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Abstract

Differential privacy (DP) is a formal notion that restricts the privacy leakage of an
algorithm when running on sensitive data, in which privacy-utility trade-off is one
of the central problems in private data analysis. In this work, we investigate the
fundamental limits of differential privacy in online learning algorithms and present
evidence that separates three types of constraints: no DP, pure DP, and approximate
DP. We first describe a hypothesis class that is online learnable under approximate
DP but not online learnable under pure DP under the adaptive adversarial setting.
This indicates that approximate DP must be adopted when dealing with adaptive
adversaries. We then prove that any private online learner must make an infinite
number of mistakes for almost all hypothesis classes. This essentially generalizes
previous results and shows a strong separation between private and non-private
settings since a finite mistake bound is always attainable (as long as the class is
online learnable) when there is no privacy requirement.

1 Introduction

Machine learning has demonstrated extraordinary capabilities in various industries, from healthcare
to finance. Yet, it could raise serious privacy concerns as it may require access to a vast amount of
personal data. The data used to train machine learning models may also contain sensitive information
such as medical records or financial transactions. Therefore, it is crucial to ensure that the private
data is well-protected during the training process.

Differential privacy (DP) [24, 23] is a rigorous mathematical definition that quantifies the level of
personal data leakage. In a nutshell, an algorithm is said to be differentially private if the change
of any individual’s data won’t make the output significantly different. DP has become the standard
notion of privacy and has been broadly employed [1, 6, 2].

However, privacy is not a free lunch and usually comes at a cost. Simple tasks may become much
harder or even intractable when privacy constraints are imposed. It is crucial to understand the cost
to pay for privacy. For probably approximately correct (PAC) learning [44, 11, 43], which is the
standard theoretical model of machine learning, there have been many works investigating the cost
associated with privacy, which demonstrate a huge discrepancy in terms of the cost under non-private,
pure private, and approximate private constraints.

One central requirement in PAC learning is that the data need to be i.i.d. generated and given in
advance. Such assumptions fail to capture many scenarios in practice. For example, fraud detection
in financial transactions often needs to be handled in real time, which prohibits access to the entire
dataset. Moreover, fraudulent patterns can change over time, and new types of fraud can emerge.
In such a scenario, the data are clearly not i.i.d. and can even be adaptive to the algorithm’s prior
predictions, in which the online learning model should be adopted.
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Table 1: Separation between three types of constraints

Oblivious adversary Adaptive adversary

Finite mistakes? Learnable? Learnable?

No DP constraints ✓
([39])

✓
([39])

✓
([39])

Approximate DP ✗
(Theorem 4.3)

✓
([30])

✓
([30])

Pure DP ✗
(Theorem 4.3)

✓
(Theorem 3.3)

✗
(Theorem 3.5)

Compared with private PAC learning, the limits of private online learning are less understood. For
approximate DP, algorithms for Littlestone classes were proposed [30]. But for pure DP, the only
known result is the one for point functions given by Dmitriev et al. [22]. They also suggested that
one could leverage existing tools of DP continual observation [26, 34] to design algorithms for finite
hypothesis classes and asked if generic learners can be constructed for infinite hypothesis classes.

Going beyond qualitative learnability, it is worth quantitatively exploring the number of mistakes
made by an online learner. Without privacy, it is possible to achieve a mistake bound of at most
the Littlestone dimension of the hypothesis class [39], which is independent of the total rounds T .
Therefore, the number of mistakes is always bounded as T → ∞. However, all existing private
online learning algorithms suffer from an error count that grows at least logarithmically with T . It
was asked by Sanyal and Ramponi [41] whether such a cost is inevitable for DP online learning. In a
recent work of Cohen et al. [21], they showed that any private online learning algorithm for the class
of point functions over [T ] must incur Ω(log T ) mistakes. However, it remains open whether such
cost is unavoidable for generic hypothesis classes, especially for those with a smaller cardinality.

1.1 Main Results

We obtain results that separate three types of constraints: no DP, pure DP, and approximate DP.

Separation between pure and approximate DP. We first perform a systematic study of online
learning under pure DP. We prove that every pure privately PAC learnable class is also pure privately
online learnable against oblivious adversaries, answering a question raised by Dmitriev et al. [22]. For
the stronger adaptive adversaries, we obtain an impossibility result that the class of point functions
over N, which can be pure privately learned in the offline model, is not online learnable under pure
DP. According to the result of Golowich and Livni [30], it is online learnable under approximate DP.
Thus, our conclusion reveals a strong separation between these two privacy definitions.

Separation between private and non-private settings. We next quantitatively investigate the
dependence on T in the mistake bound. We show that for any hypothesis classH, any private online
learning algorithm must make Ω(log T ) mistakes unless H contains only one single hypothesis or
exactly two complementary hypotheses (see Section 4 for the definition). This largely generalizes
previous results and indicates that such a separation indeed exists universally. We further improve the
lower bound to Ω(LD(H) log T ), where LD(H) represents the Littlestone dimension ofH.

To better demonstrate our results, we consider the task of online learning point functions over N in the
oblivious setting and summarize in Table 1 the finiteness of mistakes and learnability under the three
types of constraints. Note that for this hypothesis class, the impossibility of making finite mistakes
in private online learning can also be derived from the result in [21]. However, our conclusion
(Theorem 4.3) is more general – it applies to a much broader family of hypothesis classes. We choose
this hypothesis class for illustration because it separates the learnability against adaptive adversaries
under pure DP and approximate DP.
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1.2 Related Work

The work of [38] initialized the study of PAC learning with differential privacy. A series of subsequent
works then showed that privacy constraints have a distinctive impact on the learners. The most
remarkable result is the equivalence between approximate private learning and (non-private) online
learning [4, 15, 5, 29]. For pure DP, the learnability is characterized by the so-called representation
dimension [10]. Both results suggest that private learning is strictly harder than non-private learning.
For some specific hypothesis class such as the one-dimensional threshold over finite domain, it was
shown that learning with approximate DP enjoys a much lower sample complexity than with pure
DP [9, 19, 28, 13, 14, 37, 20], separating these two types of privacy. Another separation result is the
huge gap between properly and improperly learning point functions with pure DP [9], which does not
exist in non-private and approximate private settings.

The problem of private online learning Littlestone classes was first studied by Golowich and Livni
[30]. They proposed private online learning algorithms for hypothesis classes of finite Littlestone
dimension in the realizable setting against oblivious and adaptive adversaries, further strengthening
the connection between online learning and differential privacy. In contrast with the non-private
setting where the mistake bound is always finite, their algorithms exhibit a cost of log T for data
streams of length T . Recently, it was shown by Cohen et al. [21] that this extra cost is unavoidable
for point functions over [T ]. Dmitriev et al. [22] also obtained similar results, but only for algorithms
that satisfy certain properties. It was questioned by Sanyal and Ramponi [41] whether an unbounded
number of mistakes is necessary for ε ≈

√
T (see Section 2.2 for the definition of ε).

There were also a great number of results on private parametric online learning tasks such as online
predictions from experts (OPE) and online convex optimization (OCO) [36, 42, 35, 3, 8]. Most of
them focus on the agnostic setting. Asi et al. [7] developed algorithms for both problems in the
realizable regime with oblivious adversaries, again with a log T overhead. Asi et al. [8] obtained some
hardness results for DP-OPE against adaptive adversaries, but they require the number of experts to
be larger than T .

Another related field is differential privacy under continual observation (see, e.g., [26, 18, 34]). While
the techniques can be used to design online learning algorithms, it is unclear whether lower bounds
for DP continual observation can be transformed to any hardness results for private online learning
(see [22] for a detailed discussion).

2 Preliminaries

Notation. Throughout this paper, we use S = {z1, . . . , zt} to denote a data stream of length T . We
write S[t] to denote the data point comes at time-step t, i.e., zt. For an algorithm A that runs on S,
we use A(S)t to denote the output of A at time-step t.

2.1 Online Learning

We start by defining online learning as a sequential game played between a learner and an adversary.
LetH ⊆ {0, 1}X be a hypothesis class over domain X and T be a positive integer indicating the total
number of rounds. In the t-th round, the learner outputs a hypothesis ht ∈ {0, 1}X (not required to
be inH) while the adversary presents a pair (xt, yt). The performance of the learner is measured by
the expected regret, which is the expected number of additive mistakes made by the learner compared
to the best (in hindsight) hypothesis inH:

E

[
T∑

t=1

I[ht(xt) ̸= yt]− min
h⋆∈H

T∑
t=1

I[h⋆(xt) ̸= yt]

]
.

The above setting is usually referred to as the agnostic setting, where we do not make any assumptions
on the data. In the realizable setting, it is guaranteed that there is some h⋆ ∈ H so that yt = h⋆(xt)
for all t ∈ [T ]. In this setting, the performance is directly measured by the expected number of
mistakes made by the learner, which is called the mistake bound, defined as

E

[
T∑

t=1

I[ht(xt) ̸= yt]

]
.
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An online learning algorithm is considered successful if it attains a sublinear regret, i.e., the regret is
o(T ). In this paper, we mainly focus on the realizable setting. We say a hypothesis classH is online
learnable if there is an online learning algorithm forH that makes o(T ) mistakes in expectation.

We consider two types of adversaries: an oblivious adversary chooses the examples in advance (could
depend on the learner’s strategy, but not on its internal randomness), and (xt, yt) is revealed to the
learner in the t-th round. An adaptive adversary instead, can choose (xt, yt) based on past history,
i.e., h1, . . . , ht−1 and (x1, y1), . . . , (xt−1, yt−1).

Without privacy, the mistake bound is exactly characterized by the Littlestone dimension [39] even
with stronger adversaries that can choose (xt, yt) after seeing ht. To define the Littlestone dimension,
we first introduce the notion of a shattered tree.
Definition 2.1 (Shattered Tree). Consider a full binary tree of depth d such that each node is labeled
by some x ∈ X . Every {y1, . . . , yd} ∈ {0, 1}d defines a root-to-leaf path x1, . . . , xd obtained by
starting at the root, then for each i = 2, . . . , d choosing xi to be the left child of xi−1 if yi−1 = 0
and to be the right child otherwise. The tree is said to be shattered byH if for every root-to-leaf path
defined in this way, there exists h ∈ H such that yi = h(xi) for all i ∈ [d].
Definition 2.2 (Littlestone Dimension). The Littlestone dimension ofH, denoted by LD(H), is the
maximal d such that there exists a full binary tree of depth d that is shattered byH.

The problem of online prediction from experts can be viewed as a parametric version of online
learning. Let d be the total number of experts. In the t-th round, the algorithm chooses an expert
it ∈ [d] while the adversary selects a loss function ℓt : [d]→ [0, 1]. Then ℓt is revealed and a cost of
ℓt(it) is incurred. The goal is to minimize the expected regret

E

[
T∑

t=1

ℓt(it)−min
i∈[d]

T∑
t=1

ℓt(i)

]
.

Similar to online learning, an oblivious adversary chooses all ℓt in advance, while an adaptive
adversary determines ℓt based on i1, . . . , it−1 and ℓ1, . . . , ℓt−1. In the realizable setting, it is
guaranteed that there exists i⋆ ∈ [d] such that ℓt(i⋆) = 0 for all t ∈ [T ].

2.2 Differential Privacy

We first recall the standard definition of differential privacy.
Definition 2.3 (Differential Privacy). An algorithm A is said to be (ε, δ)-differentially private if for
any two sequences S1 and S2 that differ in only one entry and any event O, we have

Pr[A(S1) ∈ O] ≤ eε Pr[A(S2) ∈ O] + δ.

When δ = 0, we also say A is ε-differentially private.

Our proofs use the packing argument [32, 9], which heavily relies on the following property of DP.
Fact 2.4 (Group Privacy). Let A be an (ε, δ)-differentially private algorithm. Then for any two
sequences S1 and S2 that differ in k entries and any event O, we have

Pr[A(S1) ∈ O] ≤ ekε Pr[A(S2) ∈ O] +
ekε − 1

eε − 1
· δ.

Privacy with adaptive adversaries. When interacting with adaptive adversaries, the notion of
differential privacy becomes a bit trickier.1 We adopt the definition of adpative differential privacy
from [30, 34, 8]. LetA be an online algorithm, Adv be an adversary2 who generates two sequences S1

and S2 adaptively such that S1 and S2 differ in only one entry, and b ∈ {1, 2} be a global parameter
that is unknown toA and Adv. The interactive processA◦Adv(b) works as follows: in each time-step
t, Adv generates two data points S1[t], S2[t] based on the past history and A gets Sb[t]. The output
of A ◦ Adv(b) is defined to be the entire output of A. We say A satisfies (ε, δ)-adaptive differential
privacy if for any such adversary Adv and any event O, we have

Pr[A ◦ Adv(1) ∈ O] ≤ eε Pr[A ◦ Adv(2) ∈ O] + δ.
1It turns out that the standard differential privacy and adaptive differential privacy are equivalent when

δ = 0 [26, 42]. But we will use the adaptive version in our proof since it is easier to work with.
2Note that the adversary here is different from the one in the definition of online learning.

4



Choosing the privacy parameters. It is a commonly agreed principle that for the definition of
differential privacy to be meaningful, the parameter δ should be much less than the inverse of the
dataset size [27]. In this paper, when we say an algorithm A is private without specifying the privacy
parameters, we typically refer to the set-up that ε is a small constant (say 0.01) and δ = o(1/T ).

3 Learning with Pure Differential Privacy

In this section, we study online learning under pure DP constraint. We first propose algorithms
for privately offline learnable hypothesis classes against oblivious adversaries via a reduction to
OPE using the tool of probabilistic representation. Then we turn to adaptive adversaries and present
a hypothesis class that is privately offline learnable but not privately online learnable. Note that
according to the results of [30], this class is online learnable under approximate DP with adaptive
adversaries. Hence, we manifest a strong separation between pure and approximate DP.

3.1 Learning Against Oblivious Adversaries

In this section, we consider an oblivious adversary. We first recall the notion of representation
dimension, which was introduced by Beimel et al. [10] to characterize pure DP offline learnability.
Let D be a distribution over X ×{0, 1} and h ∈ {0, 1}X be a hypothesis. The error of h with respect
to D is defined as errorD(h) = Pr(x,y)∼D[h(x) ̸= y].
Definition 3.1 (Representation Dimension). A probability distribution P over hypothesis classes is
said to be an (α, β)-probabilistic representation forH if for any h⋆ ∈ H and any distribution D over
X × {0, 1} that is labeled by h⋆, we have

Pr
V∼P

[∃v ∈ V s.t. errorD(v) ≤ α] ≥ 1− β.

Let size(P) = maxV ∈supp(P) ln|V |. The representation dimension ofH, denoted by RepDim(H), is
defined as

RepDim(H) = min
P is a (1/4,1/4)-probabilistic representation for H

size(P).

The following lemma from [10] shows that a constant probabilistic representation can be boosted to
an (α, β) one with logarithmic cost in 1/α and 1/β.
Lemma 3.2. There exists an (α, β)-probabilistic representation forH with

size(P) = O(log(1/α) · (RepDim(H) + log log log(1/α) + log log(1/β))).

We first consider the realizable setting. Let S = {(x1, y1), . . . , (xT , yT )} be the sequence chosen by
the adversary and DS be the empirical distribution of S (i.e., Pr(x,y)∼DS

[(x, y) = (xt, yt)] = 1/T
for all t ∈ [T ]). By sampling a hypothesis class V from an (α, β)-probabilistic representation with
1/α < 1/T , we know that it holds with probability at least 1 − β that errorDS

(v) ≤ 1/α < 1/T
for some v ∈ V . This further implies that v is consistent with all examples in S. By Lemma 3.2,
V is finite as long as H has a finite representation dimension. Thus, it suffices to run the DP-OPE
algorithm in [7] with every v ∈ V as an expert.
Theorem 3.3. Let H be a hypothesis class with RepDim(H) <∞. In the realizable setting, there
exists an online learning algorithm that is ε-differentially private and has an expected mistake bound
of O

(
log2 T (RepDim(H)+log log T )2

ε

)
with an oblivious adversary.

The above conclusion directly extends to the agnostic setting by replacing the DP-OPE algorithm
with an agnostic one [8].
Theorem 3.4. Let H be a hypothesis class with RepDim(H) < ∞. In the agnostic setting, there
exists an online learning algorithm that is ε-differentially private and achieves an expected regret of
O
(√

T log T (RepDim(H)+log log T )
ε

)
with an oblivious adversary.

Note that every online learning algorithm can be transformed to a PAC learner by the online-to-batch
conversion [17]. Our result reveals that pure private online learnability against oblivious adversaries
is equivalent to pure private PAC learnability in both realizable and agnostic settings.
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3.2 Learning Against Adaptive Adversaries

We now turn to adaptive adversaries. For finite hypothesis classes, it is still feasible to employ
techniques from DP-OPE [3] or DP continual observation [26, 18, 34] to devise online learning
algorithms (in Appendix F, we give an algorithm with a better mistake bound in the realizable setting).
One may hope that this can be extended to hypothesis class with finite representation dimension, as
we did in the oblivious setting. However, it turns out that our method for oblivious adversaries is not
applicable here. Since the examples are not fixed in advance, we cannot guarantee that the sampled
hypothesis class V contains a consistent hypothesis. Moreover, the famous oblivious-to-adaptive
transformation (see, e.g., [16]), which was used by Golowich and Livni [30] to construct online
learners under approximate DP, also fails to give a sublinear mistake bound. This is because pure
DP only has the basic composition property, which yields a mistake bound that scales linearly with
T (for approximate DP, this can be improved to

√
T by advanced composition). Therefore, it is not

clear if every offline learnable hypothesis class can also be made online learnable against adaptive
adversaries under pure DP.

We will show that this is an impossible mission. Let POINTd be the set of point functions over [d] and
POINTN be the set of point functions over N, where a point function fx : X → {0, 1} is a function
that maps x to 1 and all other elements to 0. Both POINTd and POINTN have a constant representation
dimension and thus are offline learnable under pure DP [10]. In the rest of this section, we will prove
that for any pure DP online learning algorithm for POINTd, an adaptive adversary can force it to make
Ω(min(log d, T )) errors. As a direct corollary, POINTN is not pure privately online learnable against
adaptive adversaries.

We now illustrate the idea of our proof. Let us start by considering a simplified version, where the
algorithm is constrained to be proper, i.e., ht ∈ H = POINTd for every t ∈ [T ]. Then one can
construct a series of data streams Si = {(i, 1), . . . , (i, 1)} for every i ∈ [d]. An accurate proper
learner must output fi for most of the rounds. This allows us to use the packing argument to derive
an Ω(log d) lower bound for T = Θ(log d).

However, the above argument does not apply to the general case where the learner may be improper
since a learner can simply output an all-one function that makes 0 errors on each Si. Therefore, we
have to insert to Si some examples of the form (j, 0) where j ̸= i. This prevents ht from taking 1 on
elements other than i. But when should we insert (j, 0)? And how do we determine the value of j?

Note that till now, we have not used the adversary’s adaptivity. It is necessary to exploit this power
since any oblivious construction can be solved by our algorithm in Theorem 3.3. When the adversary
acts adaptively, the construction becomes a dual online learning game: in each round, the learner
outputs ht as a “data point” and the adversary chooses (i, 1) or some (j, 0) as the “hypothesis”. This
inspires us to leverage tools from online learning to construct the adversary.

We now sketch our idea. In each round, we choose (i, 1) as the data point with probability 1/2, and
otherwise sample a (j, 0) from some probability distribution. We maintain the distribution by the
multiplicative update rule, which is a widely used method in online decision making. The weight
of j is increased by a multiplicative factor whenever ht(j) = 1, and the probability of selecting j is
proportional to its weight. We provide a detailed implementation in Algorithm 1.

Using the standard argument of multiplicative update, we can show that an accurate learner must
predict ht(i) = 1 for most rounds and ht(j) = 1 for very few rounds. This allows us to apply the
packing argument to obtain the following hardness result.

Theorem 3.5. Let ε ≤ O(1) and d ≥ 2. Any ε-differentially private online learning algorithm for
POINTd must incur a mistake bound of Ω(min(log d/ε, T )) in the adaptive adversarial setting.

Since POINTd is a subset of POINTN for any d, the above result directly implies that POINTN is not
online learnable with adaptive adversaries under pure DP. This shows a strong separation between
pure DP and approximate DP.

Corollary 3.6. Let ε ≤ O(1). In the adaptive adversarial setting, any ε-differentially private online
learning algorithm for POINTN must make Ω(T ) mistakes.
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Algorithm 1: Adaptive adversary for POINTd
Input: the number of rounds T ; online learning algorithm A; input data stream S
Output: hypotheses h1, . . . , hT outputted by A

1 w0(j)← 1 for all j ∈ [d]
2 for t = 1, . . . , T do
3 (xt, yt)← S[t]

4 Set p(j)← wt−1(j)∑
k∈[d]\{xt}

wt−1(k)
for j ∈ [d] \ {xt}

5 With probability 1/2, sample j ∼ p and set (xt, yt)← (j, 0)
6 Present (xt, yt) to A and receive ht from A
7 Update wt(j) = wt−1(j) · eht(j) for all j ∈ [d]
8 end
9 return h1, . . . , hT

4 A General Lower Bound on the Number of Mistakes

In this section, we prove an Ω(LD(H) log T ) lower bound on the number of mistakes made by any
private learner for every hypothesis classH that contains a pair of non-complementary hypotheses.3
This implies that as T →∞, any private algorithm will make an infinite number of mistakes. Note
that without privacy, the Standard Optimal Algorithm always makes at most LD(H) mistakes [39].
Thus, our lower bound reveals a universal separation between non-private and private models.

Our proof proceeds in two steps. We first show an Ω(log T ) lower bound in Section 4.1. Then based
on this result, we prove the Ω(LD(H) log T ) lower bound in Section 4.2.

4.1 A Lower Bound for Non-complementary Hypotheses

We first define the notion of complementary hypotheses.
Definition 4.1. We say two different hypotheses f1 and f2 over X are complementary if f1(x) =
1− f2(x) for all x ∈ X . Otherwise we say they are non-complementary.

It is worth noticing the following important fact about non-complementary hypotheses, where the
first item directly comes from the above definition and the second is because f1 and f2 are different.
Fact 4.2. Let f1 and f2 be two different hypotheses over X that are non-complementary. Then:

1. There exists some u0 ∈ X such that f1(u0) = f2(u0);

2. There exists some u1 ∈ X such that f1(u1) ̸= f2(u1).

We remark that this fact is also used by Dmitriev et al. [22] to prove a lower bound (in their work, they
call it a “distinguishing tuple”). However, they make a strong assumption that when running on a data
stream containing (u0, f1(u0)) only, with high probability, the algorithm predicts ht(u1) = f1(u1)
simultaneously for all t ∈ [T ]. This largely weakens their bound since most DP algorithms clearly do
not have such property.

To see how to use Fact 4.2, consider a hypothesis class that contains a pair of non-complementary
hypotheses. We will focus on u0, u1 and f1, f2 only and ignore all other elements and hypotheses. In
our proof, we will use (u0, f1(u0)) = (u0, f2(u0)) as a dummy input that provides no information
about which hypothesis is correct. Let S0 be a sequence that contains the dummy input only and A
be an online learning algorithm. Without loss of generality, we can assume that Pr[A(S0)t(u1) =
f1(u1)] ≥ 1/2 for all t ∈ [T ] (we can make this hold for half of the rounds by swapping f1 and f2,
and ignore the rounds that it does not hold). We will insert (u1, f2(u1))’s to make algorithm error.

Our proof relies on the classical packing argument. For ease of presentation, we only consider pure
DP here, but the proof strategy easily extends to approximate DP via group privacy under approximate
DP. In the framework of packing argument, we will construct a series of input sequences S1, . . . , Sm

3Such type of classes is equivalent to the notion of non-trivial classes in learning with data poisoning. See,
e.g., [12] and [31].
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from S0 and disjoint subsets of output O1, . . . , Om such that S0 and Si differ by at most k elements
for every i ∈ [m], and any algorithm will make Ω(k) mistakes on Si. Then by group privacy, for any
ε-differentially private algorithm Alg we have

1 ≥
m∑
i=1

Pr[Alg(S0) ∈ Oi] ≥ e−kε
m∑
i=1

Pr[Alg(Si) ∈ Oi].

Thus, a lower bound on Pr[Alg(Si) ∈ Oi] implies a lower bound on k by the above inequality.

The first challenge here is the construction of Si. By our assumption, we can insert a (u1, f2(u1))
at any position of S0 to cause a loss of 1/2. However, when inserting the second one, the loss may
decrease by a multiplicative factor of eε. Following this argument, no matter how many (u1, f2(u1))’s
are inserted, we can only bound the expected number of mistakes by

1

2

(
1 + e−ε + e−2ε + · · ·

)
= constant,

failing to give an Ω(k) bound for k = log T .

We overcome this by constructing them according to the given algorithm A instead of arbitrary
algorithms. We will assume A has a mistake bound of O(log T ) and seek to derive a contradiction.
We now depict our construction. For S1, we let S = S0 be the initial data stream. We then
go through every t ∈ [T ] in an increasing order, insert a (u1, f2(u1)) at time-step t whenever
Pr[A(S)t(u1) = f1(u1)] ≥ 1/3, and let S1 = S at the end. By our assumption, the number of
(u1, f2(u1))’s should not exceed k = 3 ·O(log T ). Hence, S1 and S0 differ by at most k = O(log T )
points. Moreover, by our construction, for each t ∈ [T ] such that S1[t] = (u0, f1(u0)), we must have
Pr[A(S1)t(u1) = f1(u1)] < 1/3.

Now let us construct S2. We find the earliest round t1 such that Pr[A(S1)t1(u1) = f1(u1)] < 1/3.
The property we mentioned above ensures the existence of such t1 as long as k < T . We then perform
a similar procedure as in the construction of S1, but instead of starting from t = 1 and going over the
entire time span [T ], we start from t = t1. The online nature of A allows us to use t1 to distinguish
S1 and S2 (as well as S3, . . . , Sm, which we will construct later) since

Pr[A(S1)t1(u1) = f1(u1)] < 1/3 < 1/2 ≤ Pr[A(S2)t1(u1) = f1(u1)].

In other words, A is more likely to predict ht1(u1) = f1(u1) on S2 but is less likely to do so on S1.

We repeat the construction for i = 3, . . . ,m. For each i, we first identify the minimal ti−1 such that
Pr[A(Sj)ti−1

] < 1/3 for every j < i. Then we insert (u1, f2(u1))’s starting from t = ti−1. By the
same argument, ti−1 can be used to distinguish S1, . . . , Si−1 and Si, . . . , Sm. We formally describe
the construction procedure in Algorithm 2.

At the end, we will have m sequences S1, . . . , Sm and m − 1 time-steps t1, . . . , tm−1 such that
Pr[A(Si)tj (u1) = f1(u1)] < 1/3 for any j ≥ i and Pr[A(Si)tj (u1) = f1(u1)] ≥ 1/2 for any
j < i. It can be proved that m = Ω(T/k), which is sufficiently large for k = O(log T ). Now we run
A on some S = Si. Suppose we can figure out the index i, we can apply the packing argument to
derive an Ω(logm) = Ω(log T ) lower bound.

Here comes the second challenge. Though we can use the output of A to estimate Pr[A(S)tj (u1) =
f1(u1)] for a given j, we only have a constant success probability. To make the estimate accurate for
every j ∈ [m − 1], one has to achieve a success probability of 1 − 1/m for each j. This requires
running A for O(logm) = O(log T ) times and taking the average, which is prohibited since the
resulting algorithm would be O(ε log T )-DP, yielding a meaningless Ω(1) lower bound.

We address this issue by using binary search. We start with {t1, . . . , tm−1} and select the middle
point tmid in each iteration. By averaging over multiple copies of A(S), we can figure out whether
we should go left or go right. This can be done in O(logm) = O(log T ) iterations, and we only
require the decision made on each middle point to be correct. Thus, the number of independent copies
can be reduced to O(log log T ), which leads to a lower bound of Ω(log T/ log log T ).

The above approach is already sufficient to show an unbounded number of mistakes, but we can
further refine our method to achieve an Ω(log T ) bound. The key observation here is that we do not
need the probability of outputting i on Si to be a constant. In fact, a success probability of 1/m1−Ω(1)

is enough to obtain k ≥ Ω(log(m/m1−Ω(1))) = Ω(log T ).
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Algorithm 2: Constructing S0, S1, . . . , Sm and t1, . . . , tm−1

Input: the number of rounds T ; online learning algorithm A; threshold k; f1, f2 and u0, u1

Output: a single data stream Si, or a collection of m data streams S1, . . . , Sm along with
m− 1 time-steps t1, . . . , tm−1

1 S0 ← {(u0, f1(u0)), . . . , (u0, f1(u0))}
2 m← ⌈T/k⌉
3 for i = 1, . . . ,m do
4 Si ← S0

5 Find the smallest ti−1 such that ∀j ∈ [i− 1],Pr[A(Sj)ti−1
(u1) = f1(u1)] < 1/3

6 for t = ti−1, . . . , T do
7 if Pr[A(Si)t(u1) = f1(u1)] ≥ 1/3 then
8 Si[t]← (u1, f2(u1))
9 end

10 end
11 if |{t ∈ [T ] : Si[t] = (u1, f2(u1))}| > k then
12 return Si

13 end
14 end
15 return S1, . . . , Sm and t1, . . . , tm−1

We thus “smooth” our binary search. In each iteration, instead of going left or right deterministically,
we go to the side that is more likely to be correct with some probability p > 1/2. We show that, by
choosing p appropriately, this approach will output i on Si with probability 1/m1−Ω(1). Moreover, it
only requires running the online learning algorithm O(1) times, avoiding the log log T blow-up of
privacy parameters. The Ω(log T ) lower bound then follows by applying the packing argument. We
illustrate this approach in Algorithm 3.

Theorem 4.3. Let c ∈ (0, 1) be some constant. Suppose ε ≥ lnT/T 1−c and δ ≤ ε/T . If H is
a hypothesis class that contains two non-complementary hypotheses, then any (ε, δ)-differentially
private online learning algorithm for H must incur a mistake bound of Ω(log T/ε) even in the
oblivious adversarial setting.

One may ask whether the existence of a non-complementary pair is a necessary condition for the
number of mistakes to be unbounded. Note that there are only two cases that H contains no non-
complementary pairs: either |H| = 1 orH = {f1, f2} such that f1 = 1−f2. The former is definitely
online learnable with zero mistakes. For the latter one, we give an algorithm with a finite expected
mistake bound in Appendix F, showing that the condition is indeed necessary and sufficient.

Algorithm 3: Distinguishing S1, . . . , Sm

Input: the number of rounds T ; online learning algorithm A; time-steps t1, . . . , tm−1; input
data stream S ∈ {S1, . . . , Sm}; f1, f2 and u0, u1 used in Algorithm 2

Output: an index i ∈ [m]

1 Run A on S for 360 times, obtain 360 copies of output {h(w)
1 , . . . , h

(w)
T } for w ∈ [360]

2 l← 1, r ← m
3 while l < r do
4 mid← ⌊ l+r

2 ⌋
5 if |{h(w)

tmid
(u1) = f1(u1) : w ∈ [360]}| < 150 then

6 Let r ← mid with probability 3/4, and l← mid+ 1 otherwise
7 else
8 Let l← mid+ 1 with probability 3/4, and r ← mid otherwise
9 end

10 end
11 return l

9



4.2 Incorporating the Littlestone Dimension

Building upon the Ω(log T ) lower bound, we are now ready to show an Ω(LD(H) log T ) lower bound
for general hypothesis classes. Let A be a private online learning algorithm for H. Consider a
shattered tree of depth LD(H) ≥ 2. Let u0 denote its root and u1 be its left child. By the definition of
shattered tree, there exists f1, f2 ∈ H such that f1(u0) = f2(u0) = 0 and 0 = f1(u1) ̸= f2(u1) = 1.
Note that f1, f2 and u0, u1 satisfy the property mentioned in Fact 4.2. We can thus apply Theorem 4.3
to find a sequence S1 of length T ′ on which A makes Ω(log T ′) mistakes.

Till now, only the true labels of u0 and u1 are revealed to the learner. Therefore, we can go into the
corresponding subtree of u1 and reiterate the above operation. After repeating it LD(H)/2 times, we
obtain a series of completely non-overlapping sequences S1, . . . , SLD(H)/2 and on any one of them A
makes Ω(log T ′) mistakes. By concatenating them together and setting T ′ = T/LD(H), we arrive at
the Ω(LD(H) log T ) lower bound assuming T > LD(H)1+c.

Theorem 4.4. Let c1 ∈ (0, 1) and c2 > 0 be two constants. Suppose ε ≥ lnT/T (1−c1)c2/(1+c2)

and δ ≤ ε/T . If H is a hypothesis class that contains two non-complementary hypotheses, then
any (ε, δ)-differentially private online learning algorithm for H must incur a mistake bound of
Ω(LD(H) log T/ε) even in the oblivious adversarial setting given that T > LD(H)1+c2 .

Note that the class of all hypotheses over [d] has a Littlestone dimension of ⌊log2 d⌋. The above
theorem directly implies the following lower bound for the OPE problem. This improves the lower
bound in [7] by a log T factor.

Corollary 4.5. Let c1 ∈ (0, 1) and c2 > 0 be two constants. Suppose ε ≥ lnT/T (1−c1)c2/(1+c2)

and δ ≤ ε/T . In the realizable setting, any (ε, δ)-differentially private algorithm for OPE has a
regret of Ω(log d log T/ε) even against oblivious adversaries given that T > ⌊log2 d⌋1+c2 .

4.3 Comparing to the Upper Bounds

We have shown an ΩH(log T ) lower bound on the number of mistakes made by any private online
learning algorithm. We now compare it to existing upper bounds.

For pure DP, we provide an upper bound of OH(log2 T · (log log T )2). This is larger than our lower
bound by a factor of log T · (log log T )2. In Appendix F, we show that OH(log T ) is achievable for
some specific hypothesis classes. Whether OH(log T ) is attainable for generic hypothesis classes
remains open.

For approximate DP, Golowich and Livni [30] proposed an algorithm with OH(log T ) mistakes
against oblivious adversaries. Thus, our lower bound is tight assuming a constant Littlestone
dimension. However, their algorithm exhibits an OH(

√
T ) upper bound against upper bound against

adaptive adversaries. Whether this can also be improved to OH(log T ) is an interesting open
question.
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A Discussion

In this work, we investigate online learning with differential privacy and provide separation results
that distinguish non-private, pure private, and approximate private constraints. Below, we discuss
some limitations and future work.

Tighter dependence on T under pure DP. Our algorithm for pure private online learning with
oblivious adversaries exhibits a log2 T · (log log T )2 dependence on T (Theorem D.1). We also
provide algorithms for POINTN (Theorem F.1) and Thresholdd (Theorem F.3) that have a OH(log T )
mistake bound. It is interesting to find out if a log T dependence is achievable for generic hypothesis
classes.

Broader range of privacy parameters. Our Ω(log T ) lower bound requires δ < 1/T (Theo-
rem 4.3) for constant ε, while the result in [21] only needs δ < 1/ log T . Although it is a com-
monly accepted criterion to select δ = o(1/T ), we still wonder whether our bound also holds for
δ < 1/ log T . Moreover, our results do not cover the cases where ε or T are extremely small. Is it
possible to cover the entire range?

Mistake bound against stochastic adversaries. One benefit of online learning is that it does not
require the data to be i.i.d. generated. But in some scenarios, we may still have i.i.d. data but have to
make online predictions. Clearly, such stochastic adversaries are weaker than oblivious ones. Our
construction in Algorithm 2 does not apply to stochastic adversaries. Can we overcome the Ω(log T )
barrier assuming stochastic adversaries?

Lower bound on learning with constant success probability. In Section 4.1, we show that the
expected number of mistakes incurred by any algorithm is Ω(log T ). It is unclear whether the
Ω(log T ) cost remains inevitable or a mistake bound of o(log T ) can be achieved if we only require
the learner to succeed with a constant probability (e.g., 0.99).

B Broader Impacts

Privacy has become a fundamental concern in today’s machine learning community. In this work, we
show several lower bounds and upper bounds on private online learning tasks. While our contributions
are theoretical in nature, and we do not see any direct societal implications, we hope that our results
will reveal the intrinsic structures of the problems and provide insights for the development of
practical online learning algorithms with better privacy-utility trade-offs.

C Additional Preliminaries

Theorem C.1 (Hoeffding’s Inequality [33]). Let Z1, . . . , Zn be independent bounded random vari-
ables with Zi ∈ [a, b]. Then

Pr

[
1

n

n∑
i=1

(Zi − E[Zi]) ≥ t

]
≤ exp

(
− 2nt2

(b− a)2

)
for all t ≥ 0.

The Laplace mechanism ensures privacy by adding Laplace noise.

Definition C.2 (Sensitivity). Let f : Zn → R be a function. The sensitivity of f is defined by

∆f = max
S1 and S2 differ in one entry

|f(S1)− f(S2)|.

Definition C.3 (Laplace Distribution). The Laplace distribution with parameter b and mean 0, denoted
by Lap(b), is defined by the following probability density function:

f(x) =
1

2b
exp(−|x|/b).
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Lemma C.4 (The Laplace Mechanism [24]). Let r ∼ Lap(∆f/ε) be a Laplace random variable.
The algorithm that outputs f(S) + r satisfies ε-differential privacy. Moreover, with probability 1− β
it holds that |r| ≤ ln(1/β)∆f/ε.

We also need the following AboveThreshold algorithm (aka the sparse vector technique) [25].

Algorithm 4: AboveThreshold
Input: database S; privacy parameter ε; threshold L; a series of online and adaptively chosen

sensitivity-1 queries q1, . . .
Output: a stream of response a1, . . .

1 L̂← L+ Lap(2/ε)
2 for i = 1, . . . , do
3 q̂i ← qi(S) + Lap(4/ε)

4 if q̂i ≥ L̂ then
5 ai ← ⊤
6 halt
7 else
8 ai ← ⊥
9 end

10 end

Lemma C.5. Algorithm 4 is ε-differently private.

If we only want to identify a query with a large value instead of the values of all queries, the report-
noisy-max mechanism gives a much better utility guarantee. It can be implemented by adding Laplace
noise or directly applying the exponential mechanism [40].
Theorem C.6 (Report-Noisy-Max). Let S be a database and q1, . . . , qd be d sensitivity-1 queries.
There exists an ε-differentially private algorithm that outputs an index i such that

qi(S) ≥ max
j∈[d]

qj(S)−
2(ln(d) + ln(1/β))

ε

with probability at least 1− β.

The composition property allows us to combine multiple differentially private algorithms into one,
even if they are executed adaptively.
Lemma C.7 (Basic Composition [23, 27]). Let A1 : Zn → R1 be an algorithm that satisfies
(ε1, δ1)-DP, and for 2 ≤ i ≤ k let Ai : R1 × · · · × Ri−1 ×Zn → Ri be an algorithm that satisfies
(εi, δi)-DP for any given (r1, . . . , ri−1) ∈ R1 × · · ·Ri−1. Let A be an algorithm that

1. Computes r1 ← A1(S);

2. For each i = 2, . . . , k, computes ri ← Ai(r1, . . . , ri−1, S);

3. Outputs r1, . . . , rk.

Then A is (
∑k

i=1 εi,
∑k

i=1 δi)-DP.

D Proofs from Section 3

D.1 Proof of Theorem 3.3

We use the following DP-OPE algorithm from [7].
Theorem D.1. For any 0 < β < 1/2, there exists an ε-differentially private algorithm such that with
probability 1− β it has regret

O

(
log2 d+ log(T/β) log(d/β)

ε

)
against oblivious adversaries in the realizable setting.

15



Proof of Theorem 3.3. Let α = β = 1/2T . By Lemma 3.2, there exists an (α, β)-probabilistic
representation ofH with

size(P) = O(log(T ) · (RepDim(H) + log log T )).

Let S = {(x1, y1), . . . , (xT , yT )} be the sequence chosen by the adversary and DS be the empirical
distribution of S, namely, Pr(x,y)∼DS

[(x, y) = (xt, yt)] = 1/T for all t ∈ [T ]. Then we have

Pr
V∼P

[∃v ∈ V s.t. yt = v(xt) ∀t ∈ [T ]] = Pr
V∼P

[∃v ∈ V s.t. errorDS
≤ 1/α = 1/2T ]

≥ 1− β

= 1− 1/2T.

Conditioning on this event, we then run the algorithm in Theorem D.1 with V being the set of experts
and ℓt(v) = 1[v(xt) ̸= yt]. With probability 1− 1/2T , the number of mistakes is at most

O

(
log2|V |+ log T log|V |+ log2 T

ε

)
= O

(
log2 T (RepDim(H) + log log T )2

ε

)
.

By the union bound, the expected number of mistakes is bounded by

1/T · T + (1− 1/T ) ·O
(
log2 T (RepDim(H) + log log T )2

ε

)
.

D.2 Proof of Theorem 3.4

The proof follows the same steps as the proof of Theorem 3.3. The only difference is that we use the
following DP-OPE algorithm from [8] in the agnostic setting.
Theorem D.2. There exists an ε-differentially private algorithm that has an expected regret of

E

[
T∑

t=1

ℓt(it)−min
i∈[d]

T∑
t=1

ℓt(i)

]
= O

(√
T log d

ε

)
against oblivious adversaries in the agnostic setting.

Proof of Theorem 3.4. We can use the same argument as in the proof of Theorem 3.3 to sample a
hypothesis class V from P such that ln|V | = O(log(T ) · (RepDim(H) + log log T )) and

Pr
V∼P

[∃v ∈ V s.t. v(xt) = h⋆(xt)] ≥ 1− 1/2T,

where h⋆ = argminh∈HerrorDS
(h) is a minimizer of the error on S. Running the algorithm in

Theorem D.2 gives an expected regret of at most

(1− 1/2T ) ·O

(√
T log|V |

ε

)
+ T · 1/2T = O

(√
T log T (RepDim(H) + log log T )

ε

)
.

D.3 Proof of Theorem 3.5

We start with the following claim, which states that Algorithm 1 is an adversary that preserves privacy.
Claim D.3. Suppose A satisfies ε-adaptive differential privacy. Let B be the algorithm that runs
Algorithm 1 with A. Then B is ε-differentially private.

Proof. Let S1 and S2 be two input sequences that differ in only one entry. Consider an adversary Adv
that runs Algorithm 1 on S1 and S2 simultanously using the same randomness, and interacts with A
using Sb for some b ∈ {1, 2}. Let S′

1 and S′
2 be the resulting sequences. Note that when S1[t] = S2[t],

with the same randomness we have S′
1[t] = S′

2[t] since the weights depend on h1, . . . , ht−1 only.
Thus, S′

1 and S′
2 also differ in only one entry. By the definition of adaptive differential privacy, it

holds that for any event O,
Pr[A ◦ Adv(1) ∈ O] ≤ eε Pr[A ◦ Adv(2) ∈ O].

The conclusion follows by observing that the output distributions of A ◦ Adv(b) and B(Sb) are
identical.
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Proof of Theorem 3.5. Let ε ≤ 0.01. We first consider T ∈ [0.1 ln d/ε, 0.2 ln d/ε] and prove a
lower bound of Ω(T ) = Ω(log d/ε). To this end, we will assume that there exists an online
learning algorithm A with an expected mistake bound of 0.01T that is ε-adaptive DP and derive a
contradiction.

Let B be the algorithm that runs Algorithm 1 withA. By Claim D.3, we know that B is ε-differentially
private. Now suppose we are running B on Si = {(i, 1), . . . , (i, 1)} for some i ∈ [d]. Let ct(j) =∑t

r=1 hr(j), wt(j) = ect(j), Φt =
∑

j∈[d]\{i} wt(j), and pt(j) = wt(j)/Φt. The expected number
of mistakes made by A can be expressed as

T∑
t=1

E

1
2
· I[ht(i) = 0] +

1

2

∑
j∈[d]\{i}

pt−1(j) · ht(j)

 ≤ 0.01T. (1)

Now consider the potential Φt. At the beginning, we have Φ0 = d− 1. We can upper bound Φt by

Φt =
∑

j∈[d]\{i}

wt(j)

=
∑

j∈[d]\{i}

wt−1(j)e
ht(j)

= Φt−1

∑
j∈[d]\{i}

pt−1(j)e
ht(j)

≤ Φt−1

∑
j∈[d]\{i}

pt−1(j)(1 + 2ht(j))

= Φt−1

1 + 2
∑

j∈[d]\{i}

pt−1(j)ht(j)


≤ Φt−1 exp

2
∑

j∈[d]\{i}

pt−1(j)ht(j)

 ,

where we use ex ≤ 1 + 2x for 0 ≤ x ≤ 1 in the forth line and 1 + x ≤ ex for x ∈ R in the last line.
Then it follows by induction that

ΦT ≤ Φ0 exp

2

T∑
t=1

∑
j∈[d]\{i}

pt−1(j)ht(j)

 .

Taking the logarithm on both sides, the linearity of expectation gives

E[lnΦT ] ≤ E

lnΦ0 + 2

T∑
t=1

∑
j∈[d]\{i}

pt−1(j)ht(j)


= ln(d− 1) + 2

T∑
t=1

∑
j∈[d]\{i}

E[pt−1(j)ht(j)]

≤ ln(d− 1) + 0.04T

≤ 0.14T,

where the third line is due to (1) and the last inequality uses the facts that 0.1 ln d/ε ≤ T and
ε ≤ 0.01.

By Markov’s inequality, with probability at least 5/6 we have lnΦT ≤ 0.84T . This implies that, for
every j ̸= i, we have

cT (j) = lnwT (j) ≤ lnΦT ≤ 0.84T.

We then bound cT (i). Note that by (1) we have

E[T − cT (i)] = E

[
T∑

t=1

I[ht(i) = 0]

]
≤ 0.02T.
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Applying Markov’s inequality again, with probability at least 5/6 we have T − cT (i) ≤ 0.12T ,
or equivalently, cT (i) ≥ 0.88T . By the union bound, it holds with probability 2/3 that cT (i) ≥
0.88T > 0.84T ≥ cT (j) for every j ̸= i.

Let Oi be the event that cT (i) > cT (j) for every j ̸= i, then O1, . . . , Od are disjoint. Then by group
privacy,

1 ≥
d∑

i=1

Pr[B(S1) ∈ Oi] ≥ e−Tε
d∑

i=1

Pr[B(Si) ∈ Oi] ≥ 2/3 · de−Tε.

Rearranging the inequality yields T ≥ (ln d− ln 1.5)/ε > 0.2 ln d/ε when d ≥ 2, a contradiction.

Now, let us deal with the remaining range. When T > 0.2 ln d/ε, the algorithm must make Ω(log d/ε)
in the first ⌊0.2 ln d/ε⌋ rounds. For T < 0.1 ln d/ε, supposeA makes no more than 0.005T mistakes
in expectation. Then we can repeatedly initiate A after every T round to obtain an algorithm that
makes at most 0.005kT mistakes in expectation for a total of kT rounds, where

k =

⌊
0.2 ln d/ε

T

⌋
≥ 0.5 · 0.2 ln d/ε

T
=

0.1 ln d/ε

T
.

This contradicts our previous conclusion since kT ∈ [0.1 ln d/ε, 0.2 ln d/ε]. We thus obtain the Ω(T )
lower bound as desired.

E Proofs from Section 4

E.1 Proof of Theorem 4.3

We start by analyzing Algorithm 2. As we discussed in Section 4.1, it constructs a series of data
sequences and a list of time-steps that can be used to distinguish the sequences. We formalize this in
the following lemma.

Lemma E.1. For any threshold k and online learning algorithm A such that Pr[A(S0)t(u1) =
f1(u1)] ≥ 1/2 for all t ∈ [T ], where S0 = {(u0, f1(u0)), . . . , (u0, f1(u0))} and f1, f2, u0, u1

satisfy the property listed in Fact 4.2, Algorithm 2 either outputs an S on which A makes more than
k/3 mistakes in expectation, or S1, . . . , Sm and t1, . . . , tm−1 such that

1. m = ⌈T/k⌉.

2. For each i ∈ [m], we have Pr[A(Si)tj (u1) = f1(u1)] < 1/3 for all j ≥ i and
Pr[A(Si)tj (u1) = f1(u1)] ≥ 1/2 for all j ≤ i− 1.

Proof. If Algorithm 2 outputs a single S = Si, it inserts at least k + 1 (u1, f2(u1))’s to Si. By our
construction, each of them incurs a mistake with a probability of at least 1/3. Therefore, the expected
number of mistakes made by A on Si is at least (k + 1)/3 > k/3. Now suppose Algorithm 2 does
not output a single data stream, this means for every i, Algorithm 2 replaces at most k elements when
constructing Si from S0.

For each i ∈ [m], the algorithm will first find the minimal ti−1 such that Pr[A(Sj)ti−1
(u1) =

f1(u1)] < 1/3 for all 1 ≤ j ≤ i − 1, which is exactly the first half of item 2. Moreover, this also
suggests that t1 ≤ · · · ≤ tm. Due to the construction process, the first ti−1 entries of Si will be the
same as S0. Therefore, we have Pr[A(Si)tj (u1) = f1(u1)] ≥ 1/2 for any 1 ≤ j ≤ i− 1 since A is
an online algorithm. This proves the second half of item 2.

Now it remains to show the construction actually runs for ⌈T/k⌉ rounds, i.e., we can find ti−1 for any
i ≤ ⌈T/k⌉. Since S0 and any one of S1, . . . , Si−1 differ at most k entries, the pigeonhole principle
suggests that there exists some t ∈ [(i − 1)k + 1] such that S1[t] = · · · = Si−1[t] = (u0, f1(u0)).
We next prove that t > tj for every 1 ≤ j < i− 1. For the sake of contradiction, assume that j is
the smallest index such that tj > t and j < i− 1 (it is impossible for t to be equal to any tj since
we always have Sj+1[tj ] = (u1, f2(u1)) by our construction). Then we have t1 ≤ · · · ≤ tj−1 < t.
This implies Pr[A(Sl)t(u1) = f1(u1)] < 1/3 for every l ≤ j, otherwise Algorithm 2 will put a
(u1, f2(u1)) at time-step t when constructing Sl. By the minimality of tj , we should choose tj to be
t when constructing Sj+1, contradicting our assumption that tj > t.

18



Therefore, we have t > tj for every 1 ≤ j < i−1. As we just argued, it follows that Pr[A(Sl)t(u1) =
f1(u1)] < 1/3 for all l ∈ [i− 1] otherwise Algorithm 2 will put a (u1, f2(u1)) at this location. Thus,
we have ti−1 ≤ t ≤ (i−1)k+1 ≤ (⌈T/k⌉−1)k+1 ≤ T by the minimality of ti−1. This completes
the proof.

The following lemma suggests that the condition in the Lemma E.1 can be assumed without loss of
generality.

Lemma E.2. Given f1, f2 and u0, u1 as in Fact 4.2. LetA be a randomized online learning algorithm
and S0 = {(u0, f1(u0)), . . . , (u0, f1(u0))}. There exists b ∈ {1, 2} such that

|{t : Pr[A(S0)t(u1) = fb(u1)] ≥ 1/2}| ≥ T/2.

Proof. Let nb = |{t : Pr[A(S0)t(u1) = fb(u1)] ≥ 1/2}| for b ∈ {1, 2}. We have n1 + n2 ≥ T .
Therefore, either n1 ≥ T/2 or n2 ≥ T/2.

Proof of Theorem 4.3. Let A be an (ε, δ)-differentially private online learning algorithm and S0 =
{(u0, f1(u0)), . . . , (u0, f1(u0))}. By Lemma E.2, we can without loss of generality assume that
Pr[A(S0)t(u1) = f1(u1)] ≥ 1/2 for all t ∈ [T ] by ignoring all time-steps that do not have such
property.

Let k = ⌊c lnT/(3600ε)⌋. We will assume that A makes no more than k/3 mistakes in ex-
pectation and derive a contradiction. By Lemma E.1, Algorithm 2 will output S1, . . . , Sm and
t1, . . . , tm−1 with m = ⌈T/k⌉. Moreover, Pr[A(Si)tj (u1) = f1(u1)] < 1/3 for every j ≥ i and
Pr[A(Si)tj (u1) = f1(u1)] ≥ 1/2 for every j ≤ i− 1.

Let B be the algorithm that runs Algorithm 3 with A. The basic composition property immediately
guarantees that B is (360ε, 360δ)-differentially private.

We now examine the probability that B outputs i on Si. If so, B must go through a series of time-step
ti1 , . . . , tin in the binary search, where n ≤ ⌈log2 m⌉ ≤ log2 m+ 1 = log2(2m). For each tij , let
Xj be a random variable that takes 1 if

I
[∣∣∣{h(w)

tij
(u1) = f1(u1) : w ∈ [360]

}∣∣∣ < 150
]
= I [ij ≥ i] .

and takes 0 otherwise. Conditioning on Xj’s, the probability that B outputs i can be expressed as

Pr[B(Si) = i |X1, . . . , Xn] = Πn
j=1 (0.75Xj + 0.25(1−Xj)) = 0.75

∑n
j=1 Xj0.25n−

∑n
j=1 Xj .

By Hoeffding’s inequality, for each Xj we have

E[Xj ] = Pr[Xj = 1] ≥ 1− exp
(
−2 · 360 · (30/360)2

)
= 1− e−5 > 0.99.

It then follows by the linearity of expectation and Markov’s inequality that

Pr[X1 + · · ·+Xn ≥ 0.97n] ≥ 2/3.

Putting it all together gives

Pr[B(Si) = i] ≥ Pr[B(Si) = i |X1 + · · ·+Xn ≥ 0.97n] · Pr[X1 + · · ·+Xn ≥ 0.97n]

≥ 2/3 · 0.750.97n · 0.250.03n

≥ 2/3 ·
(
1

2
· 21/2

)0.97n

·
(
1

2
· 2−1

)0.03n

= 2/3 · 2−n · 2(0.97/2−0.03)n

= 2/3 · 2−0.545n

≥ 2/3 · (2m)−0.545.

19



We now apply the packing argument. Since B is (360ε, 360δ)-differentially private, it follows by
group privacy that

1 =

m∑
i=1

Pr[B(S0) = i]

≥
m∑
i=1

(
e−360kε Pr[B(Si) = i]− 1− e−360kε

e360ε − 1
· 360δ

)
≥ 2/3 · 2−0.545 ·m0.455 · e−360kε −m · 1− e−360kε

e360ε − 1
· 360δ

≥ 0.45m0.455 · e−360kε −m · 1− e−360kε

e360ε − 1
· 360δ.

If 0.45m0.455 · e−360kε ≥ 2m · 1−e−360kε

e360ε−1 · 360δ, then we have

0.225m0.455 · e−360kε ≤ 0.45m0.455 · e−360kε −m · 1− e360kε

e360ε − 1
· 360δ ≤ 1.

Rearranging the above gives

k ≥ ln 0.225 + 0.455 lnm

360ε

≥ ln 0.225 + 0.455 ln(T/k)

360ε

≥
ln 0.225 + 0.455 ln

(
3600Tε
c lnT

)
360ε

≥ ln 0.225 + 0.455c lnT + 0.455 ln(3600/c)

360ε

≥ 0.455c lnT

360ε
,

where in the forth inequality we use the condition ε ≥ lnT/T 1−c. This contradicts our assumption
that k ≤ c lnT/3600ε.

If otherwise 0.45m0.455 · e−360kε < 2m · 1−e−360kε

e360ε−1 · 360δ, we have

360kε > ln

(
e360ε − 1

360δ
· 0.225m−0.545 + 1

)
> ln

(
e360ε − 1

360δ

)
+ ln 0.225− 0.545 lnm

≥ ln(ε/δ)− 0.545 lnT + ln 0.225

≥ 0.455 lnT + ln 0.225

≥ 0.1 lnT

when T ≥ 100. Then it follows that k > 0.1 lnT/(360ε) > c lnT/3600ε, again a contradiction.

In conclusion, any (ε, δ)-differentially private algorithm makes (k+1)/3 ≥ c lnT/(10800ε) mistakes
in expectation when T ≥ 100. This gives the Ω(log T/ε) lower bound.

E.2 Proof of Theorem 4.4

Proof. When LD(H) = 1, the result is directly implied by Theorem 4.3. From now on, we will
assume LD(H) ≥ 2.

Let m = ⌊LD(H)/2⌋ and T ′ = ⌊T/m⌋ ≥ ⌊2T/LD(H)⌋ ≥ T/LD(H) > T 1−1/(1+c2) = T c2/(1+c2).
Pick a shattered tree for H of depth LD(H). Let u0 be its root and u1 be the left child of u0. The
definition of shattered tree indicates that there exists f1, f2 ∈ H such that f1(u0) = f2(u0) = 0 and
0 = f1(u1) ̸= f2(u1) = 1. By Theorem 4.3, for any (ε, δ)-differentially private online learner with
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ε ≥ lnT/T c2(1−c1)/(1+c2) > lnT ′/T ′1−c1 and δ ≤ ε/T < ε/T ′, we can construct a sequence S1

such that it makes in expectation Ω(log T ′/ε) = Ω(log T/ε) mistakes on S1. Moreover, S1 only
contains (u0, 0) and (u1, b) for some b ∈ {0, 1}.
Let H′ = {h ∈ H : h(u0) = 0 and h(u1) = b}. If LD(H) ≥ 4, we then have LD(H′) ≥
LD(H)− 2 ≥ 2 since the subtree rooted at the child (left if b = 0, right if b = 1) of u1 is shattered
byH′ and has a depth of LD(H)− 2. Thus, we can similarly construct a sequence S2 such that the
algorithm makes Ω(log T/ε) errors. Importantly, the entries in S2 are completely different from
those in S1.

We repeat the above process until we reach a hypothesis class with Littlestone dimension ≤ 1 and
construct a series of sequences S1, . . . , Sm that have non-overlapping entries. On each of them, the
learner makes Ω(log T/ε) mistakes in expectation. Let S be the stream formed by concatenating
S1, . . . , Sm together. The length of S is at most mT ′ ≤ T while the expected number of mistakes on
S is Ω(LD(H) log T ).

F Additional Algorithms

In this section, we provide several algorithms for various tasks. Note that some of the upper bounds
hold even against strong adaptive adversaries, i.e., adversaries that can see the prediction made by the
learner in the current round.

F.1 Learning Point Functions Against Oblivious Adversaries

We show how to improve the log2 T dependence in Theorem 3.3 to log T for POINTN. In the
beginning, we keep outputting an all-zero function and use the sparse vector technique to monitor the
mistakes. Then we sample hypotheses from the probabilistic representation constructed in [10] and
again apply the sparse vector technique to find one with low error on the past data. Following their
argument, we can show that the construction guarantees that the hypothesis we found won’t make too
many mistakes in the future. The result is stated as follows.
Theorem F.1. In the realizable setting, there is an ε-differentially private online learning algorithm
for POINTN that makes in expectation O(log T/ε) mistakes against oblivious adversaries.

Proof. We run Algorithm 5. Note that it is in fact composed of two instances of AboveThreshold
with privacy parameter ε/2, the algorithm is ε-DP.

Consider the first AboveThreshold, there are T +1 ≤ 2T Laplace random variables. With probability
1− 1/3T , all of them have absolute values no larger than 4 ln(6T 2)/ε′. Thus, when it halts, there are
at least L̂− 4 ln(6T 2)/ε′ ≥ 20 ln(12T 3)/ε′ data points of the form (x⋆, 1), where fx⋆ is the target
hypothesis. Moreover, it makes at most 20 ln(12T 3)/ε′ +8 ln(6T 2)/ε′ +8 ln(6T 2)/ε′ +1 mistakes.

Now we show that the sampling won’t last for too long. We consider the first 3T 2 iterations. Then
with probability 1 − 1/3T , every random noise has an amplitude of at most 4 ln(12T 3)/ε′ in the
second AboveThreshold. Note that

∑t
r=1 I[h(xr) ̸= yr and yr = 1] ≥ 20 ln(12T 3)/ε′ if h(x⋆) = 0

and is 0 if h(x⋆) = 1. Thus, the algorithm will exit the loop if and only if h(x⋆) = 1. The probability
that this happens in the first 3T 2 iterations is at least 1 − (1 − 1/T )3T

2 ≥ 1 − e−3T ≥ 1 − 1/3T .
Moreover, this h makes in expectation less than (T − 1)/T < 1 mistakes on data points other than
(x⋆, 1) in the sequence.

Putting it all together, the expected number of mistakes is less than

1/T · T + (1− 1/T ) · (20 ln(12T 3)/ε′ + 8 ln(6T 2)/ε′ + 8 ln(6T 2)/ε′ + 1 + 1) = O(log T/ε).

F.2 Learning Point Functions Against Adaptive Adversaries

Theorem F.2. In the realizable setting, there is an ε-differentially private online learning algo-
rithm for POINTd that makes in expectation O((log d+ log T )/ε) mistakes against strong adaptive
adversaries.
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Algorithm 5: Learning point functions over N
Input: the number of rounds T ; privacy parameter ε; sequence S
Output: hypotheses h1, . . . , hT

1 ε′ ← ε/2

2 L̂← 20 ln(12T 3)/ε′ + 8 ln(6T 2)/ε′ + Lap(2/ε′)
3 for t = 1, . . . , T do
4 Let ht be an all-zero function such that ht(x) = 0 for all x ∈ N
5 (xt, yt)← S[t]

6 if
∑t

r=1 yr + Lap(4/ε′) ≥ L̂ then
7 R̂← 12 ln(12T 3)/ε′ + Lap(2/ε′)
8 repeat
9 Sample an h such that Pr[h(x) = 1] = 1/T for every x ∈ N independently

10 until
∑t

r=1 I[h(xr) ̸= yr and yr = 1] + Lap(4/ε′) ≤ R̂
11 Output ht+1 = · · · = hT = h for the remaining rounds and halt
12 end
13 end

Proof. Let ε′ = ε/2. The algorithm works as follows: it keeps outputting an all-zero function and
runs an ε′-differentially private sparse vector technique (Algorithm 4) with L = 3(ln d+ln(2T ))/ε′+

8 ln(4T 2)/ε′ to monitor the number of mistakes. Once the (noisy) number of mistakes exceeds L̂ at
round k, it computes ci = |{t ∈ [k] : (xt, yt) = (i, 1)}| and apply the report-noisy-max mechanism
with privacy parameter ε′ to find an index i with a large ci. After that, it persistently outputs fi till
the end. The privacy directly follows from the basic composition.

With probability 1 − 1/2T , the amplitude of every noise added in the sparse vector technique
is no larger than 4 ln(4T 2)/ε′. Thus, at round k, the number of mistakes must be in the range
[L̂− 4 ln(4T 2)/ε′, L̂+ 4 ln(4T 2)/ε′ + 1] ⊆ [L− 8 ln(4T 2)/ε′, L+ 8 ln(4T 2)/ε′ + 1]. Hence, we
have ci ≥ L − 8 ln(4T 2)/ε′ = 3(ln d + ln(2T ))/ε′ for some i and cj = 0 for all j ̸= i. With
probability 1− 1/2T , the report-noisy-max algorithm will identify i correctly.

Thus, the expected number of mistakes is bounded by

1/T · T + (1− 1/T ) · (L+ 8 ln(4T 2)/ε′ + 1) = O((log d+ log T )/ε).

F.3 Learning Threshold Functions

A threshold function over [d] is a function fi such that fi(x) = 0 for all x ≤ i and fi(x) = 1 for all
x > i, where i ∈ [d] ∪ {0}. The class of threshold functions over [d], denote by Thresholdd, is the
set {fi : i ∈ [d] ∪ {0}}.
Theorem F.3. In the realizable setting, there is an ε-differentially private online learning algo-
rithm for Thresholdd that makes in expectation O(log d log T/ε) mistakes against strong adaptive
adversaries.

Proof. We run Algorithm 6. Since the counters are refreshed once we switch the current hypothesis,
we are actually running AboveThreshold on disjoint datasets. Moreover, the comparisons of c0 and
c1 are also performed on disjoint datasets. Therefore, the overall algorithm is ε-DP.

Since the binary search runs for at most ⌈log2(d + 1)⌉ iterations, it follows by the privacy of
AboveThreshold and the basic composition that the overall algorithm is ε-DP since the counters are
refreshed once we switch the current hypothesis.

By the property of Laplace distribution and the union bound, with probability 1− 1/T , every random
noise that appears in the algorithm has an amplitude no larger than 4 ln(4T 2)/ε′. Conditioning on
this event, once we change the current hypothesis, we must have c0 + c1 ≥ L̂ − 4 ln(4T 2)/ε′ ≥
8 ln(4T 2)/ε′ and c0 + c1 ≤ L̂+ 4 ln(4T 2)/ε′ + 1 ≤ 24 ln(4T 2)/ε′ + 1. Therefore, we can identify
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which one is zero. Since the binary search runs at most O(log d) iterations, we will make at most

O(log d) · (24 ln(4T 2)/ε′ + 1) = O(log d log T/ε)

mistakes with probability 1− 1/T . This implies an 1/T · T +O(log d log T/ε) = O(log d log T/ε)
bound in expectation.

Algorithm 6: Learning threshold functions over [d]
Input: the number of rounds T ; privacy parameter ε; sequence S
Output: hypotheses h1, . . . , hT

1 ε′ = ε/2

2 L̂← 16 ln(4T 2)/ε′ + Lap(2/ε′)
3 l← 0, r ← d,mid← ⌊(l + r)/2⌋
4 c0 ← 0, c1 ← 0
5 for t = 1, . . . , T do
6 ht ← fmid

7 (xt, yt)← S[t]
8 cyt

← cyt
+ I[h(xt) ̸= yt]

9 if l < r and c0 + c1 + Lap(4/ε′) ≥ L̂ then
10 if c0 + Lap(1/ε′) > c1 then
11 l← mid+ 1
12 else
13 r ← mid− 1
14 end
15 mid← ⌊(l + r)/2⌋
16 c1 ← 0, c2 ← 0

17 L̂← 16 ln(4T 2)/ε′ + Lap(2/ε′)
18 end
19 end

F.4 Online Prediction from Experts Against Adaptive Adversaries

It is easy to come up with an algorithm with a regret of O(d log T/ε) even against strong adaptive
adversaries. The idea is similar to Algorithm 6. The only difference is that we try the experts one by
one instead of running a binary search.

Theorem F.4. There is an ε-differentially private algorithm that solves the OPE problem with an
expected regret of O

(
d log T

ε

)
even against strong adaptive adversaries in the realizable setting.

Proof. We iterate over the set of experts. For each expert, we keep choosing it and run an ε-
differentially private sparse vector technique to monitor the loss incurred by the current expert. Once
the sparse vector technique halts, we switch to the next expert and restart the sparse vector technique.
Since all instances of the sparse vector technique are run on disjoint data, the entire algorithm is ε-DP.

With probability 1− 1/T , all the Laplace noises added are bounded by 4 ln(2T 2)/ε. By choosing
L = 9 ln(2T 2)/ε, we will make at most O(log T/ε) mistakes on each expert. Moreover, for an
expert that makes no errors, we will not switch to the next one. Therefore, the overall expected regret
is

1/T · T + (1− 1/T ) · d ·O(log T/ε) = O(d log T/ε).

Note that there is a multiplicative factor of d on the log T term. We will then show how to improve
this dependence to log d for (weak) adaptive adversaries. Due to Corollary 4.5, such a dependence is
tight even for oblivious adversaries. It is interesting to find out if this can also be achieved for strong
adaptive adversaries, and we leave this as future work.
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Moreover, our algorithm has a regret of O
(
d log2 d+ log d log T

)
. Since it was shown by Asi et al.

[8] that an Ω(d) cost is inevitable, our algorithm is near optimal.

The idea is to select a uniformly random expert rather than keep choosing a fixed one. Suppose we
are at the beginning. Let ct(i) =

∑t
r=1 ℓr(i) for expert i. The benefit of such random selection is

that it only incurs a loss of
∑

i∈[d] ct(i)/d, which is much less than the
∑

i∈[d] ct(i) loss if we always
choose the same expert since the adversary can let this expert make an error all the time.

We use the sparse vector technique to track the maximum of ct. Once it exceeds O(log T + d log d),
we then apply the report-noisy-max algorithm to remove every expert j with at(j) =

∑t
r=1 ℓr(j) ≥

O(d log d) (we do not write ct here since we will reset ct to be 0 later). After that, we reiterate the
sampling and monitoring process using the remaining experts. Observe that if expert j is the i-th one
being removed, the loss incurred by j is at most O(log T + d log d)/i. This gives an upper bound of
O(log T + d log d) · (1 + 1/2 + · · ·+ 1/d) = O(d log2 d+ log d log T ). The details are depicted in
Algorithm 7.

Algorithm 7: DP-OPE against adaptive adversaries
Input: the number of rounds T ; privacy parameter ε; sequence S
Output: indices of experts i1, . . . , iT

1 Set a0(i)← 0 and c0(i)← 0 for all i ∈ [d]
2 E ← [d]
3 ε1 = ε/2, ε2 = ε/(6d)

4 L̂← 8 ln(2T 2)/ε1 + 3(ln d+ ln(3d2))/ε2 + Lap(2/ε1)
5 for t = 1, . . . , T do
6 Sample it uniformly from E
7 ℓt ← S[t]
8 Update at(i)← at−1(i) + ℓt(i) and ct(i)← ct−1(i) + ℓt(i) for all i ∈ [d]

9 if |E| > 1 and maxi∈E ct(i) + Lap(4/ε1) ≥ L̂ then
10 Run report-noisy-max with privacy parameter ε2 on {at(j)}j∈E and obtain some

index i
11 Update E ← E \ {i}
12 while i /∈ E and |E| > 1 do
13 Run report-noisy-max with privacy parameter ε2 on {at(j)}j∈E and obtain some

index i
14 if at(i) + Lap(1/ε2) > ln(3d2)/ε2 then
15 Update E ← E \ {i}
16 end
17 end
18 L̂← 8 ln(2T 2)/ε1 + 3(ln d+ ln(3d2))/ε2 + Lap(2/ε1)
19 ct(i)← 0 for all i ∈ [d]
20 end
21 end

Here is a subtle issue: the report-noisy-max mechanism only succeeds with probability 1− 1/d. This
does not imply an upper bound in expectation. We cannot simply raise the success probability to
1− 1/T . Otherwise, the d log2 d term will become d log d log T , which is even higher than the brute
force. To fix this, we run an extra sparse vector technique on top of the algorithm to inspect the loss.
Once the loss is greater than the upper bound, we then run the algorithm in Theorem F.4 for the rest
of the rounds. This reduces the expected cost from T to O(d log T ) when it fails, hence successfully
bound the expected loss.
Theorem F.5. There is an ε-differentially private algorithm that solves the OPE problem with an
expected regret of O

(
d log2 d+log d log T

ε

)
against adaptive adversaries in the realizable setting.

Proof. We first show the privacy and utility guarantee for Algorithm 7. For privacy, the sparse vector
technique is ε/2-DP. The report-noisy-max outside the while loop will be executed at most d times,
and the same for the one inside the while loop. Also, the if clause inside the while loop will also
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be executed at most d times. All of these cost a privacy budget of 3dε2 = ε/2. Thus, the overall
algorithm is ε-DP.

We next analyze the regret. With probability 1 − 1/T , all the noises added by AboveThreshold

are bounded by 4 ln(2T 2)/ε1. Therefore, once ct(i) ≥ 16 ln(2T 2)
ε1

+ 3(ln d+ln(3d2))
ε2

for some i ∈ E,
we must invoke the report-noisy-max mechanism. On the other hand, once we invoke the report-
noisy-max mechanism outside the while loop, we must have ct(i) ≥ 3(ln d+ln(3d2))

ε2
for some i. With

probability 1− 1/3d, it always identifies an i with at(i) ≥ 3(ln d+ln(3d2))
ε2

− 2(ln d+ln(3d2))
ε2

> 0 and
delete it.

Now let us move into the while loop. With probability 1− 1/3d the report-noisy-max always returns
an i with at(i) >

2 ln(3d2)
ε2

+ 2(ln d+ln(3d2))
ε2

− 2(ln d+ln(3d2))
ε2

= 2 ln(3d2)
ε2

whenever maxj∈[E] at(j) >
2(ln d+ln(3d2))

ε2
+ 2 ln(3d2)

ε2
. Moreover, the noise added in the if clause is less than ln(3d2)

ε2
for the entire

time span with probability 1− 1/3d. Thus, expert i will be removed. Conversely, if it identifies an i
such that at(i) = 0, we will not remove i and exit the loop.

Let Et be the set E at the beginning of round t and ET+1 be the set E after the algorithm terminates.
Suppose i is removed from E at time-step Ti (if it still remains in E at the end, we define Ti = T +1).
From the above analysis, we know that with probability 1− 1/d− 1/T , for every expert i we have
aTi

(i) ≤ 3(ln d+ln(3d2))
ε2

+ 2 ln(3d2)
ε2

+ 16 ln(2T 2)
ε1

+ 1. Conditioning on the event that aTi
(i) ≤M for

some M , we can bound the expected loss by

T∑
t=1

E

[∑
i∈Et

ℓt(i)/|Et|

]
=

T∑
t=1

E

∑
i∈[d]

I[i ∈ Et]ℓt(i)/|Et|


= E

∑
i∈[d]

T∑
t=1

I[i ∈ Et]ℓt(i)/|Et|


= E

∑
i∈[d]

Ti∑
t=1

ℓt(i)/|Et|


≤ E

∑
i∈[d]

Ti∑
t=1

ℓt(i)/|ETi |


= E

∑
i∈[d]

aTi(i)/|ETi |


≤ E

∑
i∈[d]

1

|ETi
|

 ·M
≤

 d∑
j=1

1

j

 ·M
≤ 2 ln d ·M

for d ≥ 2 (the case that d = 1 is trivial, so we just ignore it).

We already have M = O
(

d log d+log T
ε

)
with probability 1−1/d−1/T . However, this is not enough

to show an expected bound. To get an expected bound, we run Algorithm 7 with privacy parameter
ε′ = ε/2 and an ε′-differentially private AboveThreshold to monitor maxi∈Et at(i) (note that it
won’t affect the privacy and utility even if we release Et publicly) with threshold

L =

(
2 ln(3d2)

ε′
+

3(ln d+ ln(3d2))

ε′
+

16 ln(2T 2)

ε′
+ 1

)
+

4 ln(T 2)

ε′
.
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Once AboveThreshold halts, we then stop Algorithm 7 and switch to the algorithm in Theorem F.4
with privacy parameter ε.

It is not hard to see that the overall algorithm is ε-DP. For utility, we have that with probability
1 − 1/T AboveThreshold halts once maxi∈Et

at(i) is greater than L = L + 4 ln(T 2)
ε′ and never

halts if the value is always no more than L = L− 4 ln(T 2)
ε′ . Conditioning on this, with probability

1− 1/d− 1/T we have aTi
≤ L for every i and thus AboveThreshold never halts. In this case, the

expected loss is at most L · 2 ln d = O
(

d log2 d+log d log T
ε

)
. If AboveThreshold halts, the expected

loss incurred before that moment should be at most (L+ 1) · 2 ln d = O
(

d log2 d+log d log T
ε

)
. And

after that, the regret should be O
(

d log T
ε

)
by Theorem F.4. Putting these two cases together gives an

expected regret of(
1− 1

d
− 1

T

)
· L · 2 ln d+

(
1

d
+

1

T

)(
(L+ 1) · 2 ln d+O

(
d log T

ε

))
= O

(
d log2 d+ log d log T

ε

)
+

(
1

d
+

1

T

)
O

(
d log T

ε

)
= O

(
d log2 d+ log d log T

ε

)
.

Thus, the expected regret of the entire algorithm is(
1− 1

T

)
·O
(
d log2 d+ log d log T

ε

)
+

1

T
· T = O

(
d log2 d+ log d log T

ε

)
.

F.5 Learning Two Complementary Hypotheses

LetH = {f1, f2} such that f1 = 1− f2. We now give an algorithm that achieves a mistake bound of
O(1/ε).

It is not hard to come up with an algorithm that makes O(1/ε) mistakes with constant probability.
Since the incorrect hypothesis makes an error on every input sample, we can output arbitrarily in
the first O(1/ε) rounds. Then we use the O(1/ε) data points to figure out which hypothesis is the
correct one. This can be done using the Laplace mechanism.

However, a constant probability bound does not imply an expected bound. Note that once the Laplace
mechanism fails, we may make Ω(T ) errors on the entire sequence. Thus, if we follow the above
framework, we have to achieve a success probability of 1− 1/T . This requires O(log T/ε) samples,
which exceed our target.

To reduce the expected number of errors, we split the entire sequence into buckets of length O(1/ε).
We perform the Laplace mechanism on every bucket. Then for the i-th bucket, instead of just using
the result on the last bucket to predict, we take the majority over all previous buckets. This makes the
fail probability decrease exponentially. The mistake bound then converges to O(1/ε) as desired.

We describe the procedure in Algorithm 8 and provide a formal statement of our result in the following
theorem.
Theorem F.6. Let H = {f1, f2} be a hypothesis such that f1 and f2 are complementary. In the
realizable setting, there exists an ε-differentially private algorithm that online learnsH with a mistake
bound of O(1/ε) even against strong adaptive adversaries.

Proof. It is easy to see that Algorithm 8 is ε-differentially private since we add Laplace noise on
disjoint buckets. For each bucket, with probability 2/3, the noise added to the counter is less than
ln(3)/ε < s/2. This means we can identify the correct hypothesis with probability 2/3.

For the n-th bucket, we will make s errors only if we wrongly identify the target hypothesis on at
least half of the previous buckets. By Hoeffding’s inequality, this happens with probability at most

exp
(
−2(n− 1)(1/6)2

)
= exp(−(n− 1)/18).

26



Thus, the expected number of mistakes is bounded by

s

∞∑
n=1

exp(−(n− 1)/18) = O(1/ε).

Algorithm 8: Learning complementary hypotheses
Input: the number of rounds T ; hypothesis classH = {f1, f2} such that f1 and f2 are

complementary; privacy parameter ε; sequence S
Output: hypotheses h1, . . . , hT

1 c1 ← 0, c2 ← 0
2 s← ⌈2 ln(3)/ε⌉
3 for t = 1, . . . , T do
4 (xt, yt)← S[t]
5 if c1 > c2 then
6 ht ← f1
7 else
8 ht ← f2
9 end

10 if t mod s = 0 then
11 if

∑t
r=t−s+1 I[f1(xr) ̸= yr] + Lap(1/ε) < s/2 then

12 c1 ← c1 + 1
13 else
14 c2 ← c2 + 1
15 end
16 end
17 end
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract and introduction, we state our two main contributions: a
separation result between pure and approximate DP, and the other one between private and
non-private settings.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations and future work in Appendix A.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The proofs of the results in Section 3 and 4 can be found in Appendix D and E
respectively. We also provide some additional results together with their formal proofs in
Appendix F. For each theorem in the paper, we clearly state the assumptions that it relies on.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: The paper does not include experiments requiring code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read the NeurIPS Code of Ethics and make sure that the research in
this paper conforms with it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the potential impacts of this paper in Appendix B.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not have such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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