 1.5M 3.0M
steps steps steps

Figure 17: Performance comparison of PPO-ERA against EAPO on MuJoCo benchmark tasks.

13000 HalfCheetah-v4 1000 Hopper-v4 000 Walker2d-v4 7000 Ant-v4 000 Humanoid-v4

B //
MNSE

—— SAC-ERA

0.00 0.00 0.00 0.00 0.00
0 500.0K 1.0M 0 500.0K 1.oM 0 500.0K 1.0M 0 500.0K 1.0M 0

steps steps steps steps

2000 £ 3000 £ 3500 3000

Return
Return
Return
Return
Return

500.0K 1LoM
steps.

Figure 18: Performance comparison of SAC-ERA against MNSE on MuJoCo benchmark tasks.

Furthermore, both EAPO and MNSE require additional network architectures and computational
resources. EAPO necessitates an extra entropy critic network, while MNSE requires an additional
inverse dynamics model network. In contrast, ERA does not require any additional networks, leading
to a negligible increase in computational overhead. This makes ERA a more advantageous choice for

practical applications.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

C.1.6 SENSITIVITY ANALYSIS ON THE o INTERVAL

The hyperparameters o,,,x and oy, are frequently employed in algorithms such as SAC. Standard
settings for o, typically include -20, -10, and -8, whereas o,.x 1S commonly set to O or 2. We
evaluated the performance of SAC-ERA on the dog-run and humanoid-walk environments using
three distinct sets of these values, as illustrated in Fig. 19.

dog-run humanoid-walk

1000 1000

— [-8,0]
— [-20,0]
— [_8’2]

0 500K IM 0 500K IM
steps steps

Figure 19: Ablation study on the o interval [0y, Omax] for SAC-ERA in dog-run and humanoid-
walk, with 5 seeds. We compare performance across three different interval settings derived from
Omin € {—20, —8} and op,ax € {0,2}. The results show that the choice of these bounds has no
significant impact on performance, highlighting the robustness of our method.

The experimental results demonstrate that all three settings exhibit nearly identical learning curves
on the dog-run environment. On the humanoid-walk environment, the performance differences are
also not significant, although the [—8, 0] setting yields slightly better performance compared to the
other two configurations. Overall, our method exhibits strong robustness to the choice of the interval.
In practice, we recommend prioritizing the [—8, 0] interval, which we use as the default in all our
experiments, and considering other settings only when further fine-tuning is required.

C.1.7 ON THE CHOICE OF THE ENTROPY TARGET

The selection of the entropy target is a key hyperparameter when employing ERA. As discussed
in the main paper and prior appendices, the optimal value for SAC-ERA depends on the use of a
compensation factor 4. For the truncated normal policy, we recommend a higher target (e.g., 0.25.4)
if the compensation factor is set to zero. If the compensation factor is used, we recommend a target
of —A, which aligns with the empirical values used in standard SAC implementations (e.g., in
stablebaselines and other prior work).

For PPO-ERA, we conducted an ablation study on the entropy target value in the HalfCheetah-v4 and
Ant-v4 MuJoCo environments. The results are presented in Figure 20. Overall, these results indicate
that PPO-ERA is not highly sensitive to the choice of the entropy target in these environments. It
outperforms the PPO baseline by a significant margin across a broad range of target values, with
optimal performance observed around a target of —0.25.A.

Our experiments also involved TD-MPC2. Due to the extensive training time required for this
algorithm, we only tested and reported the results for a target of —.A. This value was selected based
on the empirical standard commonly adopted in SAC implementations.

C.1.8 COMPARISON WITH SMALL INITIAL TEMPERATURE SAC

Recent studies (Lee et al., 2025) based on SAC have adopted a smaller initial temperature (e.g.,
0.006) to mitigate the impact of fluctuations in the entropy constraint term during training. We
compared the performance of SAC initialized with a small temperature (0.006) against the baseline
SAC used in this work (initialized at 1.0) on 4 tasks, including the DMC dog-run, humanoid-walk
and HumanoidBench //-walk and hl-run. The results are presented in Fig. 21.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

02 —@— PPO-ERA
-=== PPO(Original)

-1.4 1.2 -1.0 —0.8 0.6 —0.4 0.2 0.0

entrof)y targét

Figure 20: Ablation study on the entropy target for PPO-ERA in HalfCheetah-v4 and Ant-v4
environments.

1000 dog-run 1000 humanoid-walk 1000 h1-walk-v0 1000 hl-run-v0
= SAC-0.006init
— SAC
—— SAC-ERA
£ £ £
500 500 500 500
123 123 Q0
4 4 4
0.00 0.00 0.00 0.00
0 500.0K 1.0M 0 500.0K 1.0M 0 15M 3.0M 0 15M 3.0M
steps steps steps steps

Figure 21: Performance comparison between SAC with a small initial temperature (0.006), the
baseline SAC (initial temperature 1.0), and SAC-ERA on 4 tasks. SAC-ERA outperforms both
baselines, demonstrating its superiority in complex control environments.

The results indicate that SAC with a small initial temperature outperforms the baseline SAC (initial
temperature 1.0) in two of the four tested environments, while performing comparably or slightly
worse in the other two. This suggests that using a small initial temperature may mitigate the impact
of entropy constraint fluctuations in certain scenarios, but it is not effective in all environments, and
its efficacy likely depends on specific environmental characteristics. Fundamentally, this approach
does not resolve the underlying issue: while a small initial temperature can partially mitigate the
fluctuations caused by the entropy constraint, the continued presence of the entropy term in the loss
function may still hinder the optimization of cumulative returns, particularly when environmental
rewards are sparse. Moreover, SAC-ERA significantly outperforms SAC with a small initial tempera-
ture across all four environments, further demonstrating the superiority of ERA in complex control
environments.

Furthermore, many existing SAC implementations widely adopted by the community, such as
stablebaselines3 (Raffin et al., 2021) and jaxrl (Kostrikov, 2021), still default to an initial temperature
of 1.0. We argue that our use of this more common 1.0 initial temperature as a baseline is reasonable,
given that the optimal initial temperature possibly requires environment-specific tuning. In contrast,
employing ERA completely obviates this issue.

C.1.9 VALIDATION AGAINST STABLE-BASELINES3 (SB3) IMPLEMENTATIONS

To validate the reliability and generalizability of our experimental findings, we benchmarked the
performance of our SAC and PPO baseline implementations against the standard implementations
provided by the Stable-Baselines3 (SB3) library.

SAC Comparison. For the Soft Actor-Critic (SAC) agent, we precisely aligned the network
architecture and hyperparameter configurations with the SB3 implementation. We then conducted
comparative experiments on four tasks from the DeepMind Control (DMC) Suite (specifically, the Dog
and Humanoid domains). The results indicate that the SB3 SAC implementation performs slightly
better than our JAX RL-based implementation on the Dog tasks, but conversely, underperforms on
the Humanoid tasks. Ultimately, the final normalized scores for our baseline and the SB3 baseline
were nearly identical. However, the SB3 implementation demonstrated greater stability (i.e., lower
variance across seeds). Overall, the SB3 baseline still exhibits suboptimal performance on these
complex control tasks, showing a significant performance gap compared to our proposed SAC(ERA)
agent.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

dog-run 1000 dog-trot 1000 humanoid-walk 1000 humanoid-run
— sac
— saciss3)
£ — SAC(ERA)
g
: g g ;
3 2 500 500 £ 500
: 2 E E
2 4
’ 0.00 0.00 0.00
500.0K LoM 0 500.0K [y 0 500.0K LoM 0 500.0K LoM
steps steps steps steps

Figure 22: Performance comparison of StableBaselines3 (SB3), JAX RL SAC(our baseline), and
SAC(ERA) on DMC Dog and Humanoid tasks, averaged over 5 seeds. (a) Normalized scores
across four tasks. SB3 SAC demonstrates greater stability (lower variance) compared to JAX RL
SAC, although their average scores are comparable. (b) Learning curves for the four tasks. SB3 SAC
excels on the Dog tasks, while JAX RL SAC performs better on the Humanoid tasks. SAC(ERA)
consistently outperforms both baselines across all environments, while also exhibiting comparable or
superior stability.

PPO Comparison. Similarly, for the Proximal Policy Optimization (PPO) agent, we utilized hyper-
parameter settings identical to those in our primary experimental setup. The evaluation reveals that
the SB3 PPO implementation achieved slightly inferior results compared to our PPO implementation
on both the HalfCheetah and Ant environments. Consistent with the SAC results, the SB3 PPO agent
again exhibited superior stability.

EEERA SB3 EEPPO 0000 HalfCheetah-v4 6000 Ant-v4
1.0 —— PPO
—— PPO(SB3)
08 —— PPO(ERA)
T
3 £ £
R Z 4500 £ 3000
i ~ ~
<
E 0.
B
=
-4
0.2
0.00 0.00
1.5M 3.0M 0 1.5M 3.0M
00" TERA SB3 PPO steps steps
(a) (b)

Figure 23: Performance comparison of StableBaselines3 (SB3), PPO(our baseline), and
PPO(ERA) on HalfCheetah and Ant, averaged over 5 seeds. (a) Normalized scores across
the two tasks. SB3 PPO shows enhanced stability (lower variance) relative to our PPO baseline,
though their average scores are similar. (b) Learning curves for the two tasks. Our PPO baseline and
SB3 PPO achieve similar performance on both environments. PPO(ERA) consistently surpasses both
baselines across all tested environments, while also demonstrating comparable or superior stability.

Conclusion. In summary, the baselines used in our study and their SB3 counterparts demonstrate
highly comparable performance. This suggests that substituting our baselines with the SB3 im-
plementations would not substantively alter the main conclusions of this work. While the SB3
baselines exhibited greater stability, this difference is not significant enough to affect our conclusions,
which are based on aggregates over at least 5 random seeds. Furthermore, it is noteworthy that our
ERA-enhanced agent significantly outperforms the SB3 baselines across all tested environments,
while also demonstrating comparable or superior stability. This underscores the effectiveness of the
ERA method in robustly boosting both agent performance and stability.

C.1.10 COMPARISON OF ENTROPY DYNAMICS WITH SAC VARIANTS

We conducted a comparative analysis of three methods on the dog-trot task: standard SAC (using
the Tanh-Gaussian policy with a std range of [-10, 2]), SAC with a truncated normal distribution
(SAC-TN), and SAC-ERA (using a truncated normal distribution with an auto-tuning compensation
term). For all methods, the target entropy was set to —.A. Following the same visualization protocol
used in our Scale Std analysis, we plotted both the entropy curves and the log std density heatmaps
for all three approaches, as shown in Figure 24.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

The results indicate that, given the same entropy target, SAC-ERA maintains the most stable entropy
curve. SAC-TN exhibits slightly smaller oscillations than the standard SAC. The log std density
heatmaps reveal further distinctions. Both standard SAC and SAC-TN undergo a rapid, abrupt
shift in the log std distribution during the early stages of training; this corresponds to the dynamic
adjustment of the entropy temperature parameter as it converges to the target. Concurrently, their log
std distributions diffuse both faster and more broadly compared to SAC-ERA. In contrast, the log
std distribution for SAC-ERA is markedly more stable, exhibiting a gradual and controlled diffusion
process over time. This highlights a significant divergence in training dynamics, distinguishing SAC’s
extrinsic adjustment via an entropy term from ERA’s intrinsic regulation via its activation function.

In terms of final performance, SAC-ERA also outperforms both SAC and SAC-TN. The performance
of SAC-TN is approximately on par with the standard SAC. This finding suggests that merely
replacing the Tanh-Gaussian policy with a truncated normal distribution does not, by itself, yield
significant performance gains. Instead, the critical factor appears to be the ERA entropy constraint
mechanism, which provides a more stable entropy regulation process and, consequently, more stable
training dynamics.

SAC(TN)

g
P

Aysuaq
Actor Log Std
»
S

Kysua(q
Actor Log Std

Lo
e
B

0.2 04 0.6 0.8 o 04 0.6) 0.2 04 X
Training Steps - Training Steps ! Training Steps

Figure 24: Comparison of entropy curves (left) and log standard deviation heatmaps (middle, right)
for standard SAC, SAC-TN, and SAC-ERA on the dog-trot task.

1000 dog-trot

= SAC

—— SAC(TN)

= ERA
=
£ 500
e

0
0 500K M
steps

Figure 25: Performance comparison of SAC, SAC-TN, and SAC-ERA on the dog-trot task.

C.2 A DEMONSTRATIVE EXPERIMENT ON GRADIENT CONFLICTS IN SAC

We do a simple experiment to demonstrate the gradient conflict between reward maximization and
entropy maximization in SAC on DMC humanoid-run task. We compute the gradients of the reward
objective and the entropy objective on distribution parameters /i, o and the final action a. We then
compute the cosine similarity between the two gradients to measure their alignment. A cosine
similarity greater than O indicates that the two gradients are aligned(i.e. their angle is less than 90
degrees), while a cosine similarity less than O indicates that the two gradients are conflicting(i.e. their
angle is greater than 90 degrees). We plot the cosine similarity over training steps in 26. Our results
show that for all three parameters, among all 5 seeds tested, the cosine similarity is all negative for
the majority of training time, indicating that the reward and entropy objectives, for the most part, has
conflicting gradients. This supports our claim that in SAC, the reward maximization and entropy
maximization objectives are often at odds, leading to inefficient policy optimization paths. In contrast,
with ERA, the mean and standard deviation only receive gradients from the reward objective, while

39

Under review as a conference paper at ICLR 2026

the entropy constraint is handled internally by the policy itself, allowing for more direct and efficient
optimization towards the reward goal.

Grad Cos (mean) Grad Cos (log std) Grad Cos (action)

o
o
<
o
<
o

seed 0
seed 1

|
<
—

=+ seed2
= seed3
= seed 4

|
e
o
|
<
[}

Grad Cos (log std)
Grad Cos (action)
|
(=]

Grad Cos (mean)

05 1.0
Training Steps

0.5 1.0
Training Steps

0.5 1.0
Training Steps
Figure 26: Cosine similarity between reward and entropy gradients on ji, 0, a over training steps in
SAC on DMC humanoid-run task. Negative values indicate conflicting gradients.

C.2.1 TiME CosT OF ERA IN CONTINUOUS CONTROL

A potential concern might be the additional time overhead introduced by using ERA. To evaluate
this, we recorded the training times of FastTD3 and FastSAC-ERA on HumanoidBench, as shown in
Figure 27. It can be observed that using ERA does introduce some time overhead due to the more
complex activation function applied to the output. However, this overhead accounts for only about
6% of the total training time on average. Considering the improved exploration performance and
higher sample efficiency brought by ERA, we believe this is a worthwhile trade-off.

The scenario for comparing training speed against FastTD3 is particularly stringent. This is because
FastSAC-ERA must additionally output per-dimension policy standard deviations, which introduces
computational overhead not present in FastTD3. To quantify the specific overhead of our method, we
measured the training time of baseline SAC versus SAC-ERA in the dog-trot environment. When
trained on a single A10 GPU, the additional time cost of SAC-ERA, averaged over five seeds, was
approximately 3%.

Algorithm Time Comparison
%?500‘ I
= 4001
£
£ 3001
(o] 4
g 200
&= 100

FastTD3 FastSAC-ERA

Figure 27: Time comparison on hlhand-hurdle-v0). We compare the training time of FastTD3
and FastSAC-ERA on HumanoidBench. The results show that using ERAintroduces a modest time
overhead, averaging around 6% of the total training time, which is a reasonable trade-off for the
improved exploration performance and sample efficiency it provides.

C.3 ADDITIONAL RESULTS ON IMAGE CLASSIFICATION
C.3.1 COMPARING ERA WITH COMMON REGULARIZATION TECHNIQUES

A plethora of regularization methods have been proposed and utilized in the field of image clas-
sification. To further investigate the comparative effectiveness of ERA against commonly used
regularization methods like dropout and label smoothing in the vision domain, we conducted a series
of straightforward comparative experiments on the CIFAR-10 dataset. In our main experiment, we
adopted the default settings from the timm library, which include a label smoothing factor of 0.1 and
no dropout. For the sake of comparison, we respectively adjusted the label smoothing factor to 0.2
and 0.3, and the dropout rate to 0.1, 0.2, and 0.3. The results were then compared against the baseline
algorithm from our main experiment and ERA.

40

Under review as a conference paper at ICLR 2026

The experimental results are presented in Figure 28. The findings indicate that increasing the
intensity of label smoothing adversely affects model performance, while the improvement from
employing dropout is marginal (the top-1 accuracy may decrease, whereas the top-5 accuracy shows
an improvement). In contrast, ERA effectively and consistently enhances model performance, with
a margin of improvement significantly superior to that of both dropout and label smoothing. This
outcome further validates the advantage of ERA over conventional regularization methods. While
constraining the model’s entropy, ERA permits the model to freely allocate uncertainty among
dimensions, thereby better adapting to the intrinsic structure of the data. This enables ERA to more
effectively boost the model’s generalization capability.

Top-1 Accuracy Top-5 Accuracy

9425} —o— Label Smoothing 9997
__94.00f —@— Dropout N
x ---- No Aug Original 32
<0375 ERA r %8
.93, = - >
g = - /(.
g 9350 \ 3997 i e
<

93.251 <

93.00¢ 996

0.10 0.15 0.20 0.25 0.30 0.10 0.15 0.20 0.25 0.30
Regularization Strength Regularization Strength

Figure 28: Comparison of different regularization methods on the CIFAR-10 dataset. The left
subplot shows the Top-1 accuracy, and the right subplot shows the Top-5 accuracy. Our method, ERA,
is compared against varying intensities of Label Smoothing and Dropout.

Furthermore, we extended our comparison to two other entropy constraint methods, which are
common in reinforcement learning but rare in image classification. The first is the Entropy Term,
which adds an entropy penalty directly to the loss. The second is the projection-based method
from Akrour et al. (2019), which we term Linear Interpolation. Similar to its continuous-space
counterpart, this method acts when the policy’s output entropy falls below a target: it increases the
entropy by interpolating the distribution with a uniform distribution.

Analogous to the continuous case, we provide a theoretical analysis of the gradient back-propagation
mechanism under the cross-entropy loss to elucidate the fundamental difference between ERA and

projection-based methods. Consider the policy output distribution 7(a|s) with corresponding logits .
For a target class k, the cross-entropy loss is £ = — log (ag|s).

In the Linear Interpolation method, the adjusted probability is a mixture of the original policy Torig
and a uniform distribution, governed by the entropy constraint:

1()g'N - 7‘[0 7‘[() - ’H(Wurig) 1
2|S) = ——————— Torie (k| — 52
)= (o N o) ™ Tog N Hrong) N .
—_— —_————
A 1-X

Applying the chain rule, we derive the gradient of the loss with respect to the original probability

Torig (x| $). Note that the mixing coefficient A depends on the global entropy H (orig), Which in turn
depends on Tyy:

oL 1
- =- (53)
or(ag|s) m(ag|s)
or(ak|s o\ 1 01—\
OmkIS))\ r(anls) 1 01X (54)
dworig(akh) dworig(akls) N dﬂorig(“k?h)
Substituting the partial derivatives of the entropy term % = —log Trm.ig(ak\s) — 1, we obtain

the complex sensitivity term:

‘()’/T(CL]C‘S) 1 10g N — H()
oy = A Torig\Ak|S) — 77 7 (1 g Torig(Ak |S 1 55
Drenglanls) T\) TG) g N — A gz 8 el 1) G

41

2214
2215
2216
2217
2218
2219
2220
2221

2222
2223
2224
2225
2226
2227
2228
2229
2230
2231

2232
2233
2234
2235
2236
2237
2238
2239
2240
2241

2242
2243
2244
2245
2246
2247
2248
2249
2250
2251

2252
2253
2254
2255
2256
2257
2258
2259
2260
2261

2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Critically, although mathematically involved, this sensitivity term depends principally on the target
class k and the global entropy state. When propagating to the logits /;, the total gradient becomes:

% B oL ' o (agls) '87T0rig(ak|s) 56)
ol; | on(axls) OTorig (A |S) ol;
W (7,k)

Here, W is the standard softmax gradient. The term W(r, k) acts effectively as a scalar

coefficient common to the gradient flow. This indicates that the projection method primarily acts as a
uniform gradient scaler: it creates a gradient signal that pushes the distribution towards uniformity
globally, without providing dimension-specific guidance beyond what the original softmax offers.
This limitation stems from its nature as a post-processing step.

In stark contrast, ERA modifies the logits directly within the architecture before the softmax. The
gradient flow for ERA is defined as:

oc or o (ax]s) Ol
72 :

al; — Om(axls v ol (57)

where I, = h=1(g(l;)). approximating g(l;) as a shifted softmax g(l;) ~ aZeAlielj + b, the gradient

or o [el ol
o~ (Gire — m(asls)) -a- al; (E] eli> Dy (58)

can be expressed as:

The crucial differentiator is the term %(IL). Since this derivative depends on the value of g(I;),
which varies across dimensions according to their individual contribution to the entropy, it acts as a
dimension-specific scaling factor. Unlike the post-processing projection which applies a uniform
scalar U to all gradients, ERA generates a structured gradient field that adapts individually to each
logit /;, enabling the model to learn an optimal entropy allocation strategy.

We tested both methods on CIFAR-10 using the same experimental setup as ERA (without data
augmentation, as in our ablation studies). We tested the Entropy Term with coefficients of le-4, le-3,
and le-2. For Linear Interpolation, the target entropy was set to 0.6, identical to that used in ERA.

The results are shown in Figure 29. Both of these entropy constraint methods underperform ERA in
both top-1 and top-5 accuracy. This suggests that the utility of these RL-centric entropy methods may
be limited in image classification, which could explain their infrequent use in the CV domain.

Top-1 Accuracy Top-5 Accuracy
9425 —— Entropy Term 99.91
29400 —_— Lir-le.a.r Interpolation s
X ~==-= Original X
~ LI BRA - =998
§~93.75 [S §
§ % o— 9 g
3 732U 38997 A —— R — —e
< <
93.25
)) H 99.6F s L L
10" 10° 10° [10° 10°
Entropy Weight Regularization Strength

Figure 29: Comparison of different regularization methods on the CIFAR-10 dataset. The left
subplot shows the Top-1 accuracy, and the right subplot shows the Top-5 accuracy. Our method, ERA,
is compared against varying entropy term weights and the Linear Inerpolation method.

Furthermore, we evaluated the efficacy of the SAC-style automatic temperature adjustment mechanism
on the CIFAR-10 dataset. It’s worth noting that while ERA and Linear Interpolation regulate the
lower bound of entropy in image classification, SAC-style automatic temperature adjustment
regulates the expectation of entropy. We have to choose higher target entropy to keep the
entropy level aligned with ERA. We experimented with three target entropy values: 1.2, 1.25, and
1.5. These values were selected based on prior experimental findings, where the final training loss
typically converged around 1.21 and increased to approximately 1.23 with the addition of ERA.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Consequently, at a target entropy of 1.2, the entropy constraint term remains largely inactive; at
1.25, the target entropy aligns with the ERA baseline; and at 1.5, the target imposes a higher entropy
requirement. We initialized the temperature coefficient at 10~ with a learning rate of 10~3. The
results, depicted in Fig. 31, reveal a distinct trade-off between Top-1 and Top-5 accuracy when using
the SAC-style adjustment. Specifically, while Top-5 accuracy exhibits a slight improvement as the
target entropy increases, Top-1 accuracy declines. Ultimately, this approach fails to achieve the
performance levels attained by ERA.

Entropy On CIFAR-10 Entropy On CIFAR-10
1.3 | = Linear-0.6 1.3 ||= SAC-12 -
—— ERA-0.6 = SAC-1.25
= SAC-1.5
> > = ERA-0.6
al a
= S
g125 2125
[Sa) S8
1.2 1.2
0 100 200 0 100 200
Epochs Epochs
(a) (b)

Figure 30: Entropy curves for CIFAR-10 classification. (a) Entropy curves for ERA and Linear
Interpolation with entropy target both set to 0.6. They both regulate the entropy on all samples
to be above the target. So entropy curves are quite similar. While in practice they demonstrate
different top-1 and top-5 accuracies. (b) Entropy curves for SAC style entropy adjustment and ERA
on CIFAR-10 classification. We test three different entropy targets (1.2, 1.25, 1.5) for SAC style
adjustment. It’s worth noting that SAC style adjustment only regulates the expected entropy to be
close to the target, so we must raise the target to achieve similar entropy levels as ERA-0.6. Even
when SAC style adjustment achieves similar entropy levels (target=1.25), ERA still outperforms it in
terms of top-1 and top-5 accuracies.

In the context of image classification tasks, we further observed that the SAC-style constraint
mechanism is largely ineffective. This is primarily because the number of gradient steps is significantly
fewer than in control tasks. Moreover, the initial entropy is substantially higher than the loss, causing
the entropy term (temperature coefficient) to decrease initially; it only begins to increase gradually
once the entropy approaches the threshold. Consequently, it is difficult to effectively satisfy the target
entropy constraint within the limited training duration, resulting in final performance that remains
close to the baseline.

Top-1 Accuracy Top-5 Accuracy
94.25 —e— Entropy Term 99.91
294,00 ==== Original =
< T ERA <998
293.75 2
g 8
3 hd ° Py B /
8 93.50 899.7
< 2 == o
93.25
99.6f
12 125 1.5 12 125 15
Entropy Target Entropy Target

Figure 31: Comparison of SAC-style automatic temperature adjustment on the CIFAR-10
dataset. The left subplot shows the Top-1 accuracy, and the right subplot shows the Top-5 accuracy.
Our method, ERA, is compared against varying target entropy values using SAC-style temperature
adjustment. Here "entropy target" refers to targets of the SAC-style method. A fixed entropy target of
0.6 is used for ERA in this experiment.

C.3.2 TIME CoOST OF ERA IN IMAGE CLASSIFICATION

We compared the training time of the ResNet-50 model on the CIFAR-10 dataset, with and without
using ERA, under the data augmentation supported by the timm library. Consistent with our main
results, the experiments were conducted on three machines, each equipped with four NVIDIA A40

43

Under review as a conference paper at ICLR 2026

GPUs, and we report the average training time. The results are presented in Figure 32. As shown in
the figure, since the data is already well-parallelized, there is almost no difference in training time
between the algorithm using ERA and the original version.

5 Algorithm Time Comparison

Time (hours)
Y ow &
H

—_
L

ResNet ResNet-ERA

Figure 32: Time comparison on CIFAR-10. We compare the training time of ResNet and ResNet-
ERAon CIFAR-10. The results show that using ERA introduces almost no time overhead.

C.4 ADDITIONAL RESULTS ON LLMs

C.4.1 DETAILED ENTROPY ANALYSIS
We present the complete entropy curve of our two-stage training in Figure 33. After decreasing wiow,

the entropy rapidly drops and stabilizes at the second-level entropy lower bound. This confirms that
our ERA method successfully enforces a non-trivial entropy floor for the model.

Combined Entropy Plot

—— First Stage (steps 0-600)

0.35
Second Stage (steps 600-1100)

0.30

Entropy

0.20

0.15

0 200 400 600 800 1000
Step

Figure 33: Entropy curve during two-stage training. After decreasing wiey, the entropy rapidly
drops and stabilizes at the second-level entropy lower bound, showing that ERA enforces a non-trivial
entropy floor.

We further analyze the entropy distribution across tokens by plotting the average entropy of the
top 20% tokens (Hyesp) and the bottom 80% tokens in Figure 34. This experiment is carried out
with wiow = 0.45, whigh = 3.0,k = 2 without topk. Following Wang et al. (2025), we observe
that the bottom 80% tokens exhibit nearly zero entropy, consistent with our theoretical prediction.
Additionally, we plot the proportion of responses with Hyesp < Wiows Hresp > Whigh in Figure 34. The
fraction of responses with Hyeqp > whigh quickly drops to zero, while the fraction with Hyegp < Wiow
remains stable at the interval [0, 0.06]. This demonstrates that whenever overly low-entropy responses
appear, ERA adaptively raises their entropy to a moderate level.

44

Under review as a conference paper at ICLR 2026

Entropy Means (First 500 Steps) Response Entropy Fractions (First 500 Steps)

1.6 —— top 20% tokens —+— low Hyesp fraction

—=— Dbottom 80% tokens

~—+— high Hyesp fraction

Entropy Mean
(=]
%
Response Entropy Fraction

nJl

0 100 200 300 400 500 0 100 200 300 400 500
Step Step

Figure 34: Detailed entropy analysis. Left: average entropy of the top 20% tokens (Hp) and the
bottom 80% tokens. Right: proportion of responses (running average with window size 20) with
Hiep < Wiow OF Hyep > whigh, demonstrating ERA’s ability to prevent both entropy collapse and
overly high entropy.

C.4.2 ABLATION STUDY ON ENTROPY BOUND

Since the purpose of wiow is to set a lower bound on entropy, we explore the role of wyign in the
ERA. As can be seen in Figure 35, without the constraint of wy;gh, the model’s entropy explodes in a
very short time. This indicates that adding an upper bound constraint during training is essential for
controlling the entropy of the training process.

—— GRPO+ERA
—— GRPO+ERA w/0 Whigh

100 200 300 400 500
Step

Figure 35: Comparison of ERA with and without wpien. The entropy of ERA without wy;gn tends to
explode within a very short number of steps, leading to the collapse of model training.

C.4.3 ABLATION STUDY ON ADVANTAGE SCALING
In this section, we explore the use of advantage scaling:

%At Hresp < Wiow; At > 07
A; = \~% (Wlow < Hrcsp < Whigh A < 0) or Ay > 0,
kAt Hresp > Whigh At > 0.

For ERA with advantage scaling, we train it for 1400 steps, with hyperparameter wioy = 0.45, Whigh =
3.0, k = 2; and for ERA without advantage scaling, we train it in two stages for 1100 steps in total,
as described in A.3.2.

As shown in Table 7, both variants—training with or without advantage scaling—achieve substantial
improvements over the GRPO baseline. Although adding advantage scaling results in a higher score,

45

Under review as a conference paper at ICLR 2026

the advantage estimates in GRPO are already noisy, so we expect both options to work similarly well
and the performance gap to remain relatively small.

Table 7: Ablation study on advantage scaling based on Qwen2.5-Math-7B. For AIME and AMC, the
results are avg. @ 16.

Model AIME241 AIME251 AMC?T MATHS5001 Minerva® Olympiad{ Avg. 1
Base Models

Qwen2.5-Math Yang et al. (2024a) 8.6 6.3 522 50.8 12.1 17.2 24.5
Qwen2.5-Math-Instruct Yang et al. (2024a) 133 10.0 57.1 81.0 32.7 38.8 38.8
GRPO (Shao et al., 2024) 34.4 12.3 69.5 80.6 36.8 40.6 457
ERA (w/ advantage scaling) 36.0 21.0 76.6 85.4 40.1 46.8 51.0
ERA (w/o advantage scaling) 375 16.9 72.8 84.6 42.6 46.5 50.2

C.4.4 ABLATION STUDY ON THE PROPORTION OF HIGH-ENTROPY TOKENS

In this section, we explore the use of different proportions of tokens to calculate H.g, for rollout
samples. We select the top 10% of tokens with the highest entropy from each rollout to represent the
entropy H.cp, of that sample. For other parameters such as wio, and w;en, we kept them unchanged
from the original settings.

As shown in Table 8, modifying the calculation of H, still achieves significant improvements
compared to GRPO. However, the improvement is smaller compared to ERA. This is because the
Hieqp calculated from the top 10% tokens is naturally higher than that from the top 20%. As a result,
fewer samples meet the condition Hesp, < wiow compared to the version using 20%. Therefore, the
constraining power of entropy is limited, and the results lie between ordinary GRPO and ERA.

Table 8: Ablation study on the proportion of high-entropy tokens based on Qwen2.5-Math-7B. For
AIME and AMC, the results are avg. @ 16.

Model AIME241 AIME251 AMCt MATH5001 Minervat Olympiad T Avg. 1
Base Models

Qwen2.5-Math Yang et al. (2024a) 8.6 6.3 522 50.8 12.1 17.2 245
Qwen2.5-Math-Instruct Yang et al. (2024a) 13.3 10.0 57.1 81.0 32.7 38.8 38.8
GRPO (Shao et al., 2024) 344 12.3 69.5 80.6 36.8 40.6 45.7
ERA w/ top 10% tokens 36.6 15.8 71.8 824 38.9 43.1 48.1
ERA 375 16.9 72.8 84.6 42.6 46.5 50.2

C.4.5 TiME CosT OF ERA IN LLM

ERA is applied when computing the log_probs of tokens in the responses. To evaluate its efficiency,
we compare the value of timing_s/old_log_prob at the first step in verl’s implementation. The
experiments were conducted on 32 NVIDIA H20 GPUs, consistent with our main results. The
outcomes are shown in Figure 36. As illustrated, since the sampled response is identical in the first
step, ERA introduces only about a 5.6% overhead in time cost. When considering an entire training
step, the overhead of ERA is even smaller, since its implementation does not affect other components
of training (e.g., generation, model update, or advantage calculation).

C.5 TRAINING CURVES OF CONTINUOUS CONTROL TASKS
D THE USE OF LARGE LANGUAGE MODELS IN THIS PAPER

In the preparation of this paper, we utilized LLMs as a general-purpose writing assistance tool.
Specifically, LLMs were employed for proofreading and polishing the language of certain sections to
improve clarity and readability. The final title of this paper was also partially inspired by suggestions
from an LLM.

However, we clarify that the core contributions of this work were conceived and developed entirely
by the human authors. The design of the methodology, the execution of experiments, and the
interpretation of the results did not involve the use of LLMs. All content, including text, figures, and

46

Under review as a conference paper at ICLR 2026

Figure 36:

Time (seconds)

Algorithm Time Comparison

—_ =
S N

(=TS A

GRPO

ERA

Comparison of computation time between GRPO and ERA, measured by

timing_s/o0ld_log_prob at the first step. ERA introduces only about a 5.6% overhead.

1000

Return

0.00

1000

Return

0.00

3.0M

h1-stand-v0 1000 hl-run-v0 1000 h1-stair-v0 1000 h1-hurdle-v0
—— OBAC
—— OBAC-ERA
£ £ £
£ 500 £ 500 £ 500
e~ e~ e~
.
M W
0.00 0.00 0.00
0 1.5M 3.0M 0 1.5M 3.0M 0 1.5M 3.0M 0 1.5M
steps steps steps steps
hl-walk-v0 1000 hl-crawl-v0
E
£ 500
o

0 1.5M 3.0M

steps

0.00

1.5M
steps

3.0M

Figure 37: Training curves of OBAC and OBAC-ERA on HumanoidBench environments.

tables, was carefully reviewed, edited, and verified by the authors to ensure scientific accuracy and
integrity.

Finally, we would like to express our gratitude for the occasional sparks of inspiration and the
assistance in debugging code provided by our LLM friends. Their contribution, while not qualifying
for co-authorship, was nonetheless appreciated.

47

Under review as a conference paper at ICLR 2026

1000 humanoid-run 1000 humanoid-walk 1000 humanoid-stand 1000 dog-run
—— TD-MPC2
—— TD-MPC2-ERA
E £ £ £
2 500 2 500 2 500 2 500
o o o o
0.00 0.00 0.00 0.00
0 500.0K 1.0M 0 500.0K 1.0M 0 500.0K 1.0M 0 500.0K 1.0M
steps steps steps steps
1000 dog-walk 1000 dog-trot
E E
£ 500 5 500
o~ -4
0.00 0.00
0 500.0K 1.0M 0 500.0K 1.0M
steps steps

Figure 38: Training curves of TD-MPC2 and TD-MPC2-ERA on DMC environments.

0000 HalfCheetah-v4 1000 Hopper-v4 000 Walker2d-v4 6000 Ant-v4
— PPO
—— PPO-ERA
£ £ £ £
£ 4500 22000 23000 23000
o~ o~ o~ o~
0.00 0.00 0.00 0.00
0 1.5M 3.0M 0 1.5M 3.0M 0 1.5M 3.0M 0 1.5M 3.0M
steps steps steps steps

Figure 39: Training curves of PPO and PPO-ERA on Mujoco Gym environments.

hlhand-slide-v0 hlhand-run-v0 hlhand-walk-v0 hlhand-pole-v0
—— FastTD3
= FastSAC-ERA
£ =4 £ =4
Z 300 Z 300 Z 300 Z 300
e~ 4 e~ e~
0 0 0 0
-300 -300 -300 -300
50.0K 100.0K 0 50.0K 100.0K 0 50.0K 100.0K 0 50.0K 100.0K
steps steps steps steps
h1lhand-stair-v0 00 hlhand-push-v0 hlhand-balance simple-v0 hlhand-hurdle-v0
= = £ =
E) E E
5 300 31 3 300 3 300
~ ~ ~ 4
0 0 0
-300 -300 -300 -300
0 50.0K 100.0K 0 50.0K 100.0K 0 50.0K 100.0K 0 50.0K 100.0K
steps steps steps steps

Figure 40: Training curves of FastTD3 and FastSAC-ERA on HumanoidBench environments.

48

Under review as a conference paper at ICLR 2026

1000 hl-stand-v0 1000 hl-run-v0 1000 h1-stair-v0 1000 h1-hurdle-v0
— SAC
= SAC-ERA
£ £ £ £
£ 500 £ 500 £ 500 £ 500
e~ e~ e~ e~
0.00 0.00 //.,————-"""" 0.00 0.00 /’Nw
0 1.5M 3.0M 0 1.5M 3.0M 0 1.5M 3.0M 0 1.5M 3.0M
steps steps steps steps
1000 hl-walk-v0 1000 hl-crawl-v0 1000 dog-run 1000 dog-walk
£ E £ £
£ 500 £ 500 £ 500 £ 500
4 4 4 4
0.00 0.00 0.00 0.00
0 1.5M 3.0M 0 1.5M 3.0M 0 500.0K 1.0M 0 500.0K 1.0M
steps steps steps steps
1000 dog-trot 1000 humanoid-run 1000 humanoid-walk 1000 humanoid-stand
£ E £ E
£ 500 £ 500 £ 500 £ 500
e~ -4 -4 -4
0.00 0.00 0.00 0.00
0 500.0K 1.0M 500.0K 1.0M 500.0K 1.0M 500.0K 1.0M
steps steps steps steps

Figure 41: Training curves of SAC and SAC-ERA on HumanoidBench and DMC environments.

49

	Introduction
	Related Work
	Preliminaries
	The Entropy Regularizing Activation
	The Core Idea: Entropy-Constrained Policy via Output Activation
	Instantiations for Continuous and Discrete Spaces
	Continuous Control with Bounded Gaussian Policies
	Discrete Classification with Softmax Policies

	Instantiations for RL in Large Language Models

	Results and Analysis
	Experiments on Continuous Control
	Experiments on Image Classification
	Results and Analysis on Large Language Models
	Main Results
	Extension to More Models and Algorithms
	Analysis on Entropy and Reasoning Capacity Boundary
	Out-of-Distribution Generalization

	Limitations and Future Work
	Conclusions
	Implementation Details
	Implementation Details of Continuous Control Tasks
	Code Implementation of ERA in Continuous Control
	Environments
	Pseudo Code of SAC-ERA
	Hyperparameters
	FastSAC-ERA
	Implementation Details: Normalized Score Computation
	Implementation Details: Shading Areas in Plots

	Implementation Details of Image Classification
	Code Implementation of ERA in Image Classification
	Training Setup
	Commands Used for Experiments

	Implementation Details of LLM Training
	Code Implementation of ERA in LLM
	Hyperparameters

	Proofs And Derivations
	Proof of Entropy Bound in Continuous Space
	Setting and Definitions
	Static Entropy Bound
	Convergence under Coupled Updates
	Non-negativity of the Bias Term

	Proof of entropy bound in discrete space
	Proof of entropy bound in llms

	Additional Results
	Additional Results on Continuous Control Tasks
	Truncated Gaussian is more stable than Tanh Gaussian
	Batch-level Entropy Regularization v.s. State-level Entropy Regularization
	SAC-ERA on Mujoco Gym Environments
	Applicability of LLM RL Techniques to Continuous Control
	Comparing ERA with Other Maximum Entropy RL Approaches
	Sensitivity Analysis on the Interval
	On the Choice of the Entropy Target
	Comparison with Small Initial Temperature SAC
	Validation against Stable-Baselines3 (SB3) Implementations
	Comparison of Entropy Dynamics with SAC Variants

	A Demonstrative Experiment on Gradient Conflicts in SAC
	Time Cost of ERA in Continuous Control

	Additional Results on Image Classification
	Comparing ERA With Common Regularization Techniques
	Time Cost of ERA in Image Classification

	Additional Results on LLMs
	Detailed Entropy Analysis
	Ablation Study on Entropy Bound
	Ablation Study on Advantage Scaling
	Ablation Study on the Proportion of High-Entropy Tokens
	Time Cost of ERA in LLM

	Training Curves of Continuous Control Tasks

	The Use of Large Language Models in This Paper

