
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ENTROPY REGULARIZING ACTIVATION: BOOSTING
CONTINUOUS CONTROL, LARGE LANGUAGE MODELS,
AND IMAGE CLASSIFICATION WITH ACTIVATION AS
ENTROPY CONSTRAINTS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose ERA, a new paradigm for entropy-constrained policy via output
activation. It guarantees minimum sampling entropy by transforming the outputs
of the last layer. Our approach demonstrates broad effectiveness across different
domains: 1) for large language models (LLMs), boosting the AIME 2025 score
for Qwen2.5-Math-7B by 37.4%; 2) for continuous control reinforcement learning
agents, improving performance by more than 30% over strong baselines such as
SAC on the challenging HumanoidBench; 3) for image classification, enhancing
ImageNet top-1 accuracy by 0.69% for ResNet-50. These gains are achieved with
a computational overhead of less than 7%. Our work validates output activation as
a powerful tool for entropy control, opening a new direction for designing simpler
and more robust algorithms.

1 INTRODUCTION

Decision-making problems represent a broad class of challenges, from robotic control to Large
Language Models alignment (Sutton et al., 1998; Ouyang et al., 2022; Kober et al., 2013). In these
settings, encouraging exploration and maintaining policy stochasticity, often quantified by entropy,
is critical (Ziebart et al., 2008; Schulman et al., 2017b). In reinforcement learning, the maximum
entropy paradigm, exemplified by algorithms like Soft Actor-Critic (SAC) (Haarnoja et al., 2018),
has become a prevailing approach in control tasks. However, these methods, which add an entropy
bonus directly to the training objective, inevitably alter the optimization landscape and can interfere
with the optimization of the primary objective.

The challenge becomes even more pronounced in LLM alignment. Policy gradient methods (Sutton
et al., 1999) such as GRPO (Shao et al., 2024) frequently suffer from entropy collapse (Cui et al.,
2025b), leading to reduced diversity and performance degradation. Directly incorporating entropy
bonuses has been shown to be unstable or ineffective in this setting (Cui et al., 2025b). Moreover,
prior works have explored methods that avoid direct modification of the loss function, including
clip-higher (Yu et al., 2025) and training exclusively on the high-entropy tokens (Wang et al., 2025).
While these methods provide useful insights, they remain ad hoc, lack a principled mechanism for
entropy regulation, and are narrowly tailored to the LLM domain, limiting their applicability to
broader settings such as continuous control and computer vision tasks.

These observations highlight a fundamental gap: existing approaches either distort the primary
optimization objective, as in RL algorithms with entropy bonus terms, or provide heuristic, domain-
specific fixes with no theoretical guarantees, as in LLM alignment. Therefore, there is a pressing need
for a new entropy-constraining paradigm that is universally applicable, non-invasive to the primary
objective, and theoretically grounded.

In this work, we introduce Entropy Regularizing Activation (ERA), a novel paradigm for entropy-
constrained training. The key insight of ERA lies in realizing an entropy-constrained policy via
output activation. Specifically, we impose the constraint through a class of well-designed activation
functions applied to the model’s final output. This approach completely decouples the optimization
of the primary objective from the entropy constraint, allowing the loss function to focus solely on

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

AIME24 AIME25 AMC0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

8.6

35.6 33.9 34.4
37.5

6.3

13.1 13.7 12.3
16.9

52.2

65.1
62.5

69.5
72.8

Base KL cov Clip cov GRPO ERA

(a)

SAC PPO TDMPC2 OBAC0.0

0.2

0.4

0.6

0.8

1.0

0.59 0.57 0.56

0.63

0.84
0.88

0.81 0.82

Original ERA-Augmented

(b)

ImageNet CIFAR1074

75

76

77

78

74.75

75.44

76.93

77.30

93.00

93.25

93.50

93.75

94.00

93.61

93.82

93.53

93.93

Base ERA Base w/ Aug ERA w/ Aug

(c)
Figure 1: ERA Boosts Large Language Models, Continuous Control and Image Classification.
(a) Large Language Models: ERA consistently enhances the performance of Qwen-2.5-Math-7B on
AIME’24,AIME’25 and AMC datasets. (b) Continuous Control: ERA significantly improves multi-
ple popular RL algorithms, including SAC, PPO, TD-MPC2 and OBAC. (c) Image Classification:
ERA consistently boosts the performance of ResNet-50 on ImageNet and CIFAR-10 datasets.

its original goal (e.g., maximizing rewards). We show that ERA not only provides provable entropy
guarantees in theory, but in practice, it functions as a non-invasive module that can be seamlessly
integrated with existing algorithms.

The generality and effectiveness of this paradigm are validated across diverse domains, including
continuous control, image classification, and large language models. For example, on the DeepMind
Control Suite (Tassa et al., 2018), ERA improves the performance of SAC on high-dimensional tasks
like Humanoid and Dog by over 25%. Its versatility is also demonstrated in image classification,
a domain where preventing model overconfidence via regularization is critical. Our approach
complements established methods, boosting performance on top of strong data augmentation and
label smoothing (Szegedy et al., 2016). In LLM RL, ERA enables a GRPO-trained Qwen-2.5-Math-
7B (Yang et al., 2024b) to achieve a remarkable improvement of 9.0% and 37.4% on the AIME-24
and AIME-25 benchmarks, respectively.

Our main contributions are summarized as follows:

• We introduce ERA, a novel entropy constraint paradigm based on activation functions, and
establish a theoretical framework with provable entropy guarantees.

• We design effective instantiations of ERA for both continuous (control) and discrete (image
classification) domains. For large language models, we propose a specialized, adaptive variant
of ERA that addresses the unique challenges within this domain.

• Our experiments of these instantiations demonstrate significant performance improvements
over strong baselines across domains, and reveal their properties such as parameter sensitivity.

2 RELATED WORK

Policy learning in control. Entropy maximization is a crucial aspect of RL, significantly enhancing
exploration and robustness (Ziebart, 2010; Haarnoja et al., 2017). Prior work has explored various
methods to incorporate entropy maximization into RL algorithms (O’Donoghue et al., 2016; Nachum
et al., 2017; Haarnoja et al., 2017). PPO (Schulman et al., 2017a) introduced an entropy bonus in its
clipped surrogate objective. SAC (Haarnoja et al., 2018) later employed a maximum-entropy objective
with a dynamically adjusted temperature parameter, but this can lead to suboptimal performance.
More recent approaches have introduced alternative methodologies for implementing maximum
entropy RL (Chao et al., 2024; Choe & Kim, 2024), while others have shifted the optimization focus
directly to state entropy (Zhong et al., 2024). A different line of work avoids modifying the objective
function. Akrour et al. (2019); Otto et al. (2021) pioneered this direction by projecting the policy
parameters to a constrained subspace. However, their instantiation relies on isotropic transformations
(e.g., uniform mixing), which impose uniform regularization across all dimensions—a strategy that
scales poorly to high-dimensional action spaces. In contrast, our work intervenes at the output layer
with a non-linear activation that provides dimension-specific gradient guidance, enabling the network
to learn structured exploration strategies rather than being forced into uniform stochasticity.

RL for LLMs. Recent breakthroughs in LLM reasoning, such as OpenAI-o1 (Jaech et al., 2024),
DeepSeek-R1 (Guo et al., 2025), and Kimi-k1.5 (Team et al., 2025), have redirected attention from

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

chain-of-thought prompting (Wei et al., 2022) and supervised fine-tuning (Li et al., 2024a; Yeo et al.,
2025) toward RL. Within this paradigm, policy entropy collapse emerges as a fundamental obstacle:
the decay of exploratory behavior often leads to performance plateaus. A prevalent approach is
reward shaping (Cheng et al., 2025), which augments the reward or advantage with an entropy bonus
to maintain a viable exploration–exploitation trade-off. Complementary strategies, including loss
re-weighting (Wang et al., 2025; Cui et al., 2025b) and clip-higher regularization (Yu et al., 2025),
mitigate the risk of entropy collapse. Unlike these approaches, our method is a general and concise
paradigm, universally applicable across domains and endowed with rigorous theoretical guarantees.

3 PRELIMINARIES

Markov Decision Process. We consider a Markov Decision Process (MDP) (Bellman, 1957) defined
by the tuple (S,A, P,R), where S, A are the state and action spaces, P is the transition dynamics,
and R is the reward function. A policy πθ(at|st) parameterized by θ aims to maximize the expected
discounted return:

J(πθ) = Eτ∼πθ

[
T∑

t=0

γtR(st, at)

]
, (1)

where γ ∈ [0, 1) is the discount factor, t is the timestep, st ∈ S and at ∈ A are the state and action at
timestep t, and τ = (s0, a0, s1, a1, . . .) represents a full trajectory sampled by following the policy
πθ.

Policy optimization. Policy gradient (PG) methods optimize J(πθ) via gradient ascent. In the context
of large language model (LLM) alignment, this MDP formalism is adapted: the state st represents
the initial prompt x combined with the sequence of tokens generated so far (y<t), and the action at
is the next token yt sampled from the policy πθ(yt|st). The full trajectory τ thus corresponds to the
complete generated response, denoted as y = (y1, . . . , yT). The reward is typically sparse, with a
single score r(y) (from a reward model) assigned to the entire sequence y at the final timestep.

Proximal Policy Optimization (PPO) (Schulman et al., 2017b) is commonly used for this optimization.
The GRPO variant estimates the advantage A(y) for a single, complete response y. This advantage is
normalized using a set of K responses, y1:K = {y1, . . . , yK}, sampled from the policy for the same
initial prompt:

A(y) =
r(y)−mean(r(y1:K))

std(r(y1:K))
. (2)

The policy is then updated using the clipped surrogate objective, which operates at the token level:

LCLIP(θ) = Et [min (rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)] , (3)

where rt(θ) =
πθ(at|st)
πθold (at|st) is the probability ratio, and the per-timestep advantage At is the trajectory-

level advantage A(y) from Eq. 2 propagated back to timestep t.

Policy entropy. Policy entropy,H(π(·|s)), measures the policy’s stochasticity. For discrete action
spaces, the token-level entropy is given by Eq. 4. For continuous policies, there are several common
ways to ensure actions remain within a bounded space. A popular method is to use a squashed
Gaussian policy, which outputs a bounded action a = tanh(u) by sampling u from a Gaussian
distribution πθ(·|s) = N (µθ(s),Σθ(s)) parameterized by the policy network. The entropy of this
policy is given by Eq. 5. Alternatively, another common approach is to directly sample actions from
a Truncated Gaussian distribution πθ(·|s) = TN(µθ(s),Σθ(s),−1, 1) over the bounded hypercube
[−1, 1]D. Assuming the dimensions are independent, its entropy is given by Eq. 6.

H(πθ) = −Ex∼ρπ,y∼πθ(x)

 1

|y|

|y|∑
t=1

log πθ(yt|y<t, x)

 , (4)

H(πθ) = Es∼ρπ,u∼N (µθ(s),Σθ(s))

[
− logN (u|µθ(s),Σθ(s)) +

D∑
i=1

log(1− tanh(ui)
2)

]
, (5)

H(πθ) = Es∼ρπ

[
D∑
i=1

(
log(σθ,i(s)Zi(s)

√
2πe)− βi(s)ϕ(βi(s))− αi(s)ϕ(αi(s))

2Zi(s)

)]
(6)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where for the truncated Gaussian entropy in Eq. 6, ϕ and Φ are the PDF and CDF of the standard
normal distribution, respectively. We define the standardized bounds αi(s) = (−1−µθ,i(s))/σθ,i(s),
βi(s) = (1− µθ,i(s))/σθ,i(s), and the normalization constant Zi(s) = Φ(βi(s))− Φ(αi(s)).

Maximum entropy reinforcement learning. Building upon policy entropy, the maximum entropy
RL framework aims to maximize the standard reward objective subject to a minimum entropy
constraintH0:

max
θ

J(πθ) s.t. Es∼ρπ
[H(πθ(·|s))] ≥ H0. (7)

Practical algorithms like Soft Actor-Critic (SAC) (Haarnoja et al., 2018) solve the Lagrangian dual of
this problem. SAC is an off-policy actor-critic algorithm that updates a soft Q-function Qϕ and a
policy πθ. The Q-function is updated by minimizing the soft Bellman residual JQ(ϕ):

JQ(ϕ) = E(st,at,st+1)∼D

[
1

2
(Qϕ(st, at)− y)

2

]
(8)

y = R(st, at) + γEat+1∼πθ(·|st+1) [Qϕ′(st+1, at+1)− α log πθ(at+1|st+1)] (9)

with the target y computed using a target Q-network Qϕ′ . The target network parameters ϕ′ are
updated via an exponential moving average (EMA): ϕ′ ← τϕ+ (1− τ)ϕ′.

Jπ(θ) = Est∼D,at∼πθ
[Qϕ(st, at)− α log πθ(at|st)] . (10)

The policy is then updated by maximizing the objective in Eq. 10.

4 THE ENTROPY REGULARIZING ACTIVATION

4.1 THE CORE IDEA: ENTROPY-CONSTRAINED POLICY VIA OUTPUT ACTIVATION

The core of Entropy Regularizing Activation is to enforce maximum entropy reinforcement learning
on the policy, not through a loss penalty, but via integrating the constraint into the network’s
architecture via a special activation function at the output layer.

Let a parameterized policy fθ(s) produce distribution parameters z = fθ(s), where z belongs to
a parameter space Z . The policy corresponding to these parameters is πz(·|s). We introduce an
activation function g : Z → Z , which transforms the initial parameters z to a new set z′ = g(z). The
final policy, which we denote as πθ, is thus given by πθ(·|s) = πg(fθ(s))(·|s). The function g(.) is
designed to ensure that the policy πθ satisfies a constraint on its expected entropy, for a given target
entropyH0:

Es∼ρπ
[Hπθ(·|s)] ≥ H0

This formulation enables the policy to satisfy the expected entropy condition while leaving the training
objective for θ free of an explicit entropy term, as shown in Eq. 7. This architectural perspective
unifies prior projection methods: for instance, the method in Akrour et al. (2019) can be viewed as
a specific, linear instantiation of g(·). ERA generalizes this to a class of non-linear activations that
strictly satisfy the bound while modulating gradients in a dimension-aware manner, avoiding the
suboptimal uniform regularization of prior linear methods.

4.2 INSTANTIATIONS FOR CONTINUOUS AND DISCRETE SPACES

To ground the general framework presented in section 4.1, we now instantiate the entropy regularizing
activation g(.) for two canonical policy classes: policies based on a bounded Gaussian distribution,
such as the Tanh-squashed Gaussian (Haarnoja et al., 2018) or the clipped Gaussian (Fujimoto et al.,
2018), commonly used in continuous control; and the softmax policy prevalent in discrete spaces.

4.2.1 CONTINUOUS CONTROL WITH BOUNDED GAUSSIAN POLICIES

In continuous control, policies often sample actions from a Gaussian distribution and then apply a
bounding function (e.g., a tanh squash or clipping) to ensure outputs lie within a valid range. This
bounding operation complicates direct entropy maximization, as it introduces a state-dependent bias
term. Prior methods typically address this by adding an entropy bonus to the learning objective. Our

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

insight is that the entropy of the final bounded policy,Hπ , can be seen as the entropy of the original
unbounded Gaussian,HGaussian, minus a non-negative bias term introduced by the bounding operation,
i.e., Hπ = HGaussian − E[bias]. Consequently, a minimum entropy constraint on the final policy
can be satisfied by constraining the underlying Gaussian’s entropy to a corresponding, higher value.
This is achieved by adjusting the Gaussian’s standard deviation, σ. The entropy of a D-dimensional
Gaussian with a diagonal covariance matrix is:

HGaussian(s) =
1

2

D∑
i=1

log(2πeσi(s)
2) (11)

To maintain training stability, the standard deviation must also be kept within a predefined range
[σmin, σmax]. Our activation function g(.) simultaneously satisfies both constraints. Given network
outputs (before tanh squash or truncation) for the mean µ and a pre-activation standard deviation σ̂,
the function g(µ, σ̂) produces the final parameters (µ′, σ′) where:

µ′ = µ, σ′ = exp

[
max

(
log σmax + (H′

0 −D log
√
2πe−D log σmax)

eσ̂i∑D
j=1 e

σ̂j

, log σmin

)]
(12)

Here, H′
0 is the target entropy for the final policy H0 plus a compensation term δ = −E[bias] to

account for the bounding bias. We use a parameter δ̂ to estimate δ. In practice, δ̂ can either be set a
constant or automatically tuned by learning with the loss in Eq. 13.

L(δ̂) = Es∼D

[
δ̂(H[π(·|s)]−H0)

]
(13)

We refer the reader to Appendix A.1 for implementation details and Appendix B.1 for a proof of the
entropy bound.

By satisfying the entropy constraint architecturally, our method obviates the need for an explicit
entropy term in the objective function. Hence, target of the critic and the actor loss of SAC in Eq. 9
and Eq. 10 can be simplified to the form in Eq. 14 and Eq 15

y = R(st, at) + γEat+1∼πθ(·|st+1)

[
Qϕ′(st+1, at+1)((((((((((

−α log πθ(at+1|st+1)
]

(14)

Jπ(θ) = Est∼D,at∼πθ

[
Qϕ(st, at)((((((((−α log πθ(at|st)

]
(15)

4.2.2 DISCRETE CLASSIFICATION WITH SOFTMAX POLICIES

In discrete classification, regularizing the predictive entropy is crucial for preventing the overconfi-
dence that leads to overfitting. ERA provides architectural regularization by enforcing a minimum
entropy level, analogous to how techniques like label smoothing improve generalization by smooth-
ing the output distribution. For a softmax policy, we enforce this constraint by transforming the
pre-activation logits z into z′ such that the resulting policy’s entropy is at leastH0:

z′ = h−1

[
max

(
log τ

τ
+

(
CH0

− n
log τ

τ

)
1

D − 1

(
1− ezi∑D

j=1 e
zj

)
, 0

)]
(16)

Here, h−1 denotes the inverse of −xex on (−∞,−1], approximated by ĥ−1(x) = − 1
4 −√

2(−1− ln(x)) + 3
4 lnx. We also define CH0

= exp(H0 − 1), where τ ≥ e is a fixed hy-
perparameter (e.g., τ = 4). A formal proof is provided in Appendix B.2.

In contrast to label smoothing, which applies a fixed and uniform regularization, ERA offers greater
flexibility. It allows the model to learn a structured, input-dependent uncertainty distribution, tailoring
the regularization to each sample and thus offering greater expressive capacity and potential for
improved performance.

4.3 INSTANTIATIONS FOR RL IN LARGE LANGUAGE MODELS

In reinforcement learning for LLMs, each token is treated as a discrete action, with the policy
defined by a canonical softmax distribution. Prior approaches to addressing entropy collapse in

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 1.5M 3.0M
steps

0.0

0.5

1.0 Mujoco Gym(4 Tasks)
PPO
PPO-ERA

0 50.0K 100.0K
steps

0.0

0.5

1.0 HumanoidBench(8 Tasks)
FastTD3
FastSAC-ERA

0 500.0K 1.0M
steps

0.0

0.5

1.0 DMC Dog&Humanoid(6 Tasks)
TD-MPC2
TD-MPC2-ERA

0 1.5M 3.0M
steps

0.0

0.5

1.0 HumanoidBench(6 Tasks)
SAC
SAC-ERA

Figure 2: Main Results of ERA in Continuous Control. Aggregate normalized performance
on HumanoidBench (6 tasks, with SAC), DMC (Humanoid & Dog) (6 tasks, with TD-MPC2),
HumanoidBench (8 tasks, with FastSAC) and Mujoco Gym (4 tasks, with PPO). ERA consistently
accelerates learning and achieves superior asymptotic performance.

LLMs—such as the traditional entropy bonus, clip-higher , KL-Cov, and Clip-Cov —do not provide
a provable entropy lower bound, and are incompatible with the on-policy setting, as they often
need the importance sampling ratio or the KL loss term that arises only in off-policy training. In
contrast, our method introduces ERA, a simple and non-invasive activation function that offers a
theoretical guarantee of a minimum entropy level, effectively resolving entropy collapse in on-policy
reinforcement learning.

In contrast to standard RL settings, the action space is extremely large. In the previous ERA
instantiation, each token has a lower entropy bound. However, due to the intrinsic structure of
natural language, most tokens are nearly deterministic; therefore, directly enforcing high entropy
across all tokens is impractical: it will lead to unintended tokens and can corrupt the entire response.
Furthermore, modifying the internal structure of the model also introduces instability in different
training environments, leading to unpredictable behavior.

To address these challenges, we propose a new instantiation of ERA that is applied after the sampling
process. Specifically, responses are first generated using the original model output z, and the
advantages are computed following the GRPO rule. Then, during model updates, the probabilities of
the sampled tokens are reinterpreted as z′, obtained by applying our entropy-regularized activation.
This design leaves the sampling policy unchanged while still ensuring effective entropy regularization.

Formally, when updating model parameters, we apply an activation layer to the logits z to obtain a
transformed set z′, defined as:

z′ =


kz Hresp < ωlow, At > 0,

z (ωlow ≤ Hresp ≤ ωhigh, At < 0) or At > 0,
1
kz Hresp > ωhigh, At > 0,

(17)

where k > 1, and ωlow, ωhigh are algorithm-specific constants. Here, At denotes the advantage of
the token, and Hresp is the average entropy of the top 20% of tokens with the highest entropy in the
response. To balance the gradient between modified tokens and unmodified tokens (details are shown
in Appendix B.3), we add another scaling factor on the advantages of modified tokens:

A′
t =


1
kAt Hresp < ωlow, At > 0,

At (ωlow ≤ Hresp ≤ ωhigh, At < 0) or At > 0,

kAt Hresp > ωhigh, At > 0,

(18)

The on-policy GRPO objective becomes:

J(θ) = Et[Eat∼πθ(·|st) log π
′
θ(at|st)A′

t] (19)

where πθ is the original policy from z (representing that the inference still follows the original policy),
and π′

θ is the ERA-adjusted policy from z′ (representing that the model update relies on the new
policy). Intuitively, this activation layer adjusts all positively advantaged responses: when entropy is
too low, it sharpens the probability distribution; when entropy is too high, it flattens it. Unlike our
instantiation for control tasks, increasing policy entropy here requires sharpening the distribution.
The rationale is that sampling has already occurred, and by treating the samples as if they were drawn
from a sharpened policy, the model perceives itself as overexploiting, thus encouraging additional

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

exploration. The choice of the top 20% tokens is based on the fact that, in natural language, these
tokens are considered forking tokens, whose entropy is the target of regularization, and the remaining
tokens are allowed to have almost zero entropy (Wang et al., 2025).

We show that, under reasonable assumptions, this ERA instantiation ensures that the policy entropy
remains above a fixed constantH0. We refer the reader to Appendix B.3 for a formal proof.

5 RESULTS AND ANALYSIS

5.1 EXPERIMENTS ON CONTINUOUS CONTROL

We conduct extensive experiments to validate the effectiveness of ERA in continuous control tasks.
We demonstrate the broad applicability and performance gains by integrating ERA into five distinct
algorithms—SAC, OBAC (Luo et al., 2024), TD-MPC2, PPO, and FastSAC (Seo et al., 2025). The
evaluation is performed on a wide range of challenging benchmarks, including the DeepMind Control
Suite (Humanoid & Dog), HumanoidBench (Sferrazza et al., 2024), and MuJoCo Gym (Todorov
et al., 2012). Implementation details, environment specifics, and hyperparameter settings are available
in Appendix A.1. Comprehensive results for all tasks can be found in the Appendix C.

Main results. We present our main results in continuous control in Figure 2. Integrating ERA
consistently yields significant improvements in both sample efficiency and final performance across
diverse algorithms and benchmarks.

ERA consistently improves performance across various entropy targets. We evaluate the perfor-
mance of SAC and SAC-ERA under varying entropy targets. The results in Figure 3a, tested on four
DMC tasks (dog-run, dog-trot, humanoid-run, humanoid-walk) with 5 seeds on each environment,
show that SAC-ERA consistently outperforms original SAC across the entire tested spectrum of
entropy values. By bypassing the entropy constraint within the learning objective, ERA allows the
policy to focus more directly on reward maximization. While simply removing the entropy term from
SAC can also avoid this constraint, its performance is inferior to the ERA-enhanced version due to
insufficient exploration. This consistent outperformance suggests that ERA can achieve strong results
without precise tuning of the entropy hyperparameter, offering a significant practical advantage.

5.2 EXPERIMENTS ON IMAGE CLASSIFICATION

Table 1: Top-1 and Top-5 accuracy (%) on ImageNet and CIFAR-10. We compare ERA against the
original ResNet-50 baseline. ∆ denotes the absolute improvement of ERA. All models are trained
for 200 epochs.

Dataset Method Without Data Augmentation With Data Augmentation
Top-1 Acc. ∆ Top-5 Acc. ∆ Top-1 Acc. ∆ Top-5 Acc. ∆

ImageNet Original 74.75 ± 0.38 - 92.04 ± 0.23 - 76.93 ± 0.36 - 93.37 ± 0.21 -
ERA 75.44 ± 0.37 +0.69 92.15 ± 0.23 +0.11 77.30 ± 0.36 +0.37 93.39 ± 0.21 +0.02

CIFAR-10 Original 93.61 ± 0.14 - 99.69 ± 0.08 - 93.53 ± 0.03 - 99.84 ± 0.02 -
ERA 93.82 ± 0.08 +0.21 99.82 ± 0.03 +0.13 93.93 ± 0.12 +0.4 99.86 ± 0.01 +0.02

We evaluate our method on the ImageNet (Russakovsky et al., 2015) and CIFAR-10
datasets (Krizhevsky et al., 2009). Our implementation utilizes the ResNet-50 architecture from the
PyTorch Image Models (timm) library (Wightman, 2019). To ensure a fair comparison, both our
method and the baseline were trained for 200 epochs, with all other hyperparameters held constant.
Notably, we retain key default settings from timm for all experiments, including a label smoothing
factor of 0.1. This demonstrate ERA’s complementarity with existing regularizations.

Main results. Table 1 summarizes the primary classification results, comparing ERA against the
standard ResNet-50 baseline. For these results, we use a minimal entropy of 1.2 for ImageNet and
0.6 for CIFAR-10. The comparison is conducted under two settings: with and without the standard
data augmentation provided by the timm library. The results show that ERA consistently outperforms
the baseline across both datasets and settings.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1.5 1.0 0.5 0.0 0.5
entropy target

0.0

0.2

0.4

0.6

0.8

1.0

IQ
M

SAC
SAC-ERA
SAC w/o entropy target

(a)

0.0 0.2 0.4 0.6
entropy target

93.4

93.5

93.6

93.7

93.8

93.9

94.0

94.1

To
p-

1
A

cc

99.7

99.8

99.9

100.0

To
p-

5
A

cc

CIFAR-10

0.8 1.0 1.2 1.4 1.6
entropy target

72.2

72.4

72.6

72.8

73.0

73.2

To
p-

1
A

cc

90.2

90.4

90.6

90.8

91.0

91.2

91.4

To
p-

5
A

cc

ImageNet

Top-1 ResNet-ERA
Top-1 ResNet
Top-5 ResNet-ERA
Top-5 ResNet

(b)
Figure 3: Sensitivity of ERA to the Minimum Entropy. (a) 1M Steps Performance on DMC
Tasks. Comparison between SAC-ERA and the baseline SAC on Humanoid and Dogs environments
under various minimum entropy constraints. Our method achieves superior performance across all
settings. (b) Accuracy on ImageNet and CIFAR-10. ResNet-ERA maintains stable Top-1 and
Top-5 accuracy across a range of minimum entropy values, indicating its robustness to the choice of
this hyperparameter.

Ablation study on minimal entropy. We study our method’s robustness to the minimal entropy
hyperparameter on ImageNet and CIFAR-10, using checkpoints from the 100th and 200th epochs,
respectively, for efficiency. As shown in Figure 3b, our method exhibits low sensitivity to this
parameter. Rather than fine-tuning for peak performance, our intent is to show that competitive
accuracy is maintained across a reasonable range of values. This demonstrates strong performance is
achievable without extensive tuning.

5.3 RESULTS AND ANALYSIS ON LARGE LANGUAGE MODELS

We first present the results of ERA in §5.3.1 Main Results and §5.3.2 Extension to More Models
and Algorithms. We then use §5.3.3 Analysis on Entropy and Reasoning Capacity Boundary and
§5.3.4 Out-of-Distribution Generalization to illustrate the role of encouraging exploration. Additional
ablation studies on method design are provided in the Appendix C.4.

5.3.1 MAIN RESULTS

We evaluate ERA on Qwen2.5-Math-7B, trained with the DAPO-Math-17K (Yu et al., 2025) dataset
using codebase adopted from verl (Sheng et al., 2025). To improve training stability and ensure
well-controlled entropy decay, we adopt a two-stage training strategy. In the first stage, we set
ωlow = 0.45, ωhigh = 3.0, and k = 2, and train for 600 steps. In the second stage, we continue
training for 500 steps with a relaxed entropy bound, setting ωlow = 0.2, ωhigh = +∞, and keeping
k = 2.

We then evaluate the resulting model on six standard mathematical reasoning tasks: AIME’24,
AIME’25, AMC’23 (Li et al., 2024b), MATH500 (Hendrycks et al., 2021), Minerva (Lewkowycz
et al., 2022), and OlympiadBench (He et al., 2024). Table 2 presents comparisons against base models,
classical RL methods, and recent entropy-control approaches. AIME’24, AIME’25, and AMC’23
are conducted with a decoding temperature of 0.7, and reported as the average accuracy over 16
sampled responses. MATH500, Minerva, and OlympiadBench are conducted with greedy sampling.
The evaluation process is sampled on the original policy z (before ERA). Full implementation details
and hyperparameter settings are provided in Appendix A.3. The results show that ERA consistently
achieves the best results on most of the benchmarks. Notably, it outperforms strong entropy-based
baselines such as KL-Cov and Clip-Cov by significant margins.

5.3.2 EXTENSION TO MORE MODELS AND ALGORITHMS

To demonstrate ERA’s effectiveness across different model sizes and algorithms, we extend it to the
weaker Qwen2.5-Math-1.5B model and also apply ERA to other algorithms such as GSPO (Zheng
et al., 2025) on Qwen2.5-Math-7B, showing that ERA is a generic approach not tied to any specific
model or algorithm. As reported in Table 3, ERA yields significant gains on both the smaller model
and GSPO. For instance, on Qwen2.5-Math-1.5B it achieves an average improvement of 14.1%.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Main results (%) on five competition-level reasoning benchmarks based on Qwen2.5-Math-
7B. For AIME and AMC, the results are avg.@16. The best results on each benchmark are highlighted
in bold.

Model AIME24 ↑ AIME25 ↑ AMC ↑ MATH500 ↑ Minerva ↑ Olympiad ↑ Avg. ↑
Base Models
Qwen2.5-Math Yang et al. (2024a) 8.6 6.3 52.2 50.8 12.1 17.2 24.5
Qwen2.5-Math-Instruct Yang et al. (2024a) 13.3 10.0 57.1 81.0 32.7 38.8 38.8

Classical Methods
SimpleRL-Zero Zeng et al. (2025) 26.7 9.3 60.0 74.6 27.6 35.8 39.0
OpenReasoner-Zero Hu et al. (2025) 15.4 13.4 56.5 81.0 32.7 43.2 40.4
PRIME-Zero Cui et al. (2025a) 18.9 11.7 57.7 79.0 36.4 40.6 40.7
Oat-Zero Liu et al. (2025) 28.8 10.8 65.2 79.6 34.2 39.9 43.1

Entropy Control Methods
GRPO + Entropy Loss 32.5 14.0 66.9 80.8 36.0 42.5 45.5
GRPO w/ 20% Forking Tokens (Wang et al., 2025) 29.0 17.7 63.6 81.8 39.7 44.6 46.1
KL-Cov (Cui et al., 2025b) 35.6 13.1 65.1 81.0 40.4 44.1 46.6
Clip-Cov (Cui et al., 2025b) 33.9 13.7 62.5 78.4 35.6 40.3 44.1

GRPO (Shao et al., 2024) 34.4 12.3 69.5 80.6 36.8 40.6 45.7
ERA 37.5 16.9 72.8 84.6 42.6 46.5 50.2
△ (↑) +9.0% +37.4% +4.7% +5.0% +15.8% +14.5% +9.8%

Table 3: Accuracy (%) results of different LLMs and different algorithms across six benchmarks.
The best results in each box are highlighted in bold.

Method AIME24 ↑ AIME25 ↑ AMC ↑ MATH500 ↑ Minerva ↑ Olympiad ↑ Avg. ↑
Qwen2.5-Math-1.5B Yang et al. (2024a)

CoT 4.3 2.3 26.4 59.0 24.3 27.6 24.0
GRPO 11.1 6.0 40.2 66.4 25.0 30.1 29.8
ERA 12.1 6.8 49.5 70.6 30.5 34.7 34.0
△ (↑) +9.0% +13.3% +23.1% +6.3% +22.0% +15.3% +14.1%

Qwen2.5-Math-7B Yang et al. (2024a)

CoT 8.6 6.3 52.2 50.8 12.1 17.2 24.5
GSPO 29.8 13.7 61.2 85.1 37.1 35.1 43.7
GSPO + ERA 33.3 15.2 63.8 84.3 40.8 42.7 46.7
△ (↑) +11.7% +10.9% +4.2% -0.9% +10.0% +21.7% +6.9%

5.3.3 ANALYSIS ON ENTROPY AND REASONING CAPACITY BOUNDARY

To better understand the effect of our approach on exploration and reasoning, we examine both the
entropy dynamics of the learned policies and their downstream reasoning performance. Figure 4
compares the entropy trajectories of our method (first stage) with the GRPO baseline. While GRPO
suffers from entropy collapse, our method maintains a stable entropy level throughout training. This
stability indicates the existence of a non-trivial entropy lower bound, as we desired by the definition
of ERA, which prevents premature policy concentration and preserves the model’s ability to explore
diverse reasoning paths.

The presence of this entropy floor aligns with improved reasoning performance. As shown in Figure 4,
ERA achieves consistently higher pass@k scores on AIME’24 and AIME’25 compared to GRPO.
This demonstrates that avoiding entropy collapse is not merely a statistical artifact but translates
directly into stronger reasoning capacity. In particular, maintaining sufficient entropy ensures the
model retains multiple candidate reasoning trajectories, thereby improving the likelihood of successful
solutions under pass@k evaluation.

5.3.4 OUT-OF-DISTRIBUTION GENERALIZATION

Models trained in a specific domain often struggle when applied to other domains (Yuan et al., 2023;
Wang et al., 2024a). Since ERA uses entropy constraints to encourage exploration, we hope it can
learn more general skills. Therefore we want to see if ERA will also do better on out-of-distribution
(OOD) data than standard GRPO. To test this, we evaluate ERA on three hard OOD benchmarks:
ARC-C (Clark et al., 2018), GPQA-Diamond (Rein et al., 2024), and MMLU-Pro (Wang et al.,
2024b). As shown in Figure 5, ERA outperforms GRPO by 16.9% on average. This confirms our
hypothesis that ERA can also enable models to learn more generalizable abilities.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500
Step

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

En
tro

py

Entropy

GRPO+ERA
GRPO

1 2 4 8 16 32
k

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Pa
ss

@
k

Sc
or

e

Pass@k Performance - AIME24

GRPO+ERA
GRPO

1 2 4 8 16 32
k

0.2

0.3

0.4

0.5

Pa
ss

@
k

Sc
or

e

Pass@k Performance - AIME25

GRPO+ERA
GRPO

Figure 4: Entropy comparison and pass@k results for GRPO with ERA (ours) versus GRPO
alone. The entropy curves demonstrate that ERA mitigates entropy collapse and establishes a clear
lower bound. The pass@k results further indicate that ERA enhances exploration and strengthens the
model’s reasoning ability.

6 LIMITATIONS AND FUTURE WORK

0

22.5

45

67.5

90

ARC-C GPQA-D MMLU-Pro Average

56.6
51.2

35.4

83.3

48.4
44.6

26.8

73.8

27.4

19.2
15.2

47.9

Base GRPO ERA

Figure 5: Results on three OOD
benchmarks (Qwen2.5-Math-7B).

Our work is centered within the maximum entropy reinforce-
ment learning (MaxEnt RL) framework, with the primary objec-
tive of imposing effective entropy constraints to enhance explo-
ration. We have demonstrated its effectiveness across diverse
tasks, including continuous locomotion, discrete-space image
classification, and the reinforcement learning post-training of
large language models.

However, this reliance on the MaxEnt objective constitutes a
potential limitation. The goal of maximizing entropy is not uni-
versally beneficial and can lead to suboptimal policies in certain
task scenarios, as highlighted by Zhang et al. (2025). There-
fore, the broader applicability of our method in domains where
maximum entropy may not be the desired objective requires
further investigation.

A promising direction for future research is to adapt and apply our method to a wider range of
domains. This includes areas such as diffusion and flow-based generative models, or other tasks that
could benefit from structured policy diversity and efficient exploration, even outside the strict MaxEnt
RL paradigm.

7 CONCLUSIONS

In this work, we introduced ERA, a novel entropy-constrained paradigm built upon the unique
principle of treating output activations as a direct medium for entropy regularization. Our theoretical
analysis is substantiated by strong empirical results across diverse and challenging domains. In these
settings, ERA consistently surpasses prominent baselines without incurring significant computational
overhead. Ultimately, this work offers a new perspective on entropy regularization for both supervised
and unsupervised decision-making, opening a promising research avenue for developing more robust
and efficient learning agents.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We are strongly committed to the reproducibility of our work. To this end, we provide detailed
derivations and proofs for all theoretical claims in the appendix. The appendix also contains compre-
hensive experimental details, including hyperparameters, environment setups, and additional results,
which are crucial for replicating our findings. Furthermore, the core source code for our proposed
method, ERA, instantiated across all domains, is included in the appendix. As our implementations
are built upon publicly available codebases and frameworks, we believe the provided key source code
is sufficient for a straightforward reproduction of our results. We plan to release the full, open-source
codebase and a dedicated repository upon publication to further facilitate future research.

REFERENCES

Riad Akrour, Joni Pajarinen, Jan Peters, and Gerhard Neumann. Projections for approximate policy
iteration algorithms. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of
the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 181–190. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.
press/v97/akrour19a.html.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. URL
https://arxiv.org/abs/1607.06450.

Richard Bellman. A markovian decision process. Journal of mathematics and mechanics, pp.
679–684, 1957.

Vivek S. Borkar. Stochastic approximation with two time scales. Systems & Control Letters, 29(5):
291–294, 1997.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

Onur Celik, Zechu Li, Denis Blessing, Ge Li, Daniel Palenicek, Jan Peters, Georgia Chalvatzaki, and
Gerhard Neumann. Dime:diffusion-based maximum entropy reinforcement learning, 2025. URL
https://arxiv.org/abs/2502.02316.

Chen-Hao Chao, Chien Feng, Wei-Fang Sun, Cheng-Kuang Lee, Simon See, and Chun-Yi Lee.
Maximum entropy reinforcement learning via energy-based normalizing flow, 2024. URL https:
//arxiv.org/abs/2405.13629.

Daixuan Cheng, Shaohan Huang, Xuekai Zhu, Bo Dai, Wayne Xin Zhao, Zhenliang Zhang, and Furu
Wei. Reasoning with exploration: An entropy perspective. arXiv preprint arXiv:2506.14758, 2025.

Jean Seong Bjorn Choe and Jong-Kook Kim. Maximum entropy on-policy actor-critic via entropy
advantage estimation, 2024. URL https://arxiv.org/abs/2407.18143.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth. On the Lambert W
function. Adv. Comput. Math, 5:329, 1996.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. arXiv preprint
arXiv:2502.01456, 2025a.

Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for
reasoning language models. arXiv preprint arXiv:2505.22617, 2025b.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods, 2018. URL https://arxiv.org/abs/1802.09477.

11

https://proceedings.mlr.press/v97/akrour19a.html
https://proceedings.mlr.press/v97/akrour19a.html
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/2502.02316
https://arxiv.org/abs/2405.13629
https://arxiv.org/abs/2405.13629
https://arxiv.org/abs/2407.18143
https://arxiv.org/abs/1802.09477

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International conference on machine learning, pp. 1352–1361.
PMLR, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. Pmlr, 2018.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han,
Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for promoting
agi with olympiad-level bilingual multimodal scientific problems. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
3828–3850, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2), 2021.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model, 2025. URL https://arxiv.org/abs/2503.24290.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift, 2015. URL https://arxiv.org/abs/1502.03167.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Zilin Kang, Chenyuan Hu, Yu Luo, Zhecheng Yuan, Ruijie Zheng, and Huazhe Xu. A forget-
and-grow strategy for deep reinforcement learning scaling in continuous control, 2025. URL
https://arxiv.org/abs/2507.02712.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238–1274, 2013.

Ilya Kostrikov. JAXRL: Implementations of Reinforcement Learning algorithms in JAX, 10 2021.
URL https://github.com/ikostrikov/jaxrl.

Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.

Hojoon Lee, Youngdo Lee, Takuma Seno, Donghu Kim, Peter Stone, and Jaegul Choo. Hyperspherical
normalization for scalable deep reinforcement learning, 2025. URL https://arxiv.org/abs/
2502.15280.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in neural information processing systems,
35:3843–3857, 2022.

Chen Li, Weiqi Wang, Jingcheng Hu, Yixuan Wei, Nanning Zheng, Han Hu, Zheng Zhang, and
Houwen Peng. Common 7b language models already possess strong math capabilities. arXiv
preprint arXiv:2403.04706, 2024a.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q. Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
ai4maths with 860k pairs of competition math problems and solutions. https://huggingface.
co/datasets/Numinamath, 2024b. Hugging Face repository, 13:9.

12

https://arxiv.org/abs/2503.24290
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/2507.02712
https://github.com/ikostrikov/jaxrl
https://arxiv.org/abs/2502.15280
https://arxiv.org/abs/2502.15280
https://huggingface.co/datasets/Numinamath
https://huggingface.co/datasets/Numinamath

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhi Li. DRL-code-pytorch. https://github.com/Lizhi-sjtu/DRL-code-pytorch, 2022. Ac-
cessed: 2025-09-10.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783,
2025.

Yu Luo, Tianying Ji, Fuchun Sun, Jianwei Zhang, Huazhe Xu, and Xianyuan Zhan. Offline-boosted
actor-critic: Adaptively blending optimal historical behaviors in deep off-policy rl. arXiv preprint
arXiv:2405.18520, 2024.

Haitong Ma, Tianyi Chen, Kai Wang, Na Li, and Bo Dai. Efficient online reinforcement learning for
diffusion policy, 2025. URL https://arxiv.org/abs/2502.00361.

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the gap between
value and policy based reinforcement learning. Advances in neural information processing systems,
30, 2017.

Michal Nauman, Michał Bortkiewicz, Piotr Miłoś, Tomasz Trzciński, Mateusz Ostaszewski, and
Marek Cygan. Overestimation, overfitting, and plasticity in actor-critic: the bitter lesson of
reinforcement learning, 2024. URL https://arxiv.org/abs/2403.00514.

Brendan O’Donoghue, Remi Munos, Koray Kavukcuoglu, and Volodymyr Mnih. Combining policy
gradient and q-learning. arXiv preprint arXiv:1611.01626, 2016.

Fabian Otto, Philipp Becker, Ngo Anh Vien, Hanna Carolin Ziesche, and Gerhard Neumann. Dif-
ferentiable trust region layers for deep reinforcement learning. arXiv preprint arXiv:2101.09207,
2021.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a benchmark.
In First Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
Ti67584b98.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. Imagenet
large scale visual recognition challenge, 2015. URL https://arxiv.org/abs/1409.0575.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017a.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017b.

Younggyo Seo, Carmelo Sferrazza, Haoran Geng, Michal Nauman, Zhao-Heng Yin, and Pieter
Abbeel. Fasttd3: Simple, fast, and capable reinforcement learning for humanoid control. arXiv
preprint arXiv:2505.22642, 2025.

Carmelo Sferrazza, Dun-Ming Huang, Xingyu Lin, Youngwoon Lee, and Pieter Abbeel. Humanoid-
bench: Simulated humanoid benchmark for whole-body locomotion and manipulation. arXiv
preprint arXiv:2403.10506, 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

13

https://github.com/Lizhi-sjtu/DRL-code-pytorch
https://arxiv.org/abs/2502.00361
https://arxiv.org/abs/2403.00514
http://jmlr.org/papers/v22/20-1364.html
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://arxiv.org/abs/1409.0575

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, pp. 1279–1297, 2025.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradi-
ent methods for reinforcement learning with function approximation. In S. Solla, T. Leen,
and K. Müller (eds.), Advances in Neural Information Processing Systems, volume 12. MIT
Press, 1999. URL https://proceedings.neurips.cc/paper_files/paper/1999/file/
464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2818–2826, 2016.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Jindong Wang, Xixu Hu, Wenxin Hou, Hao Chen, Runkai Zheng, Yidong Wang, Linyi Yang, Wei Ye,
Haojun Huang, Xiubo Geng, Binxing Jiao, Yue Zhang, and Xing Xie. On the robustness of chatgpt:
An adversarial and out-of-distribution perspective. IEEE Data Eng. Bull., 47(1):48–62, 2024a.

Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
Jianxin Yang, Zhenru Zhang, et al. Beyond the 80/20 rule: High-entropy minority tokens drive
effective reinforcement learning for llm reasoning. arXiv preprint arXiv:2506.01939, 2025.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging
multi-task language understanding benchmark. arXiv preprint arXiv:2406.01574, 2024b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical expert
model via self-improvement, 2024a. URL https://arxiv.org/abs/2409.12122.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024b.

Edward Yeo, Yuxuan Tong, Xinyao Niu, Graham Neubig, and Xiang Yue. Demystifying long chain-of-
thought reasoning in LLMs. In ICLR 2025 Workshop on Navigating and Addressing Data Problems
for Foundation Models, 2025. URL https://openreview.net/forum?id=AgtQlhMQ0V.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at
scale. arXiv preprint arXiv:2503.14476, 2025.

14

https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://arxiv.org/abs/2409.12122
https://openreview.net/forum?id=AgtQlhMQ0V

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Lifan Yuan, Yangyi Chen, Ganqu Cui, Hongcheng Gao, FangYuan Zou, Xingyi Cheng, Heng Ji,
Zhiyuan Liu, and Maosong Sun. Revisiting out-of-distribution robustness in NLP: Benchmarks,
analysis, and LLMs evaluations. In Thirty-seventh Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2023.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild. arXiv
preprint arXiv:2503.18892, 2025.

Ruipeng Zhang, Ya-Chien Chang, and Sicun Gao. When maximum entropy misleads policy opti-
mization, 2025. URL https://arxiv.org/abs/2506.05615.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
Yuqiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. arXiv preprint
arXiv:2507.18071, 2025.

Dianyu Zhong, Yiqin Yang, Ziyou Zhang, Yuhua Jiang, Bo XU, and Qianchuan Zhao. Maximum
next-state entropy for efficient reinforcement learning, 2024. URL https://openreview.net/
forum?id=0G6rRLYcxm.

Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. Carnegie Mellon University, 2010.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

15

https://arxiv.org/abs/2506.05615
https://openreview.net/forum?id=0G6rRLYcxm
https://openreview.net/forum?id=0G6rRLYcxm

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A IMPLEMENTATION DETAILS

A.1 IMPLEMENTATION DETAILS OF CONTINUOUS CONTROL TASKS

A.1.1 CODE IMPLEMENTATION OF ERA IN CONTINUOUS CONTROL

Listing 1: Original Implementation
Original implementation from the

jaxrl codebase , suggested by
Ilya

log_std_min , log_std_max: bounds
for log standard deviation

action_dim: dimension of the
action space

pre_stds: direct output from the
actor network

log_stds = log_std_min + (
log_std_max - log_std_min) *
0.5 * (1 + nn.tanh(pre_stds))

Listing 2: ERA Implementation
h_0: target entropy , can be a

fixed value or a learnable
parameter

action_dim: dimension of the
action space

k = - self.action_dim * (
log_std_max + h_0 + jnp.log(jnp
.sqrt(2 * jnp.pi * jnp.e)))

log_stds = k * nn.softmax(pre_stds ,
axis = -1) + log_std_max

log_stds = jax.clip(log_stds , self.
log_std_min , self.log_std_max)

Figure 6: Comparison of the activation function at the actor’s output.

We provide the following JAX implementation snippet of ERA for the reader’s reference, where h_0
is the target entropy (H′

0 in Eq. 12), which can be a constant (e.g., -action_dim/2) or a learnable
parameter. The terms log_std_min and log_std_max represent the lower and upper bounds of the log
standard deviation, respectively; action_dim is the dimension of the action space; and pre_stds refers
to the raw output of the actor network.

A.1.2 ENVIRONMENTS

Figure 7: Visualization of some continuous control environments used in our experiments. From
left to right: dog-run (DMC), h1-hurdle-v0 (HumanoidBench), h1hand-slide-v0 (HumanoidBench),
humanoid-walk (DMC)

Our evaluation of ERA spans a diverse set of continuous control tasks from three established
benchmarks: Mujoco Gym (Todorov et al., 2012), DeepMind Control Suite (DMC) (Tassa et al.,
2018), and HumanoidBench (Sferrazza et al., 2024). For the Mujoco Gym and DMC environments,
we utilized their standard, unmodified configurations. For HumanoidBench, we introduced specific
modifications for certain agents.

For experiments involving SAC and OBAC on HumanoidBench, we implemented an action repeat
of 2 and disabled episode termination. These adjustments were necessary because the standard
tasks proved exceedingly challenging for a baseline SAC agent, as demonstrated in Figure 8. Con-
versely, for the FastSAC agent, which is capable of solving the original tasks, we used the standard
HumanoidBench environments without these modifications.

For our comparison against TD-MPC2 on DMC environments, we used the performance data reported
in the original manuscript. We therefore adhered to their experimental setup, which includes an action
repeat of 2.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

For main results and training curves, we report results over 10 random seeds for SAC, OBAC, and
FastSAC, 5 seeds for PPO, and 3 seeds for TD-MPC2, matching the number provided in its original
publication.

0 1.5M 3.0M
steps

0.00

500

1000

R
et

ur
n

h1-walk-v0

0 1.5M 3.0M
steps

0.00

500

1000

R
et

ur
n

h1-crawl-v0

0 1.5M 3.0M
steps

0.00

500

1000

R
et

ur
n

h1-run-v0
W/O Modifications
With Modifications

Figure 8: Ablation of Environment Modifications for HumanoidBench. Performance comparison
of a standard SAC agent on three challenging HumanoidBench tasks with and without our modified
settings (action repeat of 2 and disabled termination). The significant performance gap justifies using
these modified settings for our main SAC-based experiments.

The action, observation spaces and maximal episode length of the respective environments are shown
in Table 4 and Table 5.

Table 4: List of tasks from DeepMind Control and MetaWorld on which the agents were ablated. The
table also contains the dimensions of action, observation space and maximal episode length.

Task Observation dimension Action dimension Max episode length
DEEPMIND CONTROL

Dog-Trot 223 38 1000
Dog-Walk 223 38 1000
Dog-Run 223 38 1000
Humanoid-Run 67 24 1000
Humanoid-Walk 67 24 1000
Humanoid-Stand 67 24 1000

MUJOCO GYM

HalfCheetah-v4 17 6 1000
Ant-v4 27 8 1000
Hopper-v4 11 3 1000
Walker2d-v4 17 6 1000

A.1.3 PSEUDO CODE OF SAC-ERA

To better illustrate the role of our method within the algorithmic framework, we present the pseu-
docode for a representative example, the Soft Actor-Critic (SAC) algorithm, adapted with ERA in
Algorithm 1.

A.1.4 HYPERPARAMETERS

We present the hyperparameters used in our experiments with SAC and PPO in Table 6

Our implementations of SAC and OBAC are heavily inspired by the official jaxrl reposi-
tory (Kostrikov, 2021). For the network design, we follow the insights from Nauman et al. (2024)
and incorporate LayerNorm (Ba et al., 2016) into the neural networks.

Our OBAC implementation is built upon the codebase provided by Kang et al. (2025). It shares the
same fundamental hyperparameters as our SAC implementation, with the behavior cloning weight
set to 1× 10−3.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 5: List of tasks from HumanoidBench on which the agents were ablated. The table also contains
the dimensions of action, observation space and maximal episode length.

Task Observation dimension Action dimension Max episode length
h1-walk-v0 51 19 500
h1-run-v0 51 19 500
h1-stand-v0 51 19 500
h1-hurdle-v0 51 19 500
h1-stair-v0 51 19 500
h1-crawl-v0 51 19 500
h1hand-balance_simple-v0 164 61 1000
h1hand-hurdle-v0 151 61 1000
h1hand-pole-v0 151 61 1000
h1hand-push-v0 163 61 1000
h1hand-stair-v0 151 61 1000
h1hand-slide-v0 151 61 1000
h1hand-walk-v0 151 61 1000
h1hand-run-v0 151 61 1000

Table 6: Comparison of hyperparameters for SAC and PPO.

Hyperparameter SAC PPO
Optimizer Settings

Actor optimizer Adam
Actor learning rate 3× 10−4

Critic optimizer AdamW Adam
Critic learning rate 3× 10−4

Temperature learning rate 3× 10−4 —
Adam epsilon — 1× 10−5

Gradient clipping — 0.5

Network Architecture
Actor/Critic network 3-layer MLP
Hidden layer dimensions (512, 512) (64, 64)
Activation function ReLU Tanh
LayerNorm True False

Algorithm Hyperparameters
Discount factor (γ) 0.99
Replay buffer size 1× 106 —
Polyak averaging coefficient (τ) 0.005 —
Initial temperature (α) 1.0 —
Target entropy (H0) −dim(A)/2 —
Gradient steps per env. step 2 —
Random exploration steps 5,000 —
GAE parameter (λ) — 0.95
PPO clip ratio — 0.2
Entropy coefficient — 0.01
Batch size 256 2048
Mini-batch size — 64
Log std Interval [σmin, σmax] [-8,0] for ERA, [-10,2] for baseline

For the PPO and PPO-ERA experiments, our implementation is based on the publicly available
codebase of Li (2022). We use target entropy of −0.3A for main experiments on PPO-ERA.

For the TD-MPC2 baseline, we utilize the official implementation provided by the original authors.
The results for comparison are also directly sourced from those reported in the official repository. We
use target entropy of −A for main experiments on TD-MPC2-ERA.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Similarly, our implementations of FastTD3 and FastSAC are based on the official codebases provided
by their respective authors. We note that our construction of FastSAC-ERA differs from the method
described in the original paper; these differences are detailed in Section A.1.5.

A.1.5 FASTSAC-ERA

The FastTD3 (Seo et al., 2025) framework demonstrated the potential of applying off-policy RL
methods to massively parallel RL scenarios, achieving excellent performance on HumanoidBench.

Authors of FastTD3 also provided a FastSAC implementation, which replaced the mixed noise
mechanism in FastTD3 with the standard entropy maximization objective from Soft Actor-Critic
(SAC). However, they noted that this approach yielded unstable results, and hypothesized that
maximizing action entropy in high-dimensional action spaces might be inherently challenging.

To address this issue, we investigated a solution based on minimal modification to the original
FastTD3. Our approach, named FastSAC-ERA, is derived from FastTD3 by retaining its noise
mechanism while removing the Delayed Policy Updates and incorporating an entropy constraint via
ERA implementation. This method achieved performance superior to that of FastTD3.

In practice, our implementation was built directly upon the official FastTD3 codebase. The only mod-
ifications were the removal of Delayed Policy Updates and the addition of the ERA implementation
at the actor’s output. All other hyperparameters and implementation details were kept identical to the
original FastTD3 configuration.

A.1.6 IMPLEMENTATION DETAILS: NORMALIZED SCORE COMPUTATION

In this work, we use normalized scores to evaluate and compare algorithm performance across
multiple environments. The rationale for this is that when aggregating results across a benchmark,
raw scores can allow environments with disparate score ranges to have a disproportionate influence on
the final result. Normalized scores mitigate this by mapping all results onto a uniform scale, enabling
a more equitable comparison and aggregation.

When calculating the normalized score, we uniformly use the minimum and maximum scores
achieved among all tested algorithms in that specific environment as the normalization bounds,
rather than relying on the environment’s theoretical minimum or maximum scores. This approach
avoids distortions that can arise from theoretical score ranges being exceptionally large or small,
thereby providing a more accurate reflection of the algorithms’ relative performance in practice.

Specifically, the normalized score is calculated using the following formula:

Normalized Score =
Algorithm Score−Min Score

Max Score−Min Score
Where Algorithm Score is the score of a given algorithm in a specific environment at a particular
time, and Min Score and Max Score are the minimum and maximum scores, respectively, achieved
among all participating algorithms in that same environment.

To compute an aggregate normalized score across multiple environments, we first calculate the
normalized score for each algorithm within each environment. We then average these scores. This
method ensures that each environment contributes equally to the final metric, providing a more
comprehensive and fair assessment of overall algorithm performance.

A.1.7 IMPLEMENTATION DETAILS: SHADING AREAS IN PLOTS

For aggregated performance plots in 2, we use 25% and 75% percentiles to create shaded areas around
the mean performance curves. This choice corresponds to common practices in RL community.

For training curves of individual environments in the appendix, we use 95% confidence intervals to
create shaded areas around the mean performance curves. This choice provides a clearer depiction of
variability in individual environment results, which can be more pronounced than in aggregated plots.

A.2 IMPLEMENTATION DETAILS OF IMAGE CLASSIFICATION

A.2.1 CODE IMPLEMENTATION OF ERA IN IMAGE CLASSIFICATION

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Algorithm 1 Soft Actor-Critic (SAC) with ERA

1: Initialize: actor parameters θ, critic parameters ϕ1, ϕ2.
2: Initialize: target network parameters ϕ′

1 ← ϕ1, ϕ′
2 ← ϕ2.

3: Initialize: replay buffer D.
4: Hyperparameters: learning rates λπ, λQ, λα, target entropyH0, Polyak coefficient τ .
5: for each training step do
6: Sample action from the policy: at ∼ πθ(·|st).
7: Execute action at, observe reward rt and next state st+1.
8: Store transition (st, at, rt, st+1) in replay buffer D.
9: Sample a random minibatch of transitions B = {(s, a, r, s′)} from D.

10: // Update the Q-functions (critics)
11: Sample next actions: a′ ∼ πθ(·|s′).
12: Compute the target Q-value by taking the minimum of the two target critics:

Q′
target(s

′, a′)← min
i=1,2

Qϕ′
i
(s′, a′)

13: Compute the Q-target y (matches Eq. 14):

y ← r + γQ′
target(s

′, a′)

14: Update both critics by one step of gradient descent using the loss from Eq. 8:

∇ϕi

1

|B|
∑

(s,a,y)∈B

1

2
(Qϕi

(s, a)− y)
2 for i = 1, 2

15: // Update the policy (actor)
16: Sample new actions for the policy update (using reparameterization trick): ã ∼ πθ(·|s).
17: Compute Q-values for the new actions using the minimum of the two critics:

Qmin(s, ã)← min
i=1,2

Qϕi(s, ã)

18: Update the policy by one step of gradient ascent to maximize the objective from Eq. 15:

∇θ
1

|B|
∑
s∈B

Qmin(s, ã)

19: // Update target networks using Polyak averaging
20: ϕ′

i ← τϕi + (1− τ)ϕ′
i for i = 1, 2

21: end for

We provide the implementation of ERA for image classification tasks in Listing 3. In the code, C_H
corresponds to CH0

defined in Eq. 16, and n_dims denotes the number of classes. We set τ = 4 in
our implementation without performing any tuning for this parameter.

A.2.2 TRAINING SETUP

Our training for ImageNet was completed on 4 A100 GPUs, and we report the 95% confidence
interval calculated from the dataset. For CIFAR-10, which requires less computation, we trained three
separate runs on 3 machines, each with 4 A40 GPUs, and report the confidence interval computed
from these three results to ensure maximum reproducibility.

A.2.3 COMMANDS USED FOR EXPERIMENTS

We provide two main commands used for training in image classification. The two commands
delineate the training procedures for our models under two distinct settings: one incorporating
data augmentation and the other without it. The training commands were sourced directly from
the reference ImageNet training script within the timm library. We employed this identical set of

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Listing 3: ERA Implementation in Image Classification
class ERA(nn.Module):

def __init__(self , C_H: float , n_dims: int):
super ().__init__ ()
self._tau = 4.
self.C_H = C_H
self.n_dims = n_dims

self.upper_bound = math.log(self._tau) / self._tau
assert C_H >= self.upper_bound
self.slope = (self.upper_bound - C_H / n_dims) / (1 - 1 / n_dims)
self.b = (C_H - self.slope) / n_dims

def forward(self , x: torch.Tensor) -> torch.Tensor:
"""
x: logits before softmax , shape (..., n_dims)
return: adjusted logits before softmax , shape (..., n_dims)
"""
h = self.slope * x.softmax(dim=-1) + self.b
u = -1 - torch.log(h)
new_logits = (-1 - torch.sqrt(2 * u) - 3/4 * u).to(x.dtype)

max_values = torch.max(x, dim=-1, keepdim=True).values.detach ()
x = x - max_values
min_values = torch.min(new_logits , dim=-1, keepdim=True).values.

detach ()
new_logits = new_logits - min_values

return new_logits

commands for training on both the ImageNet and CIFAR-10 datasets without any dataset-specific
hyperparameter tuning to ensure a consistent experimental setup.

Listing 4: Command to launch training with data augmentation.
./ distributed_train.sh 4 --data -dir ../ data --dataset torch/cifar10 --

↪→ dataset -download -b 64 --model resnet50 --sched cosine --epochs 200
↪→ --lr 0.05 --amp --remode pixel --reprob 0.6 --aug -splits 3 --aa
↪→ rand -m9-mstd0.5-inc1 --resplit --split -bn --jsd --dist -bn reduce

Listing 5: Command to launch training without data augmentation (baseline).
./ distributed_train.sh 4 --data -dir ../ data --dataset torch/cifar10 --

↪→ dataset -download -b 64 --model resnet50 --sched cosine --epochs 200
↪→ --lr 0.05 --amp --dist -bn reduce

A.3 IMPLEMENTATION DETAILS OF LLM TRAINING

A.3.1 CODE IMPLEMENTATION OF ERA IN LLM

We provide the core implementation of ERA in LLM in Listing 6. In the code, era_lb, era_ub
and era_k corresponds to ωlow, ωhigh, k defined in Eq. 17, respectively. In the first training stage,
we further apply a top-k filter (retaining the 20 largest logits) within the logprobs_from_logits
function to enhance training stability. In addition, the model is trained without advantage scaling, as
applying such scaling would reduce the update to a pure logit shift. The impact of advantage scaling
is discussed in C.4.3.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Listing 6: ERA Implementation in LLM
length = response_mask.sum(dim=-1)
k_per_sample = (0.2 * length).long().clamp(min =1)

mean_top_entropy = []
masked_entropy = entropy.masked_fill (~ response_mask.bool(), float("-inf")

)
for b in range(entropy.size (0)):

k = k_per_sample[b].item()
top_entropy_b , _ = torch.topk(masked_entropy[b], k)
mean_top_entropy.append(top_entropy_b.mean())

mean_top_entropy = torch.stack(mean_top_entropy).unsqueeze (-1)
cond_A = (mean_top_entropy < era_lb) & (advantages > 0)
cond_B = (mean_top_entropy > era_ub) & (advantages > 0)

logits[cond_A] = logits[cond_A] * era_k
logtis[cond_B] = logits[cond_B] / era_k

log_prob = logprobs_from_logits(logits)

A.3.2 HYPERPARAMETERS

For GRPO, GRPO w/ 20% Forking Tokens, ERA, we use a training batch size of 256 and a mini batch
size of 256 in the verl configuration, which results in a on-policy setting. For KL-Cov and Clip-Cov,
we use a training batch size of 256 and a mini batch size of 32, and other hyperparameters are
consistent with their original paper. GRPO + Entropy Loss uses an entropy regularization term with
coefficient 0.002. The learning rate is 10−6 and no learning rate warm-up or scheduling is applied.
We also utilize dynamic sampling to enhance training efficiency. Since our setting is on-policy, the
clip ratio is irrelevant. The maximum response length is 8192 with no overlong reward shaping. For
Qwen2.5-Math-1.5B, we use MATH problems of levels 3–5 as the training set in this experiment
since DAPO-Math-17K is too difficult.

The hyperparameters of ERA are fixed to ωlow = 0.45, ωhigh = 3.0, and k = 2 across all settings,
without any tuning. These values are chosen with reference to the initial entropy of the model,
Hresp ≈ 1.5, such that ωlow and ωhigh lie below and above this value, respectively. The only exception
is in the second training stage of ERA for the Qwen2.5-Math-7B model, where we set ωlow = 0.2,
ωhigh = +∞, and k = 2.

B PROOFS AND DERIVATIONS

B.1 PROOF OF ENTROPY BOUND IN CONTINUOUS SPACE

In this section, we provide a rigorous analysis of the Entropy Regularizing Activation (ERA) for
continuous control. We proceed in three steps:

1. Static Guarantee: We prove that the ERA functional form structurally guarantees the
entropy lower bound, provided the parameter δ̂ is sufficiently large.

2. Dynamic Convergence: We prove that the learnable parameter δ̂ converges to the required
value under coupled policy updates, using two-timescale stochastic approximation theory.

3. Non-negativity of Bias: We prove that the entropy compensation term δ(s) is non-negative
for both Squashed and Truncated Gaussian distributions.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

B.1.1 SETTING AND DEFINITIONS

Recall the continuous form of ERA. For a state s and network outputs (µ(s; θ), σ̂(s; θ)), the activation
maps to the final standard deviation σ′:

σ′
i(θ, δ̂; s) = exp

[
max

(
log σmax + (H0 + δ̂ − C)

eσ̂i(s;θ)∑D
j=1 e

σ̂j(s;θ)
, log σmin

)]
, (20)

where C = D log
√
2πe+D log σmax. Here,H0 is the target entropy, and δ̂ is a learnable parameter

intended to compensate for the entropy bias δbias(s) induced by the bounding function (e.g., Tanh or
Truncation).

The actual entropy of the final policy πθ,δ̂ is given by:

H(πθ,δ̂(·|s)) = HGaussian(µ(s; θ),diag(σ
′(θ, δ̂; s)))− δbias(s), (21)

whereHGaussian = D
2 log(2πe) +

∑D
i=1 log σ

′
i.

B.1.2 STATIC ENTROPY BOUND

Proposition 1. Given a target entropyH0 and a residual entropy parameter δ̂ ≥ δbias(s), the policy
defined by Eq. equation 20 satisfiesH(π) ≥ H0, and σ′ is strictly bounded within [σmin, σmax].

Proof. The entropy constraint H(π) ≥ H0 is equivalent to HGaussian − δbias(s) ≥ H0. Substituting
the Gaussian entropy formula, we require:

D∑
i=1

log σ′
i ≥ H0 + δbias(s)−

D

2
log(2πe). (22)

From Eq. equation 20, noting that the max operator ensures σ′
i ≥ σmin, we consider the term inside

the exponent:

D∑
i=1

log σ′
i ≥

D∑
i=1

[
log σmax + (H0 + δ̂ − C)

eσ̂i∑D
j=1 e

σ̂j

]
(23)

= D log σmax + (H0 + δ̂ − C)

D∑
i=1

eσ̂i∑D
j=1 e

σ̂j︸ ︷︷ ︸
1

(24)

= D log σmax +H0 + δ̂ − (D log
√
2πe+D log σmax) (25)

= H0 + δ̂ − D

2
log(2πe). (26)

Comparing this result with Eq. equation 22, we see that if δ̂ ≥ δbias(s), the condition is satisfied.
Furthermore, the functional form explicitly constrains outputs via max(·, log σmin) and log σmax (in
the softmax upper bound), ensuring σ′ ∈ [σmin, σmax].

B.1.3 CONVERGENCE UNDER COUPLED UPDATES

We now prove that δ̂ automatically converges to the necessary value to satisfy the constraint, even
when the policy parameters θ are updating simultaneously. We utilize the framework of two-timescale
stochastic approximation (Borkar, 1997).

Update Rule. The parameter δ̂ is updated to minimize the loss L(δ̂) = δ̂(H(π)−H0), leading to
the gradient update:

δ̂t+1 ← δ̂t + βt(H0 −H(πθt,δ̂t
)). (27)

Assumptions.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

(A1) Regularity: The mappings µ(θ) and σ̂(θ) are continuously differentiable with bounded
gradients.

(A2) Non-saturation: The optimization operates in a regime where the ERA activation is not
fully saturated at the lower bound σmin for all dimensions. This ensures ∂H

∂δ̂
> 0.

(A3) Timescale Separation: Let {αt} and {βt} be the step sizes for θ and δ̂ respectively. We
assume δ̂ updates on a faster timescale: limt→∞

αt

βt
= 0, alongside standard Robbins-Monro

conditions (
∑

αt =∞,
∑

α2
t <∞, etc.).

Lemma 1 (Monotonicity). Under (A2), for fixed θ,H(πθ,δ̂) is strictly monotonically increasing with

respect to δ̂.

Proof. ∂ log σ′
i

∂δ̂
= eσ̂i∑

eσ̂j
> 0. SinceH ∝

∑
log σ′

i, it follows that ∂H
∂δ̂

> 0.

Proposition 2 (Global Asymptotic Stability). Under the stated assumptions, the coupled iteration
(θt, δ̂t) converges such that δ̂t asymptotically tracks the equilibrium δ∗(θt) satisfying H(πθt,δ∗) =
H0.

Proof. We analyze the system dynamics in two timescales:

1. Fast Timescale (δ̂-update): Since αt/βt → 0, θ is viewed as quasi-static. The dynamics of δ̂

follow the ODE: ˙̂
δ(t) = H0 − H(πθ,δ̂(t)). Define the Lyapunov function V (δ̂) = 1

2 (δ̂ − δ∗(θ))2,

where δ∗(θ) is the unique root ofH(πθ,δ) = H0. The time derivative is V̇ = (δ̂ − δ∗)(H0 −H(δ̂)).
By monotonicity, if δ̂ > δ∗, thenH > H0, implying V̇ < 0. Thus, δ̂ converges globally to δ∗(θ).

2. Slow Timescale (θ-update): By the theory of two-timescale stochastic approximation, δ̂t tracks
δ∗(θt) almost surely. The policy update θt effectively proceeds along the manifoldM = {(θ, δ̂) |
H(πθ,δ̂) ≈ H0}, solving the constrained optimization problem.

3. Robustness (Finite Step Sizes): In practice, if αt/βt is bounded but non-zero, the system is
Input-to-State Stable (ISS). The policy update θ̇ acts as a bounded disturbance. The entropy error is
bounded by the ratio of the disturbance magnitude to the controller gain:

lim sup
t→∞

|H(πt)−H0| ≤ C · sup
t

αt.

This guarantees that the entropy remains bounded within a small neighborhood ofH0.

B.1.4 NON-NEGATIVITY OF THE BIAS TERM

Finally, we show that the bias term δbias(s) in Eq. equation 20 is non-negative, justifying the form of
our compensation.

Case 1: Tanh-squashed Gaussian. The bias is given by δtanh = −E[
∑

log(1 − tanh2(ui))].
Since 1 − tanh2(u) ∈ (0, 1], its logarithm is non-positive. Therefore, the negative expectation is
non-negative: δtanh ≥ 0.

Case 2: Truncated Gaussian (TN). Let πorig = N (µ, σ2) be the original Gaussian distribution
and πTN be the truncated distribution restricted to the interval [−1, 1]. The bias is defined as the
entropy difference: δTN = h(πorig)− h(πTN).

To rigorously prove δTN ≥ 0, we introduce a moment-matched Gaussian distribution π̄ =
N (mTN, vTN), where mTN and vTN denote the true mean and variance of the truncated distribu-
tion πTN. The proof proceeds in two steps:

1. Maximum Entropy of Gaussians (h(π̄) ≥ h(πTN)): Among all continuous probability
distributions with a fixed variance, the Gaussian distribution maximizes differential entropy.
Since the constructed distribution π̄ is Gaussian and shares the exact same variance vTN as
πTN, its entropy must be greater than or equal to that of πTN:

h(π̄) ≥ h(πTN). (28)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

2. Variance Reduction by Truncation (h(πorig) ≥ h(π̄)): The entropy of a Gaussian dis-
tribution is monotonically increasing with respect to its variance, given by h(N (·, σ2)) =
1
2 log(2πeσ

2). Therefore, showing h(πorig) ≥ h(π̄) is equivalent to proving that truncation
reduces variance, i.e., vTN ≤ σ2.
We prove this inequality analytically by examining the sensitivity of the truncated mean
mTN with respect to the original location parameter µ.
First, it is a known result in truncated statistics that the derivative of the truncated mean
with respect to the location parameter µ is exactly the ratio of the truncated variance to the
original variance:

∂mTN

∂µ
=

vTN

σ2
. (29)

Second, we bound this derivative using properties of log-concave functions. The truncated
mean can be expressed in terms of the normalization constant Z(µ) = Φ(β)− Φ(α) as:

mTN = µ+ σ2 ∂ lnZ(µ)

∂µ
. (30)

Differentiating this expression with respect to µ yields:

∂mTN

∂µ
= 1 + σ2 ∂

2 lnZ(µ)

∂µ2
. (31)

The normalization term Z(µ) can be viewed as the convolution of the standard normal
PDF ϕ(·) and the indicator function of the interval [−1, 1]. Since both the Gaussian PDF
and the indicator function of a convex set are log-concave functions, and the convolution
of log-concave functions preserves log-concavity (Boyd & Vandenberghe, 2004), Z(µ) is
log-concave in µ.
By definition, the second derivative of the logarithm of a concave function is non-positive.
Thus:

∂2 lnZ(µ)

∂µ2
≤ 0. (32)

Substituting this inequality back into Eq. equation 31, we obtain the upper bound:

∂mTN

∂µ
≤ 1. (33)

Finally, combining this bound with Eq. equation 29, we arrive at:
vTN

σ2
≤ 1 =⇒ vTN ≤ σ2. (34)

This strictly implies h(πorig) ≥ h(π̄).

Conclusion: Summing the inequalities established in steps 1 and 2, we have:

h(πorig) ≥ h(π̄) ≥ h(πTN). (35)

Consequently, the bias term δTN = h(πorig)− h(πTN) is guaranteed to be non-negative.

B.2 PROOF OF ENTROPY BOUND IN DISCRETE SPACE

Recall the discrete form of ERA:

z′ = h−1

[
max

(
log τ

τ
+

(
CH0

− n
log τ

τ

)
1

D − 1

(
1− ezi∑D

j=1 e
zj

)
, 0

)]

Before we delve into the proof of its entropy bound, we first provide some insights into the design
of ERA in the context of vision tasks. To adapt the entropy constraint function from continuous
spaces for discrete domains, our initial idea was to have the network output the entropy of individual
components rather than their logits. However, this direct approach is problematic because the function
H(p) = −p ln p is non-monotonic over the interval [0, 1]. This ambiguity means a given entropy

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

6 5 4 3 2 1 0

x
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

y

h(x) = xex and its Inverse Approximation
xex

h 1(x)(inversed)

Figure 9: Plot of h(x) = −xex and its Inverse Approximation ĥ−1(x). We reverse the x and y
values for ĥ−1 to visualize the inverse relationship(The more two curves overlap, the closer the
approximation). We can see that the approximation is very close to the true inverse function.

value cannot be uniquely mapped back to its corresponding probability; for instance, an entropy of 0
could correspond to a probability of either 0 or 1.

To resolve this ambiguity, we introduce a scaling factor τ > e and consider a "τ -divided distribution,"
where each probability is scaled down by τ (We note that the τ -divided distribution is not actually a
valid probability distribution, but a tool for analysis). By selecting τ > e, we ensure that the function
−p ln p is strictly monotonically increasing on the interval [0, 1/τ]. This establishes a one-to-one
mapping, allowing for the unique recovery of a probability value from its entropy within this restricted
range. Therefore, our network is designed to output the entropy of this τ -divided distribution. We
then map these entropy values back to logits using an inverse function, h−1. Note that an entropy
value isH = −p ln p for some p ∈ [0, 1/τ]. From logits to entropy, we have the following mapping
function:

h(x) = −x lnx ◦ exp(x) = − exp(x) · x (36)

Therefore, the inverse function h−1 maps entropy values back to logits is exactly the inverse of
−x exp(x), we have h−1(x) = W (−x). W is known as the Lambert W function (Corless et al.,
1996). Since there is no closed-form solution for the Lambert W function, we utilize a numerical
approximation ĥ−1(x) = − 1

4 −
√
2(−1− ln(x)) + 3

4 lnx. We derive this approximation from
(1 + x + ln(−x))−1 ≈ −1 −

√
2x − 3

4x. Here "-1" denotes the inverse function. A final
normalization step is required because the resulting probabilities from this inverse mapping do not
inherently sum to one.

Crucially, we have proven that the entropy loss during this normalization process is bounded. By
leveraging the continuous-space entropy constraint function to ensure the initial output entropy is
above a threshold CH0

, we can guarantee that the entropy of the final discrete distribution will also
exceed CH0

. This constitutes the core mechanism behind the implementation of ERA in discrete
spaces.

Proposition 3. Given a target entropyH0 and a hyperparameter τ ≥ e, the policy defined by Eq. 16
has entropyH(π) ≥ H0.

Proof. We denote κ = max(log τ
τ +(CH0−n

log τ
τ) 1

D−1 (1−
ezi∑D

j=1 ezj
), 0). Similar to the continuous

case, we have κ bounded within [0, log τ
τ] and

∑D
i=1 κi ≥ CH0

. We denote the probability of the final

softmax policy as p = softmax(z′) = ez
′∑D

j=1 e
z′
j

. Then we have:

H(π) = −
D∑
i=1

pi log pi

= −
∑D

i=1 e
h−1(κi)h−1(κi)∑D

j=1 e
h−1(κj)

+ log(

D∑
j=1

eh
−1(κj))

≥ 1 + log(−
D∑
i=1

eh
−1(κi)h−1(κi)) (37)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Recall that h = −x lnx ◦ ex, so h−1 = ln ◦(−x lnx)−1. Hence we have:

H(π) ≥ 1 + log(−
D∑
i=1

eh
−1(κi)h−1(κi))

= 1 + log(

D∑
i=1

κi) ≥ 1 + log(CH0
) = H0 (38)

B.3 PROOF OF ENTROPY BOUND IN LLMS

Recall the definition of the ERA instantiation for LLMs:

z′ =


kz Hresp < ωlow, At > 0,

z (ωlow ≤ Hresp ≤ ωhigh, At < 0) or At > 0,
1
kz Hresp > ωhigh, At > 0,

and

A′
t =


1
kAt Hresp < ωlow, At > 0,

At (ωlow ≤ Hresp ≤ ωhigh, At < 0) or At > 0,

kAt Hresp > ωhigh, At > 0,

where z are the logits, At the advantages, and Hresp is the average entropy of the top 20% of tokens
with the highest entropy in the response.

These transformations are applied after sampling. The modified policy-gradient objective is therefore

J(θ) = Et[Eat∼πθ(·|st) log π
′
θ(at|st)A′

t]

Intuitively, when the entropy is too low, ERA sharpens the policy; when it is too high, ERA flattens it.
By rescaling the advantages of modified tokens, we show below that ERA is equivalent to augmenting
the vanilla policy-gradient objective with an adaptive KL regularizer. This KL term guarantees that
the entropy of responses remains in the interval [ωlow, ωhigh], preventing entropy collapse. Under mild
assumptions, we derive a positive entropy lower bound.

Fixing the state st, denote πa = πθ(a|st), π′
a = π′

θ(a|st), and Aa the advantage of action a. The
entropy is H = −

∑
a πa log πa. We first derive the gradient of the entropy.

Lemma 2.
∂H

∂za
=
∑
a′

−∂ log πa′

∂za
(πa′ log πa′ + πa′)

=
∑
a′

−([a = a′]− πa)(πa′ log πa′ + πa′)

= −πa(log πa +H). (39)

We also define the π-weighted covariance that will be used later:
Definition 1. Define the π-weighted covariance for two vectors x = (xa), y = (ya) by

Covπ(x, y) =
∑
a

πaxaya −
(∑

a

πaxa

)(∑
a

πaya

)
.

Now we show our main result:
Proposition 4. Let πθ be the base policy and π′

θ the ERA-adjusted policy from Eq. equation 17.
Suppose that:

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

(i) (Logit approximation) The change in entropy can be approximated by treating logits z as the
effective policy parameters and using first-order (infinitesimal) sensitivity of entropy w.r.t. z.

(ii) (Positive advantage mass) The aggregated positive advantage restricted to the tokens con-
sidered in Hresp,

C(st) =
∑

a,Aa>0

πaAa,

satisfies C(st) ≥ γ for some γ > 0.

(iii) (Bounded response entropy) In some intermediate point of the training process, Hresp has a
lower bound Hmin and an upper bound ωhigh.

(iv) (Bounded PG-induced entropy decrease) We assume the vanilla policy-gradient term’s
expected effect on entropy is bounded as

E[Covπ(πaAa, log πa)] ≤ αH,

for some α ≥ 0 and any fixed H , where H denotes the entropy of the current policy π.

(v) (Bounded KL-induced entropy decrease) We assume there exists a constant Bk > 0 (that
depends on k and Hmin) such that

Covπ(π
′
a − πa, log πa) ≥ BkH,

If γBk − α > β for β > 0, then there exists a constant H0 > 0 such that the response entropy
satisfies

E[Hresp] ≥ H0

under ERA updates using a gradient flow approximization.

Proof. When Hresp < ωlow, ERA sharpens positively advantaged actions. Following the derivation,
the ERA-adjusted gradient satisfies

∂

∂za
Ea′∼π log π

′
a′A′

a′

=
∂

∂za
Ea′∼π

(
[Aa′ > 0] log π′

a′
1

k
Aa′ + [Aa′ < 0] log πa′Aa′

)
= Ea′∼π

(
[Aa′ > 0]

∂ log π′
a′

∂z′a

∂z′a
∂za

1

k
Aa′ + [Aa′ < 0]

∂ log πa′

∂za
Aa′

)
= Ea′∼π ([Aa′ > 0]([a′ = a]− π′

a′)Aa′ + [Aa′ < 0]([a′ = a]− πa′)Aa′)

= πaAa − π′
a

∑
a′,Aa′>0

πa′Aa′ − πa

∑
a′,Aa′<0

πa′Aa′ , (40)

Since the expectation of advantage is zero, and we have defined C(st) =
∑

a′,Aa′>0 πa′Aa′ , yielding

∂

∂za
Ea′∼π log π

′
a′A′

a′ = πaAa − C(st)(π
′
a − πa). (41)

For the vanilla policy-gradient loss, this reduces to

∂

∂za
Ea′∼π log πa′Aa′ = πaAa (42)

Meanwhile, by a similar derivation, the gradient of the KL divergence is

∂

∂za
KL[π′∥π] = − ∂

∂za
Ea′∼π′ log πa′ = πa − π′

a. (43)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Thus, by combining equation 41, equation 42 and equation 43, the ERA-adjusted objective can be
written as

J ′(θ) = Et[Eat∼πθ(·|st) log πθ(at|st)At︸ ︷︷ ︸
JPG

+sg(C(st))KL[π′
θ(·|st), πθ(·|st)]︸ ︷︷ ︸

JKL

], (44)

where the sg(·) denotes the stop gradient operator. For the other case ωlow ≤ (we have assumed that
Hresp ≤ ωhigh, the same structure holds; only the definition of π′

θ changes. Hence, ERA is equivalent
to a policy gradient objective augmented with an adaptive KL regularizer that sharpens or flattens the
distribution depending on Hresp and also the value of C(st).

We will evaluate the instantaneous directional derivative of entropy along these gradient directions
(this corresponds to the first-order change in entropy under an infinitesimal step in the indicated
direction).

Using equation 39, the first-order change of entropy caused by JPG is

∆HPG =
∑
a

∂H

∂za
· πaAa

=
∑
a

−πa(log πa +H) · πaAa

= −
∑
a

π2
aAa(log πa +H)

= −Covπ(πaAa, log πa). (45)

By assumption (iv) this term is bounded below by −αH:

E[∆HPG] ≥ −αH.

Thus the vanilla policy-gradient component can decrease entropy, but by no more than αH in
magnitude.

Similarly, the KL-term directional derivative is

∆HKL =
∑
a

∂H

∂za
· (πa − π′

a)

=
∑
a

−πa(log πa +H) · (πa − π′
a)

=
∑
a

πa(π
′
a − πa)(log πa +H)

= Covπ(π
′
a − πa, log πa) (46)

By assumption (v) we have Covπ(π
′
a − πa, log πa) ≥ BkH . Using assumption (ii) C(st) ≥ γ

therefore yields
C(st)∆HKL ≥ γBkH.

Combining the two contributions,

E[∆H] = E[∆HPG + C(st)∆HKL] ≥ −αH + γBkH = (γBk − α)H.

By the hypothesis γBk − α > β we have ∆H > βH whenever H > 0 and H is in the sharpening
regime. Thus, if Hresp drops below ωlow, the ERA-induced update produces a positive first-order
increase in entropy proportional to Hresp. Consequently the dynamics push Hresp upward until it
leaves the sharpening regime (i.e., until Hresp ≥ ωlow or the KL-term no longer sharpens).

Formally, when Hresp < ωlow we have E[∆H] ≥ βHresp, and when Hresp ≥ ωlow we have E[∆H] ≥
−αHresp. Therefore, the overall expected change in entropy is at least

βEHresp<ωlow [Hresp]− αEHresp≥ωlow [Hresp] (47)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Applying Markov’s inequality gives Pr(Hresp ≥ ωlow) ≤ µ/ωlow, where µ = E[Hresp]. Further, by
assumption (iii): Hmin ≤ Hresp ≤ ωhigh, we obtain the sufficient condition to make the expected
entropy change non-negative:

β ≥ α ·
µωhigh

(ωlow − µ)Hmin
.

The entropy is expected to increase (E[∆H] ≥ 0) whenever the term in this inequality holds. Solving
for µ, we find the condition:

µ ≤ βωlowHmin

αωhigh + βHmin
.

Then we setH0 as

H0 =
βωlowHmin

αωhigh + βHmin
.

Under the gradient-flow approximation, we have

d

dt
E[Hresp] ≥ 0 whenever E[Hresp] ≤ H0.

By assumption (iii), there exists a time t0 such that E[Hresp] ≥ H0 at t0. Then, by the principle of
differential inequalities, the ERA objective ensures that E[Hresp] stays above this threshold for all
t ≥ t0.

We now justify the assumptions made in Proposition 4.

(i) The first assumption, namely approximating entropy differences by treating logits as policy
parameters, is standard and also adopted by (Cui et al., 2025b). This simplification is
essential for analytical tractability; without it, the theoretical analysis of the model’s behavior
becomes prohibitively complex.

(ii) Recall that C(st) =
∑

a,Aa>0 πaAa measures the aggregated positive advantage, which
reflects the “importance” of a token. Intuitively, C(st) indicates whether a token should
remain explorative and thus be subject to entropy regularization. We assume that for
important tokens, C(st) is uniformly bounded below by some constant γ > 0.

(iii) Empirically, our training curves show that responses with Hresp > ωhigh vanish rapidly,
and such cases contribute negligibly to the average entropy. This supports the assumption
Hresp ≤ ωhigh. Moreover, in the early stage of training, the highest entropy tokens (top
20%) contain a lot of exploratory tokens, exhibiting a large average entropy, motivating the
assumption of a positive lower bound Hresp ≥ Hmin.

(iv) It is provable that
Covπ(πaAa, log πa) ≤ H,

where H denotes the entropy. In practice this upper bound is rarely tight, and we assume
instead a looser bound with a small constant α ∈ (0, 1).

(v) In our regime, the entropy is low enough that the token with the largest probability dominates
(with probability ≥ 0.6). In this setting, the covariance is large enough and is proportional
to the entropy H .

In practice, the observed entropy lower bound is higher than the theoretical bound derived in
Proposition 4, owing both to the looseness of the Markov inequality used in the derivation and to the
fact that the tokens outside Hresp (bottom 80%) also get an entropy boost.

C ADDITIONAL RESULTS

C.1 ADDITIONAL RESULTS ON CONTINUOUS CONTROL TASKS

In this subsection, we provide additional experimental results on continuous control tasks to further
validate the effectiveness of our proposed method, ERA, and to find more insights regarding entropy
regularization in reinforcement learning.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

C.1.1 TRUNCATED GAUSSIAN IS MORE STABLE THAN TANH GAUSSIAN

4 3 2 1 0
entropy target

0.0

0.2

0.4

0.6

0.8

1.0

IQ
M

(a)

0 500.0K 1.0M
steps

0.00

150

300

R
et

ur
n

humanoid-run

0 500.0K 1.0M
steps

0.50

0.75

1

A
ct

io
n

N
or

m

humanoid-run

(b)

0 500.0K 1.0M
steps

-24

-12

0.00

En
tro

py

humanoid-run

(c)
TruncatedNormal(Const) TanhNormal(Const) TruncatedNormal(Auto) TanhNormal(Auto)

Figure 10: Analysis of Policy Distributions. Comparison of Truncated and Tanh Gaussian policies
with varying δ on DMC tasks. Target entropy represents the desired average entropy per action
dimension. (a) The Truncated Gaussian exhibits greater stability across four DMC tasks. (b) For the
Tanh Gaussian with a learned δ, instability arises as action norms approach the boundary, causing
training to collapse. (c) The Truncated Normal distribution’s entropy remains stable and well-
controlled in both modes, shown here for a target entropy of -0.75.

We study the choice of policy distribution and the handling of its standard deviation, δ. We compare
a Truncated Gaussian against a Tanh-squashed Gaussian, each with a constant δ (set to 0 in our
experiments) and a learned δ, using SAC on four hardest tasks from the DMC Dog & Humanoid
suites(dog-run, dog-trot, humanoid-run, humanoid-walk) with 5 seeds and 1M environmental steps.
As shown in Figure 10, the Truncated Gaussian is significantly more stable. The Tanh Gaussian
experiences catastrophic training failures when δ is learned. Our analysis reveals that with the Tanh
Gaussian, the action norm often approaches the distribution’s boundaries. This causes the learned δ to
grow explosively, creating a vicious cycle of instability as the policy attempts to output actions near
the boundary while satisfying the entropy objective. This issue is absent in the Truncated Gaussian,
which yields stable δ values. Given that the performance difference between a learned and a constant
δ is minimal under the Truncated Gaussian, we adopt the truncated gaussian distribution with constant
δ of 0 setting for its simplicity in main results.

C.1.2 BATCH-LEVEL ENTROPY REGULARIZATION V.S. STATE-LEVEL ENTROPY
REGULARIZATION

1.5 1.0 0.5 0.0 0.5
entropy target

0.0

0.2

0.4

0.6

0.8

1.0

IQ
M

ERA-Batch
ERA-Single
SAC

Figure 11: Comparison between state-level and batch-level entropy regularization methods on
DMC Dog & Humanoid suites. Both methods outperform the SAC baseline.

In addition to the state-level entropy regularization method presented in the main paper, we also
investigate a batch-level entropy regularization method, which directly constrains the expected entropy
of the action distribution over ρπ. Specifically, we modify the activation form of ERA in Eq. 12 to
the form in Eq. 48.

µ′ = µ, σ′ = exp

[
max

(
log σmax +

(
H′

0

D
− log

√
2πe− log σmax

)
eσ̂i

ēσ̂
, log σmin

)]
(48)

Where ēσ̂ = 1
N

∑N
i=1 e

σ̂i is the average of eσ̂ over the batch. During training, we can calculate ēσ̂

over the sampled batch, and during evaluation, we can use a running average of ēσ̂ over the training

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

process, which is similar to the running statistics in BatchNorm (Ioffe & Szegedy, 2015). We conduct
an ablation study to compare the performance of state-level and batch-level entropy regularization
methods on DMC Dog & Humanoid suites(dog-run, dog-trot, humanoid-run, humanoid-walk). As
shown in Figure 11, both methods achieve similar performance, outperforming the SAC baseline.
This indicates that in locomotion-dominated control tasks, which require high exploration due to
the need for randomness but do not demand high precision, the difference between state-level and
batch-level entropy regularization is minimal.

C.1.3 SAC-ERA ON MUJOCO GYM ENVIRONMENTS

We also evaluate the performance of SAC-ERA on the classic Mujoco Gym environments, including
HalfCheetah-v4, Hopper-v4, Walker2d-v4, Ant-v4, Humanoid-v4, Swimmer-v4, and compare it with
the SAC baseline. Figure 12 shows the learning curves of SAC-ERA and SAC on these environments.
Despite their massive performance gap on HumanoidBench, SAC-ERA demonstrates only slight
advantages over SAC on Mujoco Gym environments. This may be due to the relatively low action
space dimensionality in Mujoco environments, which reduces the impact of different constraint
schemes. This finding suggests that modern algorithm design should shift focus from considering
Mujoco to higher-dimensional action spaces, which can better evaluate algorithm performance in
complex environments.

0 500.0K 1.0M
steps

0.00

3000

6000

R
et

ur
n

Walker2d-v4

0 500.0K 1.0M
steps

0.00

3500

7000

R
et

ur
n

Ant-v4

0 500.0K 1.0M
steps

0.00

3000

6000

R
et

ur
n

Humanoid-v4

0 500.0K 1.0M
steps

0.00

100

200

R
et

ur
n

Swimmer-v4

0 500.0K 1.0M
steps

0.00

2000

4000

R
et

ur
n

Hopper-v4

0 500.0K 1.0M
steps

0.00

6500

13000

R
et

ur
n

HalfCheetah-v4
SAC
SAC-ERA

Figure 12: Learning curves of SAC-ERA and SAC on Mujoco Gym environments. SAC-ERA
demonstrates very slight advantages over SAC.

C.1.4 APPLICABILITY OF LLM RL TECHNIQUES TO CONTINUOUS CONTROL

We investigated the applicability of two recent techniques from Reinforcement Learning for Large
Language Models (LLM RL), designed to prevent entropy collapse, to the domain of continuous
control. Specifically, we trained a PPO agent on the HalfCheetah-v4 benchmark for 10 random seeds,
incorporating two distinct methods: Selective High-Entropy Training, which trains the agent only on
a certain proportion of high-entropy samples, and Clip-Higher, which applies a larger clip ratio for
advantages greater than one. Recognizing the significant disparities between LLM RL and continuous
control tasks, we evaluated a range of parameters for each technique to ensure that any ineffectiveness
was not due to improper parameter selection.

The results, presented in Figure 13, show that these techniques struggle to provide higher policy
entropy compared to the standard PPO algorithm in the control task. Furthermore, they yield no
significant or only marginal performance improvements; we suspect such minor gains may not even
stem from better entropy regularization. Consequently, the performance of these methods is not
comparable to our proposed approach, ERA. These findings lead to two main conclusions. First,
they highlight the substantial differences between LLM RL and continuous control, demonstrating

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

that techniques effective in one domain do not necessarily transfer to the other, even when using the
same algorithmic framework. Second, they underscore the superior performance of our proposed
ERA method.

0 1.5M 3.0M
steps

-10.00

-1.00

8

En
tro

py

HalfCheetah-v4

0 1.5M 3.0M
steps

0.00

4000

7000

R
et

ur
n

HalfCheetah-v4
20%
40%
60%
80%
100%(Original)

(a)

0 1.5M 3.0M
steps

-10.00

-1.00

8

En
tro

py

HalfCheetah-v4

0 1.5M 3.0M
steps

0.00

4000

7000

R
et

ur
n

HalfCheetah-v4
0.4
0.36
0.32
0.28
0.24
0.2(Original)

(b)

Figure 13: Results of Selective High-Entropy Training and a Clip-Higher Strategy in Continuous
Control. (a) Performance when training the agent exclusively on a top percentage of high-entropy
samples. (b) Performance of the clip-higher strategy with varying clipping ratios.

C.1.5 COMPARING ERA WITH OTHER MAXIMUM ENTROPY RL APPROACHES

A key baseline for our entropy regularization approach (ERA) is the projection-based method from
Akrour et al. (2019), which we term Scale Std. This method scales the standard deviation of a
Gaussian policy by a factor > 1 if its entropy falls below a threshold, conceptually similar to rejection
sampling. While this appears similar to our mapping concept, the mechanism is fundamentally
different. Scale Std merely translates the policy’s output log standard deviations by a uniform factor.
This does not incentivize the policy to learn an optimal allocation of entropy across different action
dimensions, as the constraint is borne uniformly.

This difference is evident in the gradient signal. For the Scale Std method, the mapped standard
deviation σ⃗′ is calculated as:

σ⃗′ = σ⃗ · exp (Htarget −H(σ⃗))/d (49)

where d is the action dimension,Htarget is the target entropy, andH(σ⃗) = d
2 ln (2πe) +

∑d
i=1 lnσi

is the current policy entropy. The action is then sampled as a ∼ N (µ, diag(σ⃗′2)). The resulting
gradient with respect to the policy’s original log standard deviation lnσi (which the network outputs)
is:

∂a

∂ lnσi
= ϵi · exp (Htarget −H(σ⃗))/d︸ ︷︷ ︸

Uniform Scalar C

·
(
σi −

2

d

)
(50)

For comparison, the gradient for SAC without an entropy penalty is simply:

∂a

∂ lnσi
= ϵi · σi (51)

Thus, the Scale Std gradient is merely the standard SAC gradient scaled by a uniform constant C
and offset by another uniform constant (C · 2/d). This adjustment provides no differential signal to
incentivize entropy allocation between dimensions. This post-processing of the policy output does
not truly make the policy learn to allocate entropy among dimensions.

In contrast, while the gradient with respect to ERA’s final log std is also ϵi · σi, this gradient is
backpropagated through the ERA activation to the policy’s original output σ̂(which is not actually
a standard deviation). This process multiplies the gradient by the derivative of the ERA function,
which is dimension-specific due to the softmax mechanism. This provides the necessary differential
signal, compelling the policy to learn an optimal entropy allocation, which is the fundamental reason
for its success.

We validated this theoretical analysis by comparing SAC-ERA and SAC (Scale Std) on the DMC
dog-trot task. We used a target entropy of −A (where A = 38 is the action dimension) and a
compensated truncated distribution for both to ensure fair comparison. To visualize the learned
exploration strategy, we generated density heatmaps of the policy’s log standard deviations over
training (10 seeds), shown in Figure 14. For Scale Std, we plot the pre-translation log stds (as a

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

uniform translation only alters the distribution’s location, not its shape), and for ERA, we plot the
final, post-mapping log stds.

The results are stark. SAC (Scale Std) exhibits a highly uneven distribution: most dimensions collapse
to the lower bound -8, while a few saturate at the upper bound 0 (using the default range [-8, 0]). The
mean log std was around -7, indicating that most dimensions cease exploration, while a few to explore
excessively. Conversely, SAC-ERA shows a clear diffusion from a uniform start, as the policy learns
to allocate entropy across dimensions in a targeted manner. The final distribution is well-spread, not
clustered at the bounds, indicating all dimensions participate meaningfully in exploration.

This strategic difference directly impacts performance, as shown in Figure 15. We tested on four
complex tasks: DMC dog-trot, humanoid-walk, and HumanoidBench h1-walk and h1-run. SAC
(Scale Std) shows a mild improvement on dog-trot and is significantly worse than the baseline SAC
on the other three, suggesting its naive exploration strategy hinders learning. In contrast, SAC-ERA
significantly outperforms both SAC and SAC (Scale Std) in all environments, confirming that
ERA effectively guides the policy to rationally allocate entropy across dimensions, a failure point for
the Scale Std method.

0.2 0.4 0.6 0.8 1.0
Training Steps 1e6

3.0

2.5

2.0

1.5

1.0

A
ct

or
 L

og
 S

td

ERA

0.0

0.2

0.4

0.6

0.8

1.0

D
ensity

0.2 0.4 0.6 0.8 1.0
Training Steps 1e6

8

6

4

2

0

A
ct

or
 L

og
 S

td

Scale Std

0.0

0.2

0.4

0.6

0.8

1.0

D
ensity

0 500K 1M
steps

-40

-38

-36

En
tro

py

dog-trot
Scale Std
ERA

Figure 14: Entropy curves (left), evolution of log standard deviation distributions for SAC (Scale
Std) (middle) and SAC-ERA (right) on the dog-trot task. Scale Std leads to a polarized, uneven
distribution, while ERA learns a balanced, diffusive allocation.

0 1.5M 3.0M
steps

0.00

500

1000

R
et

ur
n

h1-run-v0

0 1.5M 3.0M
steps

0.00

500

1000

R
et

ur
n

h1-walk-v0

0 500.0K 1.0M
steps

0.00

500

1000

R
et

ur
n

humanoid-walk

0 500.0K 1.0M
steps

0.00

500

1000

R
et

ur
n

dog-trot
SAC
SAC(Scale)
SAC(ERA)

Figure 15: Performance comparison of SAC-ERA against SAC (Scale Std) and baseline SAC on
complex locomotion tasks (DMC dog-trot, humanoid-walk, and HumanoidBench h1-walk, h1-run).

ERA Scale Std SAC0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 S
co

re

0.81

0.40 0.42

ERA Scale Std SAC

Figure 16: Normalized scores across 4 tasks. SAC-ERA significantly outperforms both SAC and
SAC (Scale Std) in all environments

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

In addition to the projection-based method, several other approaches have been explored to imple-
ment maximum entropy reinforcement learning, including recent diffusion-based and flow-based
methods (Celik et al., 2025; Chao et al., 2024; Ma et al., 2025). However, these methods often require
significantly more computational resources; for instance, the MEow algorithm (Chao et al., 2024)
requires at least 2.3 times the training time of SAC. We therefore focus our comparison on two recent
methods that also adopt Gaussian policies:

• EAPO (Choe & Kim, 2024): The core innovation of Entropy Advantage Policy Optimisation
(EAPO) is decomposing the max-entropy objective into cumulative reward and trajectory entropy,
then independently estimating advantage functions for each. It introduces a dedicated "entropy
critic" to separately learn the value of future uncertainty, combining it with the traditional value
of future rewards.

• MNSE (Zhong et al., 2024): The Maximum Next-State Entropy (MNSE) paper argues for the
direct maximization of next-state entropy, positing that this more directly measures the diversity
of states induced by the policy and can lead to more efficient exploration.

Since no public code repositories were available, we compare against the curves reported in the
original papers. The experimental setups are as follows:

• EAPO utilizes the PPO algorithm as its base and was trained for 4 million timesteps (more than
the 3 million timesteps used in PPO-ERA).

• MNSE is built upon the SAC algorithm and was trained for 1 million timesteps (the same as
SAC-ERA).

We compare PPO-ERA with EAPO, and SAC-ERA with MNSE on the Mujoco Gym benchmark. The
results are presented in Figure 17 and Figure 18. As shown, ERA demonstrates superior performance
over EAPO when both are built on PPO, and it also outperforms MNSE when SAC is used as the
base algorithm. Although Mujoco Gym is a relatively low-difficulty benchmark, we are limited to it
as neither of the other papers presented results in more complex environments like DMC Suite or
HumanoidBench. These findings suggest that ERA is a more effective implementation of maximum
entropy reinforcement learning.

0 1.5M 3.0M
steps

0.00

3000

6000

R
et

ur
n

Ant-v4

0 1.5M 3.0M
steps

0.00

3000

6000

R
et

ur
n

Walker2d-v4

0 1.5M 3.0M
steps

0.00

4500

9000

R
et

ur
n

HalfCheetah-v4
EAPO
PPO-ERA

Figure 17: Performance comparison of PPO-ERA against EAPO on MuJoCo benchmark tasks.

0 500.0K 1.0M
steps

0.00

3000

6000

R
et

ur
n

Humanoid-v4

0 500.0K 1.0M
steps

0.00

3500

7000

R
et

ur
n

Ant-v4

0 500.0K 1.0M
steps

0.00

3000

6000

R
et

ur
n

Walker2d-v4

0 500.0K 1.0M
steps

0.00

2000

4000

R
et

ur
n

Hopper-v4

0 500.0K 1.0M
steps

0.00

6500

13000

R
et

ur
n

HalfCheetah-v4

MNSE
SAC-ERA

Figure 18: Performance comparison of SAC-ERA against MNSE on MuJoCo benchmark tasks.

Furthermore, both EAPO and MNSE require additional network architectures and computational
resources. EAPO necessitates an extra entropy critic network, while MNSE requires an additional
inverse dynamics model network. In contrast, ERA does not require any additional networks, leading
to a negligible increase in computational overhead. This makes ERA a more advantageous choice for
practical applications.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

C.1.6 SENSITIVITY ANALYSIS ON THE σ INTERVAL

The hyperparameters σmax and σmin are frequently employed in algorithms such as SAC. Standard
settings for σmin typically include -20, -10, and -8, whereas σmax is commonly set to 0 or 2. We
evaluated the performance of SAC-ERA on the dog-run and humanoid-walk environments using
three distinct sets of these values, as illustrated in Fig. 19.

0 500K 1M
steps

0

500

1000

R
et

ur
n

humanoid-walk

0 500K 1M
steps

0

500

1000

R
et

ur
n

dog-run
[-8,0]
[-20,0]
[-8,2]

Figure 19: Ablation study on the σ interval [σmin, σmax] for SAC-ERA in dog-run and humanoid-
walk, with 5 seeds. We compare performance across three different interval settings derived from
σmin ∈ {−20,−8} and σmax ∈ {0, 2}. The results show that the choice of these bounds has no
significant impact on performance, highlighting the robustness of our method.

The experimental results demonstrate that all three settings exhibit nearly identical learning curves
on the dog-run environment. On the humanoid-walk environment, the performance differences are
also not significant, although the [−8, 0] setting yields slightly better performance compared to the
other two configurations. Overall, our method exhibits strong robustness to the choice of the interval.
In practice, we recommend prioritizing the [−8, 0] interval, which we use as the default in all our
experiments, and considering other settings only when further fine-tuning is required.

C.1.7 ON THE CHOICE OF THE ENTROPY TARGET

The selection of the entropy target is a key hyperparameter when employing ERA. As discussed
in the main paper and prior appendices, the optimal value for SAC-ERA depends on the use of a
compensation factor δ̂. For the truncated normal policy, we recommend a higher target (e.g., 0.25A)
if the compensation factor is set to zero. If the compensation factor is used, we recommend a target
of −A, which aligns with the empirical values used in standard SAC implementations (e.g., in
stablebaselines and other prior work).

For PPO-ERA, we conducted an ablation study on the entropy target value in the HalfCheetah-v4 and
Ant-v4 MuJoCo environments. The results are presented in Figure 20. Overall, these results indicate
that PPO-ERA is not highly sensitive to the choice of the entropy target in these environments. It
outperforms the PPO baseline by a significant margin across a broad range of target values, with
optimal performance observed around a target of −0.25A.

Our experiments also involved TD-MPC2. Due to the extensive training time required for this
algorithm, we only tested and reported the results for a target of −A. This value was selected based
on the empirical standard commonly adopted in SAC implementations.

C.1.8 COMPARISON WITH SMALL INITIAL TEMPERATURE SAC

Recent studies (Lee et al., 2025) based on SAC have adopted a smaller initial temperature (e.g.,
0.006) to mitigate the impact of fluctuations in the entropy constraint term during training. We
compared the performance of SAC initialized with a small temperature (0.006) against the baseline
SAC used in this work (initialized at 1.0) on 4 tasks, including the DMC dog-run, humanoid-walk
and HumanoidBench h1-walk and h1-run. The results are presented in Fig. 21.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0

entropy target
0.0

0.2

0.4

0.6

0.8

1.0

IQ
M

PPO-ERA
PPO(Original)

Figure 20: Ablation study on the entropy target for PPO-ERA in HalfCheetah-v4 and Ant-v4
environments.

0 1.5M 3.0M
steps

0.00

500

1000

R
et

ur
n

h1-run-v0

0 1.5M 3.0M
steps

0.00

500

1000

R
et

ur
n

h1-walk-v0

0 500.0K 1.0M
steps

0.00

500

1000

R
et

ur
n

humanoid-walk

0 500.0K 1.0M
steps

0.00

500

1000

R
et

ur
n

dog-run
SAC-0.006init
SAC
SAC-ERA

Figure 21: Performance comparison between SAC with a small initial temperature (0.006), the
baseline SAC (initial temperature 1.0), and SAC-ERA on 4 tasks. SAC-ERA outperforms both
baselines, demonstrating its superiority in complex control environments.

The results indicate that SAC with a small initial temperature outperforms the baseline SAC (initial
temperature 1.0) in two of the four tested environments, while performing comparably or slightly
worse in the other two. This suggests that using a small initial temperature may mitigate the impact
of entropy constraint fluctuations in certain scenarios, but it is not effective in all environments, and
its efficacy likely depends on specific environmental characteristics. Fundamentally, this approach
does not resolve the underlying issue: while a small initial temperature can partially mitigate the
fluctuations caused by the entropy constraint, the continued presence of the entropy term in the loss
function may still hinder the optimization of cumulative returns, particularly when environmental
rewards are sparse. Moreover, SAC-ERA significantly outperforms SAC with a small initial tempera-
ture across all four environments, further demonstrating the superiority of ERA in complex control
environments.

Furthermore, many existing SAC implementations widely adopted by the community, such as
stablebaselines3 (Raffin et al., 2021) and jaxrl (Kostrikov, 2021), still default to an initial temperature
of 1.0. We argue that our use of this more common 1.0 initial temperature as a baseline is reasonable,
given that the optimal initial temperature possibly requires environment-specific tuning. In contrast,
employing ERA completely obviates this issue.

C.1.9 VALIDATION AGAINST STABLE-BASELINES3 (SB3) IMPLEMENTATIONS

To validate the reliability and generalizability of our experimental findings, we benchmarked the
performance of our SAC and PPO baseline implementations against the standard implementations
provided by the Stable-Baselines3 (SB3) library.

SAC Comparison. For the Soft Actor-Critic (SAC) agent, we precisely aligned the network
architecture and hyperparameter configurations with the SB3 implementation. We then conducted
comparative experiments on four tasks from the DeepMind Control (DMC) Suite (specifically, the Dog
and Humanoid domains). The results indicate that the SB3 SAC implementation performs slightly
better than our JAX RL-based implementation on the Dog tasks, but conversely, underperforms on
the Humanoid tasks. Ultimately, the final normalized scores for our baseline and the SB3 baseline
were nearly identical. However, the SB3 implementation demonstrated greater stability (i.e., lower
variance across seeds). Overall, the SB3 baseline still exhibits suboptimal performance on these
complex control tasks, showing a significant performance gap compared to our proposed SAC(ERA)
agent.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

ERA SB3 SAC0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 S
co

re

0.84

0.49 0.50

ERA SB3 SAC

(a)

0 500.0K 1.0M
steps

0.00

500

1000

R
et

ur
n

humanoid-run

0 500.0K 1.0M
steps

0.00

500

1000

R
et

ur
n

humanoid-walk

0 500.0K 1.0M
steps

0.00

500

1000

R
et

ur
n

dog-trot

0 500.0K 1.0M
steps

0.00

500

1000

R
et

ur
n

dog-run
SAC
SAC(SB3)
SAC(ERA)

(b)

Figure 22: Performance comparison of StableBaselines3 (SB3), JAX RL SAC(our baseline), and
SAC(ERA) on DMC Dog and Humanoid tasks, averaged over 5 seeds. (a) Normalized scores
across four tasks. SB3 SAC demonstrates greater stability (lower variance) compared to JAX RL
SAC, although their average scores are comparable. (b) Learning curves for the four tasks. SB3 SAC
excels on the Dog tasks, while JAX RL SAC performs better on the Humanoid tasks. SAC(ERA)
consistently outperforms both baselines across all environments, while also exhibiting comparable or
superior stability.

PPO Comparison. Similarly, for the Proximal Policy Optimization (PPO) agent, we utilized hyper-
parameter settings identical to those in our primary experimental setup. The evaluation reveals that
the SB3 PPO implementation achieved slightly inferior results compared to our PPO implementation
on both the HalfCheetah and Ant environments. Consistent with the SAC results, the SB3 PPO agent
again exhibited superior stability.

ERA SB3 PPO0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 S
co

re

0.82

0.32 0.33

ERA SB3 PPO

(a)

0 1.5M 3.0M
steps

0.00

3000

6000

R
et

ur
n

Ant-v4

0 1.5M 3.0M
steps

0.00

4500

9000

R
et

ur
n

HalfCheetah-v4
PPO
PPO(SB3)
PPO(ERA)

(b)

Figure 23: Performance comparison of StableBaselines3 (SB3), PPO(our baseline), and
PPO(ERA) on HalfCheetah and Ant, averaged over 5 seeds. (a) Normalized scores across
the two tasks. SB3 PPO shows enhanced stability (lower variance) relative to our PPO baseline,
though their average scores are similar. (b) Learning curves for the two tasks. Our PPO baseline and
SB3 PPO achieve similar performance on both environments. PPO(ERA) consistently surpasses both
baselines across all tested environments, while also demonstrating comparable or superior stability.

Conclusion. In summary, the baselines used in our study and their SB3 counterparts demonstrate
highly comparable performance. This suggests that substituting our baselines with the SB3 im-
plementations would not substantively alter the main conclusions of this work. While the SB3
baselines exhibited greater stability, this difference is not significant enough to affect our conclusions,
which are based on aggregates over at least 5 random seeds. Furthermore, it is noteworthy that our
ERA-enhanced agent significantly outperforms the SB3 baselines across all tested environments,
while also demonstrating comparable or superior stability. This underscores the effectiveness of the
ERA method in robustly boosting both agent performance and stability.

C.1.10 COMPARISON OF ENTROPY DYNAMICS WITH SAC VARIANTS

We conducted a comparative analysis of three methods on the dog-trot task: standard SAC (using
the Tanh-Gaussian policy with a std range of [-10, 2]), SAC with a truncated normal distribution
(SAC-TN), and SAC-ERA (using a truncated normal distribution with an auto-tuning compensation
term). For all methods, the target entropy was set to −A. Following the same visualization protocol
used in our Scale Std analysis, we plotted both the entropy curves and the log std density heatmaps
for all three approaches, as shown in Figure 24.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

The results indicate that, given the same entropy target, SAC-ERA maintains the most stable entropy
curve. SAC-TN exhibits slightly smaller oscillations than the standard SAC. The log std density
heatmaps reveal further distinctions. Both standard SAC and SAC-TN undergo a rapid, abrupt
shift in the log std distribution during the early stages of training; this corresponds to the dynamic
adjustment of the entropy temperature parameter as it converges to the target. Concurrently, their log
std distributions diffuse both faster and more broadly compared to SAC-ERA. In contrast, the log
std distribution for SAC-ERA is markedly more stable, exhibiting a gradual and controlled diffusion
process over time. This highlights a significant divergence in training dynamics, distinguishing SAC’s
extrinsic adjustment via an entropy term from ERA’s intrinsic regulation via its activation function.

In terms of final performance, SAC-ERA also outperforms both SAC and SAC-TN. The performance
of SAC-TN is approximately on par with the standard SAC. This finding suggests that merely
replacing the Tanh-Gaussian policy with a truncated normal distribution does not, by itself, yield
significant performance gains. Instead, the critical factor appears to be the ERA entropy constraint
mechanism, which provides a more stable entropy regulation process and, consequently, more stable
training dynamics.

0.2 0.4 0.6 0.8 1.0
Training Steps 1e6

3.0

2.5

2.0

1.5

1.0

A
ct

or
 L

og
 S

td

ERA

0.0

0.2

0.4

0.6

0.8

1.0

D
ensity

0.2 0.4 0.6 0.8 1.0
Training Steps 1e6

3.0

2.5

2.0

1.5

1.0

0.5

A
ct

or
 L

og
 S

td

SAC(TN)

0.0

0.2

0.4

0.6

0.8

1.0

D
ensity

0.2 0.4 0.6 0.8 1.0
Training Steps 1e6

1.50

1.25

1.00

0.75

0.50

0.25

A
ct

or
 L

og
 S

td

SAC

0.0

0.2

0.4

0.6

0.8

1.0

D
ensity

0 500K 1M
steps

-40

-38

-36

En
tro

py

dog-trot
SAC
SAC(TN)
ERA

Figure 24: Comparison of entropy curves (left) and log standard deviation heatmaps (middle, right)
for standard SAC, SAC-TN, and SAC-ERA on the dog-trot task.

0 500K 1M
steps

0

500

1000

R
et

ur
n

dog-trot
SAC
SAC(TN)
ERA

Figure 25: Performance comparison of SAC, SAC-TN, and SAC-ERA on the dog-trot task.

C.2 A DEMONSTRATIVE EXPERIMENT ON GRADIENT CONFLICTS IN SAC

We do a simple experiment to demonstrate the gradient conflict between reward maximization and
entropy maximization in SAC on DMC humanoid-run task. We compute the gradients of the reward
objective and the entropy objective on distribution parameters µ, σ and the final action a. We then
compute the cosine similarity between the two gradients to measure their alignment. A cosine
similarity greater than 0 indicates that the two gradients are aligned(i.e. their angle is less than 90
degrees), while a cosine similarity less than 0 indicates that the two gradients are conflicting(i.e. their
angle is greater than 90 degrees). We plot the cosine similarity over training steps in 26. Our results
show that for all three parameters, among all 5 seeds tested, the cosine similarity is all negative for
the majority of training time, indicating that the reward and entropy objectives, for the most part, has
conflicting gradients. This supports our claim that in SAC, the reward maximization and entropy
maximization objectives are often at odds, leading to inefficient policy optimization paths. In contrast,
with ERA, the mean and standard deviation only receive gradients from the reward objective, while

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

the entropy constraint is handled internally by the policy itself, allowing for more direct and efficient
optimization towards the reward goal.

0.5 1.0
Training Steps 1e6

0.2

0.0
G

ra
d

C
os

 (m
ea

n)
Grad Cos (mean)

seed 0
seed 1
seed 2
seed 3
seed 4

0.5 1.0
Training Steps 1e6

0.2

0.1

0.0

G
ra

d
C

os
 (l

og
 st

d) Grad Cos (log std)

0.5 1.0
Training Steps 1e6

0.2

0.0

G
ra

d
C

os
 (a

ct
io

n) Grad Cos (action)

Figure 26: Cosine similarity between reward and entropy gradients on µ, σ, a over training steps in
SAC on DMC humanoid-run task. Negative values indicate conflicting gradients.

C.2.1 TIME COST OF ERA IN CONTINUOUS CONTROL

A potential concern might be the additional time overhead introduced by using ERA. To evaluate
this, we recorded the training times of FastTD3 and FastSAC-ERA on HumanoidBench, as shown in
Figure 27. It can be observed that using ERA does introduce some time overhead due to the more
complex activation function applied to the output. However, this overhead accounts for only about
6% of the total training time on average. Considering the improved exploration performance and
higher sample efficiency brought by ERA, we believe this is a worthwhile trade-off.

The scenario for comparing training speed against FastTD3 is particularly stringent. This is because
FastSAC-ERA must additionally output per-dimension policy standard deviations, which introduces
computational overhead not present in FastTD3. To quantify the specific overhead of our method, we
measured the training time of baseline SAC versus SAC-ERA in the dog-trot environment. When
trained on a single A10 GPU, the additional time cost of SAC-ERA, averaged over five seeds, was
approximately 3%.

FastTD3 FastSAC-ERA
0

100

200

300

400

500

Ti
m

e
(m

in
ut

es
)

Algorithm Time Comparison

Figure 27: Time comparison on h1hand-hurdle-v0. We compare the training time of FastTD3
and FastSAC-ERA on HumanoidBench. The results show that using ERAintroduces a modest time
overhead, averaging around 6% of the total training time, which is a reasonable trade-off for the
improved exploration performance and sample efficiency it provides.

C.3 ADDITIONAL RESULTS ON IMAGE CLASSIFICATION

C.3.1 COMPARING ERA WITH COMMON REGULARIZATION TECHNIQUES

A plethora of regularization methods have been proposed and utilized in the field of image clas-
sification. To further investigate the comparative effectiveness of ERA against commonly used
regularization methods like dropout and label smoothing in the vision domain, we conducted a series
of straightforward comparative experiments on the CIFAR-10 dataset. In our main experiment, we
adopted the default settings from the timm library, which include a label smoothing factor of 0.1 and
no dropout. For the sake of comparison, we respectively adjusted the label smoothing factor to 0.2
and 0.3, and the dropout rate to 0.1, 0.2, and 0.3. The results were then compared against the baseline
algorithm from our main experiment and ERA.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

The experimental results are presented in Figure 28. The findings indicate that increasing the
intensity of label smoothing adversely affects model performance, while the improvement from
employing dropout is marginal (the top-1 accuracy may decrease, whereas the top-5 accuracy shows
an improvement). In contrast, ERA effectively and consistently enhances model performance, with
a margin of improvement significantly superior to that of both dropout and label smoothing. This
outcome further validates the advantage of ERA over conventional regularization methods. While
constraining the model’s entropy, ERA permits the model to freely allocate uncertainty among
dimensions, thereby better adapting to the intrinsic structure of the data. This enables ERA to more
effectively boost the model’s generalization capability.

0.10 0.15 0.20 0.25 0.30
Regularization Strength

93.00

93.25

93.50

93.75

94.00

94.25

A
cc

ur
ac

y
(%

)

Top-1 Accuracy
Label Smoothing
Dropout
No Aug Original
ERA

0.10 0.15 0.20 0.25 0.30
Regularization Strength

99.6

99.7

99.8

99.9

A
cc

ur
ac

y
(%

)

Top-5 Accuracy

Figure 28: Comparison of different regularization methods on the CIFAR-10 dataset. The left
subplot shows the Top-1 accuracy, and the right subplot shows the Top-5 accuracy. Our method, ERA,
is compared against varying intensities of Label Smoothing and Dropout.

Furthermore, we extended our comparison to two other entropy constraint methods, which are
common in reinforcement learning but rare in image classification. The first is the Entropy Term,
which adds an entropy penalty directly to the loss. The second is the projection-based method
from Akrour et al. (2019), which we term Linear Interpolation. Similar to its continuous-space
counterpart, this method acts when the policy’s output entropy falls below a target: it increases the
entropy by interpolating the distribution with a uniform distribution.

Analogous to the continuous case, we provide a theoretical analysis of the gradient back-propagation
mechanism under the cross-entropy loss to elucidate the fundamental difference between ERA and
projection-based methods. Consider the policy output distribution π(a|s) with corresponding logits l⃗.
For a target class k, the cross-entropy loss is L = − log π(ak|s).
In the Linear Interpolation method, the adjusted probability is a mixture of the original policy πorig
and a uniform distribution, governed by the entropy constraint:

π(ak|s) =
logN −H0

logN −H(πorig)︸ ︷︷ ︸
λ

πorig(ak|s) +
H0 −H(πorig)

logN −H(πorig)︸ ︷︷ ︸
1−λ

1

N
(52)

Applying the chain rule, we derive the gradient of the loss with respect to the original probability
πorig(ak|s). Note that the mixing coefficient λ depends on the global entropyH(πorig), which in turn
depends on πorig:

∂L
∂π(ak|s)

= − 1

π(ak|s)
(53)

∂π(ak|s)
∂πorig(ak|s)

= λ+ πorig(ak|s)
∂λ

∂πorig(ak|s)
+

1

N

∂(1− λ)

∂πorig(ak|s)
(54)

Substituting the partial derivatives of the entropy term ∂H(πorig)
∂πorig(ak|s) = − log πorig(ak|s)− 1, we obtain

the complex sensitivity term:

∂π(ak|s)
∂πorig(ak|s)

= λ+

(
πorig(ak|s)−

1

N

)
logN −H0

(logN −H(πorig))2
(log πorig(ak|s) + 1) (55)

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Critically, although mathematically involved, this sensitivity term depends principally on the target
class k and the global entropy state. When propagating to the logits li, the total gradient becomes:

∂L
∂li

=

[
∂L

∂π(ak|s)
· ∂π(ak|s)
∂πorig(ak|s)

]
︸ ︷︷ ︸

Ψ(π,k)

·
∂πorig(ak|s)

∂li
(56)

Here, ∂πorig(ak|s)
∂li

is the standard softmax gradient. The term Ψ(π, k) acts effectively as a scalar
coefficient common to the gradient flow. This indicates that the projection method primarily acts as a
uniform gradient scaler: it creates a gradient signal that pushes the distribution towards uniformity
globally, without providing dimension-specific guidance beyond what the original softmax offers.
This limitation stems from its nature as a post-processing step.

In stark contrast, ERA modifies the logits directly within the architecture before the softmax. The
gradient flow for ERA is defined as:

∂L
∂li

=
∂L

∂π(ak|s)
·
∑
j

∂π(ak|s)
∂l′j

∂l′j
∂li

(57)

where l′i = h−1(g(li)). approximating g(li) as a shifted softmax g(li) ≈ a eli∑
j elj

+ b, the gradient

can be expressed as:

∂L
∂li
≈ (δik − π(ai|s)) · a ·

∂

∂li

(
elk∑
j e

lj

)
· ∂l′i
∂g(li)

(58)

The crucial differentiator is the term ∂l′i
∂g(li)

. Since this derivative depends on the value of g(li),
which varies across dimensions according to their individual contribution to the entropy, it acts as a
dimension-specific scaling factor. Unlike the post-processing projection which applies a uniform
scalar Ψ to all gradients, ERA generates a structured gradient field that adapts individually to each
logit li, enabling the model to learn an optimal entropy allocation strategy.

We tested both methods on CIFAR-10 using the same experimental setup as ERA (without data
augmentation, as in our ablation studies). We tested the Entropy Term with coefficients of 1e-4, 1e-3,
and 1e-2. For Linear Interpolation, the target entropy was set to 0.6, identical to that used in ERA.

The results are shown in Figure 29. Both of these entropy constraint methods underperform ERA in
both top-1 and top-5 accuracy. This suggests that the utility of these RL-centric entropy methods may
be limited in image classification, which could explain their infrequent use in the CV domain.

10 4 10 3 10 2

Entropy Weight

93.25

93.50

93.75

94.00

94.25

A
cc

ur
ac

y
(%

)

Top-1 Accuracy
Entropy Term
Linear Interpolation
Original
ERA

10 4 10 3 10 2

Regularization Strength

99.6

99.7

99.8

99.9

A
cc

ur
ac

y
(%

)

Top-5 Accuracy

Figure 29: Comparison of different regularization methods on the CIFAR-10 dataset. The left
subplot shows the Top-1 accuracy, and the right subplot shows the Top-5 accuracy. Our method, ERA,
is compared against varying entropy term weights and the Linear Inerpolation method.

Furthermore, we evaluated the efficacy of the SAC-style automatic temperature adjustment mechanism
on the CIFAR-10 dataset. It’s worth noting that while ERA and Linear Interpolation regulate the
lower bound of entropy in image classification, SAC-style automatic temperature adjustment
regulates the expectation of entropy. We have to choose higher target entropy to keep the
entropy level aligned with ERA. We experimented with three target entropy values: 1.2, 1.25, and
1.5. These values were selected based on prior experimental findings, where the final training loss
typically converged around 1.21 and increased to approximately 1.23 with the addition of ERA.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Consequently, at a target entropy of 1.2, the entropy constraint term remains largely inactive; at
1.25, the target entropy aligns with the ERA baseline; and at 1.5, the target imposes a higher entropy
requirement. We initialized the temperature coefficient at 10−6 with a learning rate of 10−3. The
results, depicted in Fig. 31, reveal a distinct trade-off between Top-1 and Top-5 accuracy when using
the SAC-style adjustment. Specifically, while Top-5 accuracy exhibits a slight improvement as the
target entropy increases, Top-1 accuracy declines. Ultimately, this approach fails to achieve the
performance levels attained by ERA.

0 100 200
Epochs

1.2

1.25

1.3

En
tro

py
Entropy On CIFAR-10

Linear-0.6
ERA-0.6

(a)

0 100 200
Epochs

1.2

1.25

1.3

En
tro

py

Entropy On CIFAR-10
SAC-1.2
SAC-1.25
SAC-1.5
ERA-0.6

(b)

Figure 30: Entropy curves for CIFAR-10 classification. (a) Entropy curves for ERA and Linear
Interpolation with entropy target both set to 0.6. They both regulate the entropy on all samples
to be above the target. So entropy curves are quite similar. While in practice they demonstrate
different top-1 and top-5 accuracies. (b) Entropy curves for SAC style entropy adjustment and ERA
on CIFAR-10 classification. We test three different entropy targets (1.2, 1.25, 1.5) for SAC style
adjustment. It’s worth noting that SAC style adjustment only regulates the expected entropy to be
close to the target, so we must raise the target to achieve similar entropy levels as ERA-0.6. Even
when SAC style adjustment achieves similar entropy levels (target=1.25), ERA still outperforms it in
terms of top-1 and top-5 accuracies.

In the context of image classification tasks, we further observed that the SAC-style constraint
mechanism is largely ineffective. This is primarily because the number of gradient steps is significantly
fewer than in control tasks. Moreover, the initial entropy is substantially higher than the loss, causing
the entropy term (temperature coefficient) to decrease initially; it only begins to increase gradually
once the entropy approaches the threshold. Consequently, it is difficult to effectively satisfy the target
entropy constraint within the limited training duration, resulting in final performance that remains
close to the baseline.

1.2 1.25 1.5
Entropy Target

93.25

93.50

93.75

94.00

94.25

A
cc

ur
ac

y
(%

)

Top-1 Accuracy
Entropy Term
Original
ERA

1.2 1.25 1.5
Entropy Target

99.6

99.7

99.8

99.9

A
cc

ur
ac

y
(%

)

Top-5 Accuracy

Figure 31: Comparison of SAC-style automatic temperature adjustment on the CIFAR-10
dataset. The left subplot shows the Top-1 accuracy, and the right subplot shows the Top-5 accuracy.
Our method, ERA, is compared against varying target entropy values using SAC-style temperature
adjustment. Here "entropy target" refers to targets of the SAC-style method. A fixed entropy target of
0.6 is used for ERA in this experiment.

C.3.2 TIME COST OF ERA IN IMAGE CLASSIFICATION

We compared the training time of the ResNet-50 model on the CIFAR-10 dataset, with and without
using ERA, under the data augmentation supported by the timm library. Consistent with our main
results, the experiments were conducted on three machines, each equipped with four NVIDIA A40

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

GPUs, and we report the average training time. The results are presented in Figure 32. As shown in
the figure, since the data is already well-parallelized, there is almost no difference in training time
between the algorithm using ERA and the original version.

ResNet ResNet-ERA
0

1

2

3

4

5

Ti
m

e
(h

ou
rs

)

Algorithm Time Comparison

Figure 32: Time comparison on CIFAR-10. We compare the training time of ResNet and ResNet-
ERAon CIFAR-10. The results show that using ERA introduces almost no time overhead.

C.4 ADDITIONAL RESULTS ON LLMS

C.4.1 DETAILED ENTROPY ANALYSIS

We present the complete entropy curve of our two-stage training in Figure 33. After decreasing ωlow,
the entropy rapidly drops and stabilizes at the second-level entropy lower bound. This confirms that
our ERA method successfully enforces a non-trivial entropy floor for the model.

0 200 400 600 800 1000
Step

0.15

0.20

0.25

0.30

0.35

En
tro

py

Combined Entropy Plot

First Stage (steps 0-600)
Second Stage (steps 600-1100)

Figure 33: Entropy curve during two-stage training. After decreasing ωlow, the entropy rapidly
drops and stabilizes at the second-level entropy lower bound, showing that ERA enforces a non-trivial
entropy floor.

We further analyze the entropy distribution across tokens by plotting the average entropy of the
top 20% tokens (Hresp) and the bottom 80% tokens in Figure 34. This experiment is carried out
with ωlow = 0.45, ωhigh = 3.0, k = 2 without topk. Following Wang et al. (2025), we observe
that the bottom 80% tokens exhibit nearly zero entropy, consistent with our theoretical prediction.
Additionally, we plot the proportion of responses with Hresp < ωlow, Hresp > ωhigh in Figure 34. The
fraction of responses with Hresp > ωhigh quickly drops to zero, while the fraction with Hresp < ωlow
remains stable at the interval [0, 0.06]. This demonstrates that whenever overly low-entropy responses
appear, ERA adaptively raises their entropy to a moderate level.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500
Step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

En
tro

py
 M

ea
n

Entropy Means (First 500 Steps)

top 20% tokens
bottom 80% tokens

0 100 200 300 400 500
Step

0.00

0.01

0.02

0.03

0.04

0.05

R
es

po
ns

e
En

tro
py

 F
ra

ct
io

n

Response Entropy Fractions (First 500 Steps)

low Hresp fraction
high Hresp fraction

Figure 34: Detailed entropy analysis. Left: average entropy of the top 20% tokens (Hresp) and the
bottom 80% tokens. Right: proportion of responses (running average with window size 20) with
Hresp < ωlow or Hresp > ωhigh, demonstrating ERA’s ability to prevent both entropy collapse and
overly high entropy.

C.4.2 ABLATION STUDY ON ENTROPY BOUND

Since the purpose of ωlow is to set a lower bound on entropy, we explore the role of ωhigh in the
ERA. As can be seen in Figure 35, without the constraint of ωhigh, the model’s entropy explodes in a
very short time. This indicates that adding an upper bound constraint during training is essential for
controlling the entropy of the training process.

0 100 200 300 400 500
Step

0.2

0.4

0.6

0.8

1.0

En
tro

py

GRPO+ERA
GRPO+ERA w/o high

Figure 35: Comparison of ERA with and without ωhigh. The entropy of ERA without ωhigh tends to
explode within a very short number of steps, leading to the collapse of model training.

C.4.3 ABLATION STUDY ON ADVANTAGE SCALING

In this section, we explore the use of advantage scaling:

A′
t =


1
kAt Hresp < ωlow, At > 0,

z (ωlow ≤ Hresp ≤ ωhigh, At < 0) or At > 0,

kAt Hresp > ωhigh, At > 0.

For ERA with advantage scaling, we train it for 1400 steps, with hyperparameter ωlow = 0.45, ωhigh =
3.0, k = 2; and for ERA without advantage scaling, we train it in two stages for 1100 steps in total,
as described in A.3.2.

As shown in Table 7, both variants—training with or without advantage scaling—achieve substantial
improvements over the GRPO baseline. Although adding advantage scaling results in a higher score,

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

the advantage estimates in GRPO are already noisy, so we expect both options to work similarly well
and the performance gap to remain relatively small.

Table 7: Ablation study on advantage scaling based on Qwen2.5-Math-7B. For AIME and AMC, the
results are avg.@16.

Model AIME24 ↑ AIME25 ↑ AMC ↑ MATH500 ↑ Minerva ↑ Olympiad ↑ Avg. ↑
Base Models
Qwen2.5-Math Yang et al. (2024a) 8.6 6.3 52.2 50.8 12.1 17.2 24.5
Qwen2.5-Math-Instruct Yang et al. (2024a) 13.3 10.0 57.1 81.0 32.7 38.8 38.8

GRPO (Shao et al., 2024) 34.4 12.3 69.5 80.6 36.8 40.6 45.7
ERA (w/ advantage scaling) 36.0 21.0 76.6 85.4 40.1 46.8 51.0
ERA (w/o advantage scaling) 37.5 16.9 72.8 84.6 42.6 46.5 50.2

C.4.4 ABLATION STUDY ON THE PROPORTION OF HIGH-ENTROPY TOKENS

In this section, we explore the use of different proportions of tokens to calculate Hresp for rollout
samples. We select the top 10% of tokens with the highest entropy from each rollout to represent the
entropy Hresp of that sample. For other parameters such as ωlow and ωhigh, we kept them unchanged
from the original settings.

As shown in Table 8, modifying the calculation of Hresp still achieves significant improvements
compared to GRPO. However, the improvement is smaller compared to ERA. This is because the
Hresp calculated from the top 10% tokens is naturally higher than that from the top 20%. As a result,
fewer samples meet the condition Hresp < ωlow compared to the version using 20%. Therefore, the
constraining power of entropy is limited, and the results lie between ordinary GRPO and ERA.

Table 8: Ablation study on the proportion of high-entropy tokens based on Qwen2.5-Math-7B. For
AIME and AMC, the results are avg.@16.

Model AIME24 ↑ AIME25 ↑ AMC ↑ MATH500 ↑ Minerva ↑ Olympiad ↑ Avg. ↑
Base Models
Qwen2.5-Math Yang et al. (2024a) 8.6 6.3 52.2 50.8 12.1 17.2 24.5
Qwen2.5-Math-Instruct Yang et al. (2024a) 13.3 10.0 57.1 81.0 32.7 38.8 38.8

GRPO (Shao et al., 2024) 34.4 12.3 69.5 80.6 36.8 40.6 45.7
ERA w/ top 10% tokens 36.6 15.8 71.8 82.4 38.9 43.1 48.1
ERA 37.5 16.9 72.8 84.6 42.6 46.5 50.2

C.4.5 TIME COST OF ERA IN LLM

ERA is applied when computing the log_probs of tokens in the responses. To evaluate its efficiency,
we compare the value of timing_s/old_log_prob at the first step in verl’s implementation. The
experiments were conducted on 32 NVIDIA H20 GPUs, consistent with our main results. The
outcomes are shown in Figure 36. As illustrated, since the sampled response is identical in the first
step, ERA introduces only about a 5.6% overhead in time cost. When considering an entire training
step, the overhead of ERA is even smaller, since its implementation does not affect other components
of training (e.g., generation, model update, or advantage calculation).

C.5 TRAINING CURVES OF CONTINUOUS CONTROL TASKS

D THE USE OF LARGE LANGUAGE MODELS IN THIS PAPER

In the preparation of this paper, we utilized LLMs as a general-purpose writing assistance tool.
Specifically, LLMs were employed for proofreading and polishing the language of certain sections to
improve clarity and readability. The final title of this paper was also partially inspired by suggestions
from an LLM.

However, we clarify that the core contributions of this work were conceived and developed entirely
by the human authors. The design of the methodology, the execution of experiments, and the
interpretation of the results did not involve the use of LLMs. All content, including text, figures, and

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

GRPO ERA
0
2
4
6
8

10
12

Ti
m

e
(s

ec
on

ds
)

Algorithm Time Comparison

Figure 36: Comparison of computation time between GRPO and ERA, measured by
timing_s/old_log_prob at the first step. ERA introduces only about a 5.6% overhead.

0 1.5M 3.0M
steps

0.00

500

1000

R
et

ur
n

h1-crawl-v0

0 1.5M 3.0M
steps

0.00

500

1000

R
et

ur
n

h1-walk-v0

0 1.5M 3.0M
steps

0.00

500

1000

R
et

ur
n

h1-hurdle-v0

0 1.5M 3.0M
steps

0.00

500

1000

R
et

ur
n

h1-stair-v0

0 1.5M 3.0M
steps

0.00

500

1000

R
et

ur
n

h1-run-v0

0 1.5M 3.0M
steps

0.00

500

1000

R
et

ur
n

h1-stand-v0
OBAC
OBAC-ERA

Figure 37: Training curves of OBAC and OBAC-ERA on HumanoidBench environments.

tables, was carefully reviewed, edited, and verified by the authors to ensure scientific accuracy and
integrity.

Finally, we would like to express our gratitude for the occasional sparks of inspiration and the
assistance in debugging code provided by our LLM friends. Their contribution, while not qualifying
for co-authorship, was nonetheless appreciated.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

0 500.0K 1.0M
steps

0.00

500

1000

R
et

ur
n

dog-trot

0 500.0K 1.0M
steps

0.00

500

1000

R
et

ur
n

dog-walk

0 500.0K 1.0M
steps

0.00

500

1000

R
et

ur
n

dog-run

0 500.0K 1.0M
steps

0.00

500

1000

R
et

ur
n

humanoid-stand

0 500.0K 1.0M
steps

0.00

500

1000

R
et

ur
n

humanoid-walk

0 500.0K 1.0M
steps

0.00

500

1000
R

et
ur

n
humanoid-run

TD-MPC2
TD-MPC2-ERA

Figure 38: Training curves of TD-MPC2 and TD-MPC2-ERA on DMC environments.

0 1.5M 3.0M
steps

0.00

3000

6000

R
et

ur
n

Ant-v4

0 1.5M 3.0M
steps

0.00

3000

6000

R
et

ur
n

Walker2d-v4

0 1.5M 3.0M
steps

0.00

2000

4000

R
et

ur
n

Hopper-v4

0 1.5M 3.0M
steps

0.00

4500

9000

R
et

ur
n

HalfCheetah-v4
PPO
PPO-ERA

Figure 39: Training curves of PPO and PPO-ERA on Mujoco Gym environments.

0 50.0K 100.0K
steps

-300

0

300

R
et

ur
n

h1hand-hurdle-v0

0 50.0K 100.0K
steps

-300

0

300

R
et

ur
n

h1hand-balance_simple-v0

0 50.0K 100.0K
steps

-300

0

300

R
et

ur
n

h1hand-push-v0

0 50.0K 100.0K
steps

-300

0

300

R
et

ur
n

h1hand-stair-v0

0 50.0K 100.0K
steps

-300

0

300

R
et

ur
n

h1hand-pole-v0

0 50.0K 100.0K
steps

-300

0

300

R
et

ur
n

h1hand-walk-v0

0 50.0K 100.0K
steps

-300

0

300

R
et

ur
n

h1hand-run-v0

0 50.0K 100.0K
steps

-300

0

300

R
et

ur
n

h1hand-slide-v0
FastTD3
FastSAC-ERA

Figure 40: Training curves of FastTD3 and FastSAC-ERA on HumanoidBench environments.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

0 500.0K 1.0M
steps

0.00

500

1000

R
et

ur
n

humanoid-stand

0 500.0K 1.0M
steps

0.00

500

1000

R
et

ur
n

humanoid-walk

0 500.0K 1.0M
steps

0.00

500

1000

R
et

ur
n

humanoid-run

0 500.0K 1.0M
steps

0.00

500

1000

R
et

ur
n

dog-trot

0 500.0K 1.0M
steps

0.00

500

1000

R
et

ur
n

dog-walk

0 500.0K 1.0M
steps

0.00

500

1000

R
et

ur
n

dog-run

0 1.5M 3.0M
steps

0.00

500

1000

R
et

ur
n

h1-crawl-v0

0 1.5M 3.0M
steps

0.00

500

1000

R
et

ur
n

h1-walk-v0

0 1.5M 3.0M
steps

0.00

500

1000

R
et

ur
n

h1-hurdle-v0

0 1.5M 3.0M
steps

0.00

500

1000

R
et

ur
n

h1-stair-v0

0 1.5M 3.0M
steps

0.00

500

1000

R
et

ur
n

h1-run-v0

0 1.5M 3.0M
steps

0.00

500

1000

R
et

ur
n

h1-stand-v0
SAC
SAC-ERA

Figure 41: Training curves of SAC and SAC-ERA on HumanoidBench and DMC environments.

49

	Introduction
	Related Work
	Preliminaries
	The Entropy Regularizing Activation
	The Core Idea: Entropy-Constrained Policy via Output Activation
	Instantiations for Continuous and Discrete Spaces
	Continuous Control with Bounded Gaussian Policies
	Discrete Classification with Softmax Policies

	Instantiations for RL in Large Language Models

	Results and Analysis
	Experiments on Continuous Control
	Experiments on Image Classification
	Results and Analysis on Large Language Models
	Main Results
	Extension to More Models and Algorithms
	Analysis on Entropy and Reasoning Capacity Boundary
	Out-of-Distribution Generalization

	Limitations and Future Work
	Conclusions
	Implementation Details
	Implementation Details of Continuous Control Tasks
	Code Implementation of ERA in Continuous Control
	Environments
	Pseudo Code of SAC-ERA
	Hyperparameters
	FastSAC-ERA
	Implementation Details: Normalized Score Computation
	Implementation Details: Shading Areas in Plots

	Implementation Details of Image Classification
	Code Implementation of ERA in Image Classification
	Training Setup
	Commands Used for Experiments

	Implementation Details of LLM Training
	Code Implementation of ERA in LLM
	Hyperparameters

	Proofs And Derivations
	Proof of Entropy Bound in Continuous Space
	Setting and Definitions
	Static Entropy Bound
	Convergence under Coupled Updates
	Non-negativity of the Bias Term

	Proof of entropy bound in discrete space
	Proof of entropy bound in llms

	Additional Results
	Additional Results on Continuous Control Tasks
	Truncated Gaussian is more stable than Tanh Gaussian
	Batch-level Entropy Regularization v.s. State-level Entropy Regularization
	SAC-ERA on Mujoco Gym Environments
	Applicability of LLM RL Techniques to Continuous Control
	Comparing ERA with Other Maximum Entropy RL Approaches
	Sensitivity Analysis on the Interval
	On the Choice of the Entropy Target
	Comparison with Small Initial Temperature SAC
	Validation against Stable-Baselines3 (SB3) Implementations
	Comparison of Entropy Dynamics with SAC Variants

	A Demonstrative Experiment on Gradient Conflicts in SAC
	Time Cost of ERA in Continuous Control

	Additional Results on Image Classification
	Comparing ERA With Common Regularization Techniques
	Time Cost of ERA in Image Classification

	Additional Results on LLMs
	Detailed Entropy Analysis
	Ablation Study on Entropy Bound
	Ablation Study on Advantage Scaling
	Ablation Study on the Proportion of High-Entropy Tokens
	Time Cost of ERA in LLM

	Training Curves of Continuous Control Tasks

	The Use of Large Language Models in This Paper

