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ABSTRACT

Cross-modal knowledge transfer between time-series sensors remains a critical
challenge for robust Human Activity Recognition (HAR) systems. Effective cross-
modal transfer exploits knowledge from one modality to train models for a com-
pletely unlabeled target modality—a problem setting we refer to as Unsupervised
Modality Adaptation (UMA). Existing methods typically compress continuous-
time data samples into single latent vectors during alignment, limiting their ability
to transfer temporal information through real-world temporal distortions. To
address this, we introduce Cross-modal Transfer Through Time (C3T), which
preserves fine-grained temporal information during alignment to handle dynamic
sensor data better. C3T achieves this by aligning a set of temporal latent vectors
across sensing modalities. Our extensive experiments on various camera+IMU
datasets demonstrate that C3T outperforms existing methods in UMA by over 8%
in accuracy and shows superior robustness to temporal distortions such as time-
shift, misalignment, and dilation. Our findings suggest that C3T has significant
potential for developing generalizable models for time-series sensor data, opening
new avenues for various multimodal applications.

1 INTRODUCTION

Unsupervised human activity recognition (HAR) across different sensing modalities remains a
significant challenge in machine learning. A limitation of existing cross-modal feature alignment
methods is that they encode an entire time-series sequence into a single latent vector, hindering the
transfer of temporal information (Moon et al.,[2022; |Girdhar et al., 2023 |Gong et al.,[2023). This
compression is especially problematic when training and testing on real-world continuous sensor data,
such as wearable inertial data, where the same action may occur with significant temporal variations
(different speeds, starting points, or durations). We introduce Cross-modal Transfer Through Time
(C3T), a novel approach that preserves local temporal information during cross-modal alignment,
enabling more effective knowledge transfer (Figure[I). Our experiments show C3T outperforms
conventional contrastive alignment approaches and demonstrates robustness to common temporal
distortions in cross-modal transfer from RGB videos to inertial sensors.

Inertial Measurement Units (IMUs), which typically provide 3-axis acceleration and 3-axis gyroscopic
information on a wearable device, emerge as strong candidates for understanding human motion in a
nonintrusive fashion. Smartwatches, phones, earbuds, and other wearables have enabled the seamless
integration of IMUs into daily life (Mollyn et al., 2023). Unfortunately, IMUs remain underutilized in
current machine-learning approaches due to several challenges, including: (1) the scarcity of labeled
IMU data stemming from the difficulty in interpreting raw sensor readings, and (2) the challenge of
defining precise activity boundaries given the continuous time-series nature of IMU data.

Beyond IMUs, various sensing modalities are gaining popularity in wearables (e.g., surface electrocar-
diogram, electromyography) and ambient monitoring systems (e.g., WiFi signals, Radar). Researchers
have developed numerous Al methods for HAR using these modalities; however, these methods lack
the generalization capability seen in visual and textual models, which benefit from Internet-scale data.
As new sensing modalities emerge, a critical challenge is how to effectively transfer knowledge from
data-rich modalities to new sensor modalities without requiring extensive labeling effort.

A promising solution is cross-modal transfer, where knowledge from a well-labeled source modality
is transferred to an unlabeled target modality (Niu et al., 2020). However, current cross-modality and



Under review as a conference paper at ICLR 2026

Traditional Alignment Methods Cross Modal Transfer Through Time (C3T)
Lifthand _ ReachOut _ Grasp Cuj Lift Arm Pull to mouth _ Takeasip __Put down cup Lifthand ~ ReachOut  GraspCup LiftArm Pullttomouth  Takeasip  Putdowncup
i ot o0 N
F me <
) C3T ! |
Video Encoder Video ‘ B e e !
; I
(Single latent vector output) Encoder! N | I I !
H I ] '
RS I N :
Reachout  Grasp Liftto Takea Put Cup
Output feature maps of tocup Cup mouth Sip Down
Activity: Drinkin; . temporal convolutions
ty 2 M Latign represent leamed latent
micro-actions. Perform
€ alignment across these $ K4 s s s LC3T_Align
sub-actions. D D D

Sensor Encoder
(Single latent vector output)

C3T Sensor Encoder

Robustness to Corrupted Data ( 2{) During Inference:

fthand _ ReachOut _ GraspCup _LiftArm  Pullttomouth Takeasip _ Putdown cup Lifthand ~ ReachOut  GraspCup  LiftArm  Pulltomouth Takeasip  Putdowncup
e

OOOOO ORI

o i s

Sensor, =
Enioife,: e B bt

Reachout Grasp  Liftto  Takea PutCup

Sensor Encoder
(Single latent vector output)

\
]
'
1
]
'
1
]
|

tocup  Cup  mouth sip Down
EYN
H Prediction H
B Jy 3 3 3 3
Activity Recognition Head Activity Recognition Head
[ [
Activity: Running © Activity: Drinking [2

Figure 1: Motivation for C3T: Conventional alignment methods collapse an entire video sequence
into a single vector. C3T performs alignment across local fine-grained temporal features, improving
cross-modal transfer performance (TableE[) and robustness (Table E[)

missing-modality techniques are semi-supervised with some labeled examples from each modality
during training (An et al.l 2021} [Woo et al, 2023} [Garcia et al., 2018 [Wang et al,[2020; Nugroho|
letal 2023} [Yang et al.,[2022). This creates a significant barrier to adopting new sensing technologies,
as each application would require costly re-labeling efforts, and inhibits real-time unsupervised
transfer as described in Figure[2} To address these practical challenges, we explore a setting where the
target modality is completely unlabeled during training. We refer to this as Unsupervised Modality
Adaptation (UMA), akin to Unsupervised Domain Adaptation where the domain is a new modality

(Chang et all,[2020; [Kamboj & Do}, [2024).

Currently, two approaches can address UMA:

1. Student-Teacher (ST) methods: These leverage a teacher modality to distill knowledge to the
student modality, a technique commonly used for semi-supervised learning (Thoker & Gall, 2019}
[Xue et al} 2022} [Kong et al, 2019 [Wang et all 2020} Bruce et al. [202T).

2. Contrastive Alignment (CA): This approach aligns latent representations of data samples across
modalities and employs a shared task head for cross-modal transfer (Moon et all, 2022} [Girdhar]

et al, 2023} [Gong et al, 2023).

Further motivation for the term UMA, and a review of existing ST and CA methods for RGB to IMU
transfer is provided in the Related Works (Section[6.1)).

Although these methods work well for image and text modalities, when applied to sensor signals, they
compress a full time-series sequence into a single latent representation for alignment. This approach
does not account for the continuous nature of real-world data and the variable time spans over which
actions occur. The proposed method, Cross-modal Transfer Through Time (C3T), (1) extracts a
time-varying latent dimension through the feature maps outputted from temporal convolutions, (2)
performs contrastive alignment across modalities in this temporal latent space, and (3) uses a shared
self-attention head to perform the transfer. C3T aligns local temporal features across modalities at
a fine-grained level, avoiding the loss of complex temporal dependencies during transfer.

Our research evaluates these three UMA methods—ST, CA, and C3T—focusing on knowledge
transfer from RGB videos to IMU signals across four diverse HAR datasets. C3T outperforms
existing methods by at least 8% in top-1 accuracy on all datasets. Additional experiments demonstrate
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C3T’s superior resilience to time-shift, misalignment, and time-dilation noise. This is particularly
valuable for real-world continuous human activity recognition, where the start and the end of an
activity are not well defined, and actions can occur at various speeds.

Furthermore, a qualitative analysis of the multi-modal representation space reveals that contrastive
methods excel by uncovering latent correlations between modalities, enabling cross-modal informa-
tion transfer without labeled data. Additional visualizations of C3T’s attention weights demonstrate
how temporal shifts are captured across the temporal latent vectors, suggesting its performance gain
stems from its robustness to temporal dynamics.

The promising results of C3T open new avenues for developing highly generalizable models for time-
series sensor data. This has implications across various domains, including healthcare monitoring,
smart homes, industrial IoT, and human-computer interaction, where multi-modal learning from
limited labeled sensor data is crucial (Kamboj & Dol |[2024). Our novel contributions are as follows:

* A formulation of the Unsupervised Modality Adaptation (UMA) setting for Human Activity
Recognition (HAR), with a categorization of existing methods into Student-Teacher (ST) and
Contrastive Alignment (CA) approaches. We introduce Cross-modal Transfer Through Time (C3T),
and a corresponding temporal alignment loss function Lc31 (Section @ to Section |Z|)

* A comprehensive evaluation and comparison of ST, CA, and C3T methods in the UMA setting on
clean data and with temporal noise. These experiments demonstrate C3T’s superior performance
and robustness (Section 3).

* An in-depth examination of cross-modal alignment and C3T’s structure, including visualizations of
the multimodal representation space, a comparison of model sizes, and additional experiments on
training and testing methods. This examination reveals insights into effective cross-modal transfer
and its potential real-world applications for sensor data (Section [3|and Section ).

2 UNSUPERVISED MODALITY ADAPTATION METHODS
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tion, missing modality, robust sensor fu-

sion, multimodal alignment; however, most of these works require some labels from the target
modality in training to update the model, thus do not work in UMA (Garcia et al.l 2018; Wang et al.|
2020; Nugroho et al., 2023; Yang et al., 2022). We use the term UMA to discuss performing test-time
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Figure 3: Unsupervised Modality Adaptation Methods: Training happens in two phases: a) trains
the HAR model on labeled RGB inputs and b) aligns unlabeled IMU and RGB modalities. UMA
testing c) occurs on unlabeled IMU data.

inference when zero labeled instances of the target modality are available during training. One such
scenario is depicted in Figure 2]

In this section, we formulate and compare the 2 existing methods to perform UMA, Student-teacher
and Contrastive Alignment. We then introduce our Cross-modal Transfer Through Time approach.
In the context of human action or activity recognition (HAR), we conduct experiments using RGB
videos as the source domain, 2R and Inertial Measurement Unit (IMU) data as the target 2™V,
As depicted for each method in Figure [3] training for UMA occurs in two phases: a) Supervised
Learning with RGB data on data split Dyar and b) Unsupervised alignment across both modalities
on Dajign. Inference (phase c) occurs on IMU data on Dreg.

Student-Teacher: We adopt a student-teacher (ST) method similar to Thoker & Gall (2019) for
UMA. ST leverages the teacher RGB video model trained in phase a to produce pseudo-labels to
train the student IMU model in phase b of Figure[3] In this case, the latent transfer space is the output
logit space, Z = ), or equivalently the HAR module is the identity h = 1, and the cross-modal
representations are aligned using the standard cross-entropy loss Lcg (Appendix Equation (3)). We
denote the teacher network as (1) : X(1) — ) and the student network as f(?) : X(2) — ). First,
we train the teacher f (1) on Dyar with labeled RGB data. Next, since D lign does not contain labels,

we use f (1)( (1)) = A(l) to generate pseudo-labels for every datapoint 4 in Dajige. Then we use the
augmented dataset DAlign ={(x El) (2), yf”)} to train f(2). The teacher network minimizes

)
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Lce(Pp1 (2, Py) and the student minimizes Lcg(Py2(z), P@g) ), where P represents the distribution
generated by the labels, pseudo-labels or an encoder’s outpﬁt logits.

Contrastive Alignment: We adopt the contrastive alignment (CA) method from past works (Moon
et al.,2022; |(Girdhar et al.| [2023} |Gong et al., [2023) for our UMA setting. In our work, CA performs
phase a similar to ST; however, it trains a model with two parts: An encoder f(1) to extract the latent
variable z, and a task-specific MLP head h. The extracted latent space Z enables scalability and
interoperability for adding different sensing modalities, types of encoders, and output task heads.

In phase b of training, CA performs unsupervised contrastive alignment with the outputs of the RGB

encoder f(1) and the IMU encoder f(?) on unlabeled data. To align different modalities in the feature

space on Dyjien We use a symmetric contrastive loss formulation £, (Radford et al.| 2021 Moon

et al., [2022; |Girdhar et al., [2023} |Gong et al., |2023)) with temperature parameter 7 and batch size 5:
B

1 (k) (k)
fa="p B o Where £ = %
o e ((57,457)/7) £ ()]

exp((2),2%) /)

7

ke {1,2}. )

Equation (I clusters representations in Z by cosine similarity, which brings about the desired
property of the latent space that semantically similar vectors are proximal.

Cross-modal Transfer Through Time: CA and ST do not leverage latent temporal information as
they collapse the entire time sequence into one latent vector. We thus propose a Cross-modal Transfer
Through Time (C3T) model that leverages the temporal information of time-series sensors when

aligning their representations. For a given time series input :vgkt) for sample i in a dataset, timestep

t =1...T of modality k, C3T leverages an encoder f(*) : X;k) — 24, to extract a set of tg, latent
vectors, z;. from the feature map of temporal convolutions. Thus, the number of latent vectors is the
length of the temporal dimension after convolution given by tg, = {%W + IJ where P,
D, K, and S are the padding, dilation, kernel size, and stride, respectively.

Furthermore, during the alignment phase, C3T aligns each of these latent time vectors with the same
time vector from the other modality. The new loss function extends the contrastive loss formulation to
compare every time step ¢ for the same data sample to all the other data samples and their time steps
in the batch. Thus for a batch of size B with the data for every time step ¢, element ¢ and modality k

being indicated by xgi), L3t can be calculated as follows:

B tm 5(1) 5(2) (k) ( ()

1 exp((%;{, 2 1)/T (h x;

Losr = 5 E E log — I:f« ot ’f(1>)/ A)(Q) , Where zf’;) = %, ke{1,2} (2
i=1 t=1 Zj:l > exp (<zzt 251 )/7) I1f¢ >($i,t il

C3T enables the use of a self-attention HAR module to extract global temporal features after the
alignment of local temporal features across modalities, as shown in Figure [3] C3T’s HAR self-
attention head, h, utilizes a class token similar to ViT (Dosovitskiy et al.,[2020), with temporal feature
map vectors serving as input in place of image patches.

3 CROSS-MODAL TRANSFER EXPERIMENTS

Implementation: Our experiments utilize three key neural network modules:

1. Video Feature Encoder f): We employ a pretrained ResNet18 on every frame of the video
followed by 3D convolutions and a 2-layer multi-layer perceptron (MLP) with ReL.U activations.
Resnet is a well-established lightweight spatial feature extractor (Hara et al., [2017)), and 3D
convolutions are effective temporal feature extractors (Tran et al.,[2018} |Carreira & Zisserman,
2017).

2. IMU Feature Encoder f*: A 1D CNN followed by an MLP is used here. CNNs have shown
superior performance in extracting features from time-series data like IMU signals, efficiently
capturing local patterns and temporal dependencies (Valarezo et al., [2017).

3. HAR Task Decoder h: ST does not require h and CA uses an MLP. C3T employs a self-attention
module to better capture long-range dependencies in the latent space, which is particularly
beneficial for complex action sequences (Moutik et al., [ 2023).
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Table 1: UMA vs. Supervised Performance: The supervised baselines train, using labels for both
modalities. The UMA methods train with labeled RGB data and separate unlabeled RGB+IMU data.
The Top-1 and Top-3 accuracies on Dreg are shown. C3T outperforms the other UMA methods and
nears the performance of the supervised setting, in four diverse datasets capturing various scenes,
occlusions, IMU placements, and camera views. 1 (Thoker & Gall,[2019) x (Gong et al., [2023])

UTD-MHAD  CZU-MHAD MMACT MMEA-CL Overall
Model Top-1 Top-3 Top-1 Top-3 Top-1 Top-3 Top-1 Top-3 Average
MU 879 977 951 982 700 90.0 658 87.6 86.7
Supervised RGB 53.8  73.1 94.0 997 421 61.6 542 711 68.9
Fusion 62.5 822 950 985 767 920 801 92.7 85.2
Random 3.7 11.1 4.6 16.6 29 8.6 3.1 9.4 7.5
UMA ST 129 246 411 61.9 176 34.7 9.9 22.7 27.9
CA * 426 674 70.0 927 245 476 293 51.7 52.0
C3T (Ours) | 625 864 842 967 324 579 512 788 65.0

These simple models with comparable module sizes across methods isolate the impact of C3T’s novel
technique, demonstrating its efficacy independent of complex architectures or larger datasets. This
approach facilitates potential future scaling and expansion of the method.

Datasets and Hyperparameters: We present results on four diverse datasets: (1) UTD-MHAD (Chen
et al.,[2015)), a small yet structured dataset; (2) CZU-MHAD (Chao et al.| 2022), a slightly larger
dataset captured in a controlled environment; (3) MMACT (Kong et al., 2019), a very large dataset
with various challenges including different view-angles, scenes, and occlusions; and (4) MMEA-
CL (Xu et al., 2023), an egocentric camera dataset. For each dataset, we create an approximately
40-40-10-10 percent data split for the Dajign, Duar»> Dval, and Dreg sets respectively, as shown in
Appendix Table[0] Dy, was used to perform a minor hyperparameter search on the UTD-MHAD
dataset. The methods performed best with a learning rate of 1.5 x 10~%, a batch size of 16, and a latent
representation dimension of 2048 with an Adam optimizer. The preprocessing steps downsample
the video to ¢ = 30 frames, and C3T extracts ¢s, = 15 latent vectors per sample. Experiments were
implemented in Pytorch and run on a 16GB NVIDIA Quadro RTX 5000, four 48GB A40s, or four
48GB A100s. More detailed information about each dataset and implementation can be found in
Appendix Section|[6.8]

UMA vs Supervised Settings: Our results in Table [T] show Top-1 and Top-3 test accuracies on
4 different datasets. Along with the UMA setting, we show the results of our architecture under
complete supervision: the IMU row trains f(1) : XMY) _ y RGB trains f(2) : XRGB) 5y and
Fusion averages the outputs of f(!) and f(?) and trains a linear head h. The Random row shows the
probability of guessing the correct class, assuming a uniform distribution. We run each experiment
thrice with different random seeds, reporting the average accuracies to ensure rigorous empirical
results. Appendix Figure |12| shows all the runs, the computed averages, and their corresponding
standard deviations.

The experimental results in the UMA setting consistently rank C3T as the most accurate, followed by
CA, and then ST. Despite its lower ranking, ST shows a 3-10x improvement over random prediction,
indicating some efficacy in UMA. We attribute ST’s limited performance to its reliance on the
teacher model’s accuracy and its inability to leverage multimodal correlations in a latent space.
Figure 6] supports this conclusion by illustrating how contrastive alignment encourages multimodal
representations to cluster by class prior to label introduction. We hypothesize that C3T outperforms
CA by aligning modalities across a larger temporal representation space, enabling it to capture more
detailed temporal information. Finally, another notable result from Table[I]is that on UTD-MHAD
Top-1 and MMEA-CL Top-3 accuracies, C3T surpasses the supervised RGB model. This may imply
that cross-modal temporal alignment may uncover an inherent correlation between the modalities
more informative than the label information.

Accuracy vs Latent Size: Figure d|illustrates the UMA performance across different latent vector
sizes. Since ST does not utilize a latent vector, we adjust the hidden size of its final MLP, observing
relatively consistent performance. Furthermore, CA’s performance declines significantly with smaller
latent vectors, whereas C3T maintains superior performance even at reduced model sizes. Notably,
C3T’s size scales efficiently as the self-attention head size decreases significantly with reduced input
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Figure 4: Accuracy vs Latent Size: Accuracy Figure 5: Attention heatmap for C3T’s HAR
decreases with latent vector size. C3T maintains module: Input shifts shift the attention weights
superior performance in scaling to smaller models. Of the temporal latent vectors.

Table 2: Noise Experiments: Performance of ST, CA, and C3T under various noise conditions. All
results report UMA accuracy (1) and its percent difference () from the Original (no noise) column.
1 (Thoker & Gall, 2019) * (Gong et al.,2023)

Model Original 1. Crop 2. Misalign 3. Dilate 4. All

ST t 12.9 3.4 (-73.6%)  5.7(-558%)  5.7(-55.8%) 10.2(-20.9%)
CA * 42.6 102 (-76.1%) 2.3 (-94.6%) 21.6 (-49.3%) 18.2 (-57.3%)
C3T 62.5 523 (-16.3%) 46.6 (-25.4%) 56.8 (-9.1%)  58.0 (-7.2%)

token dimensions, underscoring C31’s suitability for resource-constrained environments such as
on-device computing for wearables or smart devices.

UMA in Temporal Noise: We evaluated each method’s robustness to temporal noise during testing,
simulating three real-life scenarios (Table[2):

1. Crop: Randomly shifts and crops both modalities’ time sequences by up to 60%, simulating
continuous real-time action recognition, where an action may not occur in the middle of the time
sequence.

2. Misalign: Applies crop to one modality, mimicking hardware asynchrony or differing frame rates.

3. Dilation: Applies crop to both modalities and then upsamples, imitating slower action movements.

4. All: Applies all the types of noise to each data sample.

C3T demonstrates robust performance under temporal noise, likely due to its attention-based HAR
module leveraging tokens generated by the feature map of a temporal convolution. The self-attention
mechanism compares neighboring tokens from various time sections, effectively capturing actions
regardless of their temporal position within the sequence. Figure Figure 5] visualizes the attention
weights of the latent vectors in C3T’s self-attention head when the input sample is cropped and shifted.
Interestingly, the shifted input results in a corresponding shift in the attention scores, illustrating
its robustness toward this noise pattern. Additionally, due to the design of the self-attention block,
C3T’s HAR head is invariant to variable-length inputs during inference, which provides an advantage
in cropped scenarios, requiring minimal zero-padding compared to the ST and CA methods.

Ablations: To demonstrate that C3T’s performance advantage stems from its temporal alignment
approach rather than its self-attention HAR module, we conducted comprehensive ablation studies
on UTD-MHAD. Our results show two key findings: (1) adding attention mechanisms to ST or CA
frameworks fails to match C3T’s performance, and (2) C3T maintains superior performance over
both methods even without its attention module.

First, we compare UMA performance using convolution and attention-based feature extractors. The
RGB encoder has two feature extraction steps (spatial and temporal) and the IMU has one (temporal).
Table 3] indicates that ST or CA with attention do not perform as well even with larger parameter
sizes. This aligns with previous work showing that convolutions are superior for IMU data (Valarezo
et al.,|2017), and visual attention works less well on small-scale datasets (Dosovitskiy et al., 2020).

We further ablate C3T head architectures (Tabled). We test two attention-based heads and two MLP
heads that condense the Z; . .. Z;  latent vectors into a single output class. The first attention head
uses a class token as shown in Figure[3] and the second concatenates all the output tokens and projects
it to an output. The MLP methods either add or concatenate all the temporal features before passing it
through an MLP. While concatenating latent vectors and using an MLP performed best on clean data
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Table 4: C3T HAR Module Ablations:  datapoints for 5 classes (Bowling, , Draw circle

Comparison of 2 Attention methods and  (clockwise), Jog, Basketball shoot) during training CA

two MLP methods. on the UTD-MHAD dataset. In the end, we plot the

Attention MLP predicted labels and circle areas of confusion, which

Input ‘ Cls Token  Concat. Add  Concat. seem to often occur at the boundaries between clusters.
Clean 62.5 43 568 705
Noisy 52.3 432 500 432

(70.45%), the class token mechanism offered superior robustness to noise and was thus chosen for
C3T. Furthermore, all C3T variants in Table 4 outperform CA and ST in UMA performance
(12.9% and 42.6% respectively from Table [I), emphasizing C3T’s strength lies in temporal
alignment, not its attention mechanism. The key distinction between CA and C3T+Concat-MLP
is where the feature vectors are combined: CA condenses the convolution output map to one feature
vector before alignment, while C3T does so post-alignment for the HAR task. This suggests that
effective cross-modal knowledge transfer at the local feature level is crucial for time-series data, with
global features being more appropriately utilized for post-transfer inference.

4 ADDITIONAL EXPERIMENTS AND DISCUSSION

How do we train the CA and C3T Architectures?

(1) Align First: First aligns the representations generated by the RGB and IMU encoders, f(*) and
f® on Dlign (phase b depicted in Figure . Then it freezes the weights for both encoders and
trains the HAR module ~ on RGB data in Dyar (phase a in Figure|3).

(2) HAR First: Reverses the order from 1. First it performs phase a (RGB HAR training), then it
freezes the RGB encoder f(1) and aligns the IMU encoder f?) (phase b).

(3) Interspersed Training: Intermittently learns from Dajign and Dyar. The model learns an epoch
from phase a and updates its weights to train the RGB HAR model, then learns an epoch from
phase b and updates its weights to align the encoders, iterating between the two losses.

(4) Combined Loss: Train both phase a and phase b but within the same loss iteration. The loss
from phase a on a batch of data from Dyar is added to the loss from phase b on a batch of data
from Dajign and the total is used to update the weights: Lo = Lcg + Lewcst.

Results: As shown in the Table [5] training by the Align First method performs the best for C3T,
whereas Combined Loss performs the best for CA. The main experiments reported in this work
(Table [T use training methods Align First and Combined Loss for C3T and CA, respectively. We
hypothesize that HAR First yields a latent space tailored to RGB HAR, which does not capture
IMU-RGB correlations, and Interspersed Training faces instability in training.

Figure [6] visualizes the latent space outputs of CA training with the Align First method using t-SNE
plots (Van der Maaten & Hintonl 2008)). The model quickly segments classes during the align phase,
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Table 5: Additional Experiments: Performance of ST, CA, and C3T across various training methods,
testing modalities, and reverse transfer from IMU to RGB data (RT). See Section E] for details.

Training Method Modality Testing RT
Model | (1) 2) 3) 4 | (HIMU (2)RGB (3)Both | IR
ST - - - - 12.9 53.8 17.0 4.60
CA 38.6 364 273 42.6 42.6 56.8 60.2 273
C3T 62.5 352 51.1 279 62.5 78.4 79.5 31.8

even without labels, suggesting that the data’s natural structure facilitates class distinction across
different modalities. This supports the Platonic Representation Hypothesis (Huh et al.|[2024) which
posits that the same semantic concepts learned from different modalities or data-views are converging
to some ground-truth concept space. The separable clusters also imply that CA and C3T could
potentially adapt to new class labels with just a few samples, as the latent structure would have
already grouped similar classes. Furthermore, after training, the model tends to misclassify points
near the boundary between clusters, implying that the HAR head is learning a decision boundary in
this latent space. Figure[6]supports our initial hypothesis (Figure [2) that a joint latent space could be
leveraged to perform UMA using a classification head trained only on RGB data.

Can UMA methods retain performance on the labeled modality or leverage both modalities?

(1) IMU (UMA): Is the main result of this paper and described above in Section@
(2) RGB (Supervised Learning): Tests the model on RGB data, which was labeled during training.
(3) Both (Sensor Fusion): Merges latent vectors from each modality by adding them.

Results: Table [5|shows that C3T outperforms the other methods. When comparing the performances
in the different test scenarios, our experiments indicate that when given both modalities, fusion
performs better than the RGB model alone. Instead of introducing noise or uncertainty into the
model, introducing an unlabeled modality may add structure to the shared latent space that bolsters
performance, especially if that modality is highly informative for the given task. This observation
bears resemblance to knowledge distillation methods, where an auxiliary modality during training
leads to improved testing outcomes; however, these methods usually assume that auxiliary modality
is labeled (Chen et al.| 2023). Applying UMA to sensor fusion is a promising future direction.

Can the transfer be performed in reverse?

To transfer from IMU to RGB data, C3T trains on labeled IMU data and unlabeled IMU+RGB data,
then tests on unlabeled RGB data. The results in the I+R column of Table [Slindicate that C3T’s
superior performance generalizes to this new configuration. Furthermore, the performance is worse
when transferring from IMU to RGB, implying that transfer from a more informative data modality
(RGB) to a less informative one (IMU) is more effective. This aligns with our initial motivation that
RGB data is more abundant and easier to label, and RGB to IMU has more real-world applications,
such as transferring from a smart home camera to a smartwatch as outlined in Figure 2] Nonetheless,
further analysis of C3T in various scenarios and modalities is a relevant future research extension.

The supplementary Appendix contains current status of existing related literature [6.1} a deeper
discussion of future directions and limitations (Section [6.4) as well as additional visualizations
(Section[6.3), experiments (Section [6.5)), ablations (Section [6.6), implementation details (Sections
and[6.8)) and baselines (Section[6.9).

5 CONCLUSION

This work explores Unsupervised Modality Adaptation (UMA) for human activity recognition,
challenging models to perform inference on a modality that was unlabeled during training. Our
experiments focused on constructing a unified latent space between modalities and comparing three
UMA methods in various settings. Our Cross-modal Transfer Through Time (C3T) method performs
alignment on a more fine-grained level and shows significant improvements and robustness for RGB
to IMU cross-modal transfer. We hope that our results inspire further exploration of temporal latent
spaces for robust sensor-based cross-modal transfer.
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6 APPENDIX: RELATED WORKS, ADDITIONAL DESCRIPTION AND

VISUALIZATIONS
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Figure 7. CA TSNE Plots in UMA: (Reproduced Figure |§| Larger) The following shows the
progression of the latent representations of datapoints for 5 classes (Bowling, Clap, Draw circle

(clockwise),

, Basketball shoot) during training CA on the UTD-MHAD dataset. In the end, we

plot the predicted labels and circle areas of confusion, which seem to often occur at the boundaries

between clusters.
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t-SNE Visualization of z_both Vectors Over Time
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Figure 8: C3T TSNE plot with shifted input: This plot visualizes the TSNE plots of the ¢, = 15
latent z; = 0. .. t, for various points of two classes. The zs shown are the fused representation
between the IMU and RGB modalities. The dark blue star is a point that was shifted by 50% compared
to the rest of the visualized points for the class. Notice how some time steps are more distinctive than
others between the classes, and the star tends towards the edge of the group for many zs.

Time Step 1

Time Step 2

t-SNE Visualization of z_both Vectors Over Time

Time Step 3

Time Step 4

Time Step 5

. . o
o8 B S .
.
- . . ) « ., .o °
. .« % LN 2 . o .
. s o X %X X * L
. . . .
$ X s . . . R
. . . - .
.
e ° e
.
. .
Time Step 6 Time Step 7 Time Step 8 Time Step 9 Time Step 10
0 . D B - oo
.. ° ® . . ¢ . ° ¢ . © LX) .
. . .
. . . .
‘ . xe ‘e Qoo . X *
o . .
o & o X * *7 e . *o 3
o X * . - .
S . * .
.
.
.
Time Step 11 Time Step 12 Time Step 13 Time Step 14 Time Step 15
0 0
. . “ o ® o 'R
o . - . . . . .o -
. s . o o % o . X.' .
Ao ® sy ® . .
. x4 Wto*X . . O -
. ° . ° . .
N . .
. B o o
.

Figure 9: C3T TSNE plot with shifted input: Another TSNE plot with shifted input for different
classes from the previous figure (Dark blue shows *Swipe left’ and light blue shows "Pick up and
throw’). This time X marks the regular input and star marks the shifted inputs. Unexpectedly, they
are relatively close through out, indicating the temporal convolutions that constructed these z’s might
be doing part of the work when accounting for robustness to shift noise. Furthermore, notice how
z7t0z1¢ indicate latent variables that are more distinctive (there is a more clear boundary between
the light blue and dark blue points). This could indicate that these time steps are most important for

distinguishing between the two given classes.
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Figure 10: CA TSNE on CZU Dataset: These plots indicate the same trend discussed in the main
paper, that the IMU points in the multimodal representation space tend to cluster in the middle and
mirror the RGB points on the outside. Particularly, for the CZU dataset the IMU signals are stronger
(60 IMU channels, 6 on 10 wearable devices) and this clustering tends to be stronger.
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Figure 11: CA TSNE Plots: These are similar to the plot shown in the main paper Figure@ but with
different classes. The following shows the progression of the latent representations for 5 classes (5
different colors) during training CA on the UTD-MHAD dataset in UMA. Circles indicate RGB data,

and crosses indicate IMU data points.
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Full results: across all trials for Table|l] Values that we used in Table|l|are highlighted
in supervise

and the best performance of each method with

Figure 12
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In this appendix, we first discuss related studies and directions[6.1] then provide additional additional
visualizations given above and summarize them in Section[6.3] Then, we discuss the limitations and
future direction of this work. Further, we provide additional experiments in Section[6.3] additional
ablations in Section[6.6] and further details on our methods in Section[6.7] Finally, we provide details
on each of the datasets used in Section[6.8]and explore additional baselines to compare our methods
to in Section

6.1 RELATED WORKS

Unsupervised Modality Adaptation In domain adaptation, a model trained in a source domain is
tasked with efficiently adapting to a related target domain that contains fewer labeled data points
(Pan & Yang| [2009; Farahani et al., [2021). Given the focus on domains with scarce labels, adaptation
is often achieved through unsupervised (Chang et al.l [2020) or semi-supervised (An et al., [2021)
methods. In the context of IMU-based HAR (Kamboj & Dol [2024), domain adaptation may involve
adapting between different sensors (Bhalla et al.| 2021)), adjusting to varying positions of wearables
on the body (Wang et al.| 2018; |Chang et al., 2020; [Prabono et al.,[2021), accommodating different
users (Hu et al., 2023} [Fu et al.| 2021), or adapting to different IMU device types (Khan et al., 2018}
Zhou et al. 2020; [Chakma et al.l 2021). Our work focuses on unsupervised domain adaptation
where the target domain is a new, completely unlabeled modality. Hence, we introduce the term
Unsupervised Modality Adaptation (UMA). Other research works explore similar concepts, such as
knowledge distillation, missing modality, robust sensor fusion, multimodal alignment; however, most
of these works require some labels from the target modality in training to update the model, thus do
not work in UMA (Garcia et al.| 2018}, [Wang et al., [2020; Nugroho et al. 2023} [Yang et al., 2022).
We use the term UMA to discuss performing test-time inference when zero labeled instances of the
target modality are available during training.

Student-Teacher: Student-teacher methods involve two distinct models: a teacher (source) model
that imparts knowledge to a student (target) model during the training process. Knowledge distillation
methods often employ an extra auxiliary modality as the teacher during training to increase the student
modality’s performance during testing; however, they assume the availability of labeled training data
from both modalities (Xue et al.| [2022; [Kong et al., 2019; |Wang et al., [2020; [Bruce et al., [2021]).
In particular, Thoker & Gall| (2019) perform knowledge distillation without labels for the student
modality data during training consistent with the UMA framework. Thus, their method is used as our
student teacher baseline (ST). Nevertheless, their work is tested on one RGB+D dataset and lacks
noise experiments, latent visuals, and comparisons to similar methods.

In addition, IMUTube (Kwon et al.,[2020) and ChromoSim (Hao et al., [2022) simulate IMU data from
videos to train an IMU model. In this instance, the teacher is the simulator, which trains the student
IMU model without using any real IMU data. However, these approaches are resource-intensive,
cannot easily extend to other modalities, and face simulation-reality gaps.

Contrastive Alignment: Unsupervised contrastive alignment methods for IMU data include
IMU2CLIP (Moon et al.| 2022), ImageBind (Girdhar et al.l |2023), and mmg-Ego4d (Gong et al.|
2023)). While these approaches have shown promise in retrieval and generation tasks, they have
limitations. All these methods focus exclusively on egocentric data. IMU2CLIP (Moon et al., 2022)
aligns IMU data with text labels which violates the UMA setting. ImageBind (Girdhar et al.| 2023))
is not well tested with IMU data, is computationally intensive, and is not explicitly tested in the
UMA setting. Mmg-Ego4d (Gong et al., 2023) addresses UMA with their zero-shot cross-modal
transfer task, but their work is limited to a single private ego-centric dataset and focuses mainly on
few-shot label learning. We use mmg-Ego4d as our CA baseline and run extensive UMA experiments,
encompassing both egocentric and third-person camera-view public datasets Table [T} We further test
its robustness to temporal distortions Table 2] its ability to scale with the latent vector size Figure 4]
and we visualize its multimodal latent space Figure [6]

Cross-modal Transfer Through Time: Existing video understanding and robust sensor fusion
methods often leverage temporal data, employing techniques such as temporal masking and recon-
struction (Tong et al., 2022} |Kong et al., 2019), spatio-temporal memory banks (Islam et al., [2022),
or fusion of temporal chunks through transformer self-attention (Shi et al.| [2024; Zhao et al.| 2022}
Wang et al.,[2022). However, these approaches typically assume the availability of labeled data for
all modalities in a specific task, limiting their applicability to the UMA setting. Unlike traditional
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methods inspired by ViT (Arnab et al.,2021) and SwinTransformers (Liu et al., [2022)), which chunk
data into fixed or shifted time segments, C3T learns temporal tokens through temporal convolutions
and uses them as a multi-vector latent space to align time-series modalities for cross-modal transfer.

6.2 BACKGROUND AND NOTATION

We investigate the creation of a robust multimodal latent space for human action recognition, denoted
as Z, that can be leveraged for UMA. In this context, robustness refers to the ability of the latent
space to maintain consistent representations despite shifts in input distribution to different modalities
or temporal noise. We assume that there exists a learnable projection f*) from every modality
ke 1,..., M to this latent space Z, i.e., f®) - x(k) 5 Z such that the same actions viewed from
different modalities map to proximal points in Z, while distinct actions map to disparate regions.
We further assume there exists a learnable mapping h from the latent space Z to the label space of
human actions ), i.e., h : Z — ). This mapping should be invariant to the originating modality
of the latent representation. Our method leverages the intuition that proximity in the latent space
Z indicates semantic similarity, i.e.neighboring points are likely map to the same class regardless
of their originating modality. We use cosine similarity to measure nearness, as it’s more effective
in high-dimensional spaces than Euclidean distance (Radford et al.l |2021)). This choice focuses
on directional similarity, mitigates the curse of dimensionality, and aligns with the distributional
hypothesis in representation learning.

For simplicity, we experiment with two modalities, M = 2, and assume that a dataset of n data
points is split into four disjoint index sets I; U Is U I3 U I, € {1...n}. Under our UMA setting,
during training, the model has access to two of these sub-datasets. One contains labeled data for one

modality, Dyar = {(XEI), yi)}flzl, and the other contains synchronous data between the modalities,

but these points are unlabeled, Dajign = {(Xgl),x?))}fil. This is analogous to having an existing
sensor with labeled data and introducing a new sensor in which data can be synchronously collected,
but there is no additional annotation effort (Figure 2)). The third and fourth sets are used for validation

and testing and contain only labeled data from the second modality, i.e. Dy, = {(xl(-z)7 yi)}2, and
Droy = {(xP) y. )1 1
Test = {(X;, ¥i) bty

6.3 VISUALIZATIONS

Figure[7]is an expanded version of Figure [f]to show the points more clearly. Figure 8] visualizes the
C3T latent space and a shifted input into that latent space. Figure[9] visualizes the C3T latent space
with a shifted input and its original input. Figure [I0] visualizes the CA latent space on a different
dataset, CZU-MHAD. Figure [11|shows another visualization of the progression of the latent space in
CA through training.

6.4 LIMITATIONS AND FUTURE DIRECTIONS:

Our novel visualizations of a joint multimodal latent space leave much room for future exploration.
For example, in Figure[§]IMU data points consistently cluster towards the center of the plot, with RGB
points surrounding them (more examples in Section[6.3). The consistency of this pattern suggests
that the latent space may not be completely modality-agnostic. This phenomenon is an interesting
direction for future research, potentially offering additional insights into cross-modal representations.

Furthermore, C3T’s architecture has room to scale to larger models and backbones and test on other
types of data. Given our theoretical intuition that alignment across local features is beneficial, and
our time-shift visualizations in Figure 5] we believe C3T’s method would generalize to other types of
data or transfer scenarios involving time-series modalities.

We hypothesize C3T can easily extend to various tasks as well. Our training experiments in Section 4]
show that C3T performs best by aligning the modalites first and our latent visualization in Figure 0]
show structure in the multimodal latent space before labels are introduced. This suggest that our
architecture may actually be able to transfer easily to various tasks. For example, after the alignment
phase has been performed once, adding an additional task should only require training an additional
task-specific head. We hypothesize that without additional alignment, we may be able to train a person
identification task head-on the IMU latent representations and then perform person identification
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with the RGB images without ever needing additional RGB data. This sort of multi-task transfer
investigation would be a valuable future extension of this work.

Discussion of potential positive and negative impacts of the work: As stated in the introduction,
cross-modal transfer for sensor data has numerous positive applications, in healthcare, smart homes,
smart devices, user interface design etc. Some negative impacts that may occur are that social
bias may transfer across modalities, certain modalities might not be accessible to individuals with
disabilities, exacerbating the technology gap between the able-bodied and disabled, and cross-modal
transfer may increase certain security and privacy concerns if someone’s identity/information can
easily be transferred across modalities.

LLM Use LLMs were used only to rephrase writing to help with grammar, clarity, and flow. They
were also used for latex syntax and formatting assistance.

6.5 ADDITIONAL EXPERIMENTS

Extended: Can UMA methods retain performance on the labeled modality? Can they leverage
both modalities?

Experimental setup: Table [5]shows the result of training in the UMA setting but testing with all
combinations of the modalities. Any inputs can be used to perform HAR by simply using the HAR
module A on an estimate for the latent vector, Z derived from the modalities. For ST, h can be viewed
as the identity, and 2’s are the output logits.

1. RGB (Supervised Learning): Tests the model on RGB data, which was labeled during training,
thus this is supervised paradigm. The estimated latent vector is given by f(1) (xgl)) = Z.
2. IMU (UMA): Is the main result of this paper and described above in Section 2] Here the estimated
latent vector is given by f® (2'?) = z,.
3. Both (Sensor Fusion): Merges latent vectors from each modality. Assuming each estimate is
S ()
equally as good as the other: 2, = E[z |2V, 2?] = E[z]5", 2] = ;(1)7:(2“ . Given that we
align the latent vectors from different modalities by minimizing the angle between them, i.e.
cosine similarity, we also fuse vectors by generating the normalized vector whose angle is halfway

between the estimated vectors.

Results: As expected, Table [5|shows that C3T outperforms the other methods. When comparing the
performances in the different test scenarios, our experiments indicate that when given both modalities,
fusion performs better than the RGB model alone. Instead of introducing noise or uncertainty into the
model, introducing an unlabeled modality may add structure to the shared latent space that bolsters
performance, especially if that modality is highly informative for the given task. This observation
bears resemblance to knowledge distillation methods, where an auxiliary modality during training
leads to improved testing outcomes, however, these methods usually assume that auxiliary modality
is labeled (Chen et al.l 2023). The application of UMA to sensor fusion presents a promising avenue
for future research.

Additional Dataset: We revisited this question of testing on different modalities from the main paper
and attempted to test on other modalities for different datasets. We noticed that the results were
consistent with our main findings, that often testing with both modalities performs better than testing
with the training modality that had labels (RGB)! See Table 6] below for the results on the MMACT
dataset.

Table 6: UMA Testing on Each Modality Accuracy MMACT (Kong et al.l 2019) when trained for
UMA and tested on only RGB data, only IMU data, or Both.

Model 1.RGB 2.IMU 3. Both

ST 25.8% 16.7%  25.8%
CA 39.9% 269%  41.3%
C3T 39.2% 31.7%  47.3%

How quickly can our models learn from labeled IMU samples?
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Few Shot Learning Few Shot Learning

801 — RGB 1 — reB
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(i) CA Cross-Modal Few Shot (i) C3T Cross-Modal Few Shot

Figure 13: Cross-Modal Few Shot Learning Comparison: (a) CA method and (b) C3T method
performance in cross-modal few shot learning scenarios when testing on IMU, RGB and Both
modalities. RGB performance remains the same because the learning shots only contain labeled IMU
data. However, we can see IMU and Both performance rise.

As illustrated in Figure [I3] CA demonstrates faster learning, reaching peak performance within 20
shots, while C3T requires about 40 shots. Neither method matches the supervised IMU performance
of 87.9% reported in Table[I] but they approach the fusion performance of approximately 62%.

It’s important to note that this comparison with the supervised baselines may not be entirely fair, as
the supervised baselines had access to the entire Train HAR dataset (40% of the data), whereas, the
few-shot learning was conducted on the validation set (10% of the data). Given that the supervised
IMU and fusion models share the same architecture as CA, repurposed for the supervised setting, we
would expect similar performance under equal conditions.

Nonetheless, these experiments clearly demonstrate CA’s superior ability in few-shot cross-modal
learning compared to C3T. As shown in Figure[13] both IMU and combined modality performance
improve with increasing shots, while RGB performance remains constant due to the learning shots
containing only labeled IMU data.

6.6 ADDITIONAL ABLATIONS:

We conducted a brief ablation study on the alignment loss, comparing our cosine similarity approach
with the conventional L2 loss. As shown in Table /] the results strongly support our initial intuition
presented in Section[6.2] The substantial performance gap between cosine similarity and L2 loss for
both CA and C3T models underscores that cosine similarity is indeed a more effective measure of
alignment for high-dimensional vectors in this context. These findings align with well-established
principles in high-dimensional space analysis, reinforcing the validity of our approach. Given the
well-established nature of these results, we have included this comparison in the supplementary
material rather than the main paper, focusing the primary discussion on novel contributions.

Table 7: Alignment Loss Comparison: Performance of CA and C3T models using Cosine Similarity
and L2 loss for alignment on the UTD-MHAD dataset.

Model | Cosine Similarity L2 Loss

CA 44.32 2.27
C3T 62.50 341

Lastly, we provide an extension of our architecture ablations in Table @ In this extension, we also
ablate the encoders of the supervised baselines, which are the same modules used for ST, CA and
C3T, however, trained in the supervised setting, as opposed to UMA. The only interesting result is
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Table 8: Architecture Ablation Extensions: This shows an extension of our architecture ablations
(Table[3) to baselines. It shows a comparison of different architectures for RGB and IMU encoders
across various methods. We report encoder types for spatial and temporal dimensions of RGB data,
and the temporal dimension for IMU data, along with the number of parameters (in millions) and
accuracy for each configuration. Convolutional architectures generally yielded superior performance,
while still maintaining a relatively low model size. These results indicate that C3T’s performance
advantage stems from its methodological approach rather than solely from it’s attention head or size.

RGB IMU
Method Spatial Temporal Temporal | Params (M)  Accuracy (%)
Conv Conv Conv 129.2 12.9
ST Conv Conv Attn 97.8 10.2
Conv Attn Conv 871.2 114
Attn Conv Conv 291.5 5.7
Conv Conv Conv 163.8 38.6
CA Conv Conv Attn 132.3 19.3
Conv Attn Conv 905.7 34.1
Attn Conv Conv 326.0 26.1
Conv Conv Conv 137.7 62.5
C3T Conv Conv Attn 106.3 159
Conv Attn Conv 879.6 53.4
Attn Conv Conv 300.0 33.0
Conv Conv Conv 163.8 62.5
Conv Conv Attn 132.3 71.3
FUSION | conv At Conv 905.7 89.8
Attn Conv Conv 326.0 64.8
- - Conv 32.0 87.9
IMU - - Attn 0.5 273
Conv Conv - 97.3 53.8
RGB Conv Attn - 839.2 71.6
Attn Conv - 259.5 64.8

that the RGB baseline may have performed better with an attention-based temporal feature extractor.
This could potentially imply that the C3T does not surpass the best supervised RGB model, as we
noted in the main results. It is not necessary to ablate the unimodal supervised setting because that
is not the main novel method of this work. We believe there exist other Video Action recognition
models that are better. However, this does not contradict the main findings of this paper that C3T is
the most robust to temporal noise in the UMA cross-modal transfer setting.

6.7 METHODS:

Table 9: Data Splits for Unsupervised Modality Adaptation (UMA): During training, no labeled
IMU data is present, thus the model can only leverage the correlations between X™U and XRGB to
learn classes for IMU data.

Split XRGB  XIMU 'y 9 of Data
Duar: Traina) v 40%
Dalign: Trainb) v v 40%
DVaI: Val v v 10%
Drest: Test v v 10%

Table 0] shows the data splits used for Unsupervised Modality Adaptation (UMA) training. All tables
report the accuracy on the Dy, for each method ( accuracy = i Zfil 1y, —y.)-
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Table 10: UMA performance compared to supervised baselines Using Train Method 1: Each
method is modular and can be decomposed to perform in the traditional supervised setting, or can be
combined into ST, CA or CT3 to perform UMA. We developed all models from scratch, however, ST
and CA resemble existing methods whereas C3T introduces novel mechanisms. Top-1 and Top-3
accuracies are reported for each dataset. Although ST performs poorly, it performs significantly better
than randomly guessing, indicating it is still learning action information from the RGB data without
any labels. Please note the CA row of this table reports the results when trained using training method
1 (align first). The overall trends do not differ from Table([T] indicating that the performance results of
C3T are not biased by the training method.

UTD-MHAD  CZU-MHAD MMACT MMEA-CL
Model Top-1 Top-3 Top-1 Top-3 Top-1 Top-3 Top-1 Top-3
IMU 879 977 951 982 700 90.0 658 87.6
Supervised RGB 53.8 73.1 940 997 421 61.6 542 771

Fusion 62.5 82.2 95.0 98.5 76.7 92.0 80.1 92.7
Random 3.7 11.1 4.6 16.6 2.9 8.6 3.1 9.4

UMA ST 129 246 411 61.9 17.6 34.7 9.9 22.7
CA 386  56.1 81.0 955 27.3 456 423 62.1
C3T 625 864 842 967 324 579 512 788

For reproducibility and to guarantee the scientific rigor of our experiments, our main results table
in Table [1| was run 3 times with random seeds pytorch 1,2 and 3. The full results are given in
Figure [[2] The results report the average values across all trials and their standard deviations
across those 3 trials. We note, that although the standard deviations are quite large, the difference
in performance between the methods is typically larger than one standard deviation, implying
statistical significance in our comparative analysis. This suggests that the observed performance
improvements of C3T over baseline methods are not merely due to random variation but represent
genuine algorithmic advantages. Furthermore, the consistent pattern of outperformance across
multiple datasets strengthens the reliability of our conclusions, as the probability of observing such
consistent results by chance across independent experiments would be exceedingly low. We also note
that the supervised methods were only trained on 40% of the data given in Dyag for a fair comparison
to the other methods.

Datasets and Hyperparameters - Additional Info: We present results on four diverse datasets: (1)
UTD-MHAD (Chen et al.,2015), a small yet structured dataset; (2) CZU-MHAD (Chao et al.| [2022),
a slightly larger dataset captured in a controlled environment; (3) MMACT (Kong et al.| 2019), a
very large dataset with various challenges including different view-angles, scenes, and occlusions;
and (4) MMEA-CL (Xu et al.,|2023), an egocentric camera dataset. For each dataset, we create an
approximately 40-40-10-10 percent data split for the Dajign, Duar, Dvai, and Dreg; sets respectively,
as shown in Appendix Table[9] Dy, was used to perform a minor hyperparameter search on the
UTD-MHAD dataset. The methods performed best with a learning rate of 1.5 x 10~4, a batch size of
16, num_workers of 4, and a latent representation dimension of 2048 with an Adam optimizer. The
preprocessing steps downsample the video to ¢ = 30 frames, and C3T extracts ¢, = 15 latent vectors
per sample. Experiments were implemented in Pytorch and run on a 16GB NVIDIA Quadro RTX
5000, four 48GB A40s, or four 48GB A100s and each run took between 4-10 hours, depending on
the dataset and GPU availability. More detailed information about each dataset and implementation
can be found in Appendix Section[6.§]

Main Table With All Train Method 1: Before the ablations discovered that Train method 4
(combined loss) was better for CA we used method 1 (Align first). Table shows the original
experiments with all UMA models trained using method 1 (align first) and we observe no difference
in the resulting rankings of the method.

Student Teacher: Below is the standard cross-entropy loss that was employed for the student teacher
methods.

N C ~
1 exp Yi. i
Lop(PyP) = =~ D03 Ly log( g — Yig 3)
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where §; is the output of the ¢th sample in the batch of IV samples, §; ; is the score for the jth class out
of C classes, and P, represents the probability distribution produced by a given model’s output logits.
The teacher network minimizes Lo g( Py (), Py) and the student minimizes Lo g (P2 (2, Pf2(a))-
Since the student approximates the teacher and the teacher approximates the true distribution, this
implies that the student can only be as good as the teacher at approximating the true distribution:

Lcor(Pri(z), Py) < Loe(Pr2(a), Py) )

C3T Modules Here we provide a more precise formulation of the modules used for C3T.

The updated modules are as follows:

Video Feature Encoder f(1) : X(1) — Ztrec: This module applies a pretrained Resnet18 to every
frame a video and then performs a single 3D convolution. The resulting output is a set t,. 2:
7MW = (51 50y

trec/®

IMU Feature Encoder £ : X2 — Ztree: This is a 1D CNN that decreases the time dimension
0 tpec, resulting in an output of Z(2) = (2% . 2t(2))

HAR Task Decoder h : Z'rec — Y: This module is like a transformer encoder that uses self-
attention on an input sequence of length ¢,... vectors appended with a learned class token. The output
class token of the self attention layer is then passed through a FFN and outputs a single action label

6.8 DATASETS

Here we provide more information on the datasets and how they were used in our experiments.

UTD-MHAD Most of the development and experiments were performed on the UTD-Multi-modal
Human Action Dataset (UTD-MHAD) (Chen et al.l [2015). This dataset consists of roughly 861
sequences of RGB, skeletal, depth and an inertial sensor, with 27 different labeled action classes per-
formed by 8 subjects 4 times. The inertial sensor provided 3-axis acceleration and 3-axis gyroscopic
information, and all 6 channels were used for in our model as the IMU input. Given our motivation,
we only use the video and inertial data; however, CA can easily be extended to multiple modalities.

CZU-MHAD The Changzhhou MHAD (Chao et al.,2022)) dataset provides about 1,170 sequences
and includes depth information from a Kinect camera synchronized with 10 IMU sensors, each 6
channels, in a very controlled setting with a user directly facing the camera for 22 actions. They do
not provide RGB information, thus we use depth as the visual modality, broadcast it to 3 channels,
and pass it into the RGB module. We concatenate the IMU data to provide a 60-channel input as the
IMU modality and use depth as the input modality. Given the controlled environment and dense IMU
streams, the models performed the best on this dataset.

MMACT The MMAct dataset (Kong et al., 2019) is a large scale dataset containing about 1,900
sequences of 35 action classes from 40 subjects on 7 modalities. This data is challenging because it
provides data from 5 different scenes, including sitting a desk, or performing an action that is partially
occluded by an object. Furthermore, the data was collected with the user facing random angles at
random times. The dataset contains 4 different cameras at 4 corners of the room, and it measures
acceleration on the user’s watch and acceleration, gyroscope and orientation data from a user’s phone
in their pocket. We only use the cross-view camera 1 data, and again we concatenate the four 3-axis
inertial sensors into one 12-channel IMU modality.

MMEA-CL The Multi-Modal Egocentric Activity recognition dataset for Continual Learning
(MMEA-CL) (Xu et al.} 2023) is a recent dataset motivated by learning strong visual-IMU based
representations that can be used for continual learning. It provides about 6,4000 samples of synchro-
nized first-person video clips and 6-channel accelerometer and gyroscope data from a wrist worn
IMU for 32 classes. The dataset’s labels feature realistic daily actions in the wild, as opposed to
recorded sequences in a lab. Due to issues with the data and technical constraints, we downsize the
data proportionally from each class and use about the first 1,000 samples. However, CT3’s superior
performance shows how this method can generalize to a camera view (ego-centric camera), and
different types of activities.
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Table 11: UMA with Existing Methods: Most methods fail to adapt to zero-shot cross-modal
transfer from the RGB to IMU sensor modalities. Imagebind performs well on MMEA, which is an
eogecentric dataset, similar to Ego-4d in which Imagebind was trained on.

Model UTD-MHAD MMACT MMEA-CL CZU-MHAD
Sensor Fusion (2019) (Wei et al./[2019) 5.2% 32 % 4.1 % 4.5 %
HAMLET (2020) (Islam & Igbal!|2020) 4.6 % 32% 4.1 % 4.5 %
ImageBind (2023) (Girdhar et al.|[2023) 11.3 % 4.6 % 40.1 % 4.54 %
Student Teacher 12.9 % 17.6 % 9.9 % 41.1%
Contrastive Alignement 38.6 % 27.3 % 42.3 % 81.0 %
Cross-modal Transfer Through Time (Ours) 62.5 % 324 % 51.2 % 84.2 %

6.9 BASELINES

This method attempts to adapt existing methods to UMA and compare them as baselines against our
methods.

Many works deal with robustness to missing sensor data during training or testing, however, few
works deal with zero-labeled training data from one modality. As a result, constructing baselines is
tricky and most methods had to be modified or adapted to fit our our approach. Even so, as shown in
Table [T1] These methods perform very poorly in the UMA setting.

We would like to note that all the baselines and methods were trained and tested on the same data
splits, i.e. it’s not the case that they have different train a) and train b) splits. We believe that this
allows for fair comparison. In addition, the supervised baselines were only trained on the Train a)
Supervised HAR split. This ensures that the supervised baselines do not have an unfair advantage of
seeing more data (they also only see 40% of the labeled data not 80%). The exact data splits are also
provided in a separate repository linked in our code.

6.9.1 SENSOR FUSION BASELINES

Sensor fusion is often broken down into the following 3 methods based on where the data are
combined (Ramachandram & Taylor, 2017; Majumder & Kehtarnavaz, 2020; [Sharma et al.| |1998)),
also shown in Figure 14}

1. Early or data-level fusion combines the raw sensor outputs before any processing.

2. Middle/intermediate or feature-level fusion combines each sensor modality after some preprocess-
ing or feature extraction.

3. Late or decision-level fusion combines the raw output, essentially ensembling separate models.

Many IMU-RGB based sensor fusion models have the ability to train on partially available or
corrupted data and are robust to missing modalities during inference (Islam et al., 2022} [slam &
Igball 2020). Sensor fusion works rarely attempt the extreme case where one modality is completely
unlabeled during training. Existing sensor fusion methods can be adapted to our setup using a
psuedo- labeling technique, similar to the student-teacher model above. The difference for sensor
fusion is that the model learns a joint distribution between the two modalities as opposed to two
separate distributions. Thus the model may be able to learn some correlation between the modalities.
Nonetheless, we show that these methods cannot generalize to the scenario where there is zero-labeled
training data for one modality.

Let g(-,-) : (XM, X®) = Y. Our approach uses Dy 4, to train by passing in zeros for one modality, e.g.

we train g(-,0) : XY — ). Then, with D4z, we use g(-,0) to generated psuedo-labels and then train
9(0, -, ) with those labels.

We reproduced the conventional sensor fusion models (early, feature, and late) from (Wei et al., 2019) and
indicate the performance of the top model on [IT] We further reproduce a self-attention based sensor fusion
appraoch (HAMLET (Islam & Igball, 2020)) and tested it on our setup. We follow a very similar architecture;
however, extract spatio-temporal results using 3D convolution in the video as opposed to an LSTM. This method
provides similar results as the LSTM method on the standard sensor fusion problem. To verify the integrity
of our reproduced models we compared to state-of-the-art reported methods and showed similar performance
results. The results are given in Table[T2] We selected HAMLET due to its state-of-the-art performance on the
UTD-MHAD dataset, making it an ideal benchmarks for comparison with our model. These experiments prove
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that our reproduced baselines are comparable to SOTA method. In addition, these baselines fail to perform well
in the UMA setting underscoring the importance and novelty of our work.

XRGB

Early/Data Level >®__n n v
Fusion xMU
XRGB
Middle/Feature Level Yy
Fusion xIMU
XRGB ’
Y

Late/Decision Level Fusion H
Table 12: SOTA Sensor Fusion Performance on UTD-MHAD. { (Wei et al., 2019), * (Islam & Igbal,

xMu
[2020)

Figure 14: Types of Sensor Fusion

REPORTED MODELS ACCURACY

HAMLET 95.12%
WEI ET AL. } 95.6%
REPRODUCED FROM T ACCURACY
EARLY FUSION 86.71%
FEATURE FUSION 95.60%
LATE FUSION 94.22%

6.9.2 CONTRASTIVE LEARNING BASELINE

ImageBind learns encoders for 6 modalities, (Images/Videos, Text, Audio, Depth, Thermal
and IMU) by performing CLIP’s training method (Radford et al} 2021) between each of those encoders and the
Image/Video encoder. It was well tested for image, text and audio-based alignment, retrieval, and latent space
generation tasks, however was not well tested with IMU data and not used for specific tasks, such as HAR. In
addition, one fundamental difference between Imagebind and CA is that Imagebind constructs a latent space
amongst the sensing modalities and text and aligns between them. We hypothesize that this vector space is more
difficult and unnecessary to construct, for human action recognition using sensing modalities. The text modality,
although sequential in nature, does not have a time dimension, thus it cannot leverage correlations between
modalities in time like C3T. We work with the original Imagebind model and code released on githubﬂ We
perform two conventional task-specific adaptations for CLIP models: Zero Shot transfer and Linear Probing:

Zero-Shot Transfer: Let’s denote the video, IMU and text encoders as gV : XV — 2 ¢4 . x®@
Z,and g©® : X — Z respectively. First, we attempt zero-shot transfer. Here, we pass all the action labels
through the text encoder of the pretrained model. For a dataset with C' classes, we have Z® = (253) e 73(03 )).
Finally, for a given IMU sample (:cZ@), Yi) € Drest, We pass x§2) through the IMU encoder g™ and retrieve

2. Then, we classify the point by looking at which points gives the highest cosine similarity score in the latent
@) 43
space, e.g. U; = argmax; Hizzﬂiz{s)m The video encoder g(*) goes unused as no training was done, and in
Cl)i ,Zj

UMA, there is no video data during testing. This performed poorly and the results are not reported.

"https://github.com/facebookresearch/ImageBind
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Linear Probing: Given that ImageBind is a large model trained on massive corpuses of data it becomes
impractical to train the model from scratch on our smaller datasets collected from wearables and edge devices.
Instead, we fine-tuned the ImageBind model using a linear projection head on the encoders, that can then be
trained for a specific task. The results of this method are depicted in Table[TT]

The results show a poor generalization of Imagebind to most experiments on our setup, and we hypothesize a
few reasons. Firstly, ImageBind is a large model and may either overfit to small datasets, or not have enough
training examples to learn strong enough representations. Second, ImageBind was pre-trained on Ego4D and
Aria which contain egocentric videos to align noisy captions with the IMU data, whereas our datasets had fixed
labels and were mostly 3rd person perspective. In fact ImageBind performed the best on the one egocentric
dataset we used, MMEA-CL(Xu et al.} | 2023). Lastly, Imagebind was trained on a IMU sequences of 10s length
sampled at a much higher frequency, thus we zero-padded or upsampled the IMU data to fit into ImageBind’s
IMU encoder, and the sparse or repetitive signal may have been too weak for ImageBind’s encoder to accurately
interpret the data.
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