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Abstract001

Multi-hop claim verification is inherently chal-002
lenging, requiring multi-step reasoning to003
construct verification chains while iteratively004
searching for information to uncover hidden005
bridging facts. This process is fundamentally006
interleaved, as effective reasoning relies on007
dynamically retrieved evidence, while effec-008
tive search demands reasoning to refine queries009
based on partial information. To achieve this,010
we propose Hierarchical Agent Reasoning and011
Information Search (HARIS), explicitly mod-012
eling the coordinated process of reasoning-013
driven searching and search-informed reason-014
ing. HARIS consists of a high-level reasoning015
agent that focuses on constructing the main016
verification chain, generating factual questions017
when more information is needed, and a low-018
level search agent that iteratively retrieves more019
information, refining its search based on in-020
termediate findings. This design allows each021
agent to specialize in its respective task, en-022
hancing verification accuracy and interpretabil-023
ity. HARIS is trained using reinforcement024
learning with outcome-based rewards. Experi-025
mental results on the EX-FEVER and HOVER026
benchmarks demonstrate that HARIS achieves027
strong performance, greatly advancing multi-028
hop claim verification.029

1 Introduction030

Claim verification (Guo et al., 2022) has become031

a critical challenge as misinformation proliferates032

online. It requires systems to determine whether033

a given claim is supported or refuted based on re-034

trieved evidence. While verifying simple claims035

involves shallow reasoning within a single docu-036

ment, the verification of complex, multi-hop claims037

presents a fundamentally different challenge. This038

difficulty stems from the fragmented nature of evi-039

dence (Pham et al., 2025; Atanasova et al., 2022).040

Effectively verifying such claims requires a joint041

process of multi-step reasoning and iterative infor-042

mation searching (Zheng et al., 2025).043

Figure 1: Example of a challenging multi-hop veri-
fication. Verifying the claim demands coordinating
reasoning-guided search to disambiguate entities and
search-informed reasoning to adapt based on retrieved
evidence. Prematurely concluding on any distracting
branch (in red) leads to incorrect judgment. The cor-
rect path—from Baby (2007) to Overwatch via Feodor
Chin—emerges only through this dynamic interplay, not
static decomposition or single-pass retrieval.

A key challenge in multi-hop verification is iden- 044

tifying the correct bridging facts—implicit links 045

that connect separate pieces of evidence but are not 046

explicitly stated. As shown in Figure 1, verifying 047

this claim requires identifying Feodor Chin as the 048

critical bridging fact between the film Baby (2007) 049

and the character Zenyatta from the game Over- 050

watch, among other irrelevant paths. This process 051

necessitates intensive interactions between reason- 052

ing, which proposes candidate hypotheses to iden- 053

tify potential bridging facts, and iterative search, 054

which retrieves evidence to validate or eliminate 055

certain hypotheses. In particular, reasoning is nec- 056
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essary to construct verification chains, but effec-057

tive reasoning depends on relevant evidence, which058

often requires iterative search. Meanwhile, effec-059

tive search relies on reasoning to formulate queries060

based on partially retrieved evidence. This recip-061

rocal relationship, where reasoning shapes search062

and retrieved evidence refines ongoing reasoning,063

captures the recursive nature of multi-hop verifica-064

tion.065

Conventional approaches typically involve de-066

composing complex claims into sub-claims or ques-067

tions, followed by independent verification (Kamoi068

et al., 2023; Chen et al., 2024; Lu et al., 2025).069

However, this strategy can struggle when critical070

bridging facts are implicit and not directly recov-071

erable from the claim. More advanced methods072

impose structured reasoning frameworks, such as073

graphs, reasoning programs, or First-Order Logic074

(FOL), to better coordinate evidence collection and075

reasoning (Pan et al., 2023b; Wang and Shu, 2023;076

Pham et al., 2025). However, these approaches of-077

ten overlook the dynamic interplay between reason-078

ing and information retrieval, which can be critical079

for accurate multi-hop verification.080

To tackle these, we propose081

HARIS—Hierarchical Agent Reasoning and082

Information Search, explicitly modeling the coor-083

dinated process of reasoning-driven searching and084

search-informed reasoning. HARIS consists of two085

specialized large language model (LLM) agents:086

a high-level reasoning agent and a low-level087

search agent, both trained using reinforcement088

learning (RL) to optimize their respective tasks.089

The high-level agent forms the main verification090

chain, generating factual questions when more091

information is needed. The low-level agent handles092

these questions through dynamic search, iteratively093

refining its queries based on partial results to094

progressively build a comprehensive evidence095

base. This design allows each agent to specialize096

in its respective task, enhancing both verification097

accuracy and interpretability by clearly modeling098

the mutually reinforcing interaction between099

reasoning and information searching. To our100

knowledge, HARIS is among the first RL-based101

cooperative agent approach for claim verification.102

Our contributions are summarized as follows:103

• We propose HARIS, a hierarchical agent104

framework designed for complex multi-hop105

claim verification, explicitly modeling the co-106

ordinated process of reasoning-driven search-107

ing and search-informed reasoning. 108

• HARIS is trained end-to-end via Group Rela- 109

tive Policy Optimization with outcome-based 110

rewards, directly optimizing task performance 111

without intermediate supervision. 112

• HARIS demonstrates strong performance on 113

two challenging benchmarks, EX-FEVER and 114

HOVER, validating its effectiveness in tack- 115

ling multi-hop claim verification. 116

2 Related Work 117

2.1 Claim Verification 118

Claim verification research has been increasingly 119

focusing on enhancing transparency during deci- 120

sion making (Zeng and Gao, 2024; Chen et al., 121

2024; Hu et al., 2025a). QACheck (Pan et al., 122

2023a) reformulates verification as a progres- 123

sive question-answering (QA) task, validating 124

claims through step-wise questioning. Structural 125

approaches (Jeon and Lee, 2025; Pham et al., 126

2025), such as ProgramFC (Pan et al., 2023b) and 127

FOLK (Wang and Shu, 2023), which use sym- 128

bolic reasoning or reasoning program to enforce 129

systematic verification. The Decompose-Then- 130

Verify (Wanner et al., 2024b,a; Jiang et al., 2024; 131

Hu et al., 2025b; Lu et al., 2025) paradigm focus 132

on breaking down complex claims into simpler 133

sub-claims for independent validation. Agentic 134

approaches have emerged as a promising direc- 135

tion (Zhao et al., 2024). LoCal (Ma et al., 2025) 136

employs a prompt-driven multi-agent framework 137

emphasizing causal consistency, and BiDeV (Liu 138

et al., 2025) uses specialized agents to address 139

vagueness and redundancy. In contrast, HARIS for- 140

mulates claim verification as a cooperative process 141

between reasoning and search agents, and trains 142

both agents jointly via reinforcement learning. 143

2.2 Reasoning & Searching 144

Recent work has expanded the reasoning capa- 145

bilities of LLMs by integrating search mecha- 146

nisms (Xiong et al., 2025; Guan et al., 2025; Sun 147

et al., 2025). Notable methods like Search-o1 (Li 148

et al., 2025) incorporate dynamic search into rea- 149

soning frameworks, improving factual accuracy in 150

open-domain and multi-hop reasoning tasks lever- 151

aging LLMs. Furthermore, RL methods like Group 152

Relative Policy Optimization (GRPO) (Shao et al., 153

2024) have been used to incentivize search capa- 154

bilities of LLMs (Gao et al., 2025), encouraging 155
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Figure 2: Interaction workflow (left) and coordinated agent training process (right). The reasoning agent constructs
the verification chain and issues questions (<question>) to the search agent. The search agent performs iterative
retrievals (<search>) and report relevant information (<report>) back to the reasoning agent. During training, QA
data from reasoning rollouts is used to update the search agent, which in turn supports reasoning agent updates,
keeping both agents aligned.

models to generate context-aware queries and ef-156

fectively integrate retrieved information (Jin et al.,157

2025; Song et al., 2025; Chen et al., 2025; Qian158

et al., 2025; Wu et al., 2025). Collectively, these159

approaches demonstrate that RL-trained search in-160

tegration can effectively improve performance on161

knowledge-intensive tasks.162

3 Methodology163

3.1 Why Reasoning and Search Agents?164

Verification reasoning and factual information165

searching demand fundamentally different capa-166

bilities. Reasoning requires multi-step planning,167

identifying hidden facts, and maintaining logical168

consistency across long contexts. In contrast, effec-169

tive searching depends on precise query formula-170

tion, iterative refinement, and robust extraction of171

relevant evidence from noisy or incomplete results.172

Rather than overloading a single model with both173

tasks, we decouple these roles into two specialized174

agents: a reasoning agent that interprets the claim,175

tracks verification progress, and decides when new176

information is needed; and a search agent that dy-177

namically retrieves and refines evidence through178

focused interaction with a retrieval system.179

Inspired by human cognition, where individu-180

als offload information gathering to collaborators181

to reduce burden, HARIS is designed to mimic182

this process. By delegating search and reasoning183

to distinct agents, we improve decision traceabil-184

ity in multi-hop claim verification. This design is 185

especially effective in cases requiring nuanced dis- 186

ambiguation and step-wise evidence composition. 187

Meanwhile, the search and reasoning agents 188

closely collaborate to enhance overall performance. 189

Interactive generation allows the agents to itera- 190

tively guide each other’s outputs. Coordinated train- 191

ing alternately optimizes the agents to strengthen 192

their collaboration, as shown in Figure 2. 193

3.2 High-level Reasoning Agent 194

The high-level reasoning agent constructs the main 195

verification chain, coordinating multi-step reason- 196

ing and generating factual questions for the search 197

agent when additional information is needed. 198

3.2.1 Reasoning Agent Rollout 199

Following prior work (Chen et al., 2025; Jin et al., 200

2025), the reasoning agent’s rollout process uses 201

special tags to define question actions. Specifi- 202

cally, the tags <question> and </question> indi- 203

cate that an action to call the search agent should 204

be invoked. Upon detecting the </question> tag, 205

the generation is paused and the enclosed content 206

will be regarded as the factual question and sent to 207

the search agent. The reported information from 208

search agent is wrapped within <result> tags and 209

appended to the sequence to enable continued roll- 210

out. The rollout ends when a final verification is de- 211

rived, wrapped within <verification> tags. The 212

prompt template is provided in Appendix C.1. 213
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3.2.2 Reasoning Agent Reward214

The reasoning agent is responsible for performing215

multi-step reasoning over the gathered evidence to216

verify the claim. It provides a binary verification217

decision, and the reward is the correctness of this218

decision. The overall reward Rhigh is given by:219

Rhigh =


1, if correct prediction
0.1, if wrong prediction, correct format
0, if wrong format

(1)220

3.3 Low-level Search Agent221

The low-level search agent in HARIS is respon-222

sible for handling factual questions generated by223

the reasoning agent. Unlike conventional question-224

answering systems that aim to produce concise225

answers, the search agent here is designed to itera-226

tively gather comprehensive and relevant informa-227

tion to support the high-level reasoning process.228

3.3.1 Training Data Synthesis229

To train the search agent, it is crucial that the train-230

ing data not only includes diverse question-answer231

pairs but also closely aligns with the type of the232

questions generated by the high-level agent. This233

alignment ensures that the search agent can effec-234

tively collaborate with the reasoning agent during235

multi-hop verification. To create such training set,236

we sample questions from the high-level agent roll-237

outs, pair them with the corresponding ground-238

truth evidence, and use GPT-4o (OpenAI, 2024b)239

to generate pseudo ground-truth answers. To main-240

tain data quality, we filter out pairs where GPT-4o241

outputs "none" as the answer, typically removing242

about 10% of the data. This process synthesize243

data that is both contextually relevant and closely244

matched to the reasoning patterns of the high-level245

agent. Synthesis details and examples can be found246

in Appendix A.4 and Table 11.247

3.3.2 Search Agent Rollout248

The search agent rollout process is similar to the249

reasoning agent. When the generation process en-250

counters a </search> tag, it pauses and extracts251

the content wrapped within the tags as the search252

query. This query is then used to perform top-k253

retrieval from the knowledge corpus. The retrieved254

text is wrapped in <result> and </result> tags255

and appended to the paused sequence, allowing the256

rollout to continue iteratively until the agent deter-257

mines that sufficient information has been gathered.258

At this point, the agent reports the collected evi- 259

dence within <report> and </report> tags, mark- 260

ing the completion of the rollout. The prompt tem- 261

plate can be found in Appendix C.1. 262

3.3.3 Search Agent Reward 263

We use a combination of format and LLM-as-a- 264

Judge approaches for search agent rewards. The 265

LLM-as-a-Judge approach evaluates the quality the 266

gathered information using an LLM, comparing 267

the final output against the pseudo ground-truth 268

answer1. The evaluation score is computed as: 269

S = LLM-as-a-Judge(apred, agt) (2) 270

where apred is the search agent’s final output and 271

agt is the pseudo ground-truth answer. This ap- 272

proach is less strict than exact match (EM) metrics, 273

better aligning with the search agent’s goal of col- 274

lecting comprehensive, contextually relevant infor- 275

mation rather than just short, exact answers. The 276

implementation can be found in Appendix A.5.1. 277

Formally, the reward Rlow is given by: 278

Rlow =


1, if S > 0
0.1, if S = 0, correct format
0, if wrong format

(3) 279

To assess the reliability of LLM-as-a-Judge, we 280

recruited two annotators2 for assessing held-out 281

samples using the same criteria as LLM. The results 282

showed strong consistency with human judgment 283

(Cohen’s Kappa: 0.81; agreement: 93.3%). See 284

Appendix D for complete human evaluation details. 285

3.4 Group Relative Policy Optimization 286

In this work, we leverage Group Relative Policy 287

Optimization (GRPO) (Shao et al., 2024), an RL 288

algorithm tailored for training LLMs with group- 289

level reward normalization. GRPO introduces a 290

relative advantage mechanism, which evaluates the 291

quality of generated responses within groups cor- 292

responding to the same input. This design helps 293

stabilize training by reducing variance in gradient 294

updates, thereby promoting more consistent learn- 295

ing. The GRPO objective is formally defined as: 296

LGRPO(θ) = − 1

G

G∑
i=1

|oi|∑
t=1

[
πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
Âi,t

−βDKL[πθ ∥ πθold ]

]
,

(4) 297

1We use GPT-4o-mini(OpenAI, 2024a) for this purpose, as
it is cost-efficient.

2https://www.prolific.com/
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Figure 3: Demonstrations of GRPO for the reasoning and search agents in HARIS. During reasoning agent training,
the policy LLM interacts with the search agent, while for search agent training, it interacts with the search engine.

where G is the number of groups, Âi,t is the298

normalized advantage within the group, and β con-299

trols the KL divergence penalty enforcing policy300

stability. Figure 3 presents an overview of GRPO301

for reasoning and search agents.302

Retrieved Token Loss Masking Following prior303

work (Chen et al., 2025; Song et al., 2025), re-304

trieved tokens are masked during loss calculation.305

This approach ensures that the policy gradient is306

computed only on generated tokens, reducing bias307

toward retrieved content and stabilizing training.308

3.5 Coordinated Agent Training309

To enable effective collaboration between the high-310

level reasoning agent and the low-level search311

agent, we adopt a Coordinated Agent Training strat-312

egy. This process consists of two stages: an initial313

foundation stage, where both agents develop core314

reasoning, search, and formatting abilities; and315

a subsequent alternating training stage, where316

the agents iteratively refine their specialized skills317

through mutual interaction.318

Given a training set T of claim verification data,319

in the foundation stage, the untrained low-level320

search agent L0 and high-level reasoning agent H0321

are trained sequentially to establish their founda-322

tional capabilities. First, we sample questions from323

H0 to train L0, producing the updated search agent324

L1. This updated search agent then supports the325

training of H0, producing the updated reasoning326

agent H1. This stage establishes a foundation for327

both agents in reasoning, searching, and format-328

ting.329

In the alternating stage, we promote further coor-330

dination by repeatedly alternating training between331

the two agents. The dataset T is divided into N332

segments. For each segment, we sample questions333

from the current high-level agent Hi to train the334

low-level agent, producing Li+1. The updated low-335

level agent Li+1 is then used to collaborate with336

Algorithm 1 Coordinated Agent Training

Input: Initial low-level agent L0, high-level
agent H0, training set T
Output: Trained low-level agent L and high-
level agent H
Stage 1: Foundation Training
Q0 ← Synthesis(T,H0)
L1 ← GRPOlow(Q0, L0)
H1 ← GRPOhigh(T, L1)
Stage 2: Alternating Training
Divide T into N segments {T1, . . . , TN}
for i = 1 to N do

Qi ← Synthesis(Ti, Hi)
Li+1 ← GRPOlow(Qi, Li)
Hi+1 ← GRPOhigh(Ti, Li+1)

end for
L← LN+1, H ← HN+1

Return L,H

the high-level agent, resulting in Hi+1. This alter- 337

nating process continues for N rounds, fostering 338

mutual adaptation and ensuring the agents remain 339

closely aligned throughout training. 340

4 Experiments 341

4.1 Datasets 342

We utilize the following datasets for training and 343

evaluation: 344

• EX-FEVER (Ma et al., 2024): A benchmark 345

for multi-hop claim verification, designed to 346

assess a model’s ability to verify complex 347

claims through 2-hop and 3-hop reasoning 348

over hyperlinked Wikipedia documents. 349

• HOVER (Jiang et al., 2020): A dataset cre- 350

ated for many-hop claim verification, featur- 351

ing claims that require 2 to 4-hop reasoning 352

across multiple Wikipedia articles. 353
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HOVER EX-FEVER CHECKWHY
2-hops 3-hops 4-hops 2-hops 3-hops

F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc Acc

RAG 58.96 59.20 56.59 56.60 55.06 55.20 68.83 69.00 64.41 64.80 56.40
Decomp-Verify 62.39 62.60 57.27 57.31 54.55 55.60 68.03 68.40 61.95 63.00 36.00
ProgramFC 66.84 66.80 55.35 56.80 48.30 52.60 71.28 71.60 60.34 62.40 21.60
BiDeV 64.51 65.00 57.59 58.60 54.94 57.00 67.75 67.80 61.52 62.00 24.60
QACheck 67.60 67.60 60.60 60.60 58.91 59.00 75.52 75.60 68.42 68.60 58.00
FOLK 67.22 67.60 59.89 61.20 50.90 55.20 75.55 75.80 67.24 68.40 50.70
Search-o1 68.72 69.00 59.34 59.80 54.90 56.60 77.41 77.80 72.08 72.80 52.40

HARIS 69.31 69.40 62.33 62.80 59.84 61.00 80.12 80.20 73.93 74.20 60.80

Table 1: Performance comparison of different methods on HOVER (2-hops/3-hops/4-hops), EX-FEVER (2-hops/3-
hops) and CHECKWHY.

For training, we sample 7,200 examples from the354

combined EX-FEVER and HOVER training data.355

For evaluation, following Wang and Shu (2023),356

we sample 500 instances from the test set of each357

dataset using stratified sampling, ensuring a bal-358

anced label distribution. We use F1-score and accu-359

racy as the primary evaluation metrics. To further360

assess generalizability, we also evaluate the accu-361

racy on 500 positive3 test samples from CHECK-362

WHY (Si et al., 2024) in the main experiments.363

Details of the datasets can refer to Appendix A.1.364

4.2 Baselines365

We include the following baselines:366

RAG : A typical Retrieval-Augmented Genera-367

tion (RAG) approach where retrieved documents368

and the input are provided to a LLM for verifica-369

tion. The verification module is implemented using370

DSPy (Khattab et al., 2024).371

Decompose-Then-Verify A commonly used372

paradigm (Kamoi et al., 2023) involving: decom-373

posing a claim into sub-claims, verifying each in-374

dependently, and aggregating the results. We uti-375

lize the decomposition module from Kamoi et al.376

(2023) and prompt the LLM for verification, aggre-377

gating final results with logical AND.378

ProgramFC Pan et al. (2023b) leveraged379

program-guided reasoning for claim verification,380

generating reasoning programs in a few-shot man-381

ner for execution.382

QACheck Pan et al. (2023a) verifies claims383

through iterative question-answering until the LLM384

determines that sufficient information has been de-385

rived. We employ the default Retriever–Reader386

3CHECKWHY is a challenging benchmark. Its negative
samples are created by modifying evidence to generate coun-
terfactuals. Hence, we only use the positive samples.

Single HARIS

F1 Acc F1 Acc

EX-FEVER2hops 77.59 77.60 80.12 80.20
EX-FEVER3hops 73.20 73.40 73.93 74.20
HOVER2hops 68.20 68.20 69.31 69.40
HOVER3hops 61.55 62.00 62.33 62.80
HOVER4hops 55.48 56.00 59.84 61.00

Table 2: Performance comparison between RL trained
single agent and HARIS.

N=1 N=3

F1 Acc F1 Acc

EX-FEVER2hops 78.77 78.80 80.12 80.20
EX-FEVER3hops 73.20 73.60 73.93 74.20
HOVER2hops 69.37 69.40 69.31 69.40
HOVER3hops 61.08 61.60 62.33 62.80
HOVER4hops 60.87 61.80 59.84 61.00

Table 3: Comparison of performance for coordination
training rounds N .

setting, where an LLM iteratively answers ques- 387

tions using the corpus. 388

FOLK Wang and Shu (2023) translates claims 389

into First-Order Logic (FOL) clauses and applies 390

FOL-guided reasoning over knowledge-grounded 391

question-answer (QA) pairs. The QA pairs are 392

grounded via an external API4. 393

BiDeV Liu et al. (2025) propose two prompt- 394

based LLM agents for defusing vagueness and re- 395

dundancy: the former clarifies latent information, 396

while the latter removes redundant evidence. 397

Search-o1 Li et al. (2025) enhances large reason- 398

ing models by integrating agentic RAG, allowing 399

autonomous retrieval during multi-step reasoning. 400

It further refines retrieved information through a 401

Reason-in-Documents module. 402

For more baseline details, refer to Appendix A.3. 403

4https://serpapi.com/
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F1 LLM-as-a-Judge

F1 Acc F1 Acc

EX-FEVER2hops 72.44 73.00 75.63 75.80
EX-FEVER3hops 63.85 65.60 68.14 68.80
HOVER2hops 65.94 66.40 67.49 67.60
HOVER3hops 56.42 57.80 58.97 59.60
HOVER4hops 52.38 55.60 57.42 58.80

Table 4: Final performance comparison between HARIS
with F1-trained and LLM-as-a-Judge trained search
agent.

4.3 Experimental Setup404

We conduct all training experiments using the405

Qwen3-4B model (Qwen, 2025). For HARIS, we406

train for one epoch in each stage. All baseline meth-407

ods, except for Search-o1, utilize GPT-4o (OpenAI,408

2024b) as the underlying LLM. Search-o1 employs409

the QwQ-32B-preview model (Qwen, 2024). All410

methods operate in the Open-Book setting (Pan411

et al., 2023b), where no ground-truth evidence is412

provided beforehand, requiring each method to re-413

trieve supporting evidence using top-k (k = 3)414

retrieval. We utilize the Wikipedia corpus provided415

by FlashRAG (Jin et al., 2024) for this purpose,416

indexed using a E5-small model for dense retrieval.417

For more training and experimental details, please418

refer to Appendix A.5.419

5 Result420

5.1 Main Result421

As shown in Tables 1, our proposed method422

HARIS consistently outperforms all baseline meth-423

ods across both the EX-FEVER and HOVER424

datasets, demonstrating superior multi-hop reason-425

ing and evidence searching capabilities. Notably,426

HARIS achieves the highest F1 and accuracy scores427

across different hop counts, with particularly strong428

performance in the more challenging 3-hop and 4-429

hop settings. For example, on the HOVER dataset,430

HARIS achieves 62.80% accuracy in the 3-hop set-431

ting and 61.00% in the 4-hop setting, surpassing432

other strong GPT-4o-powered baselines. For direct433

comparison with Qwen3-4B results, see Table 5.434

Notably, HARIS demonstrates strong generaliza-435

tion capabilities, achieving the best performance436

on the CHECKWHY benchmark. This result in-437

dicates that HARIS effectively handles more com-438

plex, causally structured claims, where gathering439

sufficient evidence and orchestrating multi-step440

reasoning is critical. This performance can be441

attributed to the explicit modeling of reasoning-442

Figure 4: Comparision of calls to search agent during
reasoning agent training, using search agents trained
with F1 versus LLM-as-a-Judge rewards.

Figure 5: Comparison of high-level rewards during rea-
soning agent training with search agents trained using
F1 and LLM-as-a-Judge rewards.

driven searching and search-informed reasoning, 443

which allows HARIS to dynamically refine veri- 444

fication paths based on partial evidence, reducing 445

noise and improving verification consistency. 446

5.2 Ablations 447

Single-Agent vs Multi-Agent Multi-agent RL 448

has shown strong performance in complex rea- 449

soning tasks (Wan et al., 2025), and reducing 450

retrieval noise during intermediate steps is also 451

known to benefit RAG systems like Search-o1 (Li 452

et al., 2025). To assess the impact of our bi-level 453

design, we compare HARIS with an RL-trained 454

single-agent . As shown in Table 2, HARIS out- 455

performs the single-agent setup across multiple 456

datasets. This shows the advantage of decompos- 457

ing reasoning and retrieval into specialized agents, 458

each optimized for its specific role. The search 459

agent efficiently provides relevant information to 460

the reasoning agent, reducing noise and enhancing 461

the verification capability. A qualitative case study 462

in Appendix C.4 further illustrates this contrast on 463

a shared example. 464
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Figure 6: Example of reasoning agent and search agent rollout interaction for a complex multi-hop claim.

Coordination Rounds We study how the num-465

ber of coordination rounds (N ) affects model per-466

formance. As shown in Table 3, increasing N gen-467

erally leads to stronger performance. It shows that468

this approach helps balance learning dynamics and469

maintain alignment between high-level and low-470

level agents. By allowing each agent to iteratively471

refine its abilities while maintaining consistency,472

coordinated training supports more effective col-473

laboration over multiple training cycles.474

LLM-as-a-Judge vs F1 We examine the im-475

pact of the reward metric used for training the476

search agent using 3,600 training examples over477

one epoch. Specifically, we compare conventional478

QA F1-score and LLM-as-a-Judge as rewards. We479

find that F1-trained agents tend to generate more480

concise responses, as F1 favors answers closely481

matching the reference. In contrast, LLM-as-a-482

Judge rewards encourage more comprehensive and483

contextually relevant outputs. As shown in Figure 4484

and 5, F1-based agents prompt the reasoning agent485

to trigger more searches, resulting in more follow-486

up questions. In comparison, LLM-as-a-Judge re-487

duces search calls but achieves higher verification488

reward, indicating more thorough information im-489

proves the overall reasoning process. As shown490

in Table 4, the performance results suggest using491

LLM-as-a-Judge trained HARIS consistently im-492

proved the performance compared to F1-trained.493

On average it improves over 3% performance.494

More experiments can be found in Appendix B. 495

6 Case Study 496

Figure 6 illustrates how HARIS resolves a complex 497

claim through step-by-step, search-informed rea- 498

soning. The reasoning agent systematically probes 499

plausible related actors, while the search agent con- 500

tinuously refines queries, shifting the search from 501

Feodor Chin to Blizzard to gather sufficient evi- 502

dence. In another example (Figure 7), the reason- 503

ing agent initially struggles to identify the correct 504

Baby film, but the search agent’s response about 505

"Who is David Huynh..." provides crucial context, 506

steering reasoning toward the correct verification. 507

These cases highlight HARIS’s collaborative pro- 508

cess, with the reasoning agent refining its under- 509

standing as new information is retrieved until all 510

critical connections are uncovered. 511

7 Conclusion 512

We propose Hierarchical Agent Reasoning and In- 513

formation Search (HARIS), explicitly modeling 514

the coordinated process of reasoning-driven search- 515

ing and search-informed reasoning. By integrating 516

high-level reasoning and low-level search agents, 517

HARIS effectively captures complex reasoning 518

chains while reducing noise in evidence retrieval. 519

Our approach demonstrates strong performance 520

across challenging benchmarks, highlighting its 521

effectiveness for comprehensive claim verification. 522
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Limitations523

While HARIS demonstrates strong performance,524

due to limited computational resources, we train525

only on a 4B model. Using larger models are likely526

to achieve even stronger performance. Addition-527

ally, our study focuses on binary claim verification528

(‘Support’ or ‘Refute’). While some benchmarks529

include additional classes such as ‘Neutral’ or ‘Not530

Enough Info,’ we do not explore them here. Claim531

verification is a key area within fact-checking, we532

do not explore tasks such as open-domain QA or533

counterfactual detection, as these differ substan-534

tially from multi-hop claim verification. Notably,535

our binary setting is consistent with strong base-536

lines such as ProgramFC, QACheck, and FOLK in537

claim verification.538
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A Experimental Settings758

A.1 Dataset759

HOVER(Jiang et al., 2020) is a multi-hop claim760

verification dataset containing 2, 3, and 4-hop data,761

designed to evaluate the ability of models to con-762

nect multiple pieces of evidence across different763

documents. EX-FEVER(Ma et al., 2024) is an-764

other multi-hop benchmark, primarily focused on765

2 and 3-hop reasoning over hyperlinked Wikipedia766

documents.767

For training, we sample 7,200 examples from the768

combined training sets of EX-FEVER and HOVER,769

maintaining an equal ratio across different hop770

lengths to ensure balanced coverage of multi-hop771

reasoning.772

For evaluation, we follow Wang and Shu (2023)773

and use stratified sampling to select 500 instances774

for each hop setting, ensuring a balanced distribu-775

tion of multi-hop complexity.776

We also evaluate on CHECKWHY (Si et al.,777

2024), a challenging claim verification dataset778

where negative samples are constructed by modify-779

ing evidence to create counterfactuals. Given this780

design, we only sample from the positive claims781

and use accuracy for evaluation.782

A.2 Retrieval Setting783

We use the Wikipedia corpus processed by784

FlashRAG (Jin et al., 2024), which provide chun-785

ked passages. We adopt a dense retrieval method786

with ‘intfloat/multilingual-e5-small’ model (Wang787

et al., 2024), which offers a favorable balance be-788

tween memory efficiency and performance on the789

MTEB benchmark (Muennighoff et al., 2023). For790

retrieval, we use a top-3 retrieval strategy.791

A.3 Baselines792

For consistency, we adapt each baseline to the same793

experimental setup wherever possible.794

RAG We use the input claim as the retrieval795

query, providing the retrieved context and the claim796

to GPT-4o for final classification. The verification797

signature is provided in Table 10.798

Decompose-Then-Verify We use the decompo-799

sition module from WICE (Kamoi et al., 2023)800

for breaking down complex claims into simpler801

sub-claims via few-shot in-context learning. Each802

sub-claim is then verified using the same retrieval803

and classification setup as RAG, with final results804

aggregated using logical AND.805

ProgramFC (Pan et al., 2023b): We implement 806

ProgramFC based on the official repository5. To 807

ensure consistency, we replace the Flan-T5 model 808

used for sub-task functions with GPT-4o. 809

Search-o1 (Li et al., 2025) Our implementation 810

is based on the official implementation6 and setting 811

the maximum search limit to 10. We adapt the orig- 812

inal QA prompt templates for claim verification. 813

FOLK (Wang and Shu, 2023) Our implemen- 814

tation follows the official repository7. Consistent 815

with the original paper, we perform knowledge 816

grounding using the Google Search API8, ensuring 817

accurate grounding for FOL-guided reasoning. 818

QACheck (Pan et al., 2023a) We use the official 819

implementation9. We replace the original LLM 820

components with GPT-4o to match our baseline 821

settings and ensure consistent evaluation. 822

A.4 Search Agent Training Data Synthesis 823

To ensure the search agent can effectively address 824

questions generated by the reasoning agent, we 825

synthesize training data by having the reasoning 826

agent perform rollouts on the training claims and 827

sampling the generated questions. 828

For the first epoch training, we collect the first 829

question proposed by the untrained reasoning agent 830

H0 in each rollout. This is because the initial un- 831

trained reasoning agent struggles with formatting, 832

making longer rollouts less reliable. Starting from 833

the second epoch, we sample from all questions 834

generated during the rollout as the reasoning agent 835

at this stage has developed a more stable question 836

generation capability. For training efficiency, in 837

postprocessing, we limit each claim verification 838

data to a single question. 839

To generate answers for these sampled questions, 840

we pair each question with the ground-truth evi- 841

dence provided by the original dataset. For EX- 842

FEVER, we use the human-annotated explanations 843

as the evidence. The prompt signature used for this 844

pairing is provided in Table 10. 845

5https://github.com/mbzuai-nlp/ProgramFC
6https://search-o1.github.io/
7https://github.com/wang2226/FOLK
8https://serpapi.com/
9https://github.com/XinyuanLu00/QACheck

10For Search-o1, its official implementation is specifically
designed for QwQ reasoning models and is not directly con-
figurable with Qwen3 models.
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HOVER EX-FEVER
2-hops 3-hops 4-hops 2-hops 3-hops

F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc

RAG 57.47 57.60 49.49 52.40 50.74 53.00 68.67 68.80 68.54 68.60
Decomp-Verify 59.67 60.80 47.13 53.71 43.59 52.80 63.09 64.60 54.76 59.00
ProgramFC 55.41 55.60 50.39 51.20 51.15 52.80 56.60 56.80 56.31 57.60
BiDeV 59.38 62.40 50.55 56.20 42.09 52.60 58.73 62.20 51.60 57.60
QACheck 55.90 56.20 48.08 50.20 51.07 52.80 55.84 56.20 60.14 60.40
FOLK 61.08 61.40 59.07 59.20 57.65 58.20 80.12 80.20 73.93 74.20

HARIS 69.31 69.40 62.33 62.80 59.84 61.00 80.12 80.20 73.93 74.20

Table 5: Direct performance comparison of different methods (Qwen3-4B based) with HARIS.10

A.5 Training Settings846

A.5.1 LLM-as-a-Judge847

We use GPT-4o-mini as the judge for evaluating848

the final output usefulness of the search agent. This849

is implemented using DSPy (Khattab et al., 2024),850

which allows for customizing signature to define851

prompt-based LLM classification. The signature852

used in our experiments is provided in Table 10.853

The final score is set to 1 if the output ‘is_useful’854

variable contains "yes" and 0 otherwise.855

A.5.2 Hardware & Hyperparameter856

All experiments, including HARIS and the base-857

lines, were conducted on a server with 4×H20858

GPUs and a cluster of 8×A100 nodes. Our imple-859

mentation is based on the verl framework (Sheng860

et al., 2024). Key hyperparameters include: rollout861

group size of 5, tensor parallel size (tp) of 2, batch862

size of 48, temperature of 1.0, learning rate of 1e-6,863

and KL coefficient of 0.001.864

HARIS experiments were mainly run on the865

4×H20 server. Retrieval services were hosted on866

a single GPU using FastAPI. For reasoning agent867

training, we used vLLM (Kwon et al., 2023) to868

serve the search agent endpoint on one GPU, while869

the remaining GPUs were allocated to high-level870

agent training. Two GPUs for training the rea-871

soning agent and one GPU for the search agent872

inference service. In the single-agent setting, two873

GPUs were used for training. Due to GPU memory874

constraints, we set the maximum context length to875

8192 tokens.876

B Additional Experiments877

B.1 Direct comparison878

To enable direct comparison on the same base879

model, we run the baselines using Qwen3-4B as the880

base LLM. The results are summarized in Table 5.881

As shown, when using the same base LLM, HARIS882

significantly outperforms the baselines, demonstrat- 883

ing its effectiveness. 884

B.2 Supervised Finetuning 885

We provide an experiment comparing HARIS with 886

supervised finetuning (SFT). Specifically, in an 887

explainable fact-checking setting, we enabled the 888

thinking mode of Qwen3-4B to generate responses 889

using the same training set as HARIS. To ensure 890

the model learns the correct target sequence, for 891

each claim in the training data, we repeatedly sam- 892

pled responses until the final prediction was correct. 893

The prompt used can be found in Table 9. Training 894

epochs and learning rates were kept the same as 895

HARIS’s setting. The performance results are sum- 896

marized in Table 6. Overall, HARIS outperforms 897

supervised fine-tuning across all datasets and hop 898

settings. 899

B.3 ReAct & Model Scaling 900

One might be concerned that decoupling the search 901

and reasoning agents primarily compensates for 902

the limitations of smaller models (such as our 4B 903

backbone). However, in our main experiments, the 904

Search-o1 baseline employs a larger 32B model, 905

yet it still underperforms compared to HARIS. To 906

further investigate the effect of model scaling, we 907

implemented a ReAct LLM Agent baseline and 908

conducted experiments using Qwen3-4B, 8B, and 909

14B. In this setup, the agent performs Wikipedia 910

searches and leverages the retrieved documents as 911

observations. The F1 results are presented in Ta- 912

ble 7. As shown, simply increasing the model size 913

does not always result in substantial performance 914

gains. These results suggest that our multi-agent, 915

decoupled approach offers distinct advantages. 916
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SFT HARIS

F1 Acc F1 Acc

EX-FEVER2hops 71.93 72.60 80.12 80.20
EX-FEVER3hops 63.95 66.20 73.93 74.20
HOVER2hops 57.05 59.40 69.31 69.40
HOVER3hops 42.03 51.40 62.33 62.80
HOVER4hops 41.24 52.00 59.84 61.00

Table 6: Performance comparison between supervised
finetuning(SFT) and HARIS.

ReAct HARIS
4B 8B 14B 4B

EX-FEVER2hops 72.17 71.56 72.58 80.12
EX-FEVER3hops 67.94 63.91 70.91 73.93
HOVER2hops 63.59 63.19 64.57 69.31
HOVER3hops 54.94 58.19 55.76 62.33
HOVER4hops 51.24 53.17 56.02 59.84

Table 7: F1 performance comparison between HARIS
and ReAct agent based on different model sizes.

C Prompts & Examples917

C.1 Prompt Template918

The prompt templates used for reasoning agent and919

search agent are shown in Table 8.920

C.2 Synthesized Training Data921

Table 11 shows two examples of synthesized train-922

ing data for the search agent. Example 2 leverages923

human-annotated explanations as evidence. The924

synthesis process uses a Chain-of-Thought (CoT)925

prompting format, with the rationale field cap-926

turing GPT-4o’s intermediate reasoning before pro-927

ducing the final answer.928

C.3 Synthesized Training Data929

Table 11 shows two examples of synthesized train-930

ing data for the search agent. Example 2 leverages931

human-annotated explanations as evidence. The932

synthesis process uses a Chain-of-Thought (CoT)933

prompting format, with the rationale field cap-934

turing GPT-4o’s intermediate reasoning before pro-935

ducing the final answer.936

C.4 Single-Agent & Multi-Agent Cases937

To better understand the behavioral differences938

between single-agent and coordinated reasoning-939

search approaches, we compare two rollouts for the940

same claim in Figures 8 and 9.941

In the single-agent case, the model issues several942

searches but fails to effectively refine its queries.943

For each aspect it explores, it stops short of deeper944

investigation and prematurely converges on partial945

evidence. With reasoning and retrieval entangled946

in a single generation loop, the agent lacks feed- 947

back mechanisms to reassess or adjust its direction, 948

ultimately producing an incorrect verification. 949

In contrast, HARIS decouples reasoning and 950

search into specialized agents. The reasoning agent 951

identifies uncertain links and formulates precise 952

questions, while the search agent iteratively gathers 953

relevant evidence to support or refute each hypoth- 954

esis. This coordinated process enables effective 955

disambiguation, deeper exploration, and accurate 956

multi-hop reasoning. The comparison highlights 957

how HARIS’s multi-agent design leads to more 958

robust, interpretable verification under ambiguity 959

and incomplete evidence. 960

D Human Evaluation Details 961

As described in Section 3.3.3, we conducted a 962

human evaluation to assess the reliability of our 963

LLM-as-a-Judge setup. We sampled 150 questions 964

from a held-out set of synthesized QA data, using 965

the trained HARIS search agent to gather informa- 966

tion for each. Two annotators from the Prolific 967

platform11, each paid £20, independently evalu- 968

ated 75 responses following the same guidelines 969

as the LLM-as-a-Judge. They judged whether the 970

retrieved information was sufficient and useful for 971

deriving the correct answer. The results showed 972

a Cohen’s Kappa of 0.81 and a 93.3% agreement 973

rate, indicating strong consistency. These findings 974

confirm that our LLM-as-a-Judge metric closely 975

aligns with human judgments. An example of the 976

annotation panel is shown in Figure 10. For data 977

consent, we selected the AI task annotation cate- 978

gory on the platform, and annotators were informed 979

that the collected data would be used to evaluate 980

LLM outputs. 981

11https://www.prolific.com/
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Prompt Template for Low-Level Search Agent

You are a helpful assistant tasked with gathering information to answer a question step by
step with the help of the wikipedia search tool. Given a question, you need to think about the
reasoning process in the mind and how to gather sufficient information to finally report the
gathered information clearly based on the information you have found. Your task includes
answering the question and reporting relevant information you have found clearly. During
thinking, you can invoke the wikipedia search tool to search for fact information about specific
topics if needed. The reasoning process and reported information are enclosed within <think>
</think> and <report> </report> tags respectively, and the search query and result are enclosed
within <search> </search> and <result> </result> tags respectively...

Prompt Template for High-Level Reasoning Agent

You are a helpful assistant tasked with verifying the truthfulness of a claim step by step, with
the support of a Wikipedia search agent. Given a claim, you need to think about the reasoning
process in the mind and then provide the verification result (Support or Refute). During
thinking, if needed, ask factual questions to the Wikipedia search agent. This is a multi-hop
claim verification task, the reasoning may involve identifying intermediate facts (bridging facts)
that are not explicitly mentioned in the claim but are necessary to verify its truthfulness.

For the wikipedia agent to clearly understand the question, follow these guidelines:

1. Begin the question with clear interrogatives.

2. Questions must be self-contained—do not refer to "the claim" or use vague pronouns like
"it" or "that".

3. Avoid context-dependent phrases like "in the claim" or "based on that".

The reasoning and questioning process should be interleaved using the following tags:

- Use <think> </think> to enclose the reasoning process.

- Use <question> </question> to pose a factual question.

- The agent will return relevant information inside <result> </result> tags.

- The final binary decision—**Support** or **Refute**—must be wrapped in LaTeX format
as \boxed{Support} or \boxed{Refute} inside the <verification> tag...

Table 8: Prompt templates for the low-level search agent and high-level reasoning agent.
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Prompt Template for Single Agent

You are a helpful assistant tasked with verifying the truthfulness of a claim step by step, with
the help of the wikipedia search tool. Given a claim, you need to first think about the reasoning
process in the mind and then provide the boolean verification result (Support or Refute). During
thinking, you can invoke the wikipedia search tool to search for fact information about specific
topics if needed. The reasoning process and answer are enclosed within <think> </think> and
<answer> </answer> tags respectively, and the search query and result are enclosed within
<search> </search> and <result> </result> tags respectively...

Prompt Template for Supervised Finetuning

<|im_start|>user

Given a claim and its retrieved evidence, determine whether the claim is ’Support’ or ’Refute’.

Claim: claim

Evidence: retrieved_evidence

Wrap your final answer in <answer> and </answer> tags (e.g. <answer>Support</answer> or
<answer>Refute</answer>)<|im_end|>

<|im_start|>assistant

<think>

Table 9: Prompt templates for the single agent and supervised finetuning.
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LLM-as-a-Judge DSPy Signature

class SearchAgentRewardSignature(dspy.Signature):

question: str = dspy.InputField(desc="The question for which information must be
gathered")

ground_truth_answer: str = dspy.InputField(desc="The correct answer to the question")

gathered_information: str = dspy.InputField(desc="Information gathered by the search
agent intended to help answer the question")

is_useful: Literal["yes", "no"] = dspy.OutputField(desc="Determine whether the
gathered information is sufficient and useful to derive the correct answer")

Pseudo Ground-Truth Answer Signature

class PseudoGroundTruthQA(dspy.Signature):

claim: str = dspy.InputField()

veracity: Literal["true", "false"] = dspy.InputField(desc="The veracity of the
claim")

evidence: dict[str, list[str]] = dspy.InputField(desc="Supporting evidence/expla-
nation for the veracity of the claim")

question: str = dspy.InputField(desc="A relevant question asked by a fact-checking
agent")

answer: str = dspy.OutputField(desc="The answer to the question. If no answer is
applicable, return ’None’")

Classification Signature for RAG and Decompose-Then-Verify

class ClaimVerificationSignature(dspy.Signature):

claim: str = dspy.InputField(desc="The claim to be checked")

context: str = dspy.InputField(desc="The retrieved evidence for the claim")

veracity: Literal[’Support’, ’Refute’] = dspy.OutputField(desc="Given the claim
and the retrieved evidence, determine whether the claim is ’Support’ or ’Refute’")

Table 10: Signature definitions for search agent reward evaluation, search agent training data synthesis, and baselines
claim verification.
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Synthesized Raw Training Data Example 1

{
"input": "94 episodes were in the original run of the HBO show in which
the voice actress of Miss Spider played the character Charlotte York
Goldenblatt .",
"evidence ": "Miss Flora Spider is the title character in the bestselling
children 's books by David Kirk. She originally appeared in cartoon

format in the movie \"Miss Spider 's Sunny Patch Kids\" (with Brooke
Shields providing Miss Spider 's voice), which spun off the \"Miss Spider
's Sunny Patch Friends \" series (with Kristin Davis providing her voice
this time around), and \"Miss Spider 's Sunny Patch Friends - Harvest
Time Hop and Fly\" video game ...",
"explanation ": null ,
"label": true ,
"question ": "Who is the voice actress for the character \"Miss Spider
\"?",
"qa_response ": {

"rationale ": "To produce the answer. We start by identifying the
character \"Miss Spider \" and the voice actress associated with her.
According to the evidence , Miss Spider is a character in the children '
s books by David Kirk and has appeared in various media formats. The
evidence states that Brooke Shields provided Miss Spider 's voice in
the movie \"Miss Spider 's Sunny Patch Kids ,\" while Kristin Davis
provided her voice in the \"Miss Spider 's Sunny Patch Friends \" series
. Since the question asks for the voice actress for the character \"
Miss Spider ,\" we need to determine which context is being referred to
. However , given the context of the claim and the evidence provided ,
it is most relevant to identify Kristin Davis as the voice actress for
the series , as she is also the actress who played Charlotte York

Goldenblatt in \"Sex and the City .\" Therefore , the answer to the
question is Kristin Davis.",
"answer ": "Kristin Davis"

}
}

Synthesized Raw Training Data Example 2

{
"input": "Journey is an American rock band formed in 1974 by former
members of band such as an American rock band formed in 1966." ,
"evidence ": null ,
"explanation ": "Journey is formed in 1973 by former members of band such
as Steve Miller Band , not 1974. The Steve Miller Band is an American

rock band formed in 1966." ,
"label": false ,
"question ": "What American rock band was formed in 1966 and had members
who later joined Journey?",
"qa_response ": {

"rationale ": "To produce the answer. We start by identifying the
American rock band formed in 1966. According to the evidence , the
Steve Miller Band was formed in 1966. Next , we need to determine if
any members from this band later joined Journey. The evidence states
that Journey was formed by former members of bands such as the Steve
Miller Band. Therefore , the Steve Miller Band is the band in question
.",
"answer ": "The Steve Miller Band."

}
}

Table 11: Synthesized raw data examples for training the reasoning and search agents.
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Figure 7: Different rollout example from reasoning agent for a complex multi-hop claim.
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Figure 8: Example of a trained single agent rollout. The input claim ‘Sam Stockman stars in a series that depicted a
killer. The killer was copying the actions of Jack the Ripper.’ is correct. The agent issues several queries but fails to
retrieve sufficient evidence. Without a clear separation of roles, it struggles to iteratively refine its search direction
and prematurely converges on partial evidence, ultimately leading to an incorrect verification.
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Figure 9: Example of HARIS’s reasoning agent rollout. The input claim ‘Sam Stockman stars in a series that
depicted a killer. The killer was copying the actions of Jack the Ripper.’ is correct. The reasoning and search agents
coordinate effectively: the reasoning agent identifies uncertain links and delegates targeted queries, while the search
agent retrieves precise evidence, enabling correct verification.
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Figure 10: Preview of the human evaluation panel.
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