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ABSTRACT

Federated Learning (FL) aims to establish a shared model across decentralized
clients under the privacy-preserving constraint. Each client learns an independent
model with local data, and only model updates are communicated. However, as
the FL model typically employs computation-intensive neural networks, major
issues in Federated Learning are (i) significant computation overhead for local
training; (ii) the massive communication overhead that arises from sending around
the model updates; (iii) notable performance degradation resulting from the non-
IID scenario.
In this work, we propose HyperFeel, an efficient learning framework for feder-
ated learning based on Hyper-Dimensional Computing (HDC), that can signifi-
cantly improve communication/storage efficiency over existing works with nearly
no performance degradation. Unlike current solutions that employ neural net-
works as the learned model, HyperFeel introduces a simple yet effective comput-
ing paradigm that encodes and represents data using hyperdimensional vectors.
Then, it performs concise and highly parallel operations for encryption, compu-
tation, and communication, taking advantage of the lightweight feature represen-
tation of hyperdimensional vectors. For further enhance HyperFeel performance,
we propose a two-fold optimization scheme combining the characteristics of en-
coding and updating in hyper-dimensional computing. On the one hand, we design
the personalization update based on hyperdimensional computing with a client-
specific model, which achieves better accuracy to the non-IID data. On the other
hand, we extend the framework from horizontal FL to vertical FL based on a
shared encoding mechanism. Comprehensive experimental results demonstrate
our method consistently outperforms the state-of-the-art FL models. Typically,
we achieves 26× storage reduction and up to 81× communication reduction over
FeAVG, with minimal accuracy drops on FEMNIST and Synthetic. Code will be
open-source in the camera-ready version.

1 INTRODUCTION

With the advent of the Internet of Things (IoT), the amount of at-the-edge intelligent devices has
grown dramatically over the past years, generating massive volumes of data daily Bonawitz et al.
(2019).Meanwhile, deep learning models on these devices for personalized, low-latency AI appli-
cations. Therefore, there is significant potential to leverage the data provided by edge devices to
learn deep learning models locally, as edge devices equipped with increased computing power are
becoming smarter, together with attention to data privacy Hitaj et al. (2017). This has draw growing
research interests in Federated Learning (FL), which allows multiple participants to jointly train a
deep learning model on their integrated data without requiring any participant to disclose their local
data to a centralized server Wang et al. (2020).

The key insight behind FL protocols is the central model in the server trained using data stored
locally on the clients Li et al. (2020). In each round of the training procedure, models stored in
clients are trained with local data and then collaboratively trained by uploading model parameters or
model gradients to the server, and finally the server sends the central model to clients. These steps
are repeated until the convergence criterion is satisfied Sattler et al. (2019).
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Although FL serves as an effective method for privacy-preserving learning, model train brings sig-
nificant overhead. The overhead lies in two aspects: (i) massive communication overhead that arises
from sending around the model updates McMahan et al. (2017); Sattler et al. (2019); (ii) massive
computation overhead due to performing neural network training Wang et al. (2020). However,
modern network model may require up to GBs (Giga Bytes) for model size and 102 GFLOPs (Giga
Floating Point Operations) for a single forward propagation Brown et al. (2020). Over the hun-
dreds or thousands of training iterations on large datasets, for each client, the total communication
can easily grow to more than one TeraByte and the total computation up to TeraFLOPS Li et al.
(2020). Besides, the local data for each client can be non-IID (non-independent and identical dis-
tribution) Sattler et al. (2019); Li et al. (2019b), which will degrade the model performance on a
specific device download from the centralized server after training. These make FL far from practi-
cal for real-world deployment.

To address the aforementioned challenges, we explore an energy-efficient FL regime. We optimize
the FL by redesigning the update process based on a new computing paradigm, Hyper-Dimensional
Computing (HDC) Zou et al. (2022). HDC is a promising alternative of conventional machine
learning models. The key idea of HDC is to represent data using high-dimensional vectors (called
hypervectors), which allows energy-efficient vector operations based on its massively parallel com-
putation flow Imani et al. (2021). The HDC provides several features that make it well-suited to FL:
(i) it transforms complex computation of feature learning processes to similarity matching, (ii) HDC
can naturally enable secure and light-weight learning, and (iii) it provides strong robustness to noise
– a key strength for IoT scenarios. These features make HDC a promising solution for today’s edge
devices with limited resources.

In this paper, we propose HyperFeel, a Hyper-Dimensional federated learning framework. Instead
of working with raw data, HyperFeel maps the raw data into high-dimensional space and performs
vector operations with simple and parallel similarity matches. The main contributions of the paper
are summarized as follows:

• To the best of our knowledge, HyperFeel is the first end-to-end learning framework for
both horizontal and vertical federated learning based on HyperDimensional computing.
HyperFeel revisits the feature learning with brain-like memorization that HDC natively
supports. HyperFeel creates a reference library that stores category vectors for each client
and the centralized server by memorizing the patterns in high-dimension, enabling the main
vector operations to process in a hardware-friendly way.

• We design the online update mechanism with single sample training implemented in lo-
cal clients, empowering HyperFeel with stronger adaptability. This includes supporting
similarity matching as well as local aggregation followed by uploading to the server.

• We propose an optimization scheme for scalability issues in the FL due to the non-IID
data. HyperFeel allows clients to selectively update the hypervectors stored locally when
downloading models with low communication overhead, allowing them to maintain their
personalized reference library.

• We evaluate HyperFeel efficiency on a wide range of dataset. On average, our solution
provides 26× and 81× storage efficiency improvement and communication reduction com-
pared to the state-of-the-art FL algorithms with almost no accuracy loss.

2 PRELIMINARIES AND MOTIVATION

2.1 FEDERATED LEARNING

FL deals with learning a central model (i.e. the server) in privacy-constrained scenarios, where
data are stored on multiple devices (i.e. the clients) Li et al. (2020). A major problem in feder-
ated learning is the enormous communication overhead incurred by sending model updates. In the
field of communication efficient distributed deep learning, various methods have been proposed to
reduce the amount of communication during training, including: decreasing the frequency of com-
munication McMahan et al. (2017); Strom (2015), reducing the amount of communication (i.e.,
sparsification on transmitted data) Konečnỳ et al. (2016); Aji & Heafield (2017), quantization of
communication data (i.e., restricting updates to a reduced set of values) Bernstein et al. (2018).
However, these methods in federated learning are inefficient because the communication from the
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server to the client is not considered. FedAvg McMahan et al. (2017) is a simple but effective base-
line for FL that takes into account both the upstream and downstream communication, but it is a
neural network-based approach that leads to communication and computation overhead remaining
high level.

2.2 HYPER-DIMENSIONAL COMPUTING (HDC)

HDC maps all data points into high-dimensional space to mimic the behaviors of the brain computed
with patterns of neural activity, allowing energy-efficient computation based on its massively parallel
computation flow Rahimi et al. (2016); Zou et al. (2022). HDC is well suited to tackle learning tasks
for edge devices with limited resources and computing power Imani et al. (2021); Liu et al. (2022).
The key insight of HDC is to represent the information with a hypervector, which is the fundamental
“block” of HDC, and the similarity between information that contained in two hypervectors. The
dimensionality should be large enough (usually higher than 10,000 dimensions) to ensure two high
dimensional vectors that are initialized randomly from the polarization values (i.e., {-1, 1} or {0,1})
are approximately orthogonal Ma & Jiao (2022). An hypervector with D dimensions can be denoted
as H = {h1, h2, · · · , hD}. The encoding keeps the main information of raw data as a pattern of
values in high-dimensional space. Further, HDC encodes the data to extract features using well-
defined efficient basic operations: (i) Bundling + is an addition operation of multiple hypervectors
into a single hypervector, (ii) Binding × performs element-wise multiplication of two hypervectors
with the same dimension, and (iii) Permutation ρ performs rotational shift over a single hypervector.

2.3 MOTIVATION

In federated learning, the distribution of training data and computational resources is a fundamental
and fixed property of the learning environment. This imposes the following challenges.

Non-IID data: In real-world FL tasks, data distributions of different clients may vary since the
data are usually collected from different sources or scenarios. Existing FL approaches often simply
ignore the distribution discrepancy, leading to notable performance drops under the the non-IID
scenarios Caldarola et al. (2021).

Massive Communication: Communication is a key bottleneck for FL because the data generated
on each device must remain local to ensure data privacy, the client inevitably communicates with
the centralized server at each model update in the training process. Indeed, federated networks po-
tentially comprise a massive number of devices, leading to direct communication for weight updates
becoming infeasible since the communication cost is growing linearly along with the number of
clients and training rounds.

Limited Resource: The resource-constrained edge devices are typically not directly charged, mak-
ing their computing power constrained by the battery with finite capacity. For neural networks, it
is significantly expensive to perform iterations of backward-propagated gradients. Besides, edge
devices also typically have only very limited memory. As neural networks are becoming deeper and
wider to achieve better performance, it is challenging to deploy them on edge devices.

Therefore, we need alternative learning methods for federated learning that can train on the less-
powerful IoT devices, to eliminate the mismatch of hardware constraints and the neural network
models, so that the high-cost communication and computation can be alleviated without causing
severe accuracy drops.

3 APPROACH

3.1 OVERALL FRAMEWORK

Figure 1 shows an overview of HyperFeel federated learning in the highdimensional space. In HDC,
all training and inference computations are performed on the encoded data in the high-dimensional
space. The first step of HyperFeel is to map the raw data (i.e., image) into a high-dimensional space.
During encoding, the input samples are “encoded” into their representative hypervectors using a
set of basic operations and the item memories. HyperFeel aggregates all encoded hypervectors
representing features to generate a reference class locally stored in clients, called the HDC library
(i.e., Associate Memory, AM). The HDC library consists of k hypervectors (where k is the number
of classes), where each hypervector with D dimensions stores thousands of features belonging to
the same class. Considering the online training, we adopt a strategy of batch uploading updates to
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Figure 1: Overall Flow of HyperFeel Framework. First, we map the raw data into a high-dimensional space 1⃝.
Then, HyperFeel combines all encoded features to generate the sample hypervector 2⃝. Next, HyperFeel checks
the similarity of the encoded sample with all reference hypervectors stored in the memory 3⃝. For each mis-
predicted sample, clients transfer modifications on the incorrectly predicted class vector to the server 4⃝. After
collecting 5⃝ the modification on the class vectors, the server updates the central model 6⃝ and sends it back to
each client for the local update 7⃝.

construct the central model on the centralized server and download it by clients as the initial local
model at the end of training. After that, each client will conduct several rounds of retraining based
on the local data. During this period, we design an adaptive schedule for the learning rate based
on the local sample distribution and adjust the local model with the aid of the globally aggregated
update hypervector to achieve fast convergence.

3.2 HYPERFEEL ENCODING

Instead of representing the features using their value, HDC represents them using a set of hyper-
vectors. Encoding is the basic phase of HDC model. During encoding, the input samples are trans-
formed into the representation in the highdimensional space through the Item Memory (IM) or Con-
tinuous Item Memory (CIM). Then, the information is encoded into a hypervector with higher-order
meaning using the basis operations of hyperdimensional computing.
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Figure 2: Encoding the tabular data (a) and image (b) into high-dimensional space in HyperFeel.

(i) Tabular Data Encoding: As shown in Figure 2(a), in the tabular data (bank data or synthetic
dataset) encoding, each attribute and its value are mapped by IM and CIM to obtain the correspond-
ing hypervector, respectively. Then, both of them are integrated together using the binding operation.
Next, all attribute key-value pairs of a sample are incorporated into a sample hypervector Q⃗ using
the bundling operation.

(ii) Image Encoding: As shown in Figure 2(b), in the image encoding, we feed the pixel coordinates
< x, y > and pixel value p into CIM for mapping the values into the hyperdimensional space to
obtain the hypervectors HV x, HV y , HV p, respectively, and then combine the three into a repre-
sentation vector of pixel points by the binding operation. Next, we utilize the bundling operation
to accumulate the representation vectors of all pixels in the image to form the hypervector of the
sample.

Suppose the input sample has M pixels F⃗ = {< f1
x , f
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yHV i
p (1)
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where, Q⃗ is the (non-binary) aggregation and HV i
x,y,p is the (binary) hypervector corresponding to

i-th pixel information < x, y, p > of the sample, obtained from the CIM by using the information
of the i-th pixel as indices (i.e., HV i

x,y,p = CIM(f i
x,y,p)).

3.3 HYPERFEEL SIMILARITY MATCHING

As a lightweight classifier, the operations in the HDC need to be hardware friendly, where the
similarity matching can be performed efficiently under limited resources. The similarity matching
operation depends on the distance metric, which depends on the data representation of the elements
in the hypervector. For hypervectors with a binary representation, HyperFeel only needs to employ
the Hamming distance as the similarity metric, which is a fast and efficient way to return matching
results. Still, the binary representation allows only a limited amount of information to be stored
for each element in the hypervector, resulting in compromised model accuracy. On the other hand,
HyperFeel uses a higher precision (e.g., 32-bit values) representation of the hypervectors, which
significantly increases the information representation capability of the hypervectors and allows more
information to be stored in each hypervector. However, HyperFeel needs to adopt the cosine distance
as a similarity metric within such a high-precision representation.

cosine similarity =
a · b

∥a∥∥b∥
(2)

We perform matching of the sample hypervector Q⃗ with all the class hypervectors in AM C =
{C1, C2, · · · , Ck}T and return the class with the highest similarity. Therefore, we only need to
determine the relative magnitude of the vector Q and the class vectors Ci in AM. From Eq.(3), the
sample hypervector norm ∥Q⃗∥ is the same for all the class hypervectors in AM during the similarity
matching. Coupled with the fact that the class hypervectors in the model can be determined after
training, we can simplify the cosine similarity to the inner product of the sample hypervectors and
the class hypervectors.

C ′ = [C1/∥C1∥, C2/∥C2∥, · · · , Cj/∥Ck∥]T

Q⃗′ = Q⃗/∥Q⃗∥

cosine similarity vector = C ′ ∗ Q⃗′ = [
QTC1

∥Q⃗∥∥C1∥
,

QTC2

∥Q⃗∥∥C2∥
, · · · , QTCk

∥Q⃗∥∥Ck∥
]T

(3)

3.4 OFFLINE AND ONLINE TRAINING

In HDC, training is performed by element-wise addition of all encoded hypervectors samples in each
existing class. HyperFeel maintains k local class hypervectors (initially all-0 vectors) in each client,
where k is the number of classes. Once a new sample data is generated locally by the client, online
training is activated. The sample is encoded and bundled to the corresponding class hypervector.
Once the amount of newly collected samples reaches a pre-defined threshold, the class vectors will
be uploaded to the centralized server, and the locally stored vectors will be restored. There is a
central AM stored on the centralized server for accumulating the class hypervectors from all clients,
which is downloaded to each client as the initial local model after the online training.

To further optimize the model performance, HyperFeel introduces a retrain strategy applicable to
federated learning, where several rounds of federated retraining are performed based on the initial
local model. In one-round federated retraining, the samples from the client are first encoded one
by one. Then, we exploit the encoded vectors to match the similarity with the class hypervectors
in the local AM, and the prediction class is obtained. Next, we check whether the prediction class
is correct. If no, we update the local model and accumulate the modified vectors according to the
classes with additional storage.

Cix = Cix + lr ·Q
Ciy = Ciy − lr ·Q
δix = δix + lr ·Q
δiy = δiy − lr ·Q

(4)

where, Cix is the vector of the true class, Ciy is the vector of the predicted class, δix is the modified
vector of the true class, δiy is the modified vector of the predicted class, lr is the learning rate and
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Algorithm 1: Retraining Strategy for the HyperFeel
Data: number of retrain rounds R, number of clients N , number of classes K
Result: models C1, . . . , CN

1 for r ← 1 to R do
2 for i← 1 to N in parallel do
3 Clienti does:
4 ∆←downloadServer→Clienti(∆);
5 for j ← 1 to K do
6 Cij ←Personalization Update(Cij , ∆j);
7 end
8 for sample, labelreal ∈ local data do
9 Q← encode(sample);

10 labelpredict ← AssociativeSearch(Q,Ci);
11 if labelpredict ̸= labelreal then
12 Ci ←Accumulation(Ci, Q, labelreal, labelpredict);
13 δi ←Accumulation(δi, Q, labelreal, labelpredict);
14 end
15 end
16 uploadClienti→Server(δi);
17 end
18 Server does:
19 gatherClienti→Server(δi), i = 1, 2, . . . , N ;
20 for j ← 1 to K do
21 ∆j ←

∑N
i=1 δij ;

22 end
23 broadcastServer→Clienti(∆), i = 1, 2, . . . , N ;
24 end

the sample vector is Q⃗. After one-round retraining, the client uploads the locally modified vectors to
the server for aggregation to obtain the global modified vector {∆1,∆2, . . . ,∆K} and then clients
download it for adjusting the local model again. We introduce a personalization strategy based on
local data distribution during the adjusting process.

∆j =

N∑
i=1

δijCij = Cij +
errorij
cntij

lr ·∆j (5)

where, cntij and errorij are the total number of samples of class j on the client i and the number
of samples with errors in one-round retraining, respectively. The retraining strategy is formalized in
Algorithm 1.

3.5 EXTENSION TO VERTICAL FEDERATED LEARNING

In the horizontal federated learning, we upload the modifications to the hypervectors of mispredicted
data. Since the HDC model performs encoding by projecting and encoding the raw data to hyper-
vectors, this unique computing paradigm of HDC ensures the encryption of the client and server
transmission and achieves the purpose of privacy-preserving.

In the vertical federated learning, based on the assumption that “the server is honest and does not
collude with clients, but all the clients are honest but curious to each other.” Yang et al. (2019), the
participating clients build local IMs to store the attribute hypervectors separately, and all the clients
share a CIM to store the hypervectors of attribute values. Here, the participating clients adopt
the identical PSI (Privacy Set Intersection) approach as Cristofaro et al. (2010) for data alignment,
and then the clients encode the raw data and upload them consistently. The client with the tag
transfer tag in public-private key encrypted way with the server, and then the server accumulates the
encoded data as well as the class vector updates. During inference, the encoded data of each client
is uploaded. Then the server accumulates them to get the target hypervectors and feeds them into
the AM located at the server to match and return the inference result to clients.

6



Under review as a conference paper at ICLR 2023

3.6 OVERHEAD ANALYSIS

We make detailed discussion on the overhead. Table 1 reports the storage cost and single-round
communication cost for the baseline models FedAVG and HyperFeel. N , M and C represent the
number of clients, the amount of model parameters, and the fraction of clients that perform compu-
tation on each round. In proposed HyperFeel, the storage and communication costs per client are
determined by the HDC memories, i.e., the dimension D of HV and the number of classes K. Hy-
perFeel has a significant theoretical advantage over the NN-based FedAVG, both in terms of storage
and communication costs.
Table 1: The comparison of storage and communication cost between FedAVG and HyperFeel theoretically.

Method Storage Cost Comm. Cost(per round)
FedAvg N×M C×N×M

HyperFeel D×N×K D×N×K

4 RESULTS

Table 2: The comparison of validation accuracy, storage and communication cost between HyperFeel and
benchmarks in the horizontal federated learning.

Method Storage Cost Communication Cost Accuracy
FEMNIST DataSet

FedAvg McMahan et al. (2017) 6.35MB 5.58GB 74.72%
Additional pipeline Caldas et al. (2018) - - 80.24%

FL-HDC Hsieh et al. (2021) 2.37MB 2.08GB 48.99%
HyperFeel (ours) 249.63KB 70.95MB 68.54%

Synthetic DataSet

FedAvg McMahan et al. (2017) 1.19KB 1.17MB 71.89%
Additional pipeline Caldas et al. (2018) - - 87.34%

FL-HDC Hsieh et al. (2021) 195.31KB 183.11MB 79.69%
HyperFeel (ours) 27.47KB 6.10MB 90.13%

4.1 EXPERIMENT SETUP

We use the datasets FEMNIST LeCun (1998); Afshar et al. (2017) and Syhthetic Li et al. (2019a),
which are specifically designed for the horizontal federated learning, and the credit card customer
default probability prediction dataset Yeh & Lien (2009), which is applicable to the vertical feder-
ated learning. For the non-IID setting under the federated learning, whose data of each category
are unevenly distributed among clients, we adopt the identical data partition strategy as McMa-
han et al. (2017). We utilize the federated learning benchmark framework LEAF Caldas et al.
(2018) to process and partition the FEMNIST and Synthetic datasets, while for the credit card
customer default probability prediction dataset, we employ the full set of them for evaluating our
extended vertical federated learning model. We evaluate our method using several representative
benchmark, including FedAvg McMahan et al. (2017), FedAvg with additional pipeline Caldas
et al. (2018), FL-HDC Hsieh et al. (2021), used in horizontal federated learning, and K-Nearest
Neighbor (KNN) Math et al. (2021), Logistic Regression (LR) Yeh & Lien (2009), Parsimonious
Bayesian Odiathevar et al. (2022), and Neural Network (NN) Romanini et al. (2021) used in vertical
federated learning. For the hyperparameter setting, we set D = 1000 in HyperFeel, where the per-
formance of HyperFeel saturates. To fairly compare with the beaseline methods, we set the number
of clients k = 30. In this work, all experiments are performed on a 2.10GHz Intel(R) Xeon(R) Silver
4208 CPU with 128GB DRAM. under the framework of Pytorch Geometric Paszke et al. (2019).

4.2 PERFORMANCE RESULTS

We first compare the accuracy of our proposed method with the baseline methods. Table 2 sum-
marizes the results of the present method and previous methods on the FEMNIST dataset and the
Synthetic dataset in horizontal federated learning. Compared with FedAvg, a widely used neu-
ral network-based federal learning method, HyperFeel achieves a close performance on relatively
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complex image classification tasks, and a higher accuracy on the Syhthetic dataset. Moreover, our
HyperFeel is extremely competitive in terms of model storage, computation and communication
overhead. For example, regarding the Synthetic dataset, our HyperFeel algorithm shows better ac-
curacy (90.13%) compared to traditional FL methods FedAvg (71.89%) and Additional pipeline
(87.34%) and 10.4% accuracy improvement over the naive combined FL and HDC. Taking FEM-
NIST dataset as an example, compared to FedAvg, HyperFeel achieves nearly 26× storage reduction
and 80.5× communication reduction, because HyperFeel employs lightweight HDCs as backbone
instead of traditional neural networks. During the training, the transmission between the client and
the server is only a modification of the vector, not the complete one.

Table 3: The comparison of validation accuracy, storage and communication cost between HyperFeel and
benchmarks in the vertical federated learning.

Method Accuracy Storage Communication
KNN 84% 182,169KB 182,169KB
LR 82% - -

Bayesian 79% 813KB 813KB
Neural Network 83% 2,412KB 2,412KB
HyperFeel (ours) 82% 430.91KB 39.06KB

Table 3 shows our approach shows significantly increased efficiency with almost no accuracy loss,
achieving average 113× improvement in the storage cost and more than 1257× improvement in the
communication cost for the vertical federated learning.
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Figure 3: The accuracy evolution curve versus the number of rounds under HyperFeel on synthetic data. We
run 5 experiments and the region in shadow indicate the error-band. The original HDC represents training the
model directly on the client without online learning.

We first evaluate the impact of the proposed online update mechanism on HyperFeel. As Figure 3
shows, HyperFeel converges faster compared to the one without online training. Note that we use
the same number of training rounds. One is offline training locally on the client and one is online
training under the federated learning scenario. From the plot, we can find that HyperFeel fits well
with the federated learning online scenario and can reach convergence faster, thus further reducing
the communication and computational overhead. This corroborates that the present method is a
successful migration of HDC in the field of federated learning.

We further investigate the performance of HyperFeel under the non-IID data scenario. We collect
the inference accuracies for all clients and report them again in Figure 4. FL-HDC directly binarizes
the transmitted vectors to reduce the communication overhead in federated learning, and this direct
approach leads to a decrease in accuracy. On the other hand, HyperFeel achieves a better result over
the FL-HDC even without introducing the personalization strategy. This is because our scheme is
designed from the beginning with the communication overhead in mind, so only information about
the modification of the vector is transmitted instead of the complete vector during the transmission.
In addition, HyperFeel, combined with the personalization update strategy, further improves the ac-
curacy across clients. This is because the personalization update strategy makes each client maintain
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Figure 4: Comparison of FL-HDC and HyperFeel with (w) or without (w/o) personalization update strategy.

the local HDC memories, which can be regarded as a mapping relationship between the raw data
and the hypervector, so that each client can encode the data adaptively.
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Figure 5: Communication costs and accuracy of proposed HyperFeel with the various number of clients.

Since the number of clients affects the accuracy and the communication cost of the federated learn-
ing method, we want to determine the appropriate number of clients by balancing the relationship
between the model accuracy (higher is better) and the communication cost (lower is better). Fig-
ure 5 shows the impact of the number of clients for the FeMNIST dataset. We sweep it from 5 to
30. Generally, a higher number of clients means more sources to collect data and allows for more
information stored in HDC memories, but it will increase the communication cost. From this plot,
however, we can also find that it is not consistent in federated learning, because as the number of
clients grows, the collected data varies increasingly, introducing noise for the global model and thus
slightly degrading the inference accuracy of clients. In summary, the inference accuracy of Hyper-
Feel is barely affected by varying the number of clients, while the total communication overhead
increases as the number of clients rise. Moreover, the average communication overhead of a single
client is only about 8MB, and the storage overhead accounts for only about 240KB, demonstrating
that our solution shows great resource-saving advantages in terms of storage and communication.

5 CONCLUSION

This work proposes an energy-efficient learning framework for federated learning, namely Hyper-
Feel. Thanks to the lightweight representation and efficient computing paradigm of HDC, this
method can effectively decrease the storage and communication overhead of the model. Meanwhile,
we propose online training and model adaptation strategies, allowing our method to not only fur-
ther optimize the training accuracy, but also to extend from horizontal federated learning to support
vertical federated learning. HyperFeel achieves more than 80× improvement in communication ef-
ficiency while maintaining competitive performance, as validated in the comprehensive experiments
across various benchmarks.
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